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OUTLINE

* Presentation:
— Will be conceptual in nature
— Will cover many areas of Process Systems Engineering
— Will be illustrated with numerous industrial examples
— But will not cover any topic in much detail

* Objective:
— Provide a feel for Latent Variable (LV) models, why they are used,
and their great potential in many important problems

(c) 2004-2008, ProSensus, Inc.



Process Systems Engineering?

* Process modeling, simulation, design, optimization, control.

e But it also involves data analysis

— learning from industrial data
* An area of PSE that is poorly taught in many engineering programs

« This presentation is focused on this latter topic
— The nature of industrial data
— Latent Variable models

— How to extract information from these messy data bases for:

» Passive applications: Gaining process understanding, process
monitoring, soft sensors

» Active applications: Optimization, Control, Product development
— Will illustrate concepts with industrial applications

(c) 2004-2008, ProSensus, Inc.
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A. Types of Processes and Data Structures

e Continuous Processes e Batch Processes

Migan Teagectony fox ome varisbies
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e Data structures e Data structures
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Initial Conditions Variable Trajectories

End Properties
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Nature of process data

e High dimensional
« Many variables measured at many times

 Non-causal in nature
* No cause and effect information among individual variables

o Non-full rank
» Process really varies in much lower dimensional space

e Missing data
e 10 — 30 % is common (with some columns/rows missing 90%)

e Low signal to noise ratio
« Little information in any one variable

o Latent variable models are ideal for these problems
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B. Concept of latent variables

Measurements are available on K physical variables: matrix=X

K columns

a
v

1 2 3 4 5 B 7 g 9 =
Primary ID
200604 05 16:35:00.000 112.049 116,541 41.1646 Te.5042  320.199 126.565 66.401 -61.6004 41.
200604 05 16:35:05.00 112.046 116.532 41.1379 TE.4959 325.755 1Z26.636| 95.8617 -43.3963  41.
200604 05 16:35:10.00 112.044 116.523 41.16Z6 TE.3575 321.37 126.705 §2.759 -5z.5372 | 41.7
200604 05 16:35:15.00 112.041 116.514 41.1274 Te.3792 3z27.09 126.75 | 80.6494 -51.5954 41. — X
200604 05 16:35:20.00 112.039 116.505 41.101 TEe.2709 ) 326.797 126.551| 94.5307 -43.7692  41.
200604 05 16:35:25.00 112.036 116.497 41.03a7 Te.3625 315.052 126.923 | §5.1925 -50.9631 41.
200604 05 16:35:30.00 112.034 116,488 41.281 Te.3542  323.09%9 126.995| 72.5004 -56.6797  41.

M|~ m| =R —

But, the process is actually driven by small set of “A” (A « K)
independent latent variables, T.

— Raw material variations
— Equipment variations

— Environmental (temp, humidity, etc.) variations
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Projection of data onto a low dimensional latent variable space (T)

Measured variables Latent variable space

245

L T ~——
Clan
e

PO Al
- : .
- N
Plg S

15F

o5

B
05 [}

15k

~ -
« -
e, ' -
S ' e
= 2 oy

- -
-------
T ' m——
.......

25 1 1 |
G - K

Television analogy

c) 2004-2008, ProSensus, Inc.




Pro$§ensus

Latent variable regression models

- — I

Symmetric in X and Y
e Both X and Y are functions of the latent

X=TPT+E .

. variables, T
Y=TC'+F * No hypothesized relationship between X
T = X\W* andY

» Choice of X and Y is arbitrary (up to user)

* A model exists for the X space as well as
for Y (a key point)

(c) 2004-2008, ProSensus, Inc.




Estimation of LV Model Parameters

e Parameters: W*, C, P

e Principal Component Analysis
— Single matrix X: Maximizes the variance explained

 PLS (Projection to Latent Structures / Partial Least Squares)
— Maximizes covariance of (X, Y)

 Reduced Rank Regression
— Maximizes Var(Y) explained by X

o Canonical Variate Analysis (CVA)
— Maximizes correlation (X, Y)

« Appear to be subtle differences, but method used is often
critical to the application

(c) 2004-2008, ProSensus, Inc.




Subspace Identification
Latent variable methods you may be familiar with.

e Subspace identification methods are latent variable methods

— N4SID — Equivalent to Reduced Rank Regression (RRR) (maximizes
the variance in Y explained thru correlation with X

— CVA — Canonical Correlation Analysis (maximizes the correlation
between X and Y)

— State variables are the latent variables.

(c) 2004-2008, ProSensus, Inc.
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Important Concepts in Latent Variable Models

« Handle reduced rank nature of the data
— Work in new low dimensional orthogonal LV space (11, t2,...)

 Model for X space as well as Y space (PLS)
— X=TPT+E; Y=TC'+F
* Unique among regression methods in this respect
— X space model will be the key to all applications
In this talk
« Essential for uniqueness and for interpretation

« Essential for checking validity of new data
» Essential to handle missing data

* Provide causal models in LV space

— Optimization & control can be done in this space
« only space where this is justified

(c) 2004-2008, ProSensus, Inc.



Use of LV Models

e Multivariate latent variable (LV) methods have been widely
used in passive chemometric environments
— A passive environment is one in which the model is only used to
Interpret data arising from a constant environment
 Calibration
 Inferential models (soft sensors)
» Monitoring of processes

 Used much less frequently in an active environment
— An active environment is one in which the model will be used to
actively adjust the process environment
* Optimization
« Control
* Product Development

(c) 2004-2008, ProSensus, Inc.



Causality in Latent Variable models

* In the passive application of LV models no causality is required
* Model use only requires that future data follow the same structure
* No causality is implied or needed among the variables for use of the model
— Calibration; soft sensors; process monitoring

e For active use such as in optimization and control one needs
causal models

— For empirical models to be causal in certain x-variables — we need to have
iIndependent variation (DOE’s) in those X’s.

— But much process modeling uses “happenstance data” that arise in the
natural operation of the process
 These models do not yield causal effects of individual x’'s on the y’s

— But LV models do provide causal models in the low dimensional LV space

* ie. if we move in LV space (t1, t2, ...) we can predict the causal effects of
these moves on X and Y thru the X and Y space models

* Will use this fact together with the model of the X-space to perform
optimization and control in the LV spaces

(c) 2004-2008, ProSensus, Inc.



C. Industrial applications

—_—

« Analysis of historical data

« Process monitoring - qusiye
applications

* Inferential models / Soft sensors
o Optimization of process operation

e Control Active

applications
o Scale-up and transfer between plants

 Rapid development of new products

c) 2004-2008, ProSensus, Inc.




C. Industrial applications

—_—

 Analysis of historical data
e Process monitoring — Passive
applications
 Inferential models / Soft sensors _
 Optimization of process operation -
applications

e Scale-up and transfer between plants

 Rapid development of new products

c) 2004-2008, ProSensus, Inc.
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Analysis of Historical Batch Data

e Batch Processes

T—— W —— Herbicide Manufacture

e Data structure _ _
Z - Chemistry of materials

- Discrete process events

X - Process variable trajectories

Z Y - Final quality
/ - 71 batches
Initial Conditions Variable Trajectories ~ 400,000 data pointS

(c) 2004-2008, ProSensus, Inc.



Batches

Batches

«

Unfolding and blocking the data

J Variables

Sample at t=1

Sample at t=2

Sample at t=K \

\
\ Y
\ \

Jx K

T rows

columns
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Multi-way PLS for batch data

Z|| X |[[Y [T

Latent
variable

VT WT C T| “scores

 Mean centering removes the average trajectories

 Models the time varying covariance structure among all the
process variables over the entire time history of the batch

I batches

g
-

A latent
variables
-

e Every batch summarized by a few LV scores (t;, t,, t;)

* Relates the IC’s (Z) and time varying trajectory information
(X) to the final product quality (Y)

(c) 2004-2008, ProSensus, Inc.




LV score plot for Z LV score plot for X

Score Scatter for Maodel-= EMYmbpls
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C. Industrial applications

—_—

« Analysis of historical data

 Process monitoring — Passive
applications

 Inferential models / Soft sensors _
« Optimization of process operation

applications
« Scale-up and transfer between plants

* Rapid development of new products

c) 2004-2008, ProSensus, Inc.




On-line Monitoring of New Batches

e Multivariate Statistical Process Control
— Build LV model on all acceptable operational data

— Statistical tests to see if new batches remain within that model space
» Hotelling’s T2 shows movement within the LV plane
» SPE shows movement off the plane

(c) 2004-2008, ProSensus, Inc.



Process monitoring: Herbicide process

Monitoring of new batch number 73

T2 plot SPE plot

Instantanecus SPE On-Line Menitoring for batch 73

Hot T2 On-Line Monitering for batch 73
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Contribution plots to diagnose the problem

SPE Monitering wf Contributions at time 277 for New Batch 73
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Problem: Variable x, diverged above its nominal trajectory at time 277
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C. Industrial applications

—_—

« Analysis of historical data

« Process monitoring - qusiye
applications

e Inferential models / Soft sensors_

« Optimization of process operation

o ContrOI Active

applications
« Scale-up and transfer between plants

* Rapid development of new products

c) 2004-2008, ProSensus, Inc.
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Image-based Soft Sensor for Monitoring and Feedback
Control of Snack Food Quality

Gonput er

CGanera

Lhseasoned
Pr oduct

c) 2004-2008, ProSensus, Inc.

‘ Tunbl er

4 N Li ghti ng

'///,,\\\\

|

Gonveyor Bel t

Seasoni ng

Lab Analysis

(c) 2007, ProSensus, Inc.




PCA Score Plot Histograms

Non-seasoned Low-seasoned High-seasoned

(c) 2007, ProSensus, Inc.
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Segment Score Space into Multi-mask Region Based
on Covariance with Quality

Score space divided
up into 32 regions
corresponding to

various coating levels

(c) 2007, ProSensus, Inc.
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Distribution of Pixels

Superposition of the
score plots from 3
sample images on top
of the mask

Non-seasoned

Low-seasoned

High-seasoned

I

Distribution of pixels Cumulative distribution of pixels

(c) 2004-2008, ProSensus, Inc.
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Model to Predict Seasoning Concentration
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Model for Seasoning Level
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Visualize Images: Pixel by pixel Prediction of
Seasoning Concentration

Non-seasoned Low-seasoned High-seasoned

=c= 2004-2008, ProSensus, Inc.
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Online Results: Mixed Product Experiment

.edicted seasoning
level ‘ \

Predicted seasoning
distribution variance |

J\/
m i

12:64:00 12:56:00 12:58:00 13:00:00 13:02:00 13:04:00 13:06:00 13:08:00 13:10:00 13:12:00 | Seaaoning concentration
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Closed-loop Control of Seasoning Level
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C. Industrial applications

—_—

« Analysis of historical data

« Process monitoring - qusiye
applications

e Inferential models / Soft sensors

e Optimization of process operation

o ContrOI Active

applications
« Scale-up and transfer between plants

* Rapid development of new products

c) 2004-2008, ProSensus, Inc.




Optimizing operating policies for new products

/\ X Temperatures

Pressures
Concentrations
Recipes

Flows
Trajectories

Density

Tensile strength
Mw, Mn
Transparency
Biological activity
Toxicity
Hydrophobicity

(c) 2004-2008, ProSensus, Inc.



Batch polymerization: Process trajectory data (X)

Batch polymerization — Air Products & Chemicals
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Batch polymerization data

« 13 variablesinyY
Desire a new product with the following final quality attributes (Y’s):

Maintain in normal ranges: Y, Y, Y, Y, Y. Y. Yq

Constraints: Yo=Y e
Y9 = Y9des
Y10<Y
Y11< Yllconst
YlZ'< Y
Y13'< Y

... and with the minimal possible batch time (*)

10const

12const

13const

e Solution
— Build batch PLS latent variable model on existing data
— Perform an optimization in LV space to find optimal LV’s

— Use LV model of X-space to find the corresponding recipes and
process trajectories

(c) 2004-2008, ProSensus, Inc.



Unconstrained Solution

* Design via PLS model inversion (no constraints)

PLS Model:

A

Y=TQ'

y/(;es= QTnew Step 1

Thew™ inV (QT Q)QT ydes

X=TP"'
XI/I\CW= P THC:V/

Step 2

o If dim(Y) < dim(X) then there is a null space
— A whole line or plane of equivalent solutions yielding the same vy,

(c) 2004-2008, ProSensus, Inc



Solution with constraints: Formulate inversion
as an optimization

« Step 1: Solve for 7,,, with constraints on T2 and on y’s

min n N A %inewa
{(ydes _Q Txnew)TGl(ydes _Q Txnew)+ p(z SZ ) j}

a=1 a

TXI’IBW
S.t
BQ1_. <b

e Step 2: Solve for x.,, that yields 7., subject to certain
constraints on SPE and x’s.
min

. {(W X,y — Toew )T G, (W X~ T ) + (xnew -PW'x,_ )T A (xnew -PW'x,_, ) +MX,., }

new

(c) 2004-2008, ProSensus, Inc.




Different solutions: change the penalty (n) on time usage

All solutions satisfy the requirements on y

Case 1to 5: weight on time-usage is gradually increased

Converslon

100 150

B0
70
=3
a0
40
o a0 100 150
Time{min)

200

0.22
032
0.18
=
016

014

0.12
1]

50 100 150 200
Tirme{min)

a 30

100
Time{min}

150 200

075

0.05

0,04

A3

0.03

0.0z

— Case 1
--—- Case 2

- Case 3
-~~~ Case 4
— Case 5

50 100 150 200

Tima{min)

100 150

[}

® 0

100

Time(mit)

150 200

Garcia-Munoz, S., J.F. MacGregor, D. Neogi, B.E. Latshaw and S. Mehta, “Optimization of batch operating policies.
Part Il: Incorporating process constraints and industrial applications”, Ind. & Eng. Chem. Res., 2008
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C. Industrial applications

« Analysis of historical data .

« Process monitoring _ Passive
applications

e Inferential models / Soft sensors

« Optimization of process operation

Active
e Control applications

—

e Scale-up and transfer between plants

 Rapid development of new products

—

c) 2004-2008, ProSensus, Inc.




Control of batch product quality

e Objective is to control final product quality
— e.g. control of final particle size distribution (PSD)

 Using all data up to some decision time, predict final
guality with latent variable model

— All prediction done in low dimensional latent variable space (y’s
then calculated from t's)

« |f predicted quality is outside a desired window, then
make a mid-course correction to the batch

— Analogy to NASA mid-course rocket trajectory adjustment in
moon missions

« Data requirement: Historical batches + few with DOE on
corrective variables

(c) 2004-2008, ProSensus, Inc.




LV models provide accurate adaptive trajectory predictions

 Use various missing data imputation methods
- Equivalent of Kalman Filter

Prediction of a variable trajectory
using information up to time 30
(DuPont)

Deviations from the mean
trajectory — Prediction vs actual

Trajectory Forecast with information up to time 30 Trajectory Forecast with information up to time 30
1 T 5 T

— Prediction

4L : ---- True Unknown Trajectory |-
— Known Samples

0.95 r

o
w0

— Prediction
---- True Unknown Trajectary
— Krnown Samples

Raw Values

=
]
o

0.8

Variable 2 Dupont Data batch 22
Variable 2 Dupont Data batch 22
Mean centered and scaled value

0.75

time time
(c) 2004-2008, ProSensus, Inc.



Control of PSD via mid-course correction

« At decision point — predict t's (Y’s) — if outside target region — take
action

------------------------------------------------------------ Predicted
) final t's
Heat release -
trajectories
from
different
batches

Time interval

(c) 2004-2008, ProSensus, Inc.



Industrial results (Mitsubishi Chemicals)

Mid-course control : before and after implementation

50 ¢
Number of | Standard | Number
Year .
batches deviation | off-spec - :
w40 4 [ 75 0.030 9 H Before implementation
- 2 od 0.027 : B After implementation
5 3 76 0.026 4
= 4 72 0.030 5
8 30  [curend 42 0.015 0
L=
Q
o
;g 20
c
Q
5
& 10
D%"Q- - |-)| — .),

-0.12 090 -006 -0.03 000 003 0.06 0.0 012

Deviation from target
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C. Industrial applications

« Analysis of historical data h

« Process monitoring - qusiye
applications

* Inferential models / Soft sensors
o Optimization of process operation

e Control Active

- applications
e Scale-up and transfer between plants

* Rapid development of new products _
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Product transfer between plants and scale-up

Source site Target site

Xa Xb

Process conditions

Ya Yb

Chemical or physical properties
for each product

Process conditions

Chemical or physicalproperties
for each product

Product 3

=c= 2004-2008, ProSensus, Inc.
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Product transfer and scale-up

Historical data from the 2 plants. Build JYPLS model

new

Garcia-Munoz, S., T.Kourti and J.F. MacGregor, “Product Transfer Between Sites using Joint-Y PLS”,
Chemometrics & Intell. Lab. Systems, 79, 101-114, 2005.

(c) 2004-2008, ProSensus, Inc.



Fllct Plant Temperature Proflles

. 160
Industrial Scale-up Example 4
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Scale up for grade F — pulp digester

Scale-up of grade F

1356 | |

Build models on all . |
Predicted trajectory

pilot plant data and

130+ | .‘ i ..w“——a__ e _-
all plant data (ex F) 7 — ]
g % " ;
Design operating 0l Actual plant trajectory |
profiles to achieve 7 used togfgg;eve the
grade F in plant. sl I |
10} / |
106

0 &6 10 1 20 26 330 3F 40 4 &0
Allgnecd Bateh Time
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C. Industrial applications

« Analysis of historical data h

* Process monitoring __ Passive
applications

* Inferential models / Soft sensors
o Optimization of process operation -

e Control Active

— applications
o Scale-up and transfer between plants

 Rapid development of new products

c) 2004-2008, ProSensus, Inc.




Data Mining for Product Engineering

 Companies accumulate lot of data on their products and
processes

e Can we use it to rapidly develop new products?
 Three general degrees of freedom for developing new
products:
— Raw material selection

— Ratios in which to use raw materials (formulation)
— Process conditions for manufacturing

» Relative importance of these three depends on the industry and the
product

* Huge synergisms among these

(c) 2004-2008, ProSensus, Inc.



What is the problem ?

The selecti_on of Blend Process Final product
raw materials  ratios  conditions properties
40% Temp
Agltatlon e.g. Dissolution rate
@ 30% :> End- pomt Elongation

@ Density
: Desired properties

Traditional approaches tend to treat each step separately=>
Inefficient as they miss synergism among these degrees of
freedom

(c) 2004-2008, ProSensus, Inc.
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Example: Functional Polymer Development

Mitsubishi Chemicals

Rubber

Critical!

Functional
Polymers

Process conditions

(c) 2004-2008, ProSensus, Inc.



Data structure

Partial data from database of DB
raw material propert (Raw material property data)
N
4 N
@ Rubber Oil PP
-~ . 5 property _property  property
TH o X -
2 3! et o s
- =5 PP ! =¥ L B
Raw material 3Sg =L POl S
< 5|+ X, Sl x BS
property data ol o { “Moil_DB !
5 2 0il . ot : ! !
[0} < ! : _______
::; g X rubber i : Xop DB
km aRubbe _______ I
ﬁ . Product Xrubber_DB
s o
o Z : i <:> Ypro
K N (MxL)
l ! \\‘: \
Process data R, e R, Ropo
Formulation

data
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Methodology

« Build a multi-block PLS model that relates all the databases
together and predicts the final quality attributes

* Perform an optimization in the latent variable space of the

' Raw material
multi-block PLS model Raw materia
— Which materials? X
i i “ DB
— o @
Formulation réjilos- = Materials E) (l\_|N><K) ‘ Database
— Process conditions? § . - Sl
. . -E Cc:: 7
— Minimum cost =5 (BN
2 5| (Kx
& A 1 9
Process Mixture
Conditions Material Properties
5
Z e R — Y
=l (MxN) (MxL)
7 | ?'?? | Desired

\M

(c) 2004-2008, ProSensus, Inc.



Formulation of the Optimization

Total The number
Estimation error material cost of materials
A A A

- N (N N W)
Min (ydes — Xinixnew * BPLS)T 'Wl '(ydes ~ Xixnew ° BPLS) + W, 'Zrnew,j 'Cj +W, 251
j=1 j=l1

Ideal
{ X -r_.X Optimized variables:

mixing rule mixnew — 'new ~““DB

k=K The mixture ratios of all the raw
SPE e = O Knixnew — Rmixnew)” =0 - -
PLS model new 2 mixnew — “‘mixnew/ = materials available on the database
=1 .
moce > Xog (@nd process variables Z)
constraint ) A Trona DB
Toow =, < const

S

a

a-1
Mixture NN
constraint Z Fewj =1 0, <1
=1

Binary variable | § — I "hew.j ~ 0 ) ) :
constraint 70 =0 Nonlinear, Constrained, Mixed
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One Example: Golf ball development
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Summary

e Latent variable models:

— Important concepts:
* Low dimensional Latent Variable spaces
* Models for both X and Y
« Causality only in LV space

« Passive applications
— Analysis, soft sensors, monitoring

e Active applications
— Optimization, control, product development

« All work done in LV space (t1,t2, ..)
 Models for X and Y used to get back to these variables.

(c) 2004-2008, ProSensus, Inc.



Conclusions

 If you use historical process data, then Latent Variable
approaches are essential

— Allow one to uniquely interpret and use the data in both passive and
active applications

(c) 2004-2008, ProSensus, Inc.
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Some References on topics in the presentation

* Latent variable methods (general)

—  Eriksson L., Johansson, E., Kettaneh-Wold, N. and Wold, S., 1999. “Introduction to Multi- and Megavariate Data Analysis using
Projection Methods (PCA & PLS), Umetrics AB, Umea, Sweden

— Kourti, T. (2002). Process Analysis and Abnormal Situation Detection: From Theory to Practice. |EEE Control Systems, 22(5),
10-25.
« Software
—  SIMCA_P (Umetrics); Unscrambler (Camo); Matlab toolbox (Eigenvector Technologies), ProMV (ProSensus)

e Analysis of historical data
— Garcia-Munoz, S., T. Kourti and J.F. MacGregor, A.G.. Mateos and G. Murphy, “Trouble-shooting of an industrial batch process
using multivariate methods”, Ind. & Eng. Chem. Res., 42, 3592-3601, 2003
* Monitoring
— T. Kourti and J.F. MacGregor, 1995. "Process Analysis, Monitoring and Diagnosis Using Multivariate Projection Methods", J.
Chemometrics and Intell. Lab. Systems, 28, 3-21.
 Control

—  Flores-Cerillo, J. and J. F. MacGregor, “Within-batch and batch-to-batch inferential
adaptive control of semi-batch reactors: A Partial Least Squares approach”, Ind. & Eng. Chem. Res., 42, 3334-3345, 2003.

* Image-based soft sensors

— Yu, H., J.F. MacGregor, G. Haarsma, and W. Bourg, “Digital imaging for on-line monitoring and control of industrial snack food
processes”, Ind. & Eng. Chem. Res., 42, 3036-3044, 2003

— Yu, H. and J.F. MacGregor, “Multivariate image analysis and regression for prediction of coating content and distribution in the
production of snack foods”, Chem. & Intell. Lab. Syst., 67, 125-144, 2003
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References, continued

e Optimization
— Jaeckle, J.M., and MacGregor, J.F. (1998). Product Design Through Multivariate Statistical Analysis of Process Data. AIChE
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materials and blend ratios”, Ind. & Eng. Chem. Res., 45, 4653-4660, 2006.

— Muteki, K. and J.F. MacGregor, “Multi-block PLS Modeling for L-shaped Data Structures, with Applications to Mixture
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» Design of Experiments

—  Muteki, K., J.F. MacGregor, and T. Ueda, “Mixture designs and models for the simultaneous selection of ingredients and their
ratios”, Chemometrics & Intell. Lab. Systems, 86, 17-25, 2007.

— Muteki, K. and J.F. MacGregor, “Sequential design of mixture experiments for the development of new products”,
Chemometrics & Intell. Lab Sys., 2007.
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