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OUTLINE

• Presentation:
– Will be conceptual in nature
– Will cover many areas of Process Systems Engineering
– Will be illustrated with numerous industrial examples
– But will not cover any topic in much detail

• Objective:
– Provide a feel for Latent Variable (LV) models, why they are used, 

and their great potential in many important problems
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Process Systems Engineering?

• Process modeling, simulation, design, optimization, control.
• But it also involves data analysis

– learning from industrial data
• An area of PSE that is poorly taught in many engineering programs

• This presentation is focused on this latter topic
– The nature of industrial data
– Latent Variable models
– How to extract information from these messy data bases for:

• Passive applications: Gaining process understanding, process 
monitoring, soft sensors

• Active applications: Optimization, Control, Product  development
– Will illustrate concepts with industrial applications 
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A.  Types of Processes and Data Structures

• Continuous Processes

• Data structures

• Batch Processes

• Data structures
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Nature of process data

• High dimensional 
• Many variables measured at many times

• Non-causal in nature
• No cause and effect information among individual variables  

• Non-full rank
• Process really varies in much lower dimensional space

• Missing data
• 10 – 30 % is common (with some columns/rows missing 90%)

• Low signal to noise ratio
• Little information in any one variable

• Latent variable models are ideal for these problems
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B.  Concept of latent variables

Measurements are available on K physical variables: matrix=X

But, the process is actually driven by small set of  “A” (A « K)
independent  latent variables, T.

– Raw material variations

– Equipment variations

– Environmental (temp, humidity, etc.) variations

K columns

= X
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Projection of data onto a low dimensional latent variable space (T)

Latent variable spaceMeasured variables

TX

t1

t2

Television analogyP
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Latent variable regression models

X = TPT + E
Y = TCT + F
T = XW*

Symmetric in X and Y
• Both X and Y are functions of the latent 

variables, T
• No hypothesized relationship between X 

and Y
• Choice of X and Y is arbitrary (up to user)
• A model exists for the X space as well as 

for Y (a key point)

P, W C

TX Y
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Estimation of LV Model Parameters

• Parameters: W*, C,  P

• Principal Component Analysis
– Single matrix X:  Maximizes the variance explained

• PLS (Projection to Latent Structures / Partial Least Squares)
– Maximizes covariance of (X, Y)

• Reduced Rank Regression
– Maximizes Var(Y) explained by X

• Canonical Variate Analysis (CVA)
– Maximizes correlation (X, Y)

• Appear to be subtle differences, but method used is often 
critical to the application
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Subspace Identification
Latent variable methods you may be familiar with. 

• Subspace identification methods are latent variable methods
– N4SID – Equivalent to Reduced Rank Regression (RRR) (maximizes 

the variance in Y explained thru correlation with X
– CVA – Canonical Correlation Analysis (maximizes the correlation 

between X and Y)
– State variables are the latent variables.
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Important Concepts in Latent Variable Models

• Handle reduced rank nature of the data
– Work in new low dimensional orthogonal LV space (t1, t2,…)

• Model for X space as well as Y space (PLS)
– X = TPT + E ;    Y = TCT + F

• Unique among regression methods in this respect
– X space model will be the key to all applications

in this talk
• Essential for uniqueness and for interpretation
• Essential for checking validity of new data
• Essential to handle missing data

• Provide causal models in LV space
– Optimization & control can be done in this space 

• only space where this is justified
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Use of LV Models

• Multivariate latent variable (LV) methods have been widely 
used in passive chemometric environments
– A passive environment is one in which the model is only used to 

interpret data arising from a constant environment
• Calibration
• Inferential models (soft sensors)
• Monitoring of processes

• Used much less frequently in an active environment
– An active environment is one in which the model will be used to 

actively adjust the process environment
• Optimization
• Control
• Product  Development
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Causality in Latent Variable models

• In the passive application of LV models no causality is required
• Model use only requires that future data follow the same structure
• No causality is implied or needed among the variables for use of the model

– Calibration; soft sensors; process monitoring

• For active use such as in optimization and control one needs 
causal models
– For empirical models to be causal in certain x-variables – we need to have

independent variation (DOE’s) in those x’s.
– But much process modeling uses “happenstance data” that arise in the 

natural operation of the process
• These models do not yield causal effects of individual x’s on the y’s

– But LV models do provide causal models in the low dimensional LV space 
• ie. if we move in LV space (t1, t2, …) we can predict the causal effects of 

these moves on X and Y thru the X and Y space models
• Will use this fact together with the model of the X-space to perform 

optimization and control in the LV spaces



(c) 2004-2008, ProSensus, Inc.

C. Industrial applications

• Analysis of historical data

• Process monitoring

• Inferential models / Soft sensors

• Optimization of process operation

• Control

• Scale-up and transfer between plants

• Rapid development of new products

Passive 
applications

Active 
applications
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Analysis of Historical Batch Data

• Batch Processes

• Data structure

Z X Y

Initial Conditions Variable Trajectories

End Properties

tim
e
variables

ba
tc

he
s

Herbicide Manufacture

Z - Chemistry of materials
- Discrete process events

X - Process variable trajectories

Y - Final quality 

- 71 batches
~ 400,000 data points
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Unfolding and blocking the data
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Multi-way PLS for batch data

• Mean centering removes the average trajectories
• Models the time varying covariance structure among all the 

process variables over the entire time history of the batch
• Every batch summarized by a few LV scores (t1, t2, t3)

• Relates the IC’s (Z) and time varying trajectory information 
(X) to the final product quality  (Y)
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LV score plot for Z LV score plot for X

Loading vector w*1 for X modelVIP’s for Z model
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C. Industrial applications

• Analysis of historical data

• Process monitoring

• Inferential models / Soft sensors

• Optimization of process operation

• Control

• Scale-up and transfer between plants

• Rapid development of new products

Passive 
applications

Active 
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On-line Monitoring of New Batches

• Multivariate Statistical Process Control
– Build LV model on all acceptable operational data
– Statistical tests to see if new batches remain within that model space

• Hotelling’s T2 shows movement within the LV plane
• SPE shows movement off the plane
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Monitoring of new batch number 73

T2 plot SPE plot

Process monitoring: Herbicide process



(c) 2004-2008, ProSensus, Inc.

Contribution plots to diagnose the problem

Problem:  Variable x6 diverged above its nominal trajectory at time 277 
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Image-based Soft Sensor for Monitoring and Feedback 
Control of Snack Food Quality

C

Lab Analysis
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PCA Score Plot Histograms

Non-seasoned Low-seasoned High-seasoned
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Segment Score Space into Multi-mask Region Based 
on Covariance with Quality

Score space divided 
up into 32 regions 
corresponding to 

various coating levels 



(c) 2004-2008, ProSensus, Inc.

Distribution of Pixels

Superposition of the 
score plots from 3 

sample images on top 
of the mask

Non-seasoned

Low-seasoned

High-seasoned

Distribution of pixels Cumulative distribution of pixels
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Model to Predict Seasoning Concentration

Model for Seasoning Level 

X
Seasoning

Measurements
Cumulative
Histogram

Y

Feature
Extraction

Color
Images

PLS
Regression
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Visualize Images: Pixel by pixel Prediction of 
Seasoning Concentration 

Non-seasoned Low-seasoned High-seasoned
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Online Results: Mixed Product Experiment

Predicted seasoning 
level

Predicted seasoning 
distribution variance

Seasoning concentration
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Non-seasoned 
product weight

Predicted 
seasoning level

Seasoning
feeder speed

Seasoning bias
(Manipulated variable)

Seasoning level
set point

0.47690.44810.8523MAE

With Automatic 
Feedback Control
(set point tracking)

With Automatic 
Feedback Control

(constant set point)

Without Automatic 
Feedback Control

0.47690.44810.8523MAE

With Automatic 
Feedback Control
(set point tracking)

With Automatic 
Feedback Control

(constant set point)

Without Automatic 
Feedback Control

Closed-loop Control of Seasoning Level
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C. Industrial applications

• Analysis of historical data

• Process monitoring

• Inferential models / Soft sensors

• Optimization of process operation

• Control

• Scale-up and transfer between plants

• Rapid development of new products

Passive 
applications

Active 
applications
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X

Y

Temperatures
Pressures
Concentrations
Recipes
Flows
Trajectories

Density
Tensile strength
Mw, Mn
Transparency
Biological activity
Toxicity
Hydrophobicity

Optimizing operating policies for new products
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Batch polymerization: Process trajectory data (X)

Batch polymerization – Air Products & Chemicals
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• 13 variables in Y
Desire a new product with the following final quality attributes (Y’s):

• Solution
– Build batch PLS latent variable model on existing data
– Perform an optimization in LV space to find optimal LV’s
– Use LV model of X-space to find the corresponding recipes and 

process trajectories

Maintain in normal ranges:  Y1 Y2 Y3 Y4 Y5 Y6    Y8

Constraints: Y7 = Y7des
Y9 = Y9des
Y10< Y10const
Y11< Y11const
Y12 < Y12const
Y13 < Y13const

… and with the minimal possible batch time (*)

Batch polymerization data



(c) 2004-2008, ProSensus, Inc.

Unconstrained Solution

• Design via PLS model inversion (no constraints)

• If dim(Y) < dim(X) then there is a null space
– A whole line or plane of equivalent solutions yielding the same ydes

Y TQT

ydes Q new

X TPT

xnew P new

PLS Model:

new inv QT Q QT ydes

Step 1

Step 2
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Solution with constraints: Formulate inversion 
as an optimization

• Step 1: Solve for         with constraints on T2 and on y’s

• Step 2: Solve for xnew that yields         subject to certain 
constraints on SPE and x’s.

        T T* * * *
new new 2 new new new new new new new

new

min
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
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All solutions satisfy the requirements on ydes

Case 1 to 5: weight on time-usage is gradually increased

Different solutions: change the penalty () on time usage

Garcia-Munoz, S., J.F. MacGregor, D. Neogi, B.E. Latshaw and S. Mehta, “Optimization of batch operating policies. 
Part II: Incorporating process constraints and industrial applications”, Ind. & Eng. Chem. Res.,  2008
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C. Industrial applications

• Analysis of historical data

• Process monitoring

• Inferential models / Soft sensors

• Optimization of process operation

• Control

• Scale-up and transfer between plants

• Rapid development of new products

Passive 
applications

Active 
applications
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• Objective is to control final product quality 
– e.g. control of final particle size distribution (PSD)

• Using all data up to some decision time, predict final 
quality with latent variable model
– All prediction done in low dimensional latent variable space (y’s 

then calculated from t’s) 

• If predicted quality is outside a desired window, then 
make a mid-course correction to the batch
– Analogy to NASA mid-course rocket trajectory adjustment in 

moon missions

• Data requirement: Historical batches + few with DOE on 
corrective variables

Control of batch product quality
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Prediction of a variable trajectory 
using information up to time 30 

(DuPont)

Deviations from the mean 
trajectory – Prediction vs actual

LV models provide accurate adaptive trajectory predictions

• Use various missing data imputation methods
- Equivalent of Kalman Filter
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Control of PSD via mid-course correction

• At decision point – predict t’s (Y’s) – if outside target region – take 
action

t1

Predicted 
final t’s

t2

?Decision point

Time interval

Heat release 
trajectories 
from 
different 
batches

Action 
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Mid-course control : before and after implementation

Industrial results (Mitsubishi Chemicals)
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C. Industrial applications

• Analysis of historical data

• Process monitoring

• Inferential models / Soft sensors

• Optimization of process operation

• Control

• Scale-up and transfer between plants

• Rapid development of new products

Passive 
applications

Active 
applications
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Source site Target site

Chemical or physical properties
for each product

Process conditions
Process conditions

Chemical or physical properties
for each productProduct 1

Product 2

Product 3

Product 4

Product 5

Product transfer between plants and scale-up
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Historical data from the 2 plants.  Build JYPLS model

Product transfer and scale-up

Xa

Xb

Ya

Yb

ybdes
T

xbnew
T

T

T

T Y space 
model

X space 
model

Garcia-Munoz, S., T.Kourti and J.F. MacGregor, “Product Transfer Between Sites using Joint-Y PLS”,
Chemometrics & Intell. Lab. Systems, 79, 101-114, 2005.
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Tembec - Cdn. pulp & 
paper company:

Pilot plant and
full scale digesters

Industrial Scale-up Example
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Scale up for grade F – pulp digester

Build models on all 
pilot plant data and 
all plant data (ex F) 

Design operating 
profiles to achieve 
grade F in plant.

Actual plant trajectory 
used to achieve the 

grade 

Predicted trajectory
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C. Industrial applications

• Analysis of historical data

• Process monitoring

• Inferential models / Soft sensors

• Optimization of process operation

• Control

• Scale-up and transfer between plants

• Rapid development of new products

Passive 
applications

Active 
applications
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Data Mining for Product Engineering

• Companies accumulate lot of data on their products and 
processes

• Can we use it to rapidly develop new products?
• Three general degrees of freedom for developing new 

products:
– Raw material selection
– Ratios in which to use raw materials (formulation)
– Process conditions for manufacturing

• Relative importance of these three depends on the industry and the 
product

• Huge synergisms among these
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What is the problem ?What is the problem ?

RawA

RawB

RawC

…
..

Blend Blend 
ratiosratios

The selection of The selection of 
raw materialsraw materials

e.g. Dissolution rate
Elongation
Density

Final product 
properties

RawA

RawC

40%

30%

30%

ProcessProcess
conditionsconditions

RawP

RawZ

Temp, 
Agitation
End-point

Desired properties

Traditional approaches tend to treat each step separately
inefficient as they miss synergism among these degrees of 
freedom
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Example: Functional Polymer Development
Mitsubishi Chemicals

Rubber

Polypropylene

Oil

Functional
Polymers

Process conditions 

Critical! 
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Data structure 
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Raw material 
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Methodology

• Build a multi-block PLS model that relates all the databases 
together and predicts the final quality attributes

• Perform an optimization in the latent variable space of the 
multi-block PLS model
– Which materials?
– Formulation ratios?
– Process conditions?
– Minimum cost
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Formulation of the Optimization
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material cost
The number 
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Optimized variables:
The mixture ratios of all the raw 

materials available on the database 
XDB (and process variables Z)

Nonlinear, Constrained, Mixed 
Integer Optimization Problem
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One Example: Golf ball developmentOne Example: Golf ball development

Approach to golf ball 
core design increased 
the resilience 1.7 times 
compared to previous 
products  
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Summary

• Latent variable models:
– Important concepts:

• Low dimensional Latent Variable spaces
• Models for both X and Y 
• Causality only in LV space

• Passive applications
– Analysis, soft sensors, monitoring

• Active applications
– Optimization, control, product development

• All work done in LV space (t1,t2, ..)
• Models for X and Y used to get back to these variables.
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Conclusions

• If you use historical process data, then Latent Variable 
approaches are essential 
– Allow one to uniquely interpret and use the data in both passive and 

active applications
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production of snack foods”, Chem. & Intell. Lab. Syst., 67, 125-144, 2003
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