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Abstract

A series of simulations has been carried out to compare the PI and PID controller tunings of Skogestad with those of Cohen and Coon, Ziegler and Nichols, Aastrom et al., and Ho, et al. for various process models. Using a simple feedback control loop, simulations of system responses to setpoint changes and load disturbances were plotted and analyzed for speed of response, stability, and robustness. It was concluded that Skogestad’s tunings, although they give a relatively slow response, were superior in stability and robustness in almost all cases. In general his tunings gave a gain margin of around 3 and a phase margin of approximately 50 degrees, while the others had on average gain margins around 2 and phase margins 10 to 20 degrees lower than Skogestad’s. Then several trials were made with modifications to Skogestad’s controller settings, and it was seen that slight improvements in response speed could be achieved, but at the cost of decreased stability and robustness.

Introduction


Process control is very important in the process industry. It is important for the safety of the people who work in the industry, for environmental issues, and for the quality of the product being processed. In order for the controllers to work satisfactorily, they must be tuned with knowledge of the process system. Tuning of controllers can be done in several ways, depending on the dynamics and desired strengths of the system, and many methods have been developed and refined in recent years. 


The objective of this report is to compare the PI (proportional-integral) and PID (proportional-integral-derivative) controller tunings of Sigurd Skogestad, a professor at The Norwegian University of Science and Technology, with the established PI and PID tunings of Ziegler and Nichols, Cohen and Coon, Aastrom et al., and Ho et al. These controller tunings are simulated for various process systems in a simple feedback controller setup. This report will examine the system responses for step changes in setpoint and disturbance, and analyze their performance and robustness. 

Methods and Principles


Simulations of the various processes were conducted in MATLAB using a simple, single-loop feedback controller setup.  A general feedback loop is shown in Figure 1 below where

 
C(s)
= the controller transfer function 


G(s) 
= the overall process transfer function. 


e 
= the control error 


u
= the controller output


ysp
= the setpoint of the controlled variable


yd
= the disturbance signal 


y
= the response signal of the controlled variable
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Figure 1: General feedback controller setup.

The equation describing a PID controller is
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(1)

where
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= bias value


e
= error


Kc 
= controller gain


(
integral (or reset) time


D
= derivative (or rate) time

The controller gain, Kc, determines how much the output from the controller changes for a given change in error. Thus Kc establishes the sensitivity of the controller to an error, that is, how much the controller output changes per unit error. The larger the value of Kc, the more the controller output changes for a given error, and the faster the response becomes. However, for most processes there is a maximum useable value of Kc, beyond which the process becomes unstable. A controller with the two first terms in Eq. (1) is a P (proportional) controller. Its main drawback is its inability to eliminate the steady-state errors that occur after a setpoint change or a sustained load disturbance.


The third term in Eq. (1) is the integral or reset control term. This term integrates the error, and is responsible for eliminating the steady-state error offset value. The value of the integral time, (I, tells how much weight is given to the integral action. The lower the value is, the more weight that is given to this term. The disadvantage of using integral action is that it tends to produce oscillatory overshoot responses in the controlled process and thus reduces system stability. A controller with the first three terms in Eq. (1) is PI controller. 


The last term in Eq. (1) is the derivative or rate control term. Its function is to anticipate the behavior of the error signal by considering its rate of change. By providing anticipatory control action, the derivative mode tends to stabilize the controlled process, and is often used to counteract the destabilizing tendency of the integral mode. The disadvantage of a PID controller is that a sudden change in the setpoint will cause the derivative term to become very large and thus provide a large derivative "kick" to the final control element.

By taking Laplace transforms, Equation (1) becomes the transfer function:
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(2)
which describes an ideal PID controller. However, an electronic or pneumatic device that provides ideal derivative action cannot be built, and it is therefore approximated as:
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(3)
where ( is a small number, typically between 0.05 and 0.2. In industry the cascade PID controller is often used, which has the transfer function:
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(4)

where ( is typically 0.1. Ideal and cascade PID controllers behave nearly the same if 
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Professor Skogestad has developed a set of simple rules for the tuning of PI and PID controllers. Higher order systems can be written in the general standard form as:
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(5)
where
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= the deadtime


T
= the time constant of the lead units
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= the time constant of the lag units.

It is possible to approximate this as a second order deadtime process
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(6)
or as a first order deadtime process
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(7)
The following rules are then applied:

1a. (PI) One half of the largest neglected time constant is added to the effective time constant and the deadtime, while the other neglected time constants are added to the deadtime. 

1b. (PID) One half of the largest neglected time constant is added to the second effective time constant and the deadtime, while the other neglected time constants are added to the deadtime.

2. Time constants that give inverse responses (negative Tj0) are added to the deadtime.

3. Small positive-zero time constants Tj0 are subtracted from the deadtime.
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4. Greater positive-zero time constants Tj0 are subtracted from a greater time constant, eg. 
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After the process has been approximated either as a first or second order process, the controller settings can be applied. The recommended setting for the controller gain is
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(8)

The integral time, (I, is usually chosen to be equal to the dominating time constant,
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but if the process has a large time constant (( > 8() then the following setting should be chosen:
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(10)
The derivative time constant is usually set equal to the second effective time constant.
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The controller used for the Skogestad simulations was a cascaded controller with 
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. A figure of the controller setup can be found in Appendix C, Figure 25.


It should be pointed out that Skogestad’s tuning rules have modifications for  special cases, including single and double integrating processes with deadtime, and pure deadtime and unstable processes. This applies to some of the models used in this analysis, however we do not find it useful to describe the details of the modifications in this report.


The controller tunings which were compared with professor Skogestad’s were those of Ziegler and Nichols (Z-N), Cohen and Coon (C-C), Aastrom et al. (Aastrom), and Ho et al. (Ho).


The Z-N controller tunings were first discovered by trial and error. They are computed using the ultimate gain and period, which are found by increasing the Kc of a P controller until sustained response oscillations result (the border of instability). The tunings in Table 1 were then found to give satisfactory performance,

Table 1. Ziegler-Nichols controller tunings.

	Controller
	Kc
	I
	D

	PI
	Ku / 2.2
	Pu / 1.2
	-

	PID
	Ku / 1.67
	Pu / 2
	Pu / 8


where


Ku 
= ultimate gain


Pu 
= ultimate period.

Ku and Pu can also be found by doing a frequency analysis of the open loop transfer function. This will be explained later in this section.


Z-N settings are usually quite aggressive, as will be shown in later analyses. In general these settings give a rather large overshoot for setpoint changes, but good results for load changes. The controller used for the Z-N simulations was the same as for professor Skogestad's. 


The settings of C-C are based on the first-order-plus-deadtime process model, and the formulas can be found in Table 2. These simulations were also run on the cascaded controller model.


Table 2: Controller tunings for Cohen-Coon, based on first-order-plus-deadtime process model.


Kc




(I



(D
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The controller settings of Ho are also based on a first-order-plus-deadtime process model, and the settings are developed to minimize the integral absolute error (IAE), which is defined as:
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The formulas are separated into those that give optimum setpoint step response and those that give optimum load disturbance response. The formulas for optimum PID tuning can be found in Table 3.


Table 3: Controller tunings for Ho et.al for optimum setpoint and load disturbance response.
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IAE-setpoint
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The PI controller used for Aastrom's settings is slightly modified from the ideal and cascaded PID controllers. Its model can also be found in Appendix C, Figure 26. It is described by:
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(14)

where


b
= weighting factor of the setpoint, 0< b < 1


By neglecting the last term in Eq. (1), and thereby leaving a PI controller, the only difference between Aastrom’s and this PI controller is the factor b. If b is set equal to one, a regular PI controller is obtained. Aastrom’s method for PI controller tuning is based on setting constraints on the value of the sensitivity function. By doing so, optimum controller settings for setpoint changes and load disturbances can be found. The method uses an iterative procedure for finding the values of the controller gain and the integral time. Since this procedure is quite time-consuming, process models with known settings were chosen to be compared with Skogestad’s settings. 

The following process models are examined in this analysis.

Large process with and without inverse response:
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Large process with deadtime:
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Integrating process with deadtime:
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First order processes with deadtime:
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Second order processes with deadtime:
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Pure deadtime process:
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Unstable process:
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After finding the controller settings for the different processes, the responses of the systems were plotted, and the following parameters were obtained:


Rise time: the time it takes for the output to reach 90% of its final value

Settling time: the time after which the output remains within +/- 5% of its final value


Setpoint peak, ys: the overshoot peak for the change in setpoint


Disturbance peak, yd: the peak value of the disturbance response 


IAE ys: the integral absolute error of the change in setpoint


IAE yd: the integral absolute error of the disturbance


A frequency response analysis was also conducted, which describes the system’s response to sinusoidal signals of various frequencies. The advantage of such a frequency analysis is that it provides real insight into the benefits and trade-offs of feedback control, and the give-and-take relationship between performance and stability. 


A MATLAB routine was written to perform the frequency analysis, and to plot Bode diagrams for the magnitude and phase angle of the open loop transfer function of the system at different frequencies. The analysis gives the system’s GM, PM, (max, c, 180, MS, and MT. These parameters are defined as:


GM
= the gain margin, factor by which the total loop gain can be increased which will make the system just unstable


PM
= the phase margin, the difference between -180 degrees and the phase angle at the frequency for which the amplitude ratio is one. PM represents the additional amount of phase lag required to make the system unstable. 


c 
= the critical frequency, the frequency where the GM=1

[image: image59.wmf]ú

û

ù

ê

ë

é

+

t

q

t

q

t

12

3

16

1

k


180
= the frequency when the phase angle is –180 degrees.
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MS
= the maximum value of the sensitivity function, 


MT 
= the maximum value of the complimentary sensitivity function,  

[image: image61.wmf]
(max
= the maximum deadtime to be added to the system before it becomes unstable, 

The MATLAB code for the frequency analysis routine can be found in Appendix D.
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For performance and stability measures, the following requirements are usually needed:

There is a close relationship between the values of MS and MT, and the gain and phase margins. Ms less than two implies that the gain margin is greater than two and the phase margin is greater than 30 degrees.


It was mentioned above that the Z-N tuning can be more easily performed using this frequency analysis routine, rather than the standard trial and error method. If a frequency analysis is run on the open loop transfer function with a P controller with a gain of 1, then Ku = GM and Pu = .

Results


The controller settings for Skogestad, Z-N, and C-C for process G1(s) can be seen in Table 4. The C-C settings are based only on a first order model, however, they were included for comparison purposes. The process model was approximated as a first-order-plus-deadtime model by applying Skogestad’s approximation rules.


Table 4: Controller settings of Skogestad, Ziegler-Nichols, and Cohen-Coon for process G1(s)

	
	KC
	I
	D

	SKOGESTAD
	1.30
	20.00
	12.00

	ZIEGLER-NICHOLS
	2.56
	26.50
	6.62

	COHEN-COON
	2.52
	29.50
	4.83


Table 4 shows the controller gain of Skogestad is about one half the controller gain of Z-N and C-C. The integral time constant, on the other hand, is 20 seconds, while it is 26.9 and 29.5 seconds for Z-N and C-C, respectively. The derivative time constant of Skogestad is 12 seconds, which is about twice as large as Z-N’s settings and about three times larger than C-C’s settings. Figure 2 shows the response of the simulation in MATLAB using these controller settings, and Table 5 gives the response parameter values.

Table 5: The response parameters values of Skogestad, Ziegler-Nichols, and Cohen-Coon for  the process G1(s).
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Figure 2 shows that Skogestad's settings give the least oscillatory response. It is also seen that Skogestad's tunings do not give an overshoot peak for the change in setpoint, while the settings of Z-N and C-C give setpoint peaks of 0.31 and 0.36, respectively. The disturbance peak for Skogestad's settings is slightly higher than the other two, but all three disturbance peaks are within 10% of each other. Skogestad’s settings give a rise time of about 155% that of the other two tunings, but a settling time 3% faster than Z-N’s and 5% faster than C-C’s. From Table 5 we see that the IAE for the 

Figure 2: Response for Skogestad, Ziegler-Nichols and Cohen-Coon for the process G1(s). 

(setpoint change step size = 1, disturbance step size =  1)
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setpoint change is lowest for Skogestad’s tunings. His settings give a setpoint IAE 6% lower than Z-N’s, and 17% lower than C-C’s. But despite Skogestad’s slightly faster settling times, his disturbance IAE is greater than the Z-N and C-C, by 47% and 26% respectively. 


Table 6 gives the frequency analysis for this example. It shows the GM for Skogestad’s settings is 2.84, while Z-N and C-C have GMs of 1.84 and 1.60, respectively. Skogestad’s PM is about twice as large as the two other settings, with a

value of 57.47 degrees. Since the critical frequency for Skogestad’s settings is lower

for than the two other settings, the maximum deadtime that can be added is larger than for the two other settings, by about three times. 

Table 6: Frequency analysis parameters for the controller settings of Skogestad, Ziegler-Nichols, and Cohen-Coon for the process G1(s).
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Table 7 shows the values for the controller settings for the first-order-plus-deadtime process G6(s).





Table 7: Controller settings for the process G6(s).

	
	KC
	I
	D

	SKOGESTAD
	5.00
	8.00
	-

	ZIEGLER-NICHOLS
	7.35
	3.21
	-

	COHEN-COON
	9.08
	2.75
	-

	HO ET AL. (SETPOINT)
	8.03
	13.76
	0.42

	HO ET AL. (LOAD)
	11.96
	2.03
	0.35



We see that for this process the Ho settings for load disturbances give the largest controller gain (11.96), while the Skogestad settings give the smallest gain (5.00). Skogestad gives, on the other hand, a rather large value for the integral time. The largest integral time used is in the Ho setpoint settings, with a value of 13.96 seconds. Figures 3 and 4 show the response for these controller settings, and Table 8 gives the response parameters.

Figure 3: The response for the settings of Skogestad, Ziegler-Nichols and Cohen-Coon for the first-order-plus-deadtime process G6(s). (setpoint change step size = 1, disturbance step size = 10)
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Figures 3 and 4 show again that Skogestad’s settings give the least oscillatory response. Skogestad’s settings give a very small peak for the change in setpoint, but a large disturbance peak value compared to the other settings. The settling time of Skogestad is also quite long, with a value of 50.34 seconds. The shortest settling time was for the Ho settings for a load disturbance, with a value of 25.70 seconds. The difference in rise time after the change in setpoint was quite small between all the settings. The Ho load settings gave the smallest rise time, 1.67 seconds, while Skogestad gave 3.01 seconds. Table 8 shows that the IAE for the change in setpoint is quite small for Skogestad’s settings, with a value of 2.50 seconds. Only the setpoint-tuned settings of Ho gave a lower value, 2.02 seconds. On the other hand Skogestad’s and Ho’s setpoint tunings gave the largest IAE values for the load disturbance, with values of 16.00 and 16.97 respectively. The smallest value was for Ho’s load-tuned settings, with a value of 2.37. 

Figure 4: The response of Skogestad, Ho et.al for the first-order-plus-deadtime process G6(s). (setpoint change step size = 1, disturbance step size = 10)
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Table 8: Response parameter values for the first-order-plus-deadtime process G6(s)
	
	RISE TIME

(s)
	SETTLING TIME

(s)
	PEAK Ys
	PEAK Yd
	IAE Ys
	IAE Yd

	SKOGESTAD
	3.01
	50.34
	0.08
	1.69
	2.50
	16.00

	ZIEGLER-NICHOLS
	2.10
	31.04
	0.56
	1.43
	3.15
	4.49

	COHEN-COON
	1.89
	34.75
	0.82
	1.34
	4.34
	4.53

	HO ET.AL (SETPOINT)
	2.25
	65.87
	-
	1.14
	2.02
	16.97

	HO ET.AL (LOAD)
	1.67
	25.70
	0.68
	1.04
	3.27
	2.37



Table 9 shows the parameters found from the frequency analysis for the different controller settings for the process G6(s)


We see that the GM for Skogestad’s settings is largest with a value of 3.11. The smallest GM is for the Ho load settings, with a value of 1.32. Skogestad’s settings

also give one of the largest PMs with a value of 58.34 degrees. Only the Ho setpoint 


Table 9: Frequency analysis for the different controller settings for the process G6(s)
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 tuning has a higher PM, with a value of 62.69 degrees. Table 9 also shows that Skogestad’s settings give the largest value of (max. His value for the maximum deadtime is 2.01 seconds, which is about one and a half times more than the Ho setpoint settings, which has the second largest (max.


Table 10 gives the controller settings for Skogestad, Z-N, and Aastrom for the process model G3(s).


Table 10: Controller settings for Skogestad, Ziegler-Nichols, and Aastrom for the process G3(s).
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These Aastrom settings were found by setting a constraint on MS equal to 1.8, and thereby giving b a value of 0.92. Table 10 shows again that the controller gain for Skogestad’s settings is small compared to the other settings, with a value of 0.0455. Z-N’s settings have, on the other hand, a controller gain which is ten times larger than Skogestad’s, with a value of 0.455. The integral time constant for Skogestad’s settings is however 20 times smaller than the integral time constant for Z-N, which has a value of 29.95.

Figure 5 shows the simulation of the responses for the different controller 
settings, and Table 11 gives the response parameter values.


Skogestad’s settings give a response very much like Aastrom’s. However, Skogestad’s settings give a slower rise time and a slower settling time than 

Figure 5: Response for Skogestad, Ziegler-Nichols, and Aastrom for the process model G3(s). (setpoint step = 1, disturbance step = 1)
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Table 11: Response parameter values for Skogestad, Ziegler-Nichols, and Aastrom for the process model G3(s)
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Aastrom’s setting. From Table 11 we also see that the IAE of both the setpoint change and the disturbance is about twice as large for Skogestad’s than for Aastrom’s settings. The Z-N setting gives much rougher response with a very long rise and settling time, and also large error in the setpoint change and disturbance. 


Table 12 gives the frequency analysis for Skogestad, Z-N, and Aastrom for the process model G3(s). The GM for Skogestad settings is also greater here than the other settings, with a value of 3.14, which is about 30 % larger than the GM for Aastrom’s setting, the highest of the other two. The phase margins of Skogestad and Aastrom are about 60 degrees, but Skogestad’s settings give a maximum deadtime value which is about 50 % higher than Aastrom’s value of 23.42 seconds. The Z-N settings have a much higher PM and maximum deadtime than the other two tunings, at 99.78 degrees and 96.22 seconds, respectively. However, despite these promising parameters for Z-N, the tunings are undesirable in this model for reasons of the choppy and slow response.


Table 12: Frequency analysis of Skogestad, Ziegler-Nichols and Aastrom for the process G3(s).


[image: image46.wmf] 

w

 

180

 

(rad/s)

 

w

 

c 

 

(rad/s)

 

GM

 

PM

 

(degrees)

 

M

 

s

 

M

 

t

 

q

 

max

 

(s)

 

SKOGESTAD

 

0.0952

 

0.0303

 

3.14

 

61.32

 

1.59

 

1.00

 

35.32

 

ZIEGLER

-

NICHOLS

 

0.1636

 

0.0181

 

2.14

 

99.78

 

1.88

 

0.88

 

96.22

 

AASTROM

 

0.1206

 

0.0438

 

2.39

 

58.77

 

1.80

 

1.02

 

23.42

 



The other simulations which were carried out gave similar general results, and will therefore not be presented in detail in this section of the report. A summary of them, including plots and response analyses, can be found in Appendix A.


Compared with the other settings analyzed, Skogestad’s controller settings can be generalized by having smaller controller gains and integral time constants, and larger derivative time constants. The Skogestad responses had on average a slower rise and settling speed, and gave little or no oscillation. His disturbance peak values were often slightly higher than the others, which combined with the lower settling speed lead to higher disturbance IAE values. However, Skogestad’s tunings handled the difficult setpoint step consistently better than the others, which often gave large peaks and oscillations, and therefore mixed results for the setpoint IAE.

Discussion of Results


For the processes mentioned in the results section (G1(s), G3(s) and G6(s)), Skogestad’s settings give the lowest Kc values. Since the output of the controller changes less for smaller values of Kc, the responses of Skogestad controller settings are somewhat slower than the other settings. Kc should not, however, be too large because a high-gain controller can easily lead to overshoot, oscillations, and instability if the process disturbances are at all large. This is evident especially for the Z-N and C-C tunings in Figures 3-5, where the relatively large values of Kc decrease the stability of the control system, shown in the decreased gain and phase margins. Skogestad’s low controller gains, although they may cost a bit in speed of response, serve to keep the tunings robust and stable.


The relatively large integral time constants in Skogestad’s settings are better for step changes in setpoint, as is shown in Figures 3-5, but worse for disturbances, since it takes more time for the controller to correct the error. The lower the (I, the more the controller reacts to the error, however, the more oscillatory the response becomes also, again resulting in reduced stability, and lower gain and phase margins. Here again, Skogestad’s relatively high (I values cost some speed of response, they keep the system robust and stable.


Since Skogestad’s settings had higher (I values for most of the tested models, the IAE errors for his PI controller settings were small for setpoint steps, but somewhat large for load disturbances when compared to the others.


Skogestad’s tunings gave also higher derivative time constants than the others, which makes the controller more sensitive to the direction of the error. Increasing (D stabilizes the controlled system, anticipating potential oscillations. Figure 2 shows how well this derivative action works for the process model G1(s) compared with the other settings. 


Another very useful gauge of the robustness of a tuning, besides high values of the GM and PM, is the maximum deadtime. Looking at this analysis parameter, it is seen that Skogestad’s tunings can withstand more deadtime being added to the process than the others, in almost every case, and often by several times.


As we can see from examining all the responses, there is a tradeoff between performance and robustness as we choose the values of Kc, (I, and (D.  Finding the right values for these parameters that will make the controlled system respond quickly to changes and also be stable for changes in the system, is very difficult. Robust tuning gives good stability over a range of system conditions, but with slow responses. Aggressive tuning gives quick responses but with oscillations and less stability on system changes. It is also difficult to find settings that give good performance for changes in both setpoint and disturbance at the same time, while avoiding instability. 


The simulations of the process models used in this analysis show that Skogestad’s controller tunings perform well overall for changes in both setpoint and for disturbance inputs. His settings seem to slightly favor tuning to setpoint changes, but also give quite good results for load disturbances. His settings are robust with hardly any oscillations for all of the simulated process models, giving large gain and phase margins. 


In an effort to see if Skogestad’s controller settings could be improved, a series of changes were made to his settings for chosen process models. The models chosen were G1(s), G6(s), G8(s), G9(s) and G10(s). Since the modification gave the same overall result for all processes, only the results for process G1(s) will be presented here. 


Table 13 shows the controller settings for process G1(s), where Skogestad’s original settings have been increased or decreased by 20%, and Figures 6-8 give the response for these settings. The other simulations of Skogestad’s modified controller settings can be found in Appendix B.

Table 13: Skogestad’s original and modified controller settings for process G1(s)
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Figure 6: Response for Skogestad’s modified settings for the process G1(s)
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Figure 7: Response for Skogestad’s modified settings for the process G1(s)
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Figure 8: Response for Skogestad’s modified settings for the process G1(s)
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Table 14 gives the frequency analysis of these settings for G1(s).

Table 14: Frequency analysis of Skogestad’s modified settings for process G1(s).
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We see from Figures 6-8 that the modified settings give better response for the disturbance, but very little improvement in the response for the setpoint step. Table 14 shows that the settings, however, all give lower GM values for the controlled system compared to the original setting. This is also true for the PM, except for setting number 3, which gives a larger PM. However, its GM and maximum deadtime are decreased. 

Conclusion and Recommendations


Based on the results of the simulations of the process models chosen for this analysis, we can conclude that Skogestad’s controller tunings give a generally slow but highly robust and stable response. His settings consistently give a GM around three, and a PM around 50 degrees for nearly all the simulated processes, while the others had GMs around two and PMs about 10-20 degrees lower. Skogestad’s tuning rules were the easiest to apply to find the necessary settings, and were applicable to a wide range of process types through simple modifications. We can also see from simulations over a range of modified parameters that Skogestad’s tunings can be improved slightly, but only by sacrificing stability and robustness.
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