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Abstract

The project consists of two distinct parts. In the first part, the applicability of Rein-
forcement Learning in various Chemical Engineering problems (regulatory control,
plant economics optimization, etc.) has been analyzed and evaluated. In the second
part, Neural Network has been studied to create a nonlinear process model for the
use of steady-state Real-Time Optimization. The process studied is the one in a
Gas-Lift lab rig.
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1 Introduction

The field of Machine Learning (ML) is developing rapidly, especially in the branch of
Reinforcement Learning. One remarkable achievement of Reinforcement Learning is
the AlphaGo Zero program of DeepMind. It has learned to play the complex game
of Go by itself and achieved a human-superior level [1]. This achievement has proved
how powerful the method is, and it is interesting to see whether Reinforcement
Learning could be a good solution to Chemical Engineering problems. Therefore, it
is the aim of this project to identify which particular Chemical Engineering problems
would be beneficial from Reinforcement Learning.
Many studies have been conducted on the applications of Reinforcement Learning in
regulatory control and plant economics optimization [2][3][4]. In these papers, the
authors focused on improving the Reinforcement Learning algorithms and demon-
strating the applicability of these through numerical experiments. In this work,
another approach has been used. Instead of using numerical experiments, we ana-
lyzed the properties of the problems and of Reinforcement Learning in order to make
arguments about the applicability of Reinforcement Learning in each problem.
Deep Learning is another branch of ML that is growing rapidly. Many applications
of Deep Learning have been developed successfully, such as image recognition, speech
recognition, and language translation. In Deep Learning, artificial neural networks
are used to find an appropriate mapping between the inputs and the outputs. The
neural networks could approximate any nonlinear function without any prior knowl-
edge provided [5]. Due to this ability, it has great potential for modelling chemical
processes. Modelling chemical processes, especially the nonlinear ones, from the
first principles is usually challenging, time-consuming, and expensive [6]. Therefore,
neural networks have been considered as an alternative method to create models of
chemical processes [7][8]. In this project, the neural network has been applied to
model the nonlinear process in a Gas-Lift lab rig for the use of steady-state Real-Time
Optimization. The process in the Gas-Lift lab rig is discussed in subsection 1.1.
As the two topics studied - the applications of Reinforcement Learning, and the
application of Neural Network - are highly different, they are discussed separately
in two different chapters of the project report. Therefore, the report includes 4
chapters: Introduction, Application of Reinforcement Learning in Process Control,
Application of Neural Network in Economics Optimization of the Gas-Lift lab rig,
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and Conclusion.

1.1 The Gas-Lift lab rig

Gas lift is a technology to increase oil flow rates from a reservoir when the reservoir
pressure is not sufficiently high. A gas-lift oil well is represented in Figure 1. The
gas is injected into the tubing through the gas lift valve at the bottom of the well
and mixed with the fluid from the reservoir. The density of the fluid becomes lower,
and the pressure there decreases due to lower hydrostatic pressure. This helps to
increase the oil flow rate from the reservoir [9]. As there are several oil wells in a
reservoir and the gas capacity is limited, it raised the problem of gas distribution.
We wish to distribute the gas such that the total oil flow rate - the sum of oil flow
rates from all wells - is highest, while the gas capacity constraint is satisfied. The
problem can be solved using Real-Time Optimization.

Figure 1: A gas lift oil well (Source: Wikipedia)

The Gas-Lift lab rig is a physical model of an oil well network. It has three wells,
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each connected to a gas injector. The gas injectors are controlled by PI controllers.
Water is used in the rig to represent oil. A variable speed pump withdraws water
from the storage tank and pumps it into the wells before it reaches the risers and
returns to the tank. A valve is installed in each well, and it could be manipulated to
adjust flow restriction. A simplified representation of the process in the Gas-Lift lab
rig is shown in Figure 2. There are 13 available measurements in the rig: 3 liquid
flow rates (outputs), 3 well pressure values (outputs), 3 gas flow rates (inputs), 3
valve openings (disturbances), and pump rotation (disturbance).

Figure 2: The process of the Gas-Lift lab rig
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2 Application of Reinforcement Learning in Pro-

cess Control

2.1 Reinforcement Learning - A short introduction

In Reinforcement Learning (RL), there is an agent whose purpose is to achieve a given
goal in an environment. The agent does not receive instructions on how to attain its
goal but must learn about that through its interactions with the environment over
time.

Figure 3: The Markov Decision Process

Understanding how an agent learns requires knowledge about the Markov Decision
Process (MDP) . A general MDP is represented in Figure 3. At each iteration t,
the agent receives information about the current environment’s state St, based on
which it selects an action At to implement on the environment. The action causes
the environment’s state to change from St to St+1. Information about St+1, together
with a reward signal Rt, is sent back to the agent and a new iteration begins. By
means of the reward, we convey the goal to the agent.
Let’s take the example of playing chess to illustrate these definitions. In playing
chess, the environment is the chess game. The actions are selecting which piece to
use and how to use that piece. The states are the current situation on the board.
Because we would like to win the game, we can define the reward is equal to 1 when
we reach the “winning” states, and 0 otherwise.
The agent always tries to maximize the total reward over time, which is also called
the return. This is possible through the use of value functions. The definition and
formulation of action-value functions are given in [10]:

“We define the value of taking action a in state s under a policy π, denoted qπ(s, a),
as the expected return starting from s, taking the action a, and thereafter following
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policy π”
But what is a policy, and why it is important to the definition of value functions? It
is defined in [10] as:

“A policy is a mapping from states to probabilities of selecting each possible action”
A policy usually used in Reinforcement Learning is ε-greedy with ε is a small scalar,
such as 0.2. We could interpret this policy as, given a state S, there is a chance of
(1− 0.2) · 100%, or 80%, that the agent will choose to implement the “best” action A
with the highest value function qπ(S, A), and 20% that it will choose other actions.
The ε could never be exactly 0. It is usually the case for RL problems that we do
not have the exact value functions in advance. Therefore, these value functions are
usually estimated from the agent’s experiences, which are not necessarily close to
their correct values. Therefore, it is impossible to know whether the “best” action
based on current value functions is actually the best. It is important for the agent
to occasionally try other actions and collect more data about these so it could have
better estimates of value functions, which is known as the dilemma of exploration-
exploitation in Reinforcement Learning. Not only does qπ(s, a) depend on s and a
the agent might take at the immediately next step, it also depends on the actions to
be taken in all later steps. As a consequence, value functions must be defined in the
context of a specific policy.

2.2 Overview of Reinforcement Learning methods

As previously discussed, RL algorithms use value-function to select actions. For
problems with finite, small space of state-action, the value functions could be stored
and updated in a lookup table. Algorithms that use lookup tables are called Tabular
RL. Examples of Tabular RL methods are Monte Carlo, SARSA, and Q-learning
[10].
For problems with infinite or large space of state-action, it is impossible to store
all value functions in a table. Hence, it is essential to find functions which could
represent value functions adequately in these cases. If a deep neural network is used
for this purpose, the algorithm belongs to the Deep Reinforcement Learning (Deep
RL) category. An example of this type is the famous Double Q-learning algorithm
(DQN) by Silver et. al [11].
Another algorithm, REINFORCE, also belongs to Deep RL. However, REINFORCE
uses a neural network to learn a policy directly, instead of deriving it from value

5



functions [10]. Such methods are also called Policy Gradient methods. There also
exist actor-critic methods, such as asynchronous advantage actor-critic (A3C) by
Mnih et al. [12], which use deep learning to approximate both policy and value
functions.
According to [13], all mentioned Deep RL methods are in the first generation of
Deep RL, which are “powerful but slow”. These methods could attain human-level
performance on tasks such as playing chess or Go, but they require significantly more
data than humans. The second generation of Deep RL algorithms is being developed.
They are aimed to utilize data more efficiently and be able to learn from fewer data
points.

2.3 Applicability of Reinforcement Learning in Chemical

Engineering problems

To identify which Chemical Engineering problems are appropriate for the use of
Reinforcement Learning, the features of an application that shaped the development
of RL, playing chess, are analyzed. A chess game is irreversible: it is not possible to
reverse the game and reselect. Also, an action in the present decides states and actions
accessible to the agent later, for example: sacrificing the queen implies removing it
from the future strategies [10]. Finally, an action has delayed consequences [10]. For
instance, a move is not known to be good or bad until many steps later, even until
the end of the game.
The first two properties require us to have accurate evaluation of how “good” is
each action in order to solve the problem, while the last two properties make it
difficult to evaluate actions accurately. But the trial-and-error approach of RL is
effective in resolving this challenge. As it is difficult to predict all future situations
emerging from current possible actions, RL explores many different options. It also
uses value functions to record the corresponding expected total rewards associated
with these actions and make better decisions the next time it is in a similar situation.
The value functions also resolve the third challenge: action with a higher value
function/better in the short-term is expected to result in a higher total reward/better
in the long-term. The trial-and-error approach of RL may require long training time,
but the benefits to these kinds of problems are enormous. However, problems not
having these features do not fully benefit from RL. Unfortunately, this is usually the
case in chemical engineering.
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2.3.1 Applicability of RL in steady-state Real Time Optimization (RTO)

Consider the problem of steady-state plant economics optimization. The task here
is to find optimal inputs that minimize the cost function of the process. It might
be challenging, but not in a fashion similar to what we discussed. If an input
level is found to be not optimal, the process could be brought back to its previous
state by simply setting the input back to its past value and waiting. Moreover, no
matter which level is selected in the present, it will not affect the set of possible
states and input levels in the future. As a result, the actions do not have delayed
consequences either. Therefore, the steady-state RTO problems do not have the
discussed properties, and RL is not an effective solution here.
Although Kody et al. [2] utilized RL to optimize economics, they also stated that
”steady-state RTO deviates somewhat from the underlying principles that led to
the creation of reinforcement learning.”. As a result, they used an actor-critic RL
architecture, which is quite different from the discussed RL. Sebastien and Mario [3]
also used RL in economics optimization. However, in their work, RL was used to
tune the economic Model Predictive Controller instead of control the plant directly.

2.3.2 Applicability of RL in dynamic control

Here the possibility of using RL as a controller in the regulatory control layer is
investigated. The actions are selecting input levels, and the goal is to achieve given
output setpoints. As requirements, an RL-based controller should be able to track
the output setpoints and reject the disturbances.
The dynamic control problem shares more common features with playing chess than
steady-state RTO. It is obvious that in control, actions/inputs also have delayed
consequences due to the dynamcs of the plant. However, the two problems still have
differences. Although the action in the present decides states in the future, the set of
possible actions does not change: the current input level determines the next states
of the process (together with the current state, future inputs, and disturbances), but
it does not limit future accessible input levels. Due to this property, the problem
is not irreversible either: as all input levels are available, there probably exists an
input sequence that could bring the plant back to its previous state.
We could make the control problem more difficult and ”irreversible” by requiring
optimal control, but evaluating actions still does not pose a challenge here as in
playing chess. Because of the delayed consequences in chess and general RL problems,
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an action with a higher immediate reward could have a lower total return compared
to actions with lower immediate rewards [10]. In short, being good in the short-term
does not necessarily mean being good in the long-term. In contrast, MPC with a
one-step prediction horizon has been used in control applications, for example, in
[14].
The reason why the trial-and-error approach of RL is not effective in chemical process
control has been discussed. In fact, it might be inappropriate to apply standard RL
algorithms. A process may have many disturbances, both measured and unmeasured,
and as stated in [15]: ”Disturbance rejection is often the main objective of process
control.”. As the disturbances change, and they may change frequently, the dynamic
of the process also changes. This is equivalent to changing the environment, which
forces the agent to restart the time-consuming learning process. It is unacceptable
as a controller is expected to keep the output close to its setpoint all the time.
The difficulty in re-training could be realized in the article about using RL in process
control by Spielberg et al. [4]. It took their agent 1500 seconds of training time
to learn the process again when it was changed, compared to 2700 seconds in its
first training. This limitation must be overcome before RL could be used in process
control. Currently, the second-generation RL algorithms can learn about similar but
different environments in a fast and effective manner by combining Deep RL with
meta-learning and episodic memory [13]. It is interesting to see if these could solve
the problem of disturbance rejection in process control.
As discussed earlier, trial-and-error is essential in playing chess but not in process
control, and it restricts the use of RL in the field. One possible way to adapt RL to
process control is to direct the agent’s trial effort at each step on a narrower range
of sensible input levels, instead of the whole range of possible levels, by the use of
optimization methods.

2.3.2.1 The problem of setpoint tracking : Although disturbance rejection
is challenging for RL-based controllers, setpoint tracking is not. Even if the controllers
are set to achieve only one particular setpoint during training, they can track other
setpoints without conducting trial-and-error again. Assume that during training,
RL tries to achieve an output setpoint ysp1. At each time step, it encounters a state
yt of the system, then selects an input level ut to implement and observes the next
state yt+1. It is important to mention that RL only requires pieces of information
about {ysp, yt, ut, yt+1} to estimate action-value functions and find an optimal policy
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to achieve ysp. If the training data {ysp1, yt, ut, yt+1} was recorded and we would like
RL to achieve another setpoint ysp2, we just need to replace ysp1 in the training data
by ysp2 and provide the relabelled data {ysp2, yt, ut, yt+1} to RL. RL could then find
an optimal policy for ysp2 and does not have to repeat the trial-and-error steps.
Let’s take an example to illustrate this strategy. Assume that a RL-based controller
was set to achieve an output of 7.5 during training. {ysp, yt, ut, yt+1} at all time steps
were recorded and stored in a table with 4 columns (the first column stored values
of ysp = 7.5, the second column stored values of yt, and so on). After the training,
RL had learnt to achieve the setpoint of 7.5, and it was then set to achieve a new
output of 8.5. The first column of the table was relabelled with the new setpoint of
8.5 (items in the other 3 columns {yt, ut, yt+1} were not changed) . New action-value
functions were calculated from data in the relabelled table and provided to RL. These
value functions were used directly by RL without updating.
To demonstrate the effectiveness of this strategy, we conducted a numerical experi-
ment. In this experiment, we used a strategy that is quite different but has a working
mechanism identical to that of the one described. We used two controllers, 1 and 2.
Initially, we trained controller 1 to track a setpoint of 7.5. However, instead of letting
controller 1 to record {ysp, yt, ut, yt+1} at all time steps, we commanded it to calculate
the action-value functions for the both setpoints (7.5 and 8.5) simultaneously. After
the training of controller 1 was finished, we transferred the value functions calculated
for the setpoint 8.5 to controller 2 and let it to control the process without any
training. The results of the experiment were represented in Figure 4. It could be
seen that controller 2 has successfully achieved the new setpoint although no extra
trial-and-error or updating on the new setpoint had been conducted.
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Figure 4: Results of the Multi-setpoint Tracking experiments:
Performance of controller 1 ysp = 7.5 (left), and performance of

controller 2 ysp = 8.5 (right)

All the code relating to this experiment can be found in the Appendix.

2.3.3 Other Chemical Engineering problems

We have considered the possibilities of using RL in steady-state RTO and dynamic
control. In both applications, RL is used to make low-level decisions: selecting an
input level to implement. It is worth investigating whether RL could be involved in
making high-level decision problems, such as plantwide control design. The decisions
to be made here are which variables to be controlled variables (CVs), which variables
to be manipulated variables (MVs), and how should we pair the MVs with the CVs
[16]. Although we could eliminate many control structures using engineering insights,
possibly there are still many feasible structures left to be considered. Plantwide
control design problem has the first and the second properties if we do not allow
“undo and redo”: if we already used a manipulated variable (MV) to control a
controlled variable (CV), then we cannot pair that MV with another CV until a new
round of design. The actions here also have delayed consequences which could not
be observed until the completion of the design, such as economic loss in the presence
of disturbances, or “snowballing” phenomenon that may occurs by our choice of the
location of the throughput manipulator (TPM). These effects are evaluated only
in final simulations after CVs-MVs pairing has been completed. Finally, frequent
change of learning environment does not exist in this problem of plantwide control
design as in dynamic control. Therefore, RL could be used here as a tool that aids
us to find new design rules.
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There are still low-level decision problems in chemical engineering suitable to apply
RL, for example, erosion control in gas-lift oil wells. In oil wells, critical components
degrade more quickly when increasing the volume flowrate, partially due to particle
erosion [17]. Rapid erosion may result in expensive unscheduled maintenance of
the system. Therefore, it is important to adjust the well’s operation based on
the erosion rate of critical components. It is not difficult to understand why this
problem is potential for RL. The erosion process is naturally irreversible (the first
property). Volume flowrates in the past affect the current erosion rate, which in turn
determines acceptable volume flowrates in the future (the second property). Due to
its interactions with erosion rate, volume flow also has delayed consequences (the
third property). Yet, we must take into account that data collection here takes a
significant amount of time as the erosion is an intrinsically slow process.
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3 Application of Neural Network in Economics

Optimization of the Gas-Lift lab rig

3.1 Introduction

Being profitable is the ultimate goal of process plants. With the increasingly stricter
requirements imposed on the production, optimization of process operations becomes
more and more important for plants to achieving this goal [18]. Typically, real-time
optimization (RTO) is implemented to improve the economic productivity of the
processes [19]. RTO usually requires nonlinear steady-state models of the process
[20], preferably ones derived from first principles [21]. However, obtaining these
mechanism-driven models might be challenging [22].
Artificial Neural Networks (ANN) has been used to model complex nonlinear processes
since the 1990s [23]. This is due to its ability to approximate any nonlinear functions
with no prior knowledge required [23][5]. ANNs have also been applied successfully
as process models in RTO [7][8]. Therefore, this part of the project investigates the
use of ANN to model the cost function of the Gas-Lift lab rig and how this model
could be useful in RTO.

3.2 Neural Network: An Overview

This part of the report introduces basic concepts in Deep Learning. As Deep Learning
is a vastly broad field, this introduction will focus on types of NN that are relevant to
our problem, especially on the information essential to NN implementation. Modern
Neural Networks could be divided into three main types: feedforward, recurrent, and
convolutional [5]. The convolutional networks are usually used in image-like data
processing, and we do not consider them here [5].

3.2.1 Feedforward Neural Networks

Feedforward network is the most basic deep learning model. It offers a solution to the
function approximation problem, where we wish to approximate a correct function
y = f ∗(x). The network approximates f ∗(x) by another function y = f(x, θ) and tries
to find a value θ∗ of the parameter vectors θ that results in the best approximation.
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Figure 5: Structure of a Feedforward Neural Network (Source: deepai.org)

The basic unit of construction in a neural network is the neuron. Several neurons
are stacked together into a layer. A network has one input layer, one output layer,
and one or several hidden layers. These layers are arranged adjacent to each other,
as represented in Figure 5. It could be seen that there is no connection between
neurons in the same layer. A neuron only connects to neurons in the previous layer
and the following one. To understand how a network works, we will investigate how
a single neuron works. A single neuron is represented in Figure 6. The input of this
neuron x is calculated from the outputs of neurons in the previous layer l1, l2, ..., lN
as:

x =
N∑
i=1

(wi · li) = w1 · l1 + w2 · l2 + ...+ wN · lN (1)

where wi are weights of the connections between the neurons. The neuron then
calculated its output y as:

y = φ(
N∑
i=1

(wi · li) + b) (2)

where φ denotes an activation function, and b denotes the bias of the neuron. This
output y is then fed into neurons in the next layer for further calculations. The set
of all connection weights w and neuron biases in the network is the parameter vector
θ that has to be learnt during training.
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Figure 6: Single neuron in a Neural Network (Source: researchgate.net)

There are 3 activation functions frequently used, which are: sigmoid, hyperbolic
tangent (tanh), and rectified linear unit (ReLU). Any activation function in these
three could be used in a feedforward network, but ReLU is becoming more and more
popular.

3.2.1.1 Optimizer: How could the network find an optimal value of θ? Let’s
take a single variable regression problem as example. During training, training data
(x1, y1), (x2, y2), ..., (xN , yN) are shown to the network. For each xi, the network
predicts a corresponding ŷi (forward propagation). A cost function J(θ), such as
mean squared error, could be defined over n predicted and actual values as:

J(θ) = 1
N

n∑
i=1

(ŷi − yi)2 (3)

The network uses a gradient-based optimization algorithm, or optimizer, to up-
date θ such that the cost function is minimized (backward propagation)[5]. The
optimization algorithms could be divided into 2 categories: deterministic gradient
methods, which use the entire training set, and stochastic methods, which only use
part of the training set [5]. For large-sized training data, it may take a considerable
amount of time for the deterministic algorithms to process all training examples
and update the parameters. Therefore, stochastic algorithms are more suitable if
we have a large dataset. An example of deterministic gradient algorithms is the
Levenberg-Marquardt algorithm. Some popular stochastic optimizers are listed here:
stochastic gradient descent (SGD), RMSProp, Adam [5].
The network alternates between forward and backward propagations until the com-
pletion of training. The final value of θ is denoted as θf . The MSE training error
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over the training set is defined as:

1
N

N∑
i=1

(f(xi, θf )− yi)2 (4)

Besides training data, we usually also have test data, which is the data the network
has not encountered during training. A test error over the test set could be defined
similarly to the training error. The test error is important in evaluating if a network
overfits or not, as described in paragraph 3.2.1.4

3.2.1.2 Parameters Initialization: The aforementioned optimization algorithms
find the optimal value of θ by iteration, and they need an initial point to start. Pro-
viding different initial points to an algorithm could make it to converge to different
results at different rates, or even not converge [5]. Considering the importance of the
initial point, strategies to initialize network parameters have been developed. The
most common initialization strategy is the normalized initialization suggested by
Glorot and Bengio [24]. This is the default weight initializers in Keras and MATLAB.

3.2.1.3 Input Normalization: LeCun [25] suggested that normalizing the input
variables in the training data helps the optimization algorithms to converge faster. If
the network has M input elements and N training examples, the input vectors could
be denoted as {x1j, x2j, ..., xMj} with j = {1,2,...,N}. The inputs could be normalized
according to this formula:

x̂ij = xij − x̄i
σxi

(5)

where x̄i =
∑N

j=1 xij

N
and σxi

=
√∑N

j=1(xij−x̄i)2

N−1 , with i = {1,2,...,M}.

3.2.1.4 Overfitting and Regularization: The trained model must perform
well on previously unseen data, or equivalently, has the ability to generalize [5].
When the model gives good approximation for the training data but has poor
generalization performance (training error is significantly better than test error), we
said overfitting has occurred. Overfitting is a major challenge in machine learning,
and many methods have been developed to avoid this phenomenon. These methods
are called regularization, with L2 regularization as an example. A detailed discussion
on regularization could be found in [5].
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3.2.1.5 Tuning a Neural Network model: Basic components of a feedfor-
ward neural network have been discussed in previous sections. We could list some
hyperparameters of a network associated with these components: number of hidden
layers, number of units in each layer, the activation function, the learning rate
of the optimizer, the regularization parameter, etc. By trial-and-error, we hope
to find appropriate values of these hyperparameters and as a result, an adequate
approximation of the original function.

3.2.2 Recurrent Neural Networks

Figure 7: Structure of the Recurrent Neural Network with connections from the
output to the hidden layer [5]

Recurrent neural network (RNN) is a type of neural network that is specialized
in processing sequential data {..., x(t−1), x(t), x(t+1), ...}. It looks like a feedforward
network with extra connection from the output layer to a hidden layer or from one
hidden layer to one of its previous hidden layers. The structure of a RNN with an
extra connection from the output layer to a hidden layer has been shown in Figure 7.
To understand the structure of RNNs, let us consider an example of using a RNN to
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model a dynamic system represented by:

y(t) = f(y(t−1), x(t), θ) (6)

where y is the output of the system, u is the input, and theta is the parameter vector.
It could be seen that not only does the current output yt depend on the current input
x(t), but also on the previous output y(t−1). In RNN, information about the previous
outputs is communicated through the connections from the previous outputs y(t−1)

(training time) or the predicted outputs o(t−1) (test time) to the hidden layers h(t)

that are processing the current inputs x(t). One challenge of the recurrent network is
to learn the long-term dependencies. As the gradients propagate across many stages
of the network, they vanish or explode exponentially. Therefore, the weights of the
long-term interactions are significantly smaller than those of the short-term, and it
takes longer time for the network to learn the long-term interactions [5]. Advanced
RNN structures have been introduced to solve this problem, including the Long
Short-Term Memory model (LSTM) and networks that use the Gated Recurrent
Unit.

3.3 Methodology

3.3.1 Identify the inputs, outputs, and type of the Neural Network

The process in the lab rig has been discussed in subsection 1.1. To formulate the
economics optimization problem of the lab rig, we have to define the cost function J.
J can be formulated as:

J = −αliq · Σwliq + αgas · Σwgas (7)

where αliq, wliq, αgas, wgas are liquid price, liquid flow rate, gas price, and gas flow
rate, respectively. To simplify the problem, we assume the gas cost is insignificant
compared to the liquid cost and neglect the gas terms. The cost function becomes:

J = −αliq · Σwliqi (8)

We also need a model of the system, which represents the relations between wliqi and
wgasi . In this project, we use neural networks to represent these relations. Ideally,
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the outputs of the NN model should be the steady-state liquid flow rate, and the
inputs should be the gas flow rate and pressure value. However, as the pressure
measurements are highly noisy, in this project we used gas flow rate wgas, valve
opening value χ, and pump speed Ω as inputs of the model. The optimization
problem can be formulated as:

min
wgas

i

J = −αliq · Σwliqi

subject to: wliqi = fi(wgasi , χi,Ω)

Σwgasi ≤ W gas
max

(9)

Due to limited time, the NN model will be trained to represent the relation between
the liquid flow rate and the gas flow rate of one well only. Moreover, it is difficult to
train a steady-state model using our training data since there are only around 20
steady-state liquid flow rates there. Therefore, the transition data is also utilized
and the resulting model is a dynamic model. Hence, the output of the system is
wliqk+1 and the inputs are:
(wliqk , w

liq
k−1, ..., w

liq
k−No−1, w

gas
k , wgask−1, ..., w

gas
k−Ni−1, χk, χk−1, ..., χk−Ni−1,Ωk,Ωk−1, ...

,Ωk−Ni−1)
where k is the current time step, No is called the output lag and Ni is called the
input lag. The model could be expressed as:

wliqk+1 = fNN(wliqk , ..., w
liq
k−No−1, w

gas
k , ..., wgask−Ni−1, χk, ..., χk−Ni−1,Ωk, ...,Ωk−Ni−1)

(10)

The type of network selected is feedforward neural network. Although recurrent
neural network is usually used in time series prediction, feed-forward neural network
could also be applied to this type of problem. Moreover, it is more straightforward to
convert a feedforward network to a mathematical function for the use of RTO. The
networks have been created using 2 different frameworks: Keras (for models with
Adam optimization algorithm) and MATLAB (for models with Levenberg-Marquardt
algorithm).

3.3.2 Training data

The training data is represented in Figure 8. In the training data, the gas flow rate
varies from 1 to 4 sL/min, the valve opening varies from 25% to 60%, and the pump
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speed varies from 35% to 46.5%. The sampling time is 1 second.

Figure 8: Training Data

The training data can not be used directly. It must be preprocessed to generate the
outputs wliqk+1 and the inputs (wliqk , ..., w

liq
k−No−1, w

gas
k , ..., wgask−Ni−1, χk, ..., χk−Ni−1,Ωk, ...

,Ωk−Ni−1) that the neural networks use for training. In this project, No is equal to 1
and Ni is equal to 2. How different values of No and Ni affect the model performance
is discussed in subsubsection 3.4.3. The code used to preprocess the training data
can be found in the Appendix.

3.3.3 Testing methods and Testing data

An important problem is how to test the performance of a model. In this project,
two criteria have been used to evaluate a model. First, we know that the process in
the lab rig is stable. A good dynamic model for stable systems should converge to a
fixed value of liquid flow rate if the gas flow rate and disturbances remain unchanged
during the prediction interval. Therefore, we need to check if a model can capture
this stable property of the actual system. This convergence property of a model fNN
is checked by the first test. The procedure of the first test is described below:
- Step 1: Set the input to be (wliq0 , wliq−1, ..., w

gas
0 , wgas0 , ..., χ0, χ0, ...,Ω0,Ω0, ...)
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- Step 2: Predict the liquid flow rate at the next time step by

ŵliq1 = fNN(wliq0 , wliq−1, ..., w
gas
0 , wgas0 , ..., χ0, χ0, ...,Ω0,Ω0, ...). (11)

Record ŵliq1

- Step 3: Add the most recent prediction to the input as the first input element and
remove the least recent element of liquid flow rate such that the number of liquid
flow rate elements remains unchanged. The input becomes

(ŵliq1 , wliq0 , ..., wgas0 , wgas0 , ..., χ0, χ0, ...,Ω0,Ω0, ...) (12)

- Step 4: Predict the liquid flow rate at the next time step by

ŵliq2 = fNN(ŵliq1 , wliq0 , ..., wgas0 , wgas0 , ..., χ0, χ0, ...,Ω0,Ω0, ...) (13)

. Record ŵliquid2

- Step 5: Repeat Steps 3-4. Observe if the prediction values converge over time.

If the model predictions converged, its performance is further evaluated by comparing
its steady-state predictions and the actual flow rates under different conditions of gas
flow rate and disturbances. To conduct the test, two sets of steady-state liquid flow
rate data, Interpolation and Extrapolation, have been collected. In Interpolation
dataset, values of the gas flow rate and the disturbances were selected from their
corresponding ranges in the training data. In Extrapolation, values of the gas flow
rate and the disturbances were beyond their corresponding ranges in the training data.
There are 21 combinations of gas flow rate and disturbance values in Interpolation,
and 14 combinations in Extrapolation. The two sets are represented in Figure 9 and
Figure 10, respectively.
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Figure 9: Interpolation Testing Data

Figure 10: Extrapolation Testing Data

For each combination, the liquid flow rate is recorded in 5 minutes, and the average
flow rate is taken as the actual liquid flow rate under this condition. These actual
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flow rates are plotted in the same graph with the corresponding predicted flow rates
to compare, and the mean square error (MSE) between them are also calculated.
The MATLAB code for Test 1 and Test 2 can be found in the Appendix.
The common method to evaluate the performance of a NN model is to use a testing
set. We give the model inputs from the testing set, let it predict the corresponding
outputs, and compared these predictions to the actual outputs. In our case, the
testing set will contain dynamic data. We have observed models that have good
performance on testing set (or low testing error) but do not satisfy the convergence
property. Therefore, this method is not used for evaluation purpose in this project.

3.4 Results and Discussion

As discussed earlier in paragraph 3.2.1.5, we have to tune many hyperparameters
in order to find an appropriate model. There is currently no systematic procedure
to carry out tuning. In this project, major hyperparameters have been selected
to investigate their effects on the model performance, such as: activation function,
number of hidden layers and number of neurons. Although many factors have
been studied, two of them seem to have the most significant impact on the model
performance: the type of activation function and the optimization algorithms. This
section discusses the effects of these two factors on the model performance, as well
as how to use the obtained model in steady-state RTO.
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3.4.1 Effect of activation functions

Figure 11: Test 1 result of a model with ReLU activation function

Due to various benefits it offers, the ReLU activation function is usually used in
feedforward networks [26]. It was also the first type of activation function used in
this project. However, models with ReLU activation function could not converge to
steady-state values in Test 1. Instead, the predicted liquid flow rate always explodes
over time, as represented in Figure 11. To make sure that the explosion resulted from
the use of ReLU, we repeated Test 1 while keeping the activation function unchanged
and varying the number of hidden layers and the number of neurons in each layer.
The number of hidden layers was either 1 or 2, the number of neurons in the first
hidden layer varied from 8 to 64, and the number of neurons in the second hidden
layer (if it exists) varied from 4 to 32. The network was initialized using Xavier
initializer and regulated by L2 regularization method. The inputs were normalized.
The optimization algorithm used was Adam. We observed the output explosion in
all cases. But when the activation function was changed to hyperbolic tangent, the
models converged.
The reason for output explosion was figured out. Figure 12 represents the procedure
of Test 1. As it could be seen from Figure 7 and Figure 12, during Test 1, the
feedforward network behaves exactly as a RNN. ReLU is seldom used in RNN because
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it causes the output to explode, and how to use ReLU safely in RNNs is an ongoing
research topic [27] [28] [29]. Therefore, the output explosion as we observed in Test 1
could be expected.

Figure 12: Test 1 procedure diagram

3.4.2 Effect of optimization algorithms

After models with the hyperbolic tangent activation function were discovered to
have steady-state convergence property, we investigated the effects of the number of
hidden layers and the number of neurons in these layers on the model performance.
The models created in subsubsection 3.4.1 were trained and evaluated again, now
with tanh as the activation function instead of ReLU. Unfortunately, we could not
find a model with adequate performance. In the best model obtained, the difference
between the predictions and the correct values could be as large as 8 L/min, as
represented in Figure 13. The largest deviations were in the interpolation predictions,
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Figure 13: Results with the Adam optimization algorithm

Another optimization algorithm, the Levenberg-Marquardt algorithm (LM), has been
used instead of the Adam optimizer. The new algorithm enabled the network to
predict more accurately in the interpolation conditions. Figure 14 represented the
results of the best model obtained, which consists of 1 hidden layer and 4 neurons
in this layer. The predictions in the second cluster, where the correct outputs are
about 8-9 L/min, was quite inaccurate. This was probably due to the training data,
which had more data points in the output range of 5-8 L/min and less data points
in the range of 8-9 L/min.
Although the extrapolation predictions deviated quite significantly from the correct
values, the interpolation deviations were modest. As poor extrapolation predictions
were expected for neural network models [30], the LM algorithm seems to be better
than the Adam algorithm. This result aligns with the observations in [31].
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Figure 14: Results with the LM algorithm (1 hidden layer, 4 neurons)

3.4.3 Values of Ni and No

Figure 15: Results with Ni = 2 and No = 2 (1 hidden layer, 4 neurons, LM
algorithm)

All the models discussed have the values of Ni and No being 2 and 1, respectively.
These values were selected taking into account that the time constant of the system

26



was below 2 seconds, and the time step of the models was equal to the time step
of the training data - 1 second. In experiments we conducted, setting both Ni and
No to 2 seems to worsen the performance, as represented in Figure 15. Due to
time constraints, we did not investigate whether increasing Ni and No further could
increase the model performance or not.

3.4.4 How to use the dynamic model in steady-state RTO

In steady-state RTO, we must have a steady-state model of the system, as shown in
14.

min
wgas

i

J = −αliq · Σwliqi

subject to: wliqi = fi(wgasi , di)

Σwgasi ≤ W gas
max

(14)

However, the model we obtained here is a dynamic one. To use it in steady-state RTO,
we have to modify the optimization problem formulation into the one represented in
15.

min
wgas

i

J = −αliq · Σwliqi (10)

subject to: wliqi (10) = fi(wliqi (9), wgasi , di)

wliqi (9) = fi(wliqi (8), wgasi , di)

...

wliqi (1) = fi(wliqi (0), wgasi , di)

Σwgasi ≤ W gas
max

(15)

In the new formulation, we wish to optimize the total liquid flow rate at time step 10.
As the dynamic of the system is fast, we can assume that at time step 10 the liquid
flow rates already reach their steady-state values. Therefore, maximizing the total
liquid flow rate at 10 seconds is equivalent to maximizing the steady-state total liquid
flow rate. We also replaced the steady-state model equation by the dynamic model
equations. Although there are 10 dynamic model equations, we only use 1 decision
variable wgasi in all equations. This helps to keep the input constant throughout the
control horizon and make sure that the system can be at steady state eventually.
We did not consider the use of dynamic RTO for two reasons. First, our system has
fast dynamics. Hence, it is mostly in steady-state operation. Therefore, a dynamic
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RTO might not be necessary. Furthermore, it requires more computational power.
Also, we only evaluated the steady-state predictions of the models in this work.
Therefore, the models may give inaccurate dynamic predictions, which makes them
inappropriate for the use in dynamic RTO.
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4 Conclusion

4.1 Applications of Reinforcement Learning in Process Con-

trol

The applicability of Reinforcement Learning in Chemical Engineering problems has
been discussed. The problems considered are: steady-state RTO, regulatory control,
erosion control, and plantwide control design. Application of RL in the problem of
steady-state RTO is inappropriate. The use of RL in regulatory control requires
that the challenge of disturbance rejection has to be resolved. The erosion control
problem has several common properties with the traditional RL problems, such as
the chess game, therefore, utilizing RL here might be highly beneficial.
Besides low-level decision problems such as the three problems mentioned, the
application of RL in high-level decision problems, such as plantwide control design,
should be investigated. In plantwide control design, the tasks are identifying the
variables to control, identifying the variables to manipulate, and pairing variables
in the two variable sets to achieve stable operation and self-optimizing control of
the plant. Since there are possibly many feasible control structures and it is hard to
fully evaluate their performance in advance of pairing completion, RL could help us
to identify good structures in a case-by-case basis. Through these cases, we might
also derive new design rules.

4.2 Applications of Neural Network in Economics Optimiza-

tion of the Gas-Lift lab rig

Feedforward neural network has been applied to create a model of the Gas-Lift lab
rig for the use in steady-state Real-Time Optimization. Since we did not have a
sufficient amount of steady-state training data, a dynamic model has been created
instead and the steady-state optimization problem has been reformulated such that
the dynamic model could be used. It has been shown that the networks should not
have rectified linear unit (ReLU) as their activation function, otherwise the output
predictions would explode over time. The importance of optimization algorithms has
also been discussed. The use of Levenberg-Marquardt algorithm results in models
with higher accuracy than those from the Adam optimizer.
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There are two limitations in this project: the model accuracy evaluation and the
inputs of the model. Although the obtained model could give predictions that are
close to the correct liquid flow rates, it should be evaluated at more operating
conditions so we can have a better idea about the model performance. Afterward,
efforts can be spent on making the model more accurate if necessary. Another
limitation originates from the inputs used to create the model. The currently used
inputs are: the liquid flow rate, the gas flow rate, and the disturbances (valve opening
and pump rotation speed). In practice, information about the disturbances are rarely
available. Therefore, the possibility of using gas flow rate and another available
measurement - pressure at the top of the wells - as the model inputs should be
studied.
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A Reinforcement Learning - MATLAB code

A.1 Brief explanation of the files

The file “SARSAmoduleDouble.m” is the main simulation file. It contains information
about the process that we wish to control. It also has the parameters and the update
rule of the RL agent. The RL update algorithm used here is the SARSA algorithm.
The function “Q builder” creates a table to store the initial and updated action-value
functions.
The function “nextstate” calculates the next output of the system based on the
current process states and the action just implemented by the agent.
The function “greedy selector” accesses to all action-value functions corresponding
to the current state and selects an action to implement according to the ε-greedy
policy. The ε-greedy policy is already discussed in subsection 2.1.
The function “GPS” identifies the location of a state-action pair in the table created
by the function “Q builder”.

A.2 Main file

c l e a r
c l c

% Process range
range ac t i on = 1 : 0 . 1 : 4 ; % Range o f inputs
r a n g e s t a t e = 7 . 0 7 : 0 . 0 1 : 9 . 2 6 ; % Range o f outputs

ysP = 7 . 5 ; usP = 1 . 5 ; % Process nominal po in t s
% Plant Model
Kp = 0 . 7 0 3 ; Tp = 1 . 6 2 ;
G1 = t f ( [Kp] , [Tp 1 ] ) ; G1d = c2d (G1, 1 , ’ zoh ’ ) ;
[Ap, Bp , Cp,Dp] = ssdata (G1d ) ;

%% RL agent
Q = Q bui lder ( range act ion , r a n g e s t a t e ) ; % I n i t i a l i z e the Q−va lues
Q stea l th = Q bui lder ( range act ion , r a n g e s t a t e ) ;
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% As the i n i t i a l Q−va lues are a l l 0 , no need to s p e c i f y f o r Q( terminal , : )
% For c o n t r o l l e r 2 , load a saved Q and use d i r e c t l y . Do not use Q bui lder

alpha = 0 . 0 5 ; gamma = 1 ; % Parameters o f the agent

y s e t t o t a l = [ 7 . 5 , 8 . 2 ] ;
y s e t = y s e t t o t a l ( 1 ) ; % Goal o f the agent

%% Simulat ion
% Parametes
n loop = 500 ;
% For c o n t r o l l e r 2 , n loop = 1
index loop = 1 ;

whi l e index loop < ( n loop + 1)
i f i ndex loop < round (0 . 9∗ n loop )

e p s i l o n = 0 . 5 ;
e l s e e p s i l o n = 0 . 0 0 5 ;
end
% Pick random i n i t i a l inputs−outputs
%a c t i o n a r r a y = range ac t i on ;
%a c t i o n a r r a y = a c t i o n a r r a y ( randperm ( length ( a c t i o n a r r a y ) ) ) ;
%a c t i o n i n i = a c t i o n a r r a y ( 1 ) ; % Random i n i t i a l inputs
a c t i o n i n i = 4 ;
x i n i = Bp∗( a c t i o n i n i −usP)/(1−Ap ) ; % I n i t i a l s t a t e
y i n i = round ( ysP + Cp∗Bp∗( a c t i o n i n i −usP)/(1−Ap) , 2 ) ;

% I n i t i a l i z a t i o n
terminat ion now = 0 ; T terminate = 50 ;
e p i s t e p = 1 ;
output = [ y i n i ] ; input = [ ] ;
x cu r r en t = x i n i ; y cu r r en t = y i n i ;

whi l e terminat ion now < 1
a = g r e e d y s e l e c t o r (Q, y current , e p s i l o n ) ;
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%% Environment
[ x next , y next ] = nex t s t a t e ( x current , a ) ;

% Reward func t i on
ReW = 10/( abs ( y next−yse t )+0 .005) ;
ReW stealth = 10/( abs ( y next−y s e t t o t a l ( 2 ) ) +0 . 00 5 ) ;

% Termination check
i f e p i s t e p >= T terminate %abs ( y next−yse t ) <= 10ˆ( −4) &

terminat ion now = 1 ;
e l s e terminat ion now = 0 ;
end

% For p l o t t i n g
input = [ input ; a ] ;
output = [ output ; y cu r r en t ] ;
%% Return to SARSA
a1 = g r e e d y s e l e c t o r (Q, y next , e p s i l o n ) ; % SARSA
p o s i t i o n c u r r e n t = GPS(Q, y current , a ) ; % Look up in the tab l e
pos i t i on new = GPS(Q, y next , a1 ) ; % Look up in the tab l e
% SARSA Update Rule
Q( p o s i t i o n c u r r e n t ,1)=Q( p o s i t i o n c u r r e n t , 1 )
+alpha ∗(ReW+gamma∗Q( pos i t ion new ,1) −Q( p o s i t i o n c u r r e n t , 1 ) ) ;
Q s t ea l th ( p o s i t i o n c u r r e n t ,1)= Q stea l th ( p o s i t i o n c u r r e n t , 1 )
+alpha ∗( ReW stealth+gamma∗ Q stea l th ( pos i t ion new , 1 )
−Q stea l th ( p o s i t i o n c u r r e n t , 1 ) ) ;
%% Return to the Environment
x cur r en t = x next ;
y cu r r en t = y next ;
e p i s t e p = e p i s t e p + 1 ;

end
index loop = index loop + 1 ;

end
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t = 1 : 1 : e p i s t e p ;
p l o t ( t ’ , output )
hold on
s t a i r s ( input )

Q re s t ruc t = ze ro s ( l ength ( r a n g e s t a t e ) , l ength ( r ange ac t i on ) ) ;
f o r n = 1 : s i z e (Q, 1 )

row index = round ( (Q(n,2) −min ( r a n g e s t a t e ) )/0 . 01 )+1 ;
c o l i n d e x = round ( (Q(n,3) −min ( range ac t i on ) )/0 . 1 )+1 ;
Q re s t ruc t ( row index , c o l i n d e x ) = Q(n , 1 ) ;

end

Q r e s t r u c t s t e a l t h = ze ro s ( l ength ( r a n g e s t a t e ) , l ength ( r ange ac t i on ) ) ;
f o r n = 1 : s i z e (Q, 1 )

row index = round ( (Q(n,2) −min ( r a n g e s t a t e ) )/0 . 01 )+1 ;
c o l i n d e x = round ( (Q(n,3) −min ( range ac t i on ) )/0 . 1 )+1 ;
Q r e s t r u c t s t e a l t h ( row index , c o l i n d e x ) = Q stea l th (n , 1 ) ;

end

f i g u r e
s u r f ( Q re s t ruc t )
f i g u r e
s u r f ( Q r e s t r u c t s t e a l t h )

A.3 Accessory files

A.3.1 Function “Q builder”

f unc t i on [Q] = Q bui lder ( range act ion , r a n g e s t a t e )
% The form o f Q matrix [ S1−A1 . . . S10−A1 ; . . . ; S1−A2 . . . S10−A2 ; . . . ]
NoA = length ( range ac t i on ) ; NoS = length ( r a n g e s t a t e ) ;

q = 0.5∗ ones (NoS∗NoA, 1 ) ;

S = ze ro s (NoS∗NoA, 1 ) ; % Matrix o f s ta te −value
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f o r i = 1 : NoS
f o r j = 0 : (NoA−1)

S( i+j ∗NoS , 1 ) = r a n g e s t a t e ( i ) ;
end

end

A = ze ro s (NoS∗NoA, 1 ) ; % Matrix o f act ion −value
f o r m = 1 :NoA

f o r n = 0 : ( NoS−1)
A(m+n∗NoA, 1 ) = range ac t i on (m) ;

end
end

Q = [ q , S ,A ] ;

end

A.3.2 Function “nextstate”

f unc t i on [ x next , y new ] = next s t a t e ( x current , a )
%UNTITLED Summary o f t h i s func t i on goes here
% Parameters o f the environment model
Kp = 0 . 7 0 3 ; Tp = 1 . 6 2 ;
G1 = t f ( [Kp] , [Tp 1 ] ) ; G1d = c2d (G1, 1 , ’ zoh ’ ) ;
[Ap, Bp , Cp,Dp] = ssdata (G1d ) ; % Convert t f to s ta te −space
ysP = 7 . 5 ; usP = 1 . 5 ; % The standard po int

% Noise
ar = −0.25∗0; br = 0 . 2 5 ∗ 0 ; % Noise magnitude

% Next State
x next = Ap∗ x cur r en t + Bp∗(a−usP ) ;
y new = ysP + Cp∗ x next + ( br−ar )∗ rand + ar ;
y new = round ( y new , 2 ) ;

i f y new > 9 .26
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y new = 9 . 2 6 ;
e l s e i f y new < 7 .07

y new = 7 . 0 7 ;
e l s e y new = y new ;
end

end

A.3.3 Function “greedy selector”

f unc t i on [ a c t i on ] = g r e e d y s e l e c t o r (Q, y , e p s i l o n )

y = round (y , 2 ) ; % Round−up f o r s a f e t y reason

% Pick p o s s i b l e a c t i o n s o f the s t a t e out o f Q−matrix
% Q−matrix = [Q−values , States , Act ions ] to
% p o s i t i o n s = [Q−values , Act ions ]

p o s i t i o n s = [ ] ;
f o r i = 1 : s i z e (Q, 1 )
i f abs (Q( i ,2) −y ) <= 10ˆ( −4)

p o s i t i o n s = [ p o s i t i o n s ; Q( i , 1 ) , Q( i , 3 ) ] ;
e l s e p o s i t i o n s = p o s i t i o n s ;
end
end

max value = max( p o s i t i o n s ( : , 1 ) ) ; % Max Q−va lues
n max = sum( p o s i t i o n s ( : , 1 ) == max value ) ; % How many max a c t i o n s
% Proba b i l i t y o f choos ing max ac t i on
probab others = round ( e p s i l o n / s i z e ( p o s i t i o n s , 1 ) ∗ 1 0 0 ) ;
% Proba b i l i t y o f choos ing o the r s
probab max = round ( ( ( 1 − e p s i l o n )/ n max + e p s i l o n / s i z e ( p o s i t i o n s , 1 ) ) ∗ 1 0 0 ) ;

prob matr ix = [ ] ;
f o r j = 1 : s i z e ( p o s i t i o n s , 1 )

i f p o s i t i o n s ( j , 1 ) ˜= max value

39



prob matr ix = [ prob matrix , p o s i t i o n s ( j , 2 )
∗ ones (1 , probab others ) ] ;

e l s e prob matr ix = [ prob matrix , p o s i t i o n s ( j , 2 )
∗ ones (1 , probab max ) ] ;

end
end

prob matr ix = prob matr ix ( randperm ( length ( prob matr ix ) ) ) ;
% Pick ac t i on accord ing to the g iven p r o b a b i l i t i e s
a c t i on = prob matr ix ( 1 ) ;

end

A.3.4 Function “GPS”

f unc t i on index row = GPS(Q, y , a )

y = round (y , 2 ) ; % Round−up f o r s a f e t y reason

f o r i = 1 : s i z e (Q, 1 )
i f abs (Q( i ,2) −y ) <= 10ˆ( −4) & Q( i , 3 ) == a

index row = i ;
end
end

end

B Neural Network - Training data pre-processing

load t r a i n i ng da ta
time = t r a i n in gd a ta ( : , 1 ) ;

% Output
% Liquid Flowrate

wl iqu id1 = t ra in i ng da t a ( : , 9 ) ;
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wl iqu id2 = t ra in i ng da t a ( : , 1 1 ) ;
w l iqu id3 = t ra in i ng da t a ( : , 1 3 ) ;

% Top Pressure
ptop1 = t ra i n i ngd a t a ( : , 1 8 ) ; % bar A
ptop2 = t ra i n i ngd a t a ( : , 2 0 ) ;
ptop3 = t ra i n i ngd a t a ( : , 2 2 ) ;

% Input : Well 1 − Well 2 − Well 3
% Gas Flowrate

wgas1 = t r a i n in gd a ta ( : , 3 ) ;
wgas2 = t r a i n in gd a ta ( : , 5 ) ;
wgas3 = t r a i n in gd a ta ( : , 7 ) ;

% Pump Rotation
pumppower = t ra in ing da ta ( : , 2 9 ) ;
pumpspeed = 100∗(5000∗pumppower−8∗ones ( s i z e ( time , 1 ) , 1 ) ) . / 1 0 0 ;

% Valve Opening
va lvecur r ent1 = t ra i n i ngd a ta ( : , 2 3 ) ;
va lve1 = 62.5∗ va lvecurrent1 −0.25∗ ones ( s i z e ( time , 1 ) , 1 ) ;
va lvecur r ent2 = t ra i n i ngd a ta ( : , 2 4 ) ;
va lve2 = 100∗(62 .5∗ va lvecurrent2 −0.25∗ ones ( s i z e ( time , 1 ) , 1 ) ) ;
va lvecur r ent3 = t ra i n i ngd a ta ( : , 2 5 ) ;
va lve3 = 62.5∗ va lvecurrent3 −0.25∗ ones ( s i z e ( time , 1 ) , 1 ) ;

f i g u r e
subplot ( 4 , 1 , 1 )
p l o t ( time , wl iquid2 , ’ r ’ )
t i t l e ( ’ Liquid Flow Rate [ L/min ] ’ )
subplot ( 4 , 1 , 2 )
p l o t ( time , wgas2 )
t i t l e ( ’ Gas Flow Rate [ sL/min ] ’ )
subplot ( 4 , 1 , 3 )
p l o t ( time , va lve2 )
t i t l e ( ’ Valve Opening [% ] ’ )
subplot ( 4 , 1 , 4 )
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p lo t ( time , pumpspeed )
t i t l e ( ’Pump Speed [% ] ’ )
x l a b e l ( ’ Time [ seconds ] ’ )

% Preproces s t r a i n i n gda ta in to the form [ y cur r ent2 wgas2 current v a l v e 2 c u r r e n t
% pumpspeed2 current y next2 ]
l a g i n p u t = 1 ;
l ag output = 1 ;

D = [ wl iqu id2 wgas2 va lve2 pumpspeed ] ;
f i n = s i z e (D, 1 ) ;
D = D((1+ l a g i n p u t ) : ( end−lag output ) , : ) ;

w l iq2 next = wl iqu id2 ((2+ l a g i n p u t ) : ( end−lag output +1)) ; % y ( k+1)

i f l a g i n p u t > 1
D inputprev = [ ] ;
f o r j = 2 : l a g i n p u t

l im up = 1+lag input −(j −1);
l i m l o = f in −lag output −(j −1);
wgas2 prev = wgas2 ( l im up : l i m l o ) ;
va lve2 prev = valve2 ( l im up : l i m l o ) ;
pumpspeed prev = pumpspeed ( l im up : l i m l o ) ;
D inputprev = [ D inputprev wgas2 prev va lve2 prev pumpspeed prev ] ;

end
e l s e D inputprev = [ ] ;
end

i f l ag output > 1
D outputprev = [ ] ;
f o r j = 2 : l ag output

wl iq2 prev = wl iqu id2 ((1+ lag input −(j −1)) : ( end−lag output −(j −1)) ) ;
D outputprev = [ D outputprev wl iq2 prev ] ;

end
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e l s e D outputprev = [ ] ;
end
D = [D D outputprev D inputprev wl iq2 next ] ;

% Write in to the CSV f i l e
c svwr i t e ( ’ LagRigtra in ingdataVarde lay2 . txt ’ ,D)

C Neural Network - Test 1 and Test 2 MATLAB

code

The trained neural networks should be saved as a function. Here in this code, the
feedforward network that we would like to test is the function “ffwNN”

% Steady−State Test ing Module
gas = [ 1 1 .5 2 2 .5 3 3 .5 4 ] ;
va lve = [ 0 . 3 0 .5 0 .4 0 .65 0 . 5 ] ;
pump = [ 0 . 4 0 .37 0 .45 0 .45 0 . 4 7 5 ] ;

Y true = [ 5 . 4 1 5 2 , 5 .5586 , 5 .6715 , 5 .7836 , 5 .8685 , 5 .9538 , 6 .0264 ,
5 .3646 , 5 .6562 , 5 .8841 , 6 .0681 , 6 .2119 , 6 .3212 , 6 .4330 , 8 .3923 ,
8 . 5 , 8 .5945 , 8 .6294 , 8 .6728 , 8 .6887 , 8 .7221 , 10 .0519 , 10 .1075 ,
10 .1455 , 10 .1423 , 10 .1062 , 10 .0722 , 10 .0805 , 10 .2945 , 10 .3668 ,
10 .3566 , 10 .3545 , 10 .3688 , 10 .3719 , 1 0 . 3 5 6 5 ] ;

inp = [ ] ;
f o r i = 1 : s i z e ( valve , 2 )

valve com = valve ( i )∗ ones (1 , s i z e ( gas , 2 ) ) ;
pump com = pump( i )∗ ones (1 , s i z e ( gas , 2 ) ) ;
inp new = [ gas ; valve com ; pump com ] ;
inp = [ inp inp new ] ;

end

Y pred = [ ] ;
f o r j = 1 : s i z e ( inp , 2 )

i n i = ze ro s ( 1 , 7 ) ;
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i n i ( 1 , 1 ) = 5 . 5 ;
i n i ( 1 , 2 ) = inp (1 , j ) ;
i n i ( 1 , 3 ) = inp (2 , j ) ;
i n i ( 1 , 4 ) = inp (3 , j ) ;
i n i ( 1 , 5 ) = inp (1 , j ) ;
i n i ( 1 , 6 ) = inp (2 , j ) ;
i n i ( 1 , 7 ) = inp (3 , j ) ;

Y plot = [ ] ;
f o r i = 1 :20
% Cal l the t r a in ed network here

Y new = ffwNN( i n i ) ;
Y plot = [ Y plot Y new ] ;
i n i ( 1 , 1 ) = Y new ;

end

Y pred = [ Y pred Y new ] ;

f i g u r e
p l o t ( Y plot )

end

mse = (1/ s i z e ( Y true , 2 ) ) ∗ s q r t (sum ( ( Y pred−Y true ) . ˆ 2 ) )

f i g u r e
s c a t t e r ( Y true , Y true , ’ f i l l e d ’ )
hold on
s c a t t e r ( Y true , Y pred , ’ f i l l e d ’ )
x l a b e l ( ’ Correct Liquid Flow Rate ’ )
y l a b e l ( ’ Correct Liquid Flow Rate ’ )
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