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Abstract
In industry, the processes often consist of several subsystems with a common constraint, for
example, a shared resource. This paper considers the problem of steady-state real-time op-
timization (RTO) for a subsea gas-lifted oil production network with multiple wells and con-
strained access to shared gas-lift. Problems like this are often solved with a centralized op-
timization, which can be computationally expensive and tends to be slow. [13] Morari et al.
proposed to eliminate the numerical optimization problems by indirectly moving the problem
into the control layer. Such problems are known as feedback-optimizing control, which can
be implemented using simple tools such as Proportional-Integral-Derivative (PID) controllers.
Most importantly this optimizing method is accommodating for different operation units with
different time scale.

In our previous work, we have experimentally validated a recently developed method of feedback-
optimizing control called distributed feedback-based RTO [5]. This method is developed based
on dual decomposition and optimally handles steady-state changes in active constraints. How-
ever, the constraints are controlled in a slower time scale by updating the dual variables. This
leads to the need for significant “back-off” strategy, which could lead to profit loss in the long
run. To eliminate or reduce the “back-off”, Dirza et al. [6] introduces an alternative distributed
feedback-optimizing control based on online primal decomposition using feedback and con-
straint controller(s) which distribute local setpoints without violating the common constraint
to avoid or minimize use of a “back-off” strategy.

As the continuation of these approaches, we compare them on a model of a lab scale experimen-
tal rig that emulates a subsea gas-lifted oil production optimization network with uncertainty
and measurment noise.
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1 INTRODUCTION

1 Introduction
Industrial process often consists of several subsystems with a common constraint, for example,
a shared resource which should be distributed optimally amongst the subsystems. A common
power plant which deliver steam to different sub-processes [8] [16] is an example of this optimiza-
tion problem. Such problems are typically dealt with in the context of real-time optimization
(RTO). The traditional RTO paradigm involves solving numerical optimization, which uti-
lize detailed process models that are updated using process measurements, this tends to be
slow and can often be computationally expensive. Moriari et. al. [13] proposed to eliminate
the numerical optimization problem by indirectly moving the problem into the control layer.
Such problems are known as feedback-optimizing control, which can be implemented using
simple tools such as proportional-integral-derivative (PID) controllers. Most importantly this
optimizing method is accommodating for different operation units with different time scale.

In this paper a problem of steady-state real-time optimizing for a subsea gas-lifted oil pro-
duction network with multiple wells and constrained access to a shared gas-lift supply is con-
sidered [5] [6] [7] [11]. In such cases, it often is desirable to decompose the large scale problem
and solve the subproblems locally for various reasons. As opposed to large scale centralized
optimization, distributed decision making tools are often easier to maintain and implement.
The different decomposition strategies for these large scale problems can largely be classified
as primal decomposition and dual decomposition methods. [2]

In recent articles such as Krishnamoorthy et. al. [10] and Dirza et. al. [7], a distributed RTO
framework based on dual decomposition that uses simple feedback control to ensure convergence
to a stationary point of the system wide optimization problem is proposed. In this method
the constraint economic optimization problem is transformed into an unconstrained optimiza-
tion problem using Lagrangian relaxation. The optimal operation point is then asymptotically
reached by constraint control using the Lagrange multipliers (dual variables) in a central con-
straint controller in the slow time scale, while the gradient of the Lagrangian is controlled
to zero in a faster time scale using the physical manipulated variables (primal variables) in a
cascade fashion.

Recently a distributed feedback-based real-time optimizing framework using online primal de-
composition was suggested by Dirza et. al [6]. In this method the Lagrange multipliers for
each individual subproblem is estimated and used in a central constraint controller to reach
the optimal operation point. The goal of using the primal decomposition method is to achieve
optimal operation with minimum dynamic constraint violation.

In this work we are going to provide a comparison of two feedback-optimizing control structures
with decomposition strategies mentioned above, they will be implemented on the problem of
steady-state real-time optimizing for a subsea gas-lifted oil production network with multiple
wells and constrained access to a shared gas-lift supply mentioned earlier. Since there is a
constraint access to a shared gas-lift supply, it is necessary to optimally allocate the gas-lift
among the different wells. In this paper we do not consider any limitations from a topside
production facility, therefore it is assumed always active input shared constraint.

The remainder of this paper is organized as follows. Section 2 describes some background
theory. Section 3 presents the simulation model of the gas-lifted oil production system and
the implementation of the methods. Section 4 presents the results from the simulation model
before concluding the paper in section 5.
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2 THEORY

2 Theory

2.1 Feedback Control

The objective of control is to regulate a process. In many applications, it is important to
control e.g. flow rates, levels, pressures or temperatures. The main objectives of control are
setpoint tracking, disturbance rejection and ensuring safety. Setpoint tracking involves that a
variable should follow a specified path in time. This could be because the optimal operating
point of a process may vary over time. Disturbance rejection means that any disturbances
affecting the process output should be compensated, this is important to ensure consistency
and predictability of the process output. Some processes have risks of e.g. thermal runaway
or increase in pressure that may pose a threat to environment and personnel. In these cases
control is important to ensure safety.

In this paper we use feedback control, the structure of which is presented in figure 2.1. The
advantage of feedback control is that the controller is error driven, therefore it compensates for
disturbances automatically. As a result of this, there is no requirement for a detailed mathe-
matical model of the relationship between output and disturbance to achieve good performance
in the controller. One drawback of the error driven nature of the feedback controller however,
is that it only can take corrective action after the error from the disturbance is detected in the
output. Thus, significant dead time between measured output variable and the manipulated,
or input variable could have significant impact on the performance of the controller. [9]

Figure 2.1: Block diagram of simple feedback control system [15]

In figure 2.1 the controller input is r−ym where r is the setpoint of the controller and ym = y+n.
y is the actual value while n is the measurement noise. Thus, the plant input is

u = K(r − y − n) (2.1)

As mentioned above, the objective of control is to manipulate the input such that the error
remains small with the presence of disturbances d. The control error e is defined as

2



2 THEORY 2.1 Feedback Control

e = y − r (2.2)

This can be achieved by designing a controller K, which could be done by implementing a PID
controller and SIMC tuning rules. [15]

2.1.1 PID Control

Other than the on-off-controller, the simplest available feedback controller is the proportional
controller. This is a linear controller where the control signal is proportional to the control
error. The output signal from a proportional controller is given by

u(t) = Ke(t) (2.3)

where K is the proportional gain and e is the error given by,

e(t) = ys(t)− y(t) (2.4)

where y is the controlled variable measurement and ys is the setpoint. Eq. 2.4 shows that there
must be an error for the controller to produce an output. As a consequence, the proportional
controller will always have an offset between the measured variable and the setpoint at steady-
state. Therefore, a more complex controller is necessary to eliminate this offset.

Proportional-integral-derivative controller, or PID controller, is by far the most widely used
control algorithm in the process industry. The PID algorithm in the time domain is described
as follows

u(t) = K

(
e(t) +

1

τI

∫ t

0

e(τ)dτ + τD
de(t)

dt

)
(2.5)

where e is the control error, τI and τD are the integral and derivative time respectively, t is
the time and K is the proportional gain.

As seen in eq. 2.5 the controller output, u, is a sum of three elements. The P-term is pro-
portional to the error, the I-term is proportional to the integral duration of the error, and the
D-term is proportional to the derivative, the rate of change, of the error. Thus the tuning
parameters of the PID-controllers are the proportional gain K, the integral time τI and the
derivative time τD.

The purpose of integral action is to correct any steady state offset from a constant reference
signal value. Larger integral time, τI , gives less I-action and slower control.

The derivative action is intended to predict the control action. It uses the rate of change in
the error to make the predictions and avoid large error in the future. The derivative action
is sensitive to measurement noise. Larger derivative time, τD, gives more D-action and faster
control. [9]

2.1.2 SIMC Tuning Method

As mentioned in section 2.1.1 a PID controller only has three tuning parameters, however, it
is not easy to determine these without a systematic approach. There are several methods for
tuning PID controllers available in literature, Ziegler-Nichols [18] and Cohen-Coon [4] are some
examples. In this paper, Skogestad Internal Model Control (SIMC) method is implemented.
SIMC method was developed by Prof. Sigurd Skogestad where the objective of the rules is to
be simple and memorizable, while still ensuring good controller performance.

3



2.2 Real-Time Optimization 2 THEORY

Figure 2.2: Step response of first-order system with delay, g(s) = ke−θs/(τ1s+ 1) [14]

The controller tunings of SIMC method are based on a first- or second-order plus delay model
approximation of the process with the following model information:

• Plant gain, k

• Dominant time constant, τ1

• Effective time delay, θ

• Second-order time constant, τ2 (only used for dominant second-order process (τ2 > θ))

This information can be obtained in several ways. Estimated from an open-loop step response,
a closed-loop response with a P-controller, or from a detailed model where the effective dead
time is approximated by use of the half rule. How to find these parameters from the open-loop
step response is presented in figure 2.2.

Using the open-loop step response method, the model can be approximated as a first-order
model plus time delay on the transfer function form

g(s) = ke−θs/(τ1s+ 1) (2.6)

The SIMC tuning rules can be derived following the Internal Model Control approach, where
one specifies the first-order closed-loop response with time constant τc. The SIMC tuning rules
result in the following PI controller settings

K =
1

k

τI
τc + θ

(2.7)

τI = min{τ1, 4(τc + θ)} (2.8)

where τ1 is the first-order time constant and k is the steady state plant gain as shown in figure
2.2. This results in just one remaining tuning parameter, which is the desired closed-loop time
constant τc. [14]

2.2 Real-Time Optimization
Real-time optimization (RTO) is a technique for production optimization where the goal is to
improve plant economic performance in real-time. In traditional steady-state RTO a steady-

4



2 THEORY 2.3 Feedback-Optimizing Control

state model is updated with the current plant state, the model is then used to compute the
optimal operating point, which is implemented in the plant [3].

Industrial process often consist of large-scale systems such as a subsea oil production network
with several wells (subsystems) where we want to maximize production. In these cases it often is
desirable to decompose the optimization problem and solve the individual subproblems locally.

In this paper the system consists of N subsystems, which we combine to describe the optimiza-
tion problem for the entire system. The subsystems are expressed by the set N = {1, ..., N}.
We assume that each subsystem is locally optimized.

Subsystem i is modelled as a nonlinear state-space system.

ẋi = fi(xi,ui,di)
yi = hi(xi,ui,di)

(2.9)

where xi ∈ Rnx,i , ui ∈ Rnu,i , di ∈ Rnd,i and yi ∈ Rny,i is the vector of states, inputs,
disturbances and measurements of each subsystem. There may also be local constraints in
each subsystem that are handled locally.

The overall network is considered as a nonlinear state-space system where the inputs, states
and disturbances are defined as

u = [u1, ...,uN ]T

x = [x1, ...,xN ]T

d = [d1, ...,dN ]T

(2.10)

The resulting steady-state optimization problem is

min
ui,∀i∈N

JN =
∑
i∈N

JNi
(2.11a)

s.t. f(x,u,d) = 0, (2.11b)
g(x,u,d) ≤ 0 (2.11c)

here constraint 2.11b is related to the entire system model, while constraint 2.11c is a inequality
constraint. JNi

is the cost function for subsystem i.

2.3 Feedback-Optimizing Control
2.3.1 Distributed Feedback-Optimizing Control using Online Primal Decomposi-

tion

To solve the integrated optimization problem 2.11 it is required a detailed model, which may
be unnecessary and unpractical in terms of computing power. Hence, we want to decompose
problem 2.11, and solve it in a distributed manner. By decomposing a system we are also
able to solve the individual subsystems in different time scales. In this paper we use an online
optimizing method, which uses simple feedback control based on primal decomposition.

Constraint 2.11c can be defined as a linear constraint, g(x,u,d) =
∑N

i=1 gi(xi,ui,di)− gmax.
In this paper we consider a shared resource, therefore the inequality constraints in 2.11c are
converted to equality constraints. This does not change the structure of 2.11a and 2.11b, as
the cost is additively separable and the system model is independent for each subsystem.

Introducing an initial value of local constraint, gspi , where gsp =
∑N

i=1 g
sp
i , for the coupling

constraint variables and take care of the active coupling constraint satisfaction with a central

5



2.3 Feedback-Optimizing Control 2 THEORY

problem, the integrated optimization problem 2.11 can be depicted as the separable problem
below.

min
ui,∀i∈N

JN = Σi∈NJN ,i (2.12a)

s.t. fi(xi,ui,di) = 0,∀i ∈ N , (2.12b)
gi(xi,ui,di)− gspi = 0,∀i ∈ N (2.12c)∑

i∈N
gspi = gmax (2.12d)

When eq. 2.12d is satisfied, the primal feasibility is guaranteed for the coupling constraint
2.11c.

Problem 2.12 can be rewritten as a Lagrange function by relaxing the local constraint 2.12c.
This Lagrange function can be decomposed into subproblems, then the optimization problem
can be solved for each subsystem i.

Pi(g
sp
i ) := min

ui

Li(ui, g
sp
i , λi) (2.13)

where
Li(ui, g

sp
i , λi) = JN ,i + λigi(xi,ui,di). (2.14)

λi is the local Lagrange multiplier, which is associated with local constraint 2.12c. In steady-
state optimal conditions the local constraint converges to the same value. [6]

Each subproblem estimates local Lagrange multipliers, which is used in central constraint
controllers. These controllers update the setpoints iteratively, where the goal is to provide
setpoints that satisfy the primal feasibility 2.12d.

min
gsp
1 ,...,gsp

N

∑
i∈N

Pi(g
sp
i ) (2.15a)

s.t.
∑
i∈N

gspi = gmax (2.15b)

Pi(g
sp
i ) is given by 2.13 while the constraint 2.15b stem from 2.12d.

One of the local setpoints is calculated as follows,

gsp,k+1
N = gmax − (gsp,k+1

1 + ...+ gsp,k+1
N−1 ) (2.16)

This is to ensure primal feasibility, we call this subsystem (e.g., subsystem N as displayed in
2.16) the compensator subsystem.

For the remaining subproblems, j = {0, ..., N − 1}, each local setpoint gspi at time step k + 1
can be found using the steepest descent direction of the central problem 2.15a. This is given
by the subgradient,

∇gsp
j

(∑
i∈N

Pi(g
sp,k
i )

)
= −λk

j + λk
N (2.17)

At the next time step the updated local setpoint is found by,

gsp,k+1
i = gsp,ki + KI,i∇gsp

i

(∑
i∈N

Pi(g
sp,k
i )

)
(2.18)

6



2 THEORY 2.3 Feedback-Optimizing Control

We may use integrating controllers with integral gain KI,i = 1
Ki(τc,i)

, where Ki is the step
response gain and τc,i is the closed-loop time constant.

To find the local setpoints the local Lagrange multiplier estimates is required in 2.17. Usually
this is available when solving the numerical optimization problem in the traditional RTO
framework. In this paper however, we are using feedback control, this is not directly available.
Therefore, we have to estimate the multipliers. For all subsystems, the stationary point is
reached when

∇ui
Li(ui, g

sp
i , λi) = 0 (2.19)

according to Karush-Kuhn-Tucker (KKT) conditions. All multipliers, λi converge to the same
optimal value. By rearranging 2.19 the local Lagrange multiplier λi can be computed,

λi = −∇ui
JN ,i(∇ui

gi(xi,ui,di))
−1 (2.20)

The amount of local manipulated variables must be more than or equal to the amount of
constraints, the solution also has to be unique.

2.3.2 Online Primal Decomposition Framework

By combining the idea of central constraint controllers and local Lagrange multiplier estimation
with the concept of primal decomposition, as described earlier, Dirza et. al. proposed to solve
the problem of real-time resource allocation in handling coupling constraint by using distributed
feedback-optimizing control with a primal decomposition framework [6]. When this framework
is used, we are guaranteed primal feasibility and it can theoretically reach steady-state optimal
condition.

In figure 2.3 the structure of this framework is illustrated. The central constraint controllers,
made up of both normal and compensator subsystems, give new set points for the local con-
straints, gi. How this is calculated is presented in eq. 2.16 and 2.18. If there is any disturbance
di, it is possible to use the plants current information to estimate its current state and pa-
rameters using a local dynamic estimator as for instance Extended Kalman Filter (EKF). By
looking at the inputs, estimated states and parameters, we can estimate cost gradient as well as
constraint gradient to compute the local Lagrange multipliers, shown in eq. 2.20. After these
are calculated, the multipliers are used to calculate the new setpoints in the central constraint
controller.

7



2.3 Feedback-Optimizing Control 2 THEORY

Figure 2.3: Online primal decomposition control structure.

2.3.3 Distributed Feedback-Optimizing Control using Dual Decomposition

Consider steady-state optimization problem 2.11 without constraint 2.11b

min
ui,∀i∈N

JN (2.21a)

s.t. g(x,u,d) ≤ 0 (2.21b)

Introducing the Lagrangian function for problem 2.21,

L(x,u,d, λ) = JN + λ⊤g(x,u,d) (2.22)

the KKT conditions for problem 2.21 can be expressed as

∇uL(x,u,d, λ) = ∇uJN + λ⊤∇ug(x,u,d) = 0 (2.23a)
g(x,u,d) ≤ 0 (2.23b)

λ ≥ 0 (2.23c)
λigi(xi,ui,di) = 0,∀i ∈ N (2.23d)

where u and λ are the unknown variables. The equations in 2.23 can be solved using dual
ascent. [1] 2.23a is solved with respect to u and a fixed value of λ. The λ is iteratively changed
in an outer loop in order to satisfy the remaining equations. When we have active constraints,
which is the case in this paper, it is important to keep g = 0, this corresponds to a nonzero
λ. As the constraint value g often is measured, we could use feedback control to solve the
equations. An advantage of using feedback control when solving problem 2.23 with respect
to λ is that we do not rely on the model for the constraints g in 2.23b and 2.23d, hence, we
do not have to update the model for this part. As a result of this, we can reach stationary
steady-state conditions by controlling

8



2 THEORY 2.3 Feedback-Optimizing Control

c(λ) := ∇uJN + λ⊤∇ug(x,u,d) (2.24)

to a constant setpoint csp = 0 for any given λ. The gradient controllers (fast time-scale) are
responsible for this function. The Lagrange multipliers λi are used as manipulated variables in
an outer loop to control the corresponding constraints gi(x,u,d) to the limit 0 for i ∈ N . By
implementing a max selector and pairing λi to gi(x,u,d), we ensure that the conditions λ ≥ 0
2.23c and the correspondent slackness condition 2.23d are satisfied. The centralized constraint
controllers (slow time-scale) are responsible for this function. Together, the gradient and
centralized constraint controllers satisfy the necessary optimality conditions 2.23 at steady-
state.

As in section 2.3.1 we want to decompose the optimization problem and solve it in a distributed
manner. Constraint 2.21b can be defined as a linear constraint

g(x,u,d) =
N∑
i=1

gi(xi,ui,di)− gmax (2.25)

where gmax is the limit of the constraint. The structure of 2.21a remain unchanged, as the
cost is additively separable. Hence, by implementing equation 2.25 the integrated optimization
problem 2.21 can be depicted as the separable problem.

min
ui,∀i∈N

∑
i∈N

JN ,i (2.26a)

s.t.
N∑
i=1

gi(xi,ui,di)− gmax ≤ 0,∀i ∈ N (2.26b)

In this case the controlled variable becomes

c(λ) :=

N∑
i=1

∇ui
JN ,i + λ⊤

N∑
i=1

∇ui
gi(xi, ui, di) (2.27)

which is additively separable. Thus, we can easily decompose equation 2.27 and each subsystem
control the following

ci(λ) := ∇ui
JN ,i + λ⊤∇ui

gi(xi, ui, di) (2.28)

to the setpoint of cspi = 0 by manipulating ui. Considering only integral action the controller
action is given by

∆ui = KI,ici(λ) (2.29)

where KI,i is the integral gain. Then, ui at time step k + 1 can be found by

uk+1
i = uk

i +KI,ic
k
i (λ) (2.30)

In the central controller the Lagrange multiplier λ is updated to control the constraints g(x,
u, d) to the limit of 0,

∆λ = α

(
N∑
i=1

gi(xi, ui, di)− gmax

)
(2.31)

9



2.3 Feedback-Optimizing Control 2 THEORY

where α is the integral gain. This controller action can be implemented with a max selector
to ensure the satisfaction of 2.23c. The updated Lagrange multiplier is then given by

λk+1 = λk + α

(
N∑
i=1

gki (x
k
i , u

k
i , d

k
i )− gmax

)
(2.32a)

λk+1 = max(0, λk+1) (2.32b)

In each subsystem ci(λ) is controlled in the fast time-scale, in the outer loop the Lagrange
multiplier λ is updated in the slow time-scale to control the coupling constraint g(x, u, d).
Assuming that the stationary point is the local minimum, we have optimal operation of all
local subsystems for a given Lagrange multiplier λ. This gives optimal performance of the
overall optimization problem 2.21 as the central constraint controller 2.32 updates λ. [5] [7]

2.3.4 Dual Decomposition Framework

The structure of distributed feedback-optimizing control with dual decomposition is shown
in figure 2.4. [5] The figure shows the structure of N subsystems which are inside the dashed
boxes, the grey boxes represent the physical plants. The central constraint controller provides
an updated Lagrange multiplier λ to the subsystems as shown in equation 2.32.

The local controllers require local cost and constraint gradient information to find the updated
input. As the gradient of the Lagrange function ∇uL(x,u,d, λ) is not directly measurable it is
necessary to estimate this gradient from available measurements. In this paper, we use forward
sensitivity analysis to estimate the gradient explained in appendix A.2.

Figure 2.4: Block diagram of dual decomposition control structure.
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3 MODEL

3 Model
In this paper we test the primal and dual decomposition framework on a dynamic model of the
experimental lab rig displayed in figure 3.1. This model is created in MATLAB R2021a based
on a paper by Matias et al. [12] and has been tested and used in earlier papers related to this
lab-rig [5]. The model equation is presented in appendix B The dynamic MATLAB model is
developed using CasADi v3.5.5. A schematic of the information flow in the MATLAB model
and the code can be found in appendix C.

The lab rig emulates a subsea gas-lifted oil production system with three wells, which is also
the case for our simulation model. The pressure, which is equivalent to pressure measured
by PI104 after the pump in the lab rig, is set to a fixed value of 1.2983 barg in the model.
The reservoir valves, CV101, CV102 and CV103 in figure 3.1 acting as disturbances from the
reservoir in the model by varying the valve opening, and as a consequence, the liquid flows.
How the valve openings develop with time is shown in figure 4.1.

The gas lift is injected in the flow lines within the range of 1 sL/min to 5 sL/min via flow
indication controllers FIC104, FIC105 and FIC106 in figure 3.1. In the MATLAB model these
are not implemented as actual controllers, but are instead implemented by adding a five second
delay and noise to the control input,

Qk
gl,i = Qsp,k−5

gl,i + n (3.1)

where Qk
gl,i is the actual gas lift at time step k, Qsp,k−5

gl,i is the gas lift set-point at time step
k − 5 and n is the noise.

3.1 Optimization Problem
The objective of the optimization problem in this model setup is to maximize the liquid flow
rate, which equals the sum of the liquid production of the three wells, with a limited amount
of gas-lift injection. Considering problem 2.11 with the special structure of 2.12 and 2.26, the
economic objective can be expressed as below,

J(u,p) : =
3∑

i=1

fi(ui, pi)

= −20Ql,1(u1, p1)− 25Ql,2(u2, p2)− 30Ql,3(u3, p3)

(3.2)

where Ql,1, Ql,2 and Ql,3 are the produced liquid flow rates of well 1, 2 and 3 respectively. We
assume that the value of the different hydrocarbon flows varies as shown above in eq. 3.2. This
is because we want to illustrate how different values affect the behavior of the subsystems. The
input vector is defined as

u = [Qgl,1 Qgl,2 Qgl,3]
T

where Qgl,1, Qgl,2 and Qgl,3 are the injected gas-lift flow rates of well 1, 2 and 3 respectively.
Additionally, the three elements of p, which represents the reservoir valve openings CV101,
CV102 and CV103 from the lab-rig in fig. 3.1, are time varying. This implies that the cost
also is a function of p.

11
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Figure 3.1: Schematic of lab rig which the model is based on. This schematic is adapted from Matias et al. [12]

The total gas availability, which in this case is a shared input constraint, can be expressed
using the structure in 2.12 and 2.26

g(u,p) : =
3∑

i=1

gi(ui, pi)− gmax

= Qgl,1 +Qgl,2 +Qgl,3 −Qmax
gl

(3.3)

We assume always active constraint, hence the constraint can be considered as an equality
constraint. As a result of this we do not actually need the max selector 2.32b for λ update in
the constraint control in the dual decomposition structure, as mentioned in section 2.3.3, this
will always be positive in such cases.

3.2 Control Setup

3.2.1 Primal Decomposition Setup

Based on the problem formulation in section 2.3.1, we now implement the distributed feedback-
optimizing control with online primal decomposition for our simulation model. As there are
three wells in our model setup, we can decompose the problem into three subsystems. The
local cost gradients and local constraint gradients, ∇Ql,i. and ∇Qgl,i, are estimated by a local
gradient estimator for each subsystem. We use forward sensitivity analysis to do the gradient
estimations, see appendix A.2. To derive the the local sensitivities, we need to estimate the
states of the system. In this paper, we use an EKF in each individual subsystem to achieve
this using only local measurements. The central constraint controller receives the estimated
local Lagrange multipliers, which is derived from the local cost gradient and local constraint
gradient as shown in equation 2.20. These Lagrange multipliers is then used to calculate the
new setpoints, which we send to the individual subsystems. One subsystem needs to be chosen

12
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as the compensator in the central constraint controller, and the new setpoint for this subsystem
is provided by equation 2.16.

As the control structure is defined, we need to tune the central constraint controllers. The
controllers are tuned using SIMC tuning rules, which is presented in section 2.1.2. In this
paper, we use integral controllers, as a result the the integral gains for the central constraint
controllers is given by

KI,i =
1

Kλi
(τc,i + θi)

(3.4)

where i = 1, 2, 3 is the well index, Kλi
and θi are the step response and the time delay of the

constraints by the local Lagrange multipliers, and τc,i is the closed-loop time constants.

To determine Kλi and θi, the step response is analysed. Ideally we can choose the tuning
parameters τc,i = 1 as we want to drive the system to steady-state as fast as possible. However,
this is probably to aggressive as the timescale of the central constraint controller has to be
slower than the plant, which has a five second input delay as mentioned earlier. Therefore, we
adjust the tuning parameters based on observation of the results and practical justification.
Table 3.1 shows the obtained controller and tuning parameters for primal decomposition.

Description Variable Value

Simulation model sampling time Ts 1 s

Time constant τc,1 10 s
Time constant τc,2 10 s
Time constant τc,3 10 s
Time delay θλ1

0 s
Time delay θλ2 0 s
Time delay θλ3 0 s
Lagrange multiplier gain Kλ1

-2.522
Lagrange multiplier gain Kλ2

-2.918
Lagrange multiplier gain Kλ3

-3.698
Integral gain KI,1 -0.040
Integral gain KI,2 -0.034
Integral gain KI,3 -0.027

Table 3.1: Controller and tuning parameters for primal decomposition

3.2.2 Dual Decomposition Setup

As in the section above, we implement the distributed feedback-optimizing control for our
simulation model. However here we implement dual instead of primal. As for primal decom-
position we can decompose the problem into three subsystems, as we have three wells in our
model setup. We also have to estimate the local cost gradients and local constraint gradients,
∇Ql,i. and ∇Qgl,i, in the dual setup. The gradients for each subsystem are estimated by
a local gradient estimator, which is done by forward sensitivity analysis, see appendix A.2.
Each subsystem has a local gradient controller (I-controller) that controls ci(λ) to 0, from
equation 2.28. The output from the local gradient controllers, Qsp

gl,i are the gas-lift setpoints
which is provided to the simulation model. For the central constraint controller, we update the
Lagrange multiplier as shown in equation 2.32, As the constraint g can be directly measured
there is no need for any estimations here. As seen in figure 2.4 the dual decomposition has a
cascade structure, where the central constraint controller act as the master and the gradient
controllers are the slaves.

13
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Once the dual decomposition structure is defined, we have to tune the controllers. The simula-
tion model has a sampling rate of 1 s, therefore it is possible to execute the central constraint
controller and gradient controllers at the same rate. However, they might compete against
each other, depending on their tuning, this could lead to system instability. As a result of this,
it is necessary with a time scale separation between these controllers.

The convergence rate to the setpoint is given by the closed-loop time constant τci of the control
loop for each subsystem. For a linear first-order system, the approach to steady-state is given
by (1−e−τc,λ/τci ) where τc,λ is the convergence time of the central constraint controller given in
equation 2.32, and τci is the closed-loop time constant of gradient control in subsystem i. Thus,
for τc,λ/τci = 5 we have reached 99.3 % of convergence, and is therefore considered reached.
This could be regarded as the rule of thumb of having a time scale separation between control
layers of at least 5. [15] Larger value would give more robust control in terms of process gain
variations. However, for large values the controllers will converge slow, for practical reasons, a
value of time scale separation of 5 to 10 is often recommended.

In this paper, we use integral controllers for both the central constraint control and gradient
controllers. These are tuned using SIMC tuning rules, which is presented in section 2.1.2. The
integral gain for the central constraint controller is given by

α =
1

Kλ(τc,λ + θλ)
(3.5)

where Kλ is the step response and θλ is the time delay of the constraint by the Lagrange
multiplier. τc,λ is the closed-loop time constant that governs the evolution of the constraints.
The integral gain for the three local gradient controllers is given by

KI,i =
1

Kui
(τc,ui

+ θui
)

(3.6)

where i = 1, 2, 3 is the well index, Kui
and θui

are the step response and time delay of the
gradient by the inputs (gas-lift setpoints). τc,ui is the closed-loop time constant that governs
th evolution of ci(λ).

To determine Kλ, θλ, Kui
and θui

the step response is analysed. While the tuning parameters
τc,λ and τc,ui

should consider the concept of time scale separation where ϵi =
τc,ui

τc,λ
should be

around 0.2, or at least less than 1, this implies that the outer loop is slower than the inner
loop. The inner time constant is adjusted based on observation of the results and pratical
justification, based on the same arguments as for the tuning parameter in primal decomposition,
see section 3.2.1. Table 3.2 shows the obtained controller and tuning parameters for dual
decomposition.
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Description Variable Value

Simulation model sampling time Ts 1 s

Central constraint controller

Time constant τc,λ 50 s
Time delay θλ 0 s
Lagrange multiplier gain Kλ 0.907
Integral gain α 0. 022

Local gradient controllers

Time constant τc,u1 10 s
Time constant τc,u2

10 s
Time constant τc,u3

10 s
Time delay θu1

0 s
Time delay θu2

0 s
Time delay θu3 0 s
Input gain Ku1 2.53
Input gain Ku2

2.93
Input gain Ku3

3.70
Integral gain KI,1 0.040
Integral gain KI,2 0.034
Integral gain KI,3 0.027

Table 3.2: Controller and tuning parameters for dual decomposition

4 Results

Fig. 4.1 shows the disturbance in this simulation, which corresponds to the reservoir valve
openings CV101 (p1), CV102 (p2), CV103 (p3) in the lab-rig the simulation model is based on.
The first disturbance occurs when p1 gradually decreases from t = 6 to t = 12.5 min. During
this time period, we expect the gas-lift injection in well 1 to decrease, and redistribution of the
gas to the other wells. The second disturbance occurs when p3 gradually decreases from t = 14
to t = 18 min. As before, we expect that the gas-lift injection rate in well 3 will go down. At
the same time, we expect the other wells will gain a higher gas-lift injection. The third and
fourth disturbance occur from t = 21 to t = 27.5 and t = 31 to t = 35 respectively. During
this time p1 and p3 are gradually increased back up to the initial values. This is because we
want to see how the controllers behave for both decrease and increase in the disturbance.

0 5 10 15 20 25 30 35

time [min]

0

0.2

0.4

0.6

0.8

1

p
1

p
2

p
3

Figure 4.1: Disturbances
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4.1 Determine Compensator Subsystem for Primal Decomposition
Framework

Figure 4.2 shows a comparison of accumulated profit with the three different subsystems chosen
as compensator. The profit difference is calculated as

P k
diff =

P k
3 − P k

i

P k
i

· 100 (4.1)

where P k
diff is the accumulated profit difference, P k

3 is the accumulated profit with well 3 chosen
as compensator, P k

i is the accumulated profit with well i chosen as compensator (i = 1, 2) at
time k. The accumulated profit at time k with the different wells as compensator is calculated
as

P k =

k−1∑
j=1

P j (4.2)

It is clear from the plot that we obtain the best performance with subsystem 3 as compen-
sator, although the difference between different compensators is modest. The difference in
performance stems from the gains of the controllers in each subsystem, as shown in table 3.1
subsystem 3 has the highest gain magnitude. Hence, we conclude that for cases with active
input shared constraint that the subsystem with highest gain magnitude should be selected as
compensator.

0 5 10 15 20 25 30 35

time [min]

0

5

10

15
10

-3

Profit well 3 vs well 1

Profit well 3 vs well 2

Figure 4.2: Comparison of accumulated profit with different compensator wells. Well 3 vs well 1 and well
3 vs well 2 denotes the comparison of accumulated profit with well 3 as compensator versus
accumulated profit with well 1 and 2 as compensator respectively.
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4.2 Comparison of Feedback-Optimizing Control
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7.48
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Figure 4.3: The constraint satisfaction (total implemented gas-lift) of both primal and dual decomposition.
There is a magnifying plot in time window 5 to 6.5 min showing only constraint satisfaction of
primal decomposition.

In figures 4.3 - 4.5 we compare the simulation results from Primal decomposition and dual
decomposition. Figure 4.3 shows the constraint satisfaction. As expected, the primal de-
composition performs much better than the dual decomposition here. This is because the
compensator system, subsystem 3, "absorbs" the deviations from the constraint. The absorb-
ing ability comes from how the compensator set-point is calculated, see eq. 2.16, and is the
reason for the primal decomposition’s capability to maintain the constraint active. In terms
of what this means for the operation, with the use of primal decomposition we can run the
system without any significant back off and still remain feasible at all times. On the other
hand, for the dual decomposition we must implement back off, especially from t = 21 when the
disturbances start to increase again. These constraint violations is a result of the necessary
time-scale separation between the central constraint control and local gradient controllers. Be-
cause of the slower nature of the constraint control it does not manage to keep up with the
disturbances to the same level as the primal decomposition.

In figure 4.4 the gas-lift setpoints given from the decomposition structures to the lab-rig model.
As the dual decomposition violates the constraint, as seen above, one would expect that the dual
decomposition have slower response in the setpoint changes than for the primal decomposition.
With the disturbance behavior in this simulation, this is the case for two out of the three
wells. In fact, in figure 4.4 from t = 6 to t = 12.5 when there is a disturbance in well 1,
we can see that the dual decomposition provide a faster setpoint response for subsystem 1
than primal decomposition. While, for the other two subsystems primal decomposition has the
faster response. This behavior is rooted in the gradient controllers in the dual decomposition
framework. When there is a disturbance in one of the subsystem the local gradient controller
response to this because equation 2.28 is affected by the local disturbance. The remaining
local gradient controllers are only affected by their local disturbance, therefore there is no
response here before the central constraint control responds to the constraint violation. This
is due to the time scale separation needed between the central constraint control and local
gradient controllers in the dual decomposition framework, which is explained in section 3.2.2. In
comparison, for the primal decomposition structure all subsystems have response in the setpoint
control simultaneously. As a result we have faster disturbance rejection in the local subsytems
for dual decomposition, however, primal decomposition have better constraint control.
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Figure 4.4: The gas-lift flow rate setpoints (usp = Qsp
gl ) for every well for both primal and dual decomposition

control method.
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The actual gas-lift flow rate is displayed in fig. 4.5, this differs slightly from the calculated
input setpoints shown in fig. 4.4 due to the implemented measurement noise in the model.
Another reason is how the gas flow rate controllers are implemented in the model, which is
described earlier in the paper.
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Figure 4.5: The actual implemented gas-lift flow rates in every well for both primal and dual decomposition
control method.

In figures 4.6 - 4.8 the Lagrange multipliers for both decomposition methods are displayed.
Figure 4.6 shows that the control of the Lagrange multipliers for primal decomposition is very
fast and converges to the same value. However, it is quite noisy. This is due to the fast time
scale which the central constraint controller in the primal decomposition structure operates
in. In figure 4.7 the Lagrange multipliers are displayed without measurement noise to show
clearly the fast converge rate of the primal decomposition, we can also see that the Lagrange
multipliers reach the same value when steady-state operation is achieved.

Figure 4.8 show the Lagrange multiplier for the dual decomposition. We can observe that the
multiplier converges slower for this method. This is due to the tuning of the controllers and the
fact that the central controller for dual decomposition operates on a different timescale. When
the Lagrange multiplier converges around t = 4 min, we can see that the active constraint is
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Figure 4.6: The local Lagrange multipliers for primal decomposition.
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Figure 4.7: The local Lagrange multipliers for primal decomposition with no measurement noise.

controlled almost as good as for the primal case in figure 4.3. It is also worth noting that the
Lagrange multipliers converge to the same value for both primal and dual. As mentioned in
section 2.3.3, when always active constraint is considered it correspond to a nonzero Lagrange
multiplier. In figure 4.6 and 4.8 we can confirm this statement, as the Lagrange multipliers are
always positive during the simulation period.
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Figure 4.8: Lagrange multiplier for dual decomposition.
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Figure 4.9: Comparison of the total liquid flow in the simulation model
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Figure 4.10: Instantaneous profit of primal and dual decomposition compared to a naive approach.

In figure 4.9 the total production of the two methods are shown, however, it is not possible to
gather any valuable information on the two methods compared to each other. To better display
the performance of the two methods, we have compared them to a naive approach in figure
4.10. Here the difference in percentage between the instantaneous profit of both methods and
the naive approach is presented. In the naive approach we consider fixed inputs,

u =

[
Qmax

gl

3

Qmax
gl

3

Qmax
gl

3

]T
(4.3)

which represent the case where no information is available, hence the best approach is to divide
the available gas equally among the wells. The difference in figure 4.10 is calculated as

Pdiff =
P − Pnaive

Pnaive
· 100 (4.4)

where P is the profit of the method of interest, and Pnaive is the profit of the naive approach.
The results show that primal decomposition is more profitable than dual decomposition until
t = 21 min, after this dual decomposition appears to be favorable. However, in figure 4.3 we
see that after t = 21 min dual decomposition does not achieve primal feasibility, and therefore
the profit here is not valid.

In this paper, we have only considered the case where the constraint always is active. How-
ever, if we have a change from active constraint to unconstrained the implemented primal
decomposition framework would not handle this well. This is because of how the compensator
subsystem is controlled, as this always utilize the remaining available gas-lift. The dual de-
composition on the other hand, would be able to reach optimal operation in this case because
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of the max selector, see equation 2.32b. As a result, the primal decomposition structure im-
plemented in this paper is specific for the always active input shared constraint case, while the
dual decomposition structure is more general.

The economical performance of the dual decomposition framework is limited because of the
back-off necessary to avoid constraint violation. One solution to this is to implement dual with
constraint override. This way, it is possible to ensure always feasible operation without any
economic sacrifice.

5 Conclusion
In this work, we have done simulation with uncertainty and measurement noise to compare
feedback-based real-time optimization with online primal and dual decomposition. Based on
the results we can conclude both methods manage to optimize the subsea gas-lifted oil pro-
duction problem without the use of any numerical solver.

However, it is shown that primal decomposition framework is able to more effectively ensure
primal feasibility for a separable system with an active shared input constraint than the dual
decomposition framework. This is mainly because of the necessary timescale difference between
the central constraint controller and local gradient controllers in the dual decomposition struc-
ture. As a result, the primal decomposition framework can reduce the need for any back-off
significantly, which results in more profitable operation.

5.1 Further Work
In the results, it was shown that the dual decomposition framework has a faster local dis-
turbance rejection in the respective subsystem. Therefore it would be interesting to consider
disturbances in multiple subsystems simultaneously and compare the economic performance of
the two decomposition structures.

To reduce the requirement of back-off in dual decomposition, we suggest to implement dual
decomposition with constraint override in order to handle the constraint better.

As the continuation of this work, we consider obtaining the experimental result in order to
validate the results in this paper.
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A STEADY-STATE GRADIENT ESTIMATION

A Steady-State Gradient Estimation

In this paper forward sensitivity analysis is used to estimate gradients. The gradient estimation
has to steps. The current plant (model) information is used to update the state and parameters
of the model with use of a extended Kalman Filter. Then, the updated model is used to compute
the stady-state gradients with the forward sensistivity analysis. This model - model parameter
estimation is done because we want to implement the code used in this paper to a lab-rig setup.

A.1 Extended Kalman Filter

The model have to be linearized in order to use the Kalman filter equations. The model is
an index-1 differential algebraic equation (DAE) system and can easily be re-arranged to an
ordinary differential equation (ODE). The unknown parameters are assumed to be time-varying
and a random walk model was used to decide their dynamics,

pk+1 = pk + vk (A.1)

where vk follows a normal distribution with covariance Vθ and mean zero. We also assume
that vk are independent of v̸=k.

An extended model that we use for parameter estimation is obtained by combining the param-
eter and system dynamics. We can apply the extended Kalman filter equations for estimating
pk, xk and zk simultaneously because the model was linearized. For a complete derivation of
the EKF equations the reader is reffered to the work of Walter and Pronzato [17].

A.2 Forward Sensitivity Analysis

The original nonlinear DAE model is in the form

xk+1 = F̌ (xk, zk,uk,pk)

0 = Ǧ(xk, zk,uk,pk)
(A.2)

The stationary value of forward sensitivity equation are used to estimate the steady-state
gradients

0 =
δF̌⊤

δx
SSS +

δF̌⊤

δz
RSS +

δF̌⊤

δu

0 =
δǦ⊤

δx
SSS +

δǦ⊤

δz
RSS +

δǦ⊤

δu

(A.3)

where SSS and RSS are the sensitivities of the differential states x and algebraic states z with
right to the inputs u. In our case, the objective J and constraint g are linear functions of the
algebraic states, J = ȞJz and g = Ȟgz. Therefore, the chain rule can be used to obtain ∇uJ
and ∇ug,

J = ȞJz ⇒ ∇uJ = ȞJRSS

g = Ȟgz ⇒ ∇ug = ȞgRSS

(A.4)
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B DYNAMIC LAB-RIG MODEL

Figure B.1: Diagram of a single well model. Ql, Prh and Ppump are measured. The reservoir valve opening
v0 is assumed as a measured disturbance and Qg is controlled by the gas flowrate controller.

B Dynamic Lab-Rig Model

The dynamic lab-rig model used in this paper is presented below, it was derived by Matias
et. al [12]. Here we only show the equations for one well, extending the model to three wells is
straightforward. A diagram of the model is shown in figure B.1.

The differential equations in the model i.e. the liquid and gas mass balances are represented
by

ṁg = wg − wg,out (B.1)
ṁl = wl − wl,out (B.2)

where mg and ml are the gas and liquid mass holdup inside the well and riser. The time
derivative is represented by the dot symbol. wl is the liquid flowrate from the reservoir and wg

is the gaslift injection mass flowrate. wl,out and wg,out are the outlet production rate of liquid
and gas.

The algebraic equations in the model are presented below. The outflow of the reservoir is
obtained by the following relationship

wl = v0θres

√
ρl(Ppump − Pbi) (B.3)

where v0 is the reservoir valve opening, θres is the valve flow coefficient, ρl is the liquid density.
Ppump is the pressure at the pump outlet and the pressure before the injection point Pbi

is computed with the hydrostatic pressure and the pressure drop due to friction taken into
account. The Darcy-Weisbach expression for laminar flow in cylindrical pipes is used as a
simplification. Thus, Pbi becomes
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B DYNAMIC LAB-RIG MODEL

Pbi = Prh + ρmixg∆h+
128µmix(wg + wl)L

πρmixD4
(B.4)

where Prh is the riser head pressure, D, L and ∆h are the diameter, length (well + riser) and
height of the pipes. g is the gravitational acceleration. µmix is the mixture viscosity, which is
approximated as the liquid viscosity. The mixture density ρmix is obtained by

ρmix =
mtotal

Vtotal
=

mg +ml

Vtotal
(B.5)

where Vtotal is the summation of the gas Vg and liquid Vl volumetric holdup

Vtotal = Vg + Vl =
mg

ρg
+

ml

ρl
(B.6)

It is assumed constant liquid density ρl, the gas density ρg is computed using the ideal gas law

ρg =
PbiMg

RT
(B.7)

where Mg is the molecular weight of air, T is the room temperature and R is the gas universal
constant. The total outlet flowrate is obtained by

wtotal = wg,out + wl,out = θtop
√
ρmix(Prh − Patm) (B.8)

where θtop is the flow coefficient of the top valve and Patm is the atmospheric pressure. It is
also assumed that the liquid fraction in the mixture, αl, is the same as the proportion between
liquid and total outlet flowrate.

αl =
wl,out

wtotal
=

ml

mtotal
(B.9)
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C MATLAB CODE

C MATLAB Code

Figure C.1: Information flow in MATLAB code

C.1 LabViewMain - Primal Decomposition
% Main program
% Run Initialization file first

%%%%%%%%%%%%%%%%
% Get Variables
%%%%%%%%%%%%%%%%
% disturbances
%valve opening [%]
cv101 = P_vector(1);
cv102 = P_vector(2);
cv103 = P_vector(3);
% cv101 = 0.8; cv102 = 0.4; cv103 = 0.6;
% if value is [A] from 0.004 to 0.020
% if you want to convert to 0 (fully closed) to 1 (fully open)
% vo_n = (vo - 0.004)./(0.02 - 0.004);

%pump rotation [%]
pRate = P_vector(4);
% if value is [A] from 0.004 to 0.020
% if you want to convert to (min speed - max speed)
% goes from 12% of the max speed to 92% of the max speed
% pRate = 12 + (92 - 12)*(P_vector(4) - 0.004)./(0.02 - 0.004);

% always maintain the inputs greater than 0.5
% inputs computed in the previous MPC iteration
% Note that the inputs are the setpoints to the gas flowrate PID's
fic104sp = P_vector(5);
fic105sp = P_vector(6);
fic106sp = P_vector(7);
%current inputs of the plant
u0old=[P_vector(5);P_vector(6);P_vector(7)];

% cropping the data vector
nd = size(I_vector,2);
dataCrop = (nd - BufferLength + 1):nd;

% liquid flowrates [L/min] %INCLUDE NOISE???
fi101 = I_vector(1,dataCrop);
fi102 = I_vector(2,dataCrop);
fi103 = I_vector(3,dataCrop);
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C.1 LabViewMain - Primal Decomposition C MATLAB CODE

% actual gas flowrates [sL/min] %INCLUDE NOISE???
fic104 = I_vector(4,dataCrop);
fic105 = I_vector(5,dataCrop);
fic106 = I_vector(6,dataCrop);

% pressure @ injection point [mbar g]
pi105 = I_vector(7,dataCrop);
pi106 = I_vector(8,dataCrop);
pi107 = I_vector(9,dataCrop);

% reservoir outlet temperature [oC]
ti101 = I_vector(10,dataCrop);
ti102 = I_vector(11,dataCrop);
ti103 = I_vector(12,dataCrop);

% DP @ erosion boxes [mbar]
dp101 = I_vector(13,dataCrop);
dp102 = I_vector(14,dataCrop);
dp103 = I_vector(15,dataCrop);

% top pressure [mbar g]
% for conversion [bar a]-->[mbar g]
% ptop_n = ptop*10^-3 + 1.01325;
pi101 = I_vector(16,dataCrop);
pi102 = I_vector(17,dataCrop);
pi103 = I_vector(18,dataCrop);

% reservoir pressure [bar g]
% for conversion [bar g]-->[bar a]
% ptop_n = ptop + 1.01325;
pi104 = I_vector(19,dataCrop);

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CODE GOES HERE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% number of measurements in the data window
dss = size(pi104,2);

% we do no consider SS detection here
flagSS = 1;

% check for first iteration
if ~exist('dxHatkk','var')

%initial condition
[dx0,z0,u0,theta0] = InitialConditionGasLift(par);

dxHatkk = dx0;
zHatkk = z0;
thetakk = theta0;

load('EKFconf');
qThres = ekf.qThresk;
Pkk = ekf.Pkk;
ekf.R = noise.output; %added (different from Rig Implementation)

lambda = 9.5;

lambda_1 = 1;
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lambda_2 = 1;
lambda_3 = 1;

err0 = zeros(3,1);
end

if flagSS == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Estimating SS model parameters (dynamic) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
yPlant = [fi101;

fi102;
fi103;
1.01325 + 10^-3*pi101; %[mbarg]-->[bar a];
1.01325 + 10^-3*pi102;
1.01325 + 10^-3*pi103];

uPlant = [fic104; %conversion [L/min] --> [kg/s]
fic105;
fic106;
cv101*ones(1,dss); %workaround - i just have the last measurement here. Since it is the disturbance, it doesn't really matter;
cv102*ones(1,dss);
cv103*ones(1,dss);
pi104 + 1.01325];

try
% running casadi - getting the last measurement and last
% input that generated that measuremnt
[dxHatkk,zHatkk,thetakk,Pkk,qThres] = RExtendedKalmanFilter(yPlant(:,end),uPlant(:,end - 10),dxHatkk,zHatkk,thetakk,Pkk,F_model,S_xx,S_zz,S_xz,S_xp,S_zp,ekf,par);

% everything normal
flagEst = 1;

catch
warning('Dynamic Estimation Problem!');
beep
% estimation problem
flagEst = 0;

% Note that in this case, we dont update
% dxHatkk,zHatkk,thetakk,Pkk,qThres

end

if flagEst == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Optimizing Systems %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Gradient Estimation
%conversion
CR = 60*10^3; % [L/min] -> [m3/s]

%%% NEED TO CHECK
%F_zp = full(S_zp(dxHatkk,zHatkk,[uPlant(:,end);thetakk;1e4]));

tStart = cputime;
F_zp = full(S_zp(dxHatkk,zHatkk,[uSPPlantArray(1:3,end);uPlant(4:end,end);thetakk;1e4]));

J_qgl1 = - 20*((1*1e-2)*CR/par.rho_o(1))*F_zp(22,1);
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J_qgl2 = - 25*((1*1e-2)*CR/par.rho_o(2))*F_zp(23,2);
J_qgl3 = - 30*((1*1e-2)*CR/par.rho_o(3))*F_zp(24,3);

g_qgl1 = 1;
g_qgl2 = 1;
g_qgl3 = 1;

%------- Calculating lambda's -------
lambda_1 = -(J_qgl1)/g_qgl1;
lambda_2 = -(J_qgl2)/g_qgl2;
lambda_3 = -(J_qgl3)/g_qgl3;

Lu(:,kk) = [lambda_1;lambda_2;lambda_3];

%------ g_i --------
%choose compensator
well_comp = 3;
lambda_c = Lu(well_comp, end);

%------ Controller Tunings --------
%--------------- 1 ----------------

K_1 = -2.522;
tauC_1 = 10;
theta_1 = 0;

Ki1 = 1/(K_1*(tauC_1 + theta_1));

%--------------- 2 ----------------

K_2 = -2.918;
tauC_2 = 10;
theta_2 = 0;

Ki2 = 1/(K_2*(tauC_2 + theta_2));

%--------------- 3 ----------------

K_3 = -3.698;
tauC_3 = 10;
theta_3 = 0;

Ki3 = 1/(K_3*(tauC_3 + theta_3));

%----- Primal Decomposition Controller -----

if well_comp == 1
g2new = u0old(2) + Ki2*(-lambda_2 + lambda_c);
uOpt(2,1) = max(1.0,min(7.5, g2new));
g3new = u0old(3) + Ki3*(-lambda_3 + lambda_c);
uOpt(3,1) = max(1.0,min(7.5, g3new));
g1new = 7.5 - (uOpt(2,1) + uOpt(3,1));
uOpt(1,1) = max(1.0,min(7.5, g1new));

end
if well_comp == 2

g1new = u0old(1) + Ki1*(-lambda_1 + lambda_c);
uOpt(1,1) = max(1.0,min(7.5, g1new));
g3new = u0old(3) + Ki3*(-lambda_3 + lambda_c);
uOpt(3,1) = max(1.0,min(7.5, g3new));
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g2new = 7.5 - (uOpt(1,1) + uOpt(3,1));
uOpt(2,1) = max(1.0,min(7.5, g2new));

end
if well_comp == 3

g1new = u0old(1) + Ki1*(-lambda_1 + lambda_c);
uOpt(1,1) = max(1.0,min(7.5, g1new));
g2new = u0old(2) + Ki2*(-lambda_2 + lambda_c);
uOpt(2,1) = max(1.0,min(7.5, g2new));
g3new = 7.5 - (uOpt(1,1) + uOpt(2,1));
uOpt(3,1) = max(1.0,min(7.5, g3new));

end

%---- Assign setpoints ----

% uOpt(1,1) = 2.500;
% uOpt(2,1) = 2.500;
% uOpt(3,1) = 2.500;

flagOpt = 1;

if flagOpt == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Send Variable
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute new values for the gas flow rate setpoints
%Filter for optimum
fic104sp = uOpt(1);
fic105sp = uOpt(2);
fic106sp = uOpt(3);

O_vector = vertcat(fic104sp,fic105sp,fic106sp)';
SS = 1;
Estimation = 1;
Optimization = 1;
Result = lambda;
Parameter_Estimation = thetakk';
State_Variables_Estimation = (par.H*zHatkk)';

% State_Variables_Optimization = ([J_qgl1;J_qgl2;J_qgl3;L_qgl1;L_qgl2;L_qgl3;])';
Optimized_Air_Injection = uOpt';

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 1;
Estimation = 1;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

else
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%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 1;
Estimation = 0;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 0;
Estimation = 0;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

C.2 LabViewMain - Dual Decomposition

% Main program
% Run Initialization file first

%%%%%%%%%%%%%%%%
% Get Variables
%%%%%%%%%%%%%%%%
% disturbances
%valve opening [%]
cv101 = P_vector(1);
cv102 = P_vector(2);
cv103 = P_vector(3);
% if value is [A] from 0.004 to 0.020
% if you want to convert to 0 (fully closed) to 1 (fully open)
% vo_n = (vo - 0.004)./(0.02 - 0.004);

%pump rotation [%]
pRate = P_vector(4);
% if value is [A] from 0.004 to 0.020
% if you want to convert to (min speed - max speed)
% goes from 12% of the max speed to 92% of the max speed
% pRate = 12 + (92 - 12)*(P_vector(4) - 0.004)./(0.02 - 0.004);
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% always maintain the inputs greater than 0.5
% inputs computed in the previous MPC iteration
% Note that the inputs are the setpoints to the gas flowrate PID's
fic104sp = P_vector(5);
fic105sp = P_vector(6);
fic106sp = P_vector(7);
%current inputs of the plant
u0old=[P_vector(5);P_vector(6);P_vector(7)];

% cropping the data vector
nd = size(I_vector,2);
dataCrop = (nd - BufferLength + 1):nd;

% liquid flowrates [L/min] %INCLUDE NOISE???
fi101 = I_vector(1,dataCrop);
fi102 = I_vector(2,dataCrop);
fi103 = I_vector(3,dataCrop);

% actual gas flowrates [sL/min] %INCLUDE NOISE???
fic104 = I_vector(4,dataCrop);
fic105 = I_vector(5,dataCrop);
fic106 = I_vector(6,dataCrop);

% pressure @ injection point [mbar g]
pi105 = I_vector(7,dataCrop);
pi106 = I_vector(8,dataCrop);
pi107 = I_vector(9,dataCrop);

% reservoir outlet temperature [oC]
ti101 = I_vector(10,dataCrop);
ti102 = I_vector(11,dataCrop);
ti103 = I_vector(12,dataCrop);

% DP @ erosion boxes [mbar]
dp101 = I_vector(13,dataCrop);
dp102 = I_vector(14,dataCrop);
dp103 = I_vector(15,dataCrop);

% top pressure [mbar g]
% for conversion [bar a]-->[mbar g]
% ptop_n = ptop*10^-3 + 1.01325;
pi101 = I_vector(16,dataCrop);
pi102 = I_vector(17,dataCrop);
pi103 = I_vector(18,dataCrop);

% reservoir pressure [bar g]
% for conversion [bar g]-->[bar a]
% ptop_n = ptop + 1.01325;
pi104 = I_vector(19,dataCrop);

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CODE GOES HERE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% number of measurements in the data window
dss = size(pi104,2);

% we do no consider SS detection here
flagSS = 1;
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% check for first iteration
if ~exist('dxHatkk','var')

%initial condition
[dx0,z0,u0,theta0] = InitialConditionGasLift(par);

dxHatkk = dx0;
zHatkk = z0;
thetakk = theta0;

load('EKFconf');
qThres = ekf.qThresk;
Pkk = ekf.Pkk;
ekf.R = noise.output; %added (different from Rig Implementation)

lambda = 9.5;
err0 = zeros(3,1);

end

if flagSS == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Estimating SS model parameters (dynamic) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
yPlant = [fi101;

fi102;
fi103;
1.01325 + 10^-3*pi101; %[mbarg]-->[bar a];
1.01325 + 10^-3*pi102;
1.01325 + 10^-3*pi103];

uPlant = [fic104; %conversion [L/min] --> [kg/s]
fic105;
fic106;
cv101*ones(1,dss); %workaround - i just have the last measurement here. Since it is the disturbance, it doesn't really matter;
cv102*ones(1,dss);
cv103*ones(1,dss);
pi104 + 1.01325];

try
% running casadi - getting the last measurement and last
% input that generated that measuremnt
[dxHatkk,zHatkk,thetakk,Pkk,qThres] = RExtendedKalmanFilter(yPlant(:,end),uPlant(:,end - 10),dxHatkk,zHatkk,thetakk,Pkk,F_model,S_xx,S_zz,S_xz,S_xp,S_zp,ekf,par);

% everything normal
flagEst = 1;

catch
warning('Dynamic Estimation Problem!');
beep
% estimation problem
flagEst = 0;

% Note that in this case, we dont update
% dxHatkk,zHatkk,thetakk,Pkk,qThres

end

if flagEst == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Optimizing Systems %
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Update Lambda
Total_Qgl = fic104(end) + fic105(end) + fic106(end);

K_ccc = 0.907;
tau_ccc = 50;
theta_ccc = 0;
KI_ccc = 1/(K_ccc*(tau_ccc+theta_ccc));
tStart = cputime;

lambda_next = max(0,lambda + KI_ccc*(Total_Qgl - 7.5));

tEnd_lambda = cputime - tStart;

lambda = lambda_next;

% Gradient Estimation
%conversion
CR = 60*10^3; % [L/min] -> [m3/s]

tStart = cputime;
F_zp = full(S_zp(dxHatkk,zHatkk,[uSPPlantArray(1:3,end);uPlant(4:end,end);thetakk;1e4]));
tEnd_lambda = cputime - tStart + tEnd_lambda;
%%% NEED TO CHECK

J_qgl1 = - 20*((1*1e-2)*CR/par.rho_o(1))*F_zp(22,1);
J_qgl2 = - 25*((1*1e-2)*CR/par.rho_o(2))*F_zp(23,2);
J_qgl3 = - 30*((1*1e-2)*CR/par.rho_o(3))*F_zp(24,3);

g_qgl1 = 1;
g_qgl2 = 1;
g_qgl3 = 1;

L_qgl1 = J_qgl1 + lambda.*g_qgl1;
L_qgl2 = J_qgl2 + lambda.*g_qgl2;
L_qgl3 = J_qgl3 + lambda.*g_qgl3;

Lu(:,kk) = [L_qgl1;L_qgl2;L_qgl3];

tauC = 10;
tauI = min(4*tauC,800);

% --------- Well 1 ---------
K_1 = 2.53;
tauC_1 = 10;
theta_1 = 0;
Ki1 = 1/(K_1*tauC_1 + theta_1);
err_1= -L_qgl1;
tStart = cputime;

uOpt(1,1) = max(1,min(5.5, u0old(1) + (Ki1*err_1)));
tEnd_gr1 = cputime - tStart;

err0(1) = err_1;
% --------- Well 2 ---------
K_2 = 2.93;
tauC_2 = 10;
theta_2 = 0;
Ki2 = 1/(K_2*tauC_2 + theta_2);

35



C.2 LabViewMain - Dual Decomposition C MATLAB CODE

err_2 = -L_qgl2;
tStart = cputime;

uOpt(2,1) = max(1,min(5.5, u0old(2) + (Ki2*err_2)));
tEnd_gr2 = cputime - tStart;

err0(2) = err_2;
% --------- Well 3 ---------

K_3 = 3.70;
tauC_3 = 10;
theta_3 = 0;
Ki3 = 1/(K_3*tauC_3 + theta_3);
err_3= -L_qgl3;

tStart = cputime;
uOpt(3,1) = max(1,min(5.5, u0old(3) + (Ki3*err_3)));

tEnd_gr3 = cputime - tStart;
err0(3) = err_3;

flagOpt = 1;

tEnd = max(max(tEnd_gr1,tEnd_gr2),tEnd_gr3)+ tEnd_lambda;

if flagOpt == 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Send Variable
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute new values for the gas flow rate setpoints
%Filter for optimum
fic104sp = uOpt(1);
fic105sp = uOpt(2);
fic106sp = uOpt(3);

O_vector = vertcat(fic104sp,fic105sp,fic106sp)';
SS = 1;
Estimation = 1;
Optimization = 1;
Result = lambda;
Parameter_Estimation = thetakk';
State_Variables_Estimation = (par.H*zHatkk)';
State_Variables_Optimization = ([J_qgl1;J_qgl2;J_qgl3;L_qgl1;L_qgl2;L_qgl3;])';
Optimized_Air_Injection = uOpt';

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 1;
Estimation = 1;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

else
%%%%%%%%%
%(dummy)%
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%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 1;
Estimation = 0;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

else
%%%%%%%%%
%(dummy)%
%%%%%%%%%
% compute new values for the gas flow rate setpoints
O_vector = vertcat(fic104sp,fic105sp,fic106sp)';

SS = 0;
Estimation = 0;
Optimization = 0;
Result = 0;
Parameter_Estimation = [0,0,0,0,0,0];
State_Variables_Estimation = [0,0,0,0,0,0];
State_Variables_Optimization = [0,0,0,0,0,0];
Optimized_Air_Injection = [0,0,0];

end

C.3 Extended Kalman Filter

function [dxHatkk,zHatkk,pHatkk,Pkk,qThres] = RExtendedKalmanFilter(yk,uk_1,dxk_1k_1,zk_1k_1,p_k_1k_1,PNk_1k_1,F,S_xx,S_zz,S_xz,S_xp,S_zp,ekf,par)
% Uses an reduced extended Kalman filter for estimating the model states and parameters
% We set the parameters qThres and ekf.lambdaThres such that the rEKF
% calculations become equivalent to the EKF

% Inputs:
% yk, uk_1 = measurements + system inputs
% dxk_1k_1,zk_1k_1,p_k_1k_1 = previously estimated states and parameters
% PNk_1k_1 = previously computed estimate covariance matrix
% F = dynamic model integrator
% S_xx,S_zz,S_xz,S_xp,S_zp = sensitivty equations
% ekf = ekf configuration parameters
% par = system parameters

% Outputs:
% pHatkk = estimated parameters
% dxHatkk, zHatkk = estimated states
% Pkk = updated value of the estimate covariance
% qThres = number of parameters + states estimated --> not used here

% Other m-files required: none
% MAT-files required: none

% addpath ('C:\Users\lab\Documents\casadi-windows-matlabR2016a-v3.4.5')
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import casadi.*

% ===================================
% Integrating results
% ===================================

% we use the nonlinear model to evolve the states
Fend = F('x0',dxk_1k_1,'z0',zk_1k_1,'p',[uk_1;p_k_1k_1;par.T]);
%extracting solution
dxkk_1 = full(Fend.xf);
zkk_1 = full(Fend.zf);

% ===================================
% Sensitivitits
% ===================================

%states
F_xx = full(S_xx(dxk_1k_1,zk_1k_1,[uk_1;p_k_1k_1;par.T]));
F_zz = full(S_zz(dxk_1k_1,zk_1k_1,[uk_1;p_k_1k_1;par.T]));
F_xz = full(S_xz(dxk_1k_1,zk_1k_1,[uk_1;p_k_1k_1;par.T]));
F_zx = F_xz';

FSk = [F_xx, F_xz; F_zx, F_zz];
HSk = [zeros(length(yk),length(dxk_1k_1)),par.H];

%inputs
F_xp = full(S_xp(dxk_1k_1,zk_1k_1,[uk_1;p_k_1k_1;par.T]));
F_zp = full(S_zp(dxk_1k_1,zk_1k_1,[uk_1;p_k_1k_1;par.T]));
FPk = [F_xp;F_zp];
FPk(:,1:length(uk_1)) = [];%excluding derivative in relation to feed inputs
FPk(:,end) = [];%excluding derivative in relation to par.T

% ===================================
% Filter
% ===================================

%Arranging filter matrices - extended state vector
Fk_1 = [FSk, FPk; zeros(length(p_k_1k_1),(length(dxk_1k_1) + length(zkk_1))), eye(length(p_k_1k_1))];

%output transition
Hk = [HSk, zeros(length(yk),length(p_k_1k_1))];

%preparing extended vector
xkk_1 = [dxkk_1; zkk_1; p_k_1k_1];

%%%%%%%%%%%%%%%%%%%%
% Filter Equations %
%%%%%%%%%%%%%%%%%%%%
%predicted covariance estimate
Pkk_1 = Fk_1*PNk_1k_1*Fk_1'+ ekf.Qe;

%%
% N.B.: if EKF is used instead of rEKF, this section is not relevant
%Reduced Filtering - spectral deconposition
[V,D] = eig(Pkk_1);

%main diagonal - abs value of eigenvalues
d = diag(D);

%sorting eigenvalues - descend
%[e,i] = sort(d,'descend');
[e,i] = sort(d);
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%initializing the threshold. The initial value is equal to the total number
%of states + parameters
qThres = size(ekf.Qe,2);

%initializing counter
l = 1;
while l <= length(e)

if e(l) > ekf.lambdaThres
%checking if the eigenvalue is greater than the threshold. If it
%is, the number of directions used changes
qThres = l;
l = length(e);%exiting the loop

end
l = l + 1;

end

%obtaining reduced covariance matrix
temp = zeros(size(Pkk_1,1));
for j = 1:qThres

temp = temp + e(j)*V(:,i(j))*V(:,i(j))';
end
Pkk_1r = temp;

temp = [];

%%
%Updating
%Innovation covariance
Sk = Hk*Pkk_1r*Hk' + ekf.R;

%Kalman Gain
Kk = Pkk_1r*Hk'*pinv(Sk);

%Updating covariance estimate
%Galo's upload system! Reduced Matrix is used only in the gain calculations
Pkk = (eye(length(dxk_1k_1) + length(zk_1k_1) + length(p_k_1k_1)) - Kk*Hk)*Pkk_1*((eye(length(dxk_1k_1) + length(zk_1k_1) + length(p_k_1k_1)) - Kk*Hk))' + Kk*ekf.R*Kk';

%guaranteeing symmetric matrix
temp = Pkk;

for i = 1:size(temp,1)
for j = (i + 1):size(temp,2)

temp(j,i) = Pkk(i,j);
end

end
Pkk = temp;

%Measurement residual
yHat = Hk*xkk_1;

%Update state estimate
xHatkk = xkk_1 + Kk*(yk - yHat); %state variables are normalized

% ===================================
% Results
% ===================================
%dividing extended vector
dxHatkk = xHatkk(1:length(dxk_1k_1));%differential
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zHatkk = xHatkk(length(dxk_1k_1) + 1:length(dxk_1k_1) + length(zk_1k_1));%algebraic
pHatkk = xHatkk(length(dxk_1k_1) + length(zk_1k_1) + 1:end);%parameters

end

C.4 Dynamic Model of Lab Rig

function [F,S_xx,S_zz,S_xz,S_xp,S_zp,x_var,z_var,u_var,p_var,diff,alg,L] = ErosionRigDynModel(par)
% Creates a dynamic model of the rig and computes the sensitivity
% matrices for EKF

% Inputs:
% par = system parameters
%
% Outputs:
% F: system integrator
% S's: system sensitivities
% x_var,z_var,u_var,p_var, diff,alg,L: Model in CasADi form

% Other m-files required: none
% MAT-files required: none

addpath('C:\Users\Vegard\Documents\casadi-windows-matlabR2016a-v3.5.5')
import casadi.*

%% Parameters
%number of wells
n_w = par.n_w; %[]
%gas constant
R = par.R; %[m3 Pa K^-1 mol^-1]
%air molecular weigth
Mg = par.Mw; %[kg/mol] -- Attention: this unit is not usual

%properties
%density of water - dim: nwells x 1
rho_l = par.rho_o; %[kg/m3]
%mixture viscosity
mu_mix = par.mu_oil;% [Pa s]

%project - dim: nwells x 1
% well length
L_w = par.L_w; %[m]
% well pipes cross section area
A_w = par.A_w;%[m2]

% riser length
L_r = par.L_r; %[m]
% riser pipes cross section area
A_r = par.A_r;%[m2]
%riser height
H_r = par.H_r; %[m]
%well below injection
D = par.D_bh; %[m]

%% System states
% differential
%gas holdup
m_g = MX.sym('m_g',n_w); % 1:3 [1e-4 kg]
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%water holdup
m_l = MX.sym('m_l',n_w); % 4:6 [kg]

% algebraic
%water rate from reservoir
w_l = MX.sym('w_l',n_w); % 1:3 [1e-2 kg/s]
%total well production rate
w_total = MX.sym('w_total',n_w); % 4:6 [1e-2 kg/s]

%riser head pressure
p_rh = MX.sym('p_rh',n_w); % 7:9 [bar]
%pressure - before injection point (bottom hole)
p_bi = MX.sym('p_bi',n_w); % 10:12 [bar]

%mixture density in system
rho_mix = MX.sym('rho_mix',n_w); % 13:15 [1e2 kg/m3]
%density gas
rho_g= MX.sym('rho_g',n_w); % 16:18 [kg/m3]

%well outlet flowrate (gas)
w_gout = MX.sym('w_gout',n_w); % 19:21 [1e-5 kg/s]
%riser head gas production rate gas
w_lout = MX.sym('w_lout',n_w); % 22:24 [1e-2 kg/s]

%% System input
%gas lift rate
Q_gl = MX.sym('Q_gl',n_w); % 1:3 [sL/min]
%valve oppening
vo = MX.sym('vo',n_w); % 4:6 [0-1]
%pump outlet pressure
Ppump = MX.sym('Ppump',1); % 7 [bar]

%% parameters
%%%%%%%%%
% fixed %
%%%%%%%%%
%room temperature
T = MX.sym('T',1); %[K]
%atmospheric pressure
p_atm = MX.sym('p_atm',1); %[bar]

%time transformation: CASADI integrates always from 0 to 1 and the USER does the time
%scaling with T --> sampling time
t_samp = MX.sym('t_samp',1); %[s]

% estimable
%scaled reservoir valve parameters
res_theta = MX.sym('res_theta',n_w);
%scaled top valve parameters
top_theta = MX.sym('top_theta',n_w);

%% Modeling
% Algebraic
%conversion
CR = 60*10^3; % [L/min] -> [m3/s]
%reservoir outflow
f1 = -Ppump*ones(n_w,1)*1e5 + (w_l.*1e-2).^2.*(res_theta.*1e9)./(vo.^2.*rho_l) + p_bi.*1e5 ;
% total system production
f2 = - (w_total.*1e-2) + ((w_gout.*1e-5) + (w_lout.*1e-2));
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%riser head pressure
f3 = -p_rh.*1e5 + (w_total.*1e-2).^2.*(top_theta.*1e8)./(rho_mix.*1e2) + p_atm.*1e5 ;
%before injection pressure
f4 = -p_bi.*1e5 + (p_rh.*1e5 + (rho_mix.*1e2).*9.81.*H_r + 128.*mu_mix.*(L_w+L_r).*(w_l.*1e-2)./(3.14.*D.^4.*(rho_mix.*1e2)));
%mixture density
f5 = -(rho_mix.*1e2) + (((m_g.*1e-4) + m_l).* p_bi.*1e5.*Mg.*rho_l)./(m_l.*p_bi.*1e5.*Mg + rho_l.*R.*T.*(m_g.*1e-4));
%gas density (ideal gas law)
f6 = -rho_g + p_bi.*1e5.*Mg/(R*T);

% Simplifying assumption!
% liquid fraction in the mixture
xL = (m_l./((m_g.*1e-4) + m_l));
%Liquid outlet flowrate
f7 = -(w_lout.*1e-2) + xL.*(w_total.*1e-2);

% Total volume constraint
f8 = -(A_w.*L_w + A_r.*L_r) + (m_l./rho_l + (m_g.*1e-4)./rho_g);

% Differential
% gas mass balance
df1= 1e4*(-(w_gout.*1e-5) + Q_gl.*rho_g/CR);
% liquid mass balance
df2= -(w_lout.*1e-2) + (w_l.*1e-2);

% Form the DAE system
diff = vertcat(df1,df2);
alg = vertcat(f1,f2,f3,f4,f5,f6,f7,f8);

% give fixed parameter values
alg = substitute(alg,p_atm,par.p_s);
alg = substitute(alg,T,par.T_r);

% concatenate the differential and algebraic states
x_var = vertcat(m_g,m_l);
z_var = vertcat(w_l,w_total,p_rh,p_bi,rho_mix,rho_g,w_gout,w_lout);
u_var = vertcat(Q_gl,vo,Ppump);
p_var = vertcat(res_theta,top_theta,t_samp);

%objective function
L = 20*((w_lout(1)*1e-2)*CR/rho_l(1)) + 25*((w_lout(2)*1e-2)*CR/rho_l(2)) + 30*((w_lout(3)*1e-2)*CR/rho_l(3));
%end modeling

%% Casadi commands
%declaring function in standard DAE form (scaled time)
dae = struct('x',x_var,'z',z_var,'p',vertcat(u_var,p_var),'ode',t_samp*diff,'alg',alg);

%calling the integrator, the necessary inputs are: label; integrator; function with IO scheme of a DAE (formalized); struct (options)
F = integrator('F','idas',dae);

% ================================================
% Calculating sensitivity matrices
% ================================================

S_xx = F.factory('sensStaStates',{'x0','z0','p'},{'jac:xf:x0'});
S_zz = F.factory('sensStaStates',{'x0','z0','p'},{'jac:zf:z0'});
S_xz = F.factory('sensStaStates',{'x0','z0','p'},{'jac:xf:z0'});

S_xp = F.factory('sensParStates',{'x0','z0','p'},{'jac:xf:p'});
S_zp = F.factory('sensParStates',{'x0','z0','p'},{'jac:zf:p'});
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end

C.5 Main

% Runs a mock-up ROPA problem, where the model and the system are equal and the disturbance setup is pre-determined.
% The system setup is based on the paper:
% Implementation of Steady-state Real-time Optimization Using Transient Measurements on Experimental Rig
% by Matias et al.

% Other m-files required: SmoothPlantParameters2.mat; Disturbances2.mat; RigNoise.mat; InitialState_2021-03-03_104459_NoRTO_test2_1.mat; EKFconf.mat
% MAT-files required:
% For ROPA:
% 2. RExtendedKalmanFilter.m
% 3. ErosionRigSSOptimization.m

% For Mockup Labview Interface:
% 1. InitializationLabViewMain.m
% 2. LabViewMain.m

% For "Plant":
% 1. ErosionRigDynModel.m

% Bounds, Parameters and Initial conditon:
% 1. InitialConditionGasLift.m
% 2. OptimizationBoundsGasLiftRiser2.m
% 3. ParametersGasLiftModel.m
clear
%close all
clc

%saving data
name = 'ROPA_DT_Cycle';
%noise seed
rng('default')

%% Loading .mat files
% previously defined disturbance profiles
%disturbances = load('Disturbances3');
%disturbances = load('DisturbancesLonger');
disturbances = load('disturbances_updown');

% previously computed system parameter profiles - used as "plant" true
% parameters
%parProfile = load('SmoothPlantParametersLonger');
parProfile = load('SmoothPlantParameters3');

% rig noise characteristics - compute previously from actual rig data
noise = load('RigNoise');

% Take out Noise
noise.input = 1.*noise.input;
noise.output = 1.*noise.output;

%% Simulation tuning
% Buffer length
BufferLength = 60; %[s]
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% Optimization sampling time
nExec = 2; %[s]% Requested by Sigurd to make faster shadow prices update (EKF is not suggested to faster than 2 seconds)

% nExec = 10; %[s]% Initial

%plant parameters
parPlant = ParametersGasLiftModel;

%simulation parameters
nInit = 0; %[s]
%nFinal = 1*size(parProfile.thetaPlant,2); %[s] ! Adding a 60 second buffer in comparison to experimental duration (1244 ~ 22min) to emulate the measurement buffer of labview, which is "filled" before the experiment
nFinal = size(disturbances.values,2)-1;
parPlant.T = 1; %rig measurements samplint time[s]
tgrid = (nInit:parPlant.T:nFinal)/60; %[min] one measurements per second

%initial condition
[dxPlant0,zPlant0,uPlant0,thetaPlant0] = InitialConditionGasLift(parPlant);

%states to measurement mapping function
parPlant.nMeas = 6;
parPlant.H = zeros(6,24);
parPlant.H(1,1) = 1e-2*60*1e3/parPlant.rho_o(1); %wro-oil rate from reservoir, well 1 [1e-2 kg/s] --> [L/min]
parPlant.H(2,2) = 1e-2*60*1e3/parPlant.rho_o(2); %wro-oil rate from reservoir, well 2
parPlant.H(3,3) = 1e-2*60*1e3/parPlant.rho_o(3); %wro-oil rate from reservoir, well 3
parPlant.H(4,7) = 1; %prh - riser head pressure well 1
parPlant.H(5,8) = 1; %prh - riser head pressure well 2
parPlant.H(6,9) = 1; %prh - riser head pressure well 3

% Model representing the rig
[F,~,~,~,~,~,~,~,~,~,~,~,~] = ErosionRigDynModel(parPlant);

% mockup controller dynamic parameters
tau_C = 1;

%% Run configuration file
InitializationLabViewMain %here we use the same syntax as in the rig

%% Initializing simulation
% Plant states
dxk = dxPlant0;
zk = zPlant0;

% Inputs
uk = [uPlant0(1); %FIC-104 [sl/min]

uPlant0(2); %FIC-105 [sl/min]
uPlant0(3); %FIC-106 [sl/min]
disturbances.values(1,1); %CV-101 opening [-]
disturbances.values(2,1); %CV-102 opening [-]
disturbances.values(3,1); %CV-103 opening [-]
disturbances.values(4,1)]; %PI-104 [bar]

% Setpoints for the gas lift controllers
O_vector = [uk(1); uk(2); uk(3)];

% "Plant" parameters
thetak = thetaPlant0;

%% Run mock-up loop
% arrays for plotting
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%%%%%%%%%%%%%%%%
% "Plant" Data %
%%%%%%%%%%%%%%%%
xPlantArray = dxk;
zPlantArray = zk;
uPlantArray = uk;
uSPPlantArray = O_vector; % decision variable of the optimization problem are the SP of the PI controllers that regulate the gas flowrate
measPlantArray = parPlant.H*zk;
thetaPlantArray = thetak;

%%%%%%%% - THIS NEEDS TO CHECK!!!
%ofPlantArray = 20*(measPlantArray(1)) + 10*(measPlantArray(2)) + 30*(measPlantArray(3));
ofPlantArray = 20*(measPlantArray(1)) + 25*(measPlantArray(2)) + 30*(measPlantArray(3));
%%%%%%%% - THIS NEEDS TO CHECK!!!

State_Variables_Optimization = zeros(1,6);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Production Optimization Methods Data %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% we save the same data that is saved in the Rig's labview code
flagArray = []; % flag SSD, Model Adaptation and Economic Optimization [flag == 0 (failed), == 1 (success)]
ofArray = []; % OF value computed bu the Economic Optimization
thetaHatArray = []; % estimated parameters
yEstArray = []; % model prediction with estimated states
yOptArray = []; % model prediction @ new optimum
uOptArray = []; % computed inputs (u_k^\star)
uImpArray = []; % filtered inputs to be implemented (u_{k+1})

compuTimeArray = []; % computational time

for kk = 1:nFinal

% printing the loop evolution in minutes
fprintf(' kk >>> %6.4f [min]\n',tgrid(kk + 1))

% integrating the "plant" (the model sampling time is defined by parPlant.T)
Fend = F('x0',dxk,'z0',zk,'p',[uk;thetak;parPlant.T]);

%extracting the results (from Casadi symbolic to numerical)
dxk = full(Fend.xf);
zk = full(Fend.zf);

% saving the results
xPlantArray = [xPlantArray, dxk];
zPlantArray = [zPlantArray, zk];
measPlantArray = [measPlantArray, parPlant.H*zk + noise.output*randn(6,1)]; % adding artificial noise to the measurements

%%%%%%%% - THIS NEEDS TO CHECK!!!
%ofPlantArray = [ofPlantArray, 20*(measPlantArray(1,end)) + 10*(measPlantArray(2,end)) + 30*(measPlantArray(3,end));];
ofPlantArray = [ofPlantArray, 20*(measPlantArray(1,end)) + 25*(measPlantArray(2,end)) + 30*(measPlantArray(3,end));];
%%%%%%%% - THIS NEEDS TO CHECK!!!

% we execute the production optimization:
% a. after the initial [BufferLength]-second buffer
% b. every [nExec] seconds
if kk > BufferLength && rem(kk,nExec) == 0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Rearranging the data vectors and units here, so they can the be exactly %
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% the same as in the actual rig. The goal is that LabViewRTO.m can be %
% directly plug in the Labview interface and it will work %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% measurement buffer (dim = 19 X BufferLength)
I_vector = [measPlantArray(1,(kk - BufferLength + 2):kk + 1); % FI-101 [L/min]

measPlantArray(2,(kk - BufferLength + 2):kk + 1); % FI-102 [L/min]
measPlantArray(3,(kk - BufferLength + 2):kk + 1); % FI-103 [L/min]
uPlantArray(1,(kk - BufferLength + 1):kk); % FI-104 [sL/min]
uPlantArray(2,(kk - BufferLength + 1):kk); % FI-105 [sL/min]
uPlantArray(3,(kk - BufferLength + 1):kk); % FI-106 [sL/min]
ones(3,BufferLength); %dummy values --> in the actual rig, they will the pressure at injection point (PI105, PI106, PI107). Not used here
ones(3,BufferLength); %dummy values --> in the actual rig, they will the well temperature (TI101, TI102, TI103). Not used here
ones(3,BufferLength); %dummy values --> in the actual rig, they will be dP in a given pipe section (dPI101, dPI102, dPI103). Not used here
(measPlantArray(4,(kk - BufferLength + 2):kk + 1) - 1.01325)*10^3; % PI-101 [mbar g]
(measPlantArray(5,(kk - BufferLength + 2):kk + 1) - 1.01325)*10^3; % PI-102 [mbar g]
(measPlantArray(6,(kk - BufferLength + 2):kk + 1) - 1.01325)*10^3; % PI-103 [mbar g]
uPlantArray(7,(kk - BufferLength + 1):kk) - 1.01325]; % PI-104 [bar g]

% values of the input variables at the previus rig sampling time (dim = nu[7] X 1)
P_vector = [uk(4); % CV101 opening [-]

uk(5); % CV102 opening [-]
uk(6); % CV103 opening [-]
1;%dummy values --> in the actual rig, they will the pump rotation. Not used here
uSPPlantArray(1,end); % FI-104sp [sL/min]
uSPPlantArray(2,end); % FI-105sp [sL/min]
uSPPlantArray(3,end)]; % FI-106sp [sL/min]

% values of the inputs (gas lift) of the last optimization run (dim = nQg[3] X 1)
O_vector = uSPPlantArray(:,kk - nExec);

tic

% Run Labview/Matlab interface file
LabViewMain

%compuTimeArray = [compuTimeArray, toc];
% compuTimeArray = [compuTimeArray, tEnd];

flagArray = [flagArray, [SS;Estimation;Optimization]];
ofArray = [ofArray, Result];
thetaHatArray = [thetaHatArray, Parameter_Estimation'];
yEstArray = [yEstArray, State_Variables_Estimation'];
yOptArray = [yOptArray, State_Variables_Optimization'];
uOptArray = [uOptArray, Optimized_Air_Injection'];

uImpArray = [uImpArray, O_vector'];

else
% update with dummy values
flagArray = [flagArray, [0;0;0]];
ofArray = [ofArray, 0];
thetaHatArray = [thetaHatArray, zeros(1,6)'];
yEstArray = [yEstArray, zeros(1,6)'];
yOptArray = [yOptArray, State_Variables_Optimization'];
uOptArray = [uOptArray, zeros(1,3)'];

uImpArray = [uImpArray, zeros(1,3)'];
end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% updating input and parameter vectors %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%1. Saving setpoints
uSP = [O_vector(1); %FIC-104 SP [sl/min]

O_vector(2); %FIC-105 SP [sl/min]
O_vector(3)]; %FIC-106 SP [sl/min]

uSPPlantArray = [uSPPlantArray, uSP];

%2. Adding "controller" action
% instead of coding a controller, we simply add a 5s delay + input noise
if kk > 5

uImple = uImple + (uSPPlantArray(:,kk - 5) - uImple + noise.input*randn(3,1))*exp(-parPlant.T/tau_C);
else

uImple = uSPPlantArray(:,kk) + noise.input*randn(3,1);
end

%3. Saving actual implemented values
uk = [uImple;

disturbances.values(:,kk + 1)]; % for obtaining the full plant input vector, we need to add the values that correspond to the disturbances (feed)

uPlantArray = [uPlantArray, uk];

%4. Updating plant parameters according to pre-computed array
thetak = thetaPlant0;
thetaPlantArray = [thetaPlantArray, thetak];

end

save(name,'flagArray','ofArray','ofPlantArray','thetaHatArray','yEstArray','yOptArray','uOptArray','uImpArray','compuTimeArray','Lu','uPlantArray','measPlantArray');
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