Architectural Issues in Control System Design

Graham C. Goodwin

University of Newcastle, Australia

Presented at the Nordic Process Control Workshop 26-27 August, 2010

Why Architecture?

Analogy: Civil Engineering

What form should the bridge take?

- What materials?
- Should we build a bridge or tunnel?
- Finally: Optimize cables, beams, etc.

Architectural Issues in Control

Illustrate by five Real World Examples

Architectural Issues in Control

1. Sensors

Sensors are the eyes of control.

Poor eye-sight → Poor Control!

(Example 1) Soft Sensors

Example 1:

Rolling Mill Centre Line Gauge Control

Bode:

Change the architecture by using alternate sensors

BISRA Gauge (1954)

$$F = M(s-h)$$

$$\hat{h} = \frac{F}{M} + s$$

Removes delay

Roll Eccentricity Effects:

Roll Eccentricity (slightly exaggerated)

The effect of the roll eccentricity illustrated above is to add an eccentricity term, e, to the BISRA gauge equation:

$$F = M(h - s + e)$$

Ideal

- Eccentricity acts as measurement error
- Uncontrolled mill gives natural attenuation $\binom{1}{3}$
- Controlled mill

$$S + T = 1$$

 $S = 0 \Rightarrow T = 1$ $(1/3 \Rightarrow 1)$

Solution ?

Model as Multiple Sinewaves in Noise

$$y(t) = \sum_{i=1}^{N} A_i Sin(\omega_i t + \phi_i)$$

Apply Kalman Filter to estimate sinusoidal components

Practical results from a tandem cold mill BHP steel International tinplate mill

Observations from this example:

- Choice of sensor(s) can have a profound effect on achievable performance.
- This is an architecture issue that cannot be solved by fancy optimization alone!
- Other sensors also possible: mass flow....leads to a nonlinear adaptive controller

Design Issues in Control

Actuators

Actuators are the muscle of control.

Poor muscles → Poor control

(Example 2) One Actuator or two?

(Example 3) Actuator Limitations

Example 2: Hold-up Effect in Reversing Mills.

The good news

```
⇒ "Measure" h to 0.1% accuracy
```

(Sensor ✓)

+

High Speed Hydraulic actuators (7 msec. response times)

(Actuator ✓)

The bad news: Performance is disappointing

Attempt to use Screw Alone

Linearized model blockmodel

Poles and zeros configuration of linear model

Zeros at $\pm j\omega_0$

$$\int e^{-st} e(t)dt = E(s)$$
$$= \left[1 - T(s)\right] \frac{1}{s}$$

At
$$s = \pm j\omega_0$$

$$\int e^{\mp j\omega_0 t} e(t) dt = \frac{1}{\pm j\omega_0}$$

$$\int \left[\cos \omega_0 t \right] e(t) dt = \frac{1}{\omega_0}$$

In our case $\omega_0 = 90 \text{ rad sec}^{-1}$

- e(t) changes sign quickly with large -ve values or
- e(t) remains large in the period 15-30 msec.

Physical explanation!

Change the Architecture

Result with Coordinated Controller

Observations from this example:

- Choice of actuator(s) can have a profound effect on achievable performance
- Again, this is architecture not optimization!

2. Actuators

(Example 2) One Actuator or two?

(Example 3) Actuator Limitations

Example 3: *Dual-stage systems*

Consisting of two control actuators:

- Base actuator: Providing long range, low precision, low bandwidth manoeuvres
- Micro-actuator: Providing micro-range, high precision, high bandwidth manipulations

Purpose: Long range, high precision, high bandwidth actuation.

Optimal design (rough idea):

Design the primary actuator controller to yield a closedloop system for faster rise time by allowing some overshoot, and asking the secondary actuator controller loop to reduce the overshoot. Constrained Robust Control.

Position [µm] -20 Time [ms]

Proposed control (settling time = 11msec)

Conventional control (settling time = 16.5msec)

Design Issues in Control

Algorithms are the intelligence of control

Poor Intelligence
Poor Control

3. Algorithms

(Example 4) Plant Wide Control Control

(Example 5) Accounting for inescapable actuator/sensor limitations

Simplistic Viewpoint: Centralized control solves all control problems

- Measure everything and use it to calculate what to do.
- In practice one always needs to make decisions about
 - what sensors?
 - what actuators?
 - how to interconnect?

Non convex - so Physical insight crucial

Example 4: Plant Wide Control of Sugar Mill for co-generation...need greater stability. Brix (Concentration) control in Evaporators

Current Evaporator Control

- Level in each vessel is controlled
 - Optimum level for heat transfer
 - Controlled by a valve effecting *inflow*
- Final brix controlled
 - Maintain a high concentration (Brix)
 - Controlled by a valve effecting *outflow*

- Only PI and PID controllers are used for controlling the evaporator set
- The existing control was adequate in context of cogeneration.

Short Period Oscillations

- Examination of historical data, short period oscillations are preceded by water addition
- Usually occurs during extended periods when the crushing mill is stopped
- Leads to the liquid flowing into the final effect having a much lower concentration than normal

Improved the Control

$$\begin{bmatrix} F_{in}(t) \\ F_{out}(t) \end{bmatrix} = \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_l(t) \\ u_b(t) \end{bmatrix}$$

- $u_l(t)$ = Output of level controller $u_b(t)$ = Output of brix controller
- Interaction between level and brix controllers evident from trends during periods of water addition
- Want to decouple the two controllers
- Can be done in the simulation with

$$d = \frac{\frac{\left(1 - f\left(L(t)\right)\frac{h_{out}}{h_{v}}\right)}{E_{vol}}}{\frac{\left(1 - f\left(L(t)\right)\frac{h_{in}}{h_{v}}\right)}{E_{vol}}} = \frac{h_{v} - f\left(L(t)\right)h_{out}}{h_{v} - f\left(L(t)\right)h_{in}}$$

(Assumes flow characteristics for inflow and outflow of evaporator are identical)

Results of New Control: better evaporator control + feedforward

Simulation without feed forward

Logged data from plant

Observations from this example:

Choice of connections can be more important than optimizing the parameters within a given architecture.

3. Algorithms

(Example 4) Centralized Control

(Example 5) Accounting for inescapable actuator/sensor limitations

Three-degree-offreedom inner-loop power Control in WCDMA

Typical inner power control loop

 q^{-1} = backward shift operator

 $\overline{p_k}$ = transmitted power

 $g_k = gain$

 I_k = interference

 $y_k = SIR$

 r_k = desired SIR

 u_k = power increment

- The inner loop power control signal is transmitted as 1 bit, *i.e.* \pm 1 dB.
- This represents a major and inescapable limitation.

- Treat the quantizer as a noise source
- Model $g_k I_k$ as $H_0(q^{-1})w_k$
- $K(q^{-1})$ affects $w_k \rightarrow y_k$, $\eta_k \rightarrow y_k$, $w_k \rightarrow u'_k$

2nd DOF

- \blacksquare $T(q^{-1})$ and $T(q^{-1})^{-1}$ do not affect $w_k \rightarrow y_k$
- $T(q^{-1})$ and $T(q^{-1})^{-1}$ do affect $\eta_k \rightarrow y_k, w_k \rightarrow u'_k$

- $M(q^{-1})$ does not affect $w_k \rightarrow y_k, w_k \rightarrow u''_k$
- $M(q^{-1})$ does affect $\eta_k \rightarrow y_k$

Results

- 1-DOF not much better than: $K(q^{-1}) = 1$.
- 2-DOF better at low noise $(g_k I_k)$ levels but not at high noise levels.
- 3-DOF best (uniformly).
- Poor performance of 2-DOF due to quantizer overload.

Conclusions

Design Issues in Control

- Ever expanding opportunities (My Current interests:
 Telecommunications, Emergency Services, Smart Grid)
- Optimal choice of parameters within a given architecture is important
- However, choosing the architecture is often even more important
- Sensors, Actuators, Algorithms all play a role
- Crucial step is to understand Fundamental Limitations

Lessons for Industry

 Most dramatic improvements often come by "looking outside the box" – ie by changing the Architecture

Lessons for Academics and Students

- Maybe we need to develop new paradigms for teaching control which place greater emphasis on architecture .
- Understanding what cannot be done
 (and why) is frequently more important than optimizing within a given architecture

- 500 mm travel range
- \blacksquare 1 μ m resolution, glass scale encoder,
- power amplifier

Piezoelectric Transducer:

- $\pm 15 \,\mu \text{m}$ travel range
- 0.2 nm resolution, capacitive position sensor
- piezoelectric amplifier