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Abstract

Bayesian Optimization was in this thesis used to optimize two different cases. One algebraic case
with both equality and inequality constraints, and a modelled case where only inequality constraints
were used. The first case used 100-120 seconds to complete 15 iterations of the method, while the
second cased used 45-50 seconds on the same task. The method had trouble with modelling
constraints, and was therefore too slow for on-line usage.
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1 Introduction

Optimization is the process of finding the best solution to a problem by adjusting different para-
meters. It is widely used in various industries, such as manufacturing, finance, and logistics, to
make the most efficient use of resources and maximize profits. In the chemical industry, optim-
ization is used to optimize the utilization of expensive reactants and achieve the desired amount
of high-value products, especially when by-products are present in the process. These byproducts
may be less valuable or even harmful, and their production should be minimized.

Traditional optimization methods often rely on evaluating gradients and finding local minima.
The gradient is the rate of change of a function with respect to its inputs, and it is used to
guide the optimization algorithm towards the optimal solution. However, this approach has some
limitations. For example, in some cases, the gradient of an objective function is expensive to
calculate, and therefore, the optimization algorithm may not have access to sufficient information
to find the optimal solution. Additionally, some objectives have multiple local minima, which may
give sub-optimal control, depending on the initial values.

Bayesian optimization (BO) is a gradient-free approach that uses statistical learning to find the
global minimum within given input bounds, without the need for gradient calculations. BO uses
a probabilistic model to predict the objective function’s behavior, and it updates this model as
new data is acquired. This allows the algorithm to explore the search space in an efficient and
informed way, and it can also handle cases where the objective function is noisy or has multiple
local minima. BO is also useful when the objective function is expensive to evaluate, such as in
the case of simulating a complex chemical reaction.

This thesis will explore the application of BO in optimizing a Williams-Otto reactor and a general
algebraic problem with constraints.




2 Theory

2.1 Gaussian processes

A Gaussian process (GP) is a type of statistical model that can be used for non-parametric re-
gression and classification. It is a stochastic process, meaning that it is defined by a probability
distribution over functions, rather than a single fixed function. "]

The key property of a GP is that any finite collection of its points are jointly Gaussian distributed.
This means that if you have a set of points from a GP, you can use the mean and covariance of
those points to make predictions about the value of the process at other points.

One of the main advantages of GPs is that they provide a way to make predictions with uncertainty.
Because a GP is a distribution over functions, you can use it to compute the probability that the
true function lies within a certain region, or to compute the expected value of the function at a
given point.

2.2 Bayesian Optimization

Bayesian optimization (BO) is a class of statistical-learning-based optimization methods focused
on minimizing the value of a function. BO is designed as a black-box derivative-free global optim-
ization using a GP as a basis for the results. [

In BO, the function to be optimized is treated as a black box, meaning that the algorithm does
not require any knowledge of the function’s gradient or structure. Instead, it relies on samples
of the function’s output (i.e., the function’s value at different points) to construct a probabilistic
model of the function. This model is a Gaussian process (GP). The GP provides a flexible and
computationally efficient way to model the function’s behavior, and it can handle a wide range of
input domains and output ranges. (2!

The GP model is used to predict the function’s behavior at new points, and the algorithm uses
this prediction to guide the search for the global minimum. The algorithm starts by evaluating the
function at a few initial points, and it then iteratively selects new points to evaluate based on the
GP’s prediction of the function’s behavior. The algorithm updates the GP model with the new
data and uses it to predict the function’s behavior at new points. The algorithm will stop after a
predefined number of iterations, when the algorithm reaches a satisfactory minimum or when the
two last results are within a certain tolerance. [

3 Method

The bayesian optimization was done using the Trieste library in Python, the approach was used on
two different cases, an algebraic approach with inequality and equality constraints, and a modelled
approach with only inequality constraints.

3.1 Constrained Branin

For testing the efficency of constraints by using BO, the modified Branin function was used as an
objective function with an equality and an inequality constraint. %!

The objective function f(z) is defined as shown in Equtaion 1.
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The inequality constraint g(x) is defined as shown in Equation 2.

4
g(x) = (10 — 222 + %)x% +xy20 + (23 — )2k +4sin(5n(1 — x1)) + 4sin(67(1 —22)) — 6 (2)

The equality constraint h(z) is defined as shown in Equation 3.

h(x) = 20(x; — 0.7)> = 0.25 — x5 = 0 (3)

3.2 Williams-Otto reactor

For testing BO on a process system a reactor was modelled as described by Williams and Otto. [

The reactions of the reactor are given in Equation 4.
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C+B piE (4)
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The rates for the reactions are given in Equation 5.
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The dynamics of the reactor is given in Equation 6.
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The model parameters for this case is given in Table 1.

The MVs for this reactor system are v = [F, T,] and the reactor has the objective function with
constraints shown in Equation 7.

Hluin J =paFa+pplFp — pp(Fa+ Fp)rp — pp(FaFp)rE

s.t.
g1 =Fp—40<0 (7)
g2 =T, —355.0 <0
g3 =zg —0.105 <0




Parameter Value

w 2105 kg

ko1 1.6599 - 107° kg /s
ko 2 7.2117 - 1078 kg/s
ko 3 2.6745- 10712 kg /s
Ey 6666.7 K

Ly 8333.3 K

E; 11111 K

DA 79.23 §/K

PB 118.34 $/K
pp 1043.38 $/K
PE 20.92 $/K

Fy 1.5 kg/s

Table 1: Model parameters for the WO-reactor

4 Results and discussion

For both methods, the reward of doing more iterations on the optimization is stepwise, this is
characteristic for BO. Around 15 iterations seemed to be a safe estimate for both methods, as seen
in Tables 2 and 4, and was used further for investigating variance by seeds.

For the constrained Branin, the real solution is x = [0.506, 0.501], with f(x) = 162.81, four out of
six tested seeds, gets close to this solution, while the two others are far away as seen in Table 3.
The optimization took 100-120 seconds.

The optimization seems to be struggling with equality constraints, as it currently needs to be
modelled as two inequality constraints, with a set tolerance, for this case the equality constraint
stayed below 1, which for some use-cases may be too high.

For the Williams-Otto reactor, the real solution was u = [3.43277, 355] with J¢ = 87.0761, all the
tested seeds got close to this solution as seen in Table 5. The optimization still took 45-50 seconds,
which is better than constrained Branin, but is still to slow for on-line optimization.

5 Conclusion

By using the Trieste package in python, constrained BO was done on the Branin function, and a
WO-reactor. The optimization of both cases was too slow for on-line usage, and the method did
not preform well on equality constraints.

6 Further work

For BO to be a viable method, the algorithm needs to be optimized. This is possible to do with
making the algorithms by hand, instead of using an existing package, this also gives the opportunity
to find a better solution for constraints, like creating smaller regions of focus, to avoid time being
used on infeasible points.
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Appendix

A Results Constrained Branin

Iterations X9 f(x) g(x) h(x) Time [s]
5) 0.464 0.869 201.27 1.575 -1.62e-3  42.012
6 0.464 0.869 201.27 1.575 -1.62e-3  54.308
7 0.464 0.869 201.27 1.575 -1.62e-3  60.361
8 0.499 0.562 166.07 3.469 -6.02e-3  63.032
9 0.499 0.562 166.07 3.469 -6.02e-3  66.236
10 0.499 0.562 166.07 3.469 -6.02e-3  72.762
11 0.499 0.562 166.07 3.469 -6.02e-3  78.158
12 0.499 0.562 166.07 3.469 -6.02e-3  89.841
13 0.499 0.562 166.07 3.469 -6.02e-3 103.867
14 0.499 0.562 166.07 3.469 -6.02e-3 103.891
15 0.499 0.562 166.07 3.469 -6.02e-3  99.261
16 0.499 0.562 166.07 3.469 -6.02e-3 108.184
17 0.499 0.562 166.07 3.469 -6.02e-3 116.824
18 0.499 0.562 166.07 3.469 -6.02¢e-3 119.684
19 0.499 0.562 166.07 3.469 -6.02e-3 126.883
20 0.499 0.562 166.07 3.469 -6.02e-3 130.294

Table 2: Results from optimization of Constrained Branin at different iterations

Seed 1 x9 f(x) g(x) h(x) Time [s]

1404 0.499 0.562 166.07 3.469 -6.02e-3  99.740
1715 0.537 0.278 166.72 3.373 -9.04e-5 109.241
1999 0.828 0.534 426.30 3.757 -4.56e-1  120.565
5394 0.594 0.526 164.52 1.782 -7.26e-3 113.121
6293 0.833 0.658 457.78 2.315 -5.54e-1  110.105
9123 0.495 0.590 167.11 3.671 7.47e-5 108.522

Table 3: Results from optimization of Constrained Branin at different seeds

B Results WO-reactor




Iterations Fp T, Jee g3 Time [s]

) 2.6593 350.78 -73.721 1.44e-2  23.290
6 2.6593 350.78 -73.721 1.44e-2  20.874
7 2.6593 350.78 -73.721 1.44e-2  23.685
8 2.6593 350.78 -73.721 1.44e-2  27.011
9 2.6593 350.78 -73.721 1.44e-2  31.496
10 2.6593 350.78 -73.721 1.44e-2  33.988
11 3.4205 35497 -87.066 3.98e-4  36.594
12 3.4205 35497 -87.066 3.98e-4  39.296
13 3.4205 354.97 -87.066 3.98e-4  42.766
14 3.4205 35497 -87.066 3.98e-4  45.339
15 3.4205 35497 -87.066 3.98e-4  48.324
16 3.4205 35497 -87.066 3.98e-4  51.463
17 3.4205 35497 -87.066 3.98e-4  54.384
18 3.4205 35497 -87.066 3.98e-4  56.116
19 3.4205 354.97 -87.066 3.98e-4  59.758
20 3.4205 354.97 -87.066 3.98e-4  61.959

Table 4: Results from optimization of WO-reactor at different iterations

Seed Fy T. Jee g3 Time [s]

1404 3.4205 354.97 -87.066 3.98e-4  50.015
1715 3.4326 355.00 -87.076 8.67e-6  46.224
1999 3.3583 354.78 -86.887 2.21e-3  47.239
5394 3.4054 354.86 -87.004 5.02e-4  45.853
6293 3.3091 353.99 -86.358 4.40e-4  49.854
9123 3.4275 355.00 -87.079 2.32e-4  49.946

Table 5: Results from optimization of WO-reactor at different seeds
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