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Abstract

Maximisation of energy recovery for a heat exchanger network with three stream
splits is considered. Its objective is defined as the maximisation of temperature in the
cold outlet stream, 7". Two split ratios of the cold feed stream are considered to be
the degrees of freedom available for this system. Optimal operation of the heat ex-
changer network is characterized as the state in which the gradient of 7" with respect
to the degrees of freedom are zero. This is achieved when the Jischke temperatures
of the stream splits are of equal value.

Artificial neural networks’ abilities to aid in achieving optimal operation of the
heat exchanger network is investigated. The neural networks are constructed using
AutoKeras in Python. Bayesian optimization is used to tune the neural networks’
hyperparameters in order to obtain networks with good performance. The neural
networks are used in three different methods: Predicting the optimal stream splits
of the heat exchanger network, predicting the outlet temperature, and predicting the
difference between Jischke temperatures. The methods are implemented in a closed
loop analysis. The first method gives information directly applicable for achieving
optimal operation. The second and third method drives the heat exchanger network
from a sub-optimal state towards an optimal state in an iterative process.

The results show that all methods are able to achieve operation within one degree
of the optimal outlet temperature. The best case managed to achieve a maximum
temperature difference of 0.02 degrees between the achieved and optimal tempera-

ture for all test data.
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1 Introduction

1.1 Heat exchanger networks

Heat exchanger networks are used in process industries to recover energy. This is done
by allowing hot streams to transfer their heat to cold streams. This is important from an
economical standpoint, as process plants can decrease costs by increasing energy recov-
ery. It is also important on a more global scale, as climate change and a growing focus on
“green” businesses forces industries to better their energy management. However, deter-
mining the optimal operation of a heat exchanger network is not necessarily straightfor-
ward and can be limited by which measurements of the network are available. Jaschke and
Skogestad(2014) reports that the Jéischke temperatures can be used to determine optimal
operation of a heat exchanger network with stream splits under a set of specific assump-
tions. This project will use the concept of Jaschke temperatures to define optimality for

the heat exchanger network.[16]

1.2 Artificial neural networks

Artificial neural networks are inspired by the human brain. The brain consist of billions
of interconnected neurons giving man the capabilities of complex tasks. Similarily, artif-
ical neural networks consists of artificial neurons that each recieve, process and pass on
information. Specht(1991) reported that a general regression neural network can be used
for control or prediction of a plant model and that it converges to the underlying regres-
sion surface.[22] Zhang(2007) showed that in a batch polymerisation process a stacked
neural network model was able to improve performance in the presence of unknown dis-
turbances.[24]] To expand upon on these findings this report will investigate the use of
artificial neural networks to aid in achieving optimal operation of a heat exchanger net-

work with stream splits.

1.3 Scope of work

This report will investigate artificial neural networks’ ability to achieve optimal operation
for a heat exchanger network with stream splits. The effect of available measurements

is investigated by changing the inputs of the artifical neural networks. Three different



methods are investigated: Predicting the heat exchanger network’s optimal inputs, objec-

tive function, and the Jaschke tempearture differences.

1.4 Outline of project

This project will first present the reader with necessary background information in order to

be able to understand the methods that have been used and interpret the presented results.

Subsequently, the methods for achieving optimal operation of the heat exchanger network

with stream splits is presented.

Lastly, the case studies are presented and the results are discussed.



2 Theory

This chapter’s function is to present the necessary background information to the reader.
The first section provides theoretical insight of optimal operation of heat exchanger net-
works with stream splits. The section is mainly based on the works of Jaschke and Skoges-
tad(2014). The second section gives a brief introduction of artificial neural networks, with
a focus on multilayer perceptrons and its architecture. Subsequently, the third section pro-
vides insight into how artificial neural networks can be tuned to give the best performance,

particularly with focus on Bayesian optimization.

2.1 Heat exchanger networks with stream splits

shows a primitive overview of a heat exchanger network with /V stream splits. The
network’s objective is to transfer heat from the hot streams to the cold stream, F{. This is
done by splitting Fy into F1 , ..., F;, ..., Fiy, and passing them through heat exchangers.

The splits can also be referred to as branches.

The. Tha
F1 T,
{ The,i - Th,i )
F, Fi Ti
Fn Tn
The,N Th,N

Figure 1: Overview of a heat exchanger network with stream splits.

The blue lines represent the cold stream, and the red lines represent the hot streams. The
green circles represent the heat exchangers. Fj, T;, T} 1 and T}, ; represent a branch’s

inlet flow, cold outlet temperature, hot inlet temperature and hot outlet temperature for



branchi =1,..., N.

Consider the following objective function in order to achieve maximum energy recovery

max 7T'(u) (1)

u
where T'(u) is the outlet temperature of the heat exchanger network and v indicates the
available degrees of freedom. As all branches originate from the feed stream Fj, the
coupling constraint originating from the mass balance of F{y implies that only N — 1

branches can be changed individually. Consequently, u can be defined as

Fn_q

Regulating one flow will impact the other flows. By reducing the size of one flow, another
stream will correspondingly become larger to satisfy the mass balance. Branches that are
more effective at recovering energy should be utilized as much as possible, while ineffective
branches should be used as little as possible. The optimal allocation of the mass flow for
each branch must be determined. In order to achieve optimal operation it is necessary to

control the marginal cost for each branch, g;ﬁ_ , to be equal:[|14]

oT) 0Ty Ty, OTw

OF  OF,  9Fy. OFy

3)

Jaschke and Skogestad introduces the “Jaschke Temperature”, T’y , which for a branch

with one heat exchanger is defined as

(T —Tp)?

T, —
/ Ty — Ty

“

where T is the outlet temperature of the branch, 7Ty is the inlet temperature of the branch
and T}, is the inlet temperature of the branch’s heat exchanger. This proposal assumes that

arithmetic mean temperature difference can be used to describe the heat transfer driving

4



force, that there are no phase changes and that heat capacities can be considered constant.
It also assumes that the benefit of recovering energy is independent of which branch it is
recovered from. Under these assumptions the Jischke temperature will be equal to the

marginal cost for each branch.

This implies that in order to achieve maximum heat transfer, i.e maximise 7" in ,
all Jaschke temperatures must be equal. This suggests that optimal operation is achieved
when

(T; = To)* _ (Ty — Tp)? (T; = To)*  (Ty —Tp)?

= — — =0 5)
Th; —To Th,n —To Th; —To Th,n —To

for all branches: =1, ...., N — 1.

From this it is possible to create a control variable, ¢, based on the Jaschke temperatures.

c can be defined as the generalization of to matrix form:

Tii—Tin
Tro—TiN
c= : (6)

Tin-1—Tyn

where 1771 ,T;2 , Ty n—1 and T'; x are the Jdschke temperatures of branch one, two,
N — 1 and N, respectively. Optimal operation is achieved when the marginal costs of
each branch are of equal value. Therefore, it follows that optimal operation is achieved

when ¢ = 0.[[16]

2.2 Artificial Neural Networks

The human brain is capable of performing demanding and complex computational tasks.
This includes pattern recognition, speech, control of bodily functions and more. The brain
utilizes a highly parallell computing structure consisting of biological neurons to achieve
this.[[l]] In total, the brain consists of 86 billion interconnected neurons that each are able to
receive, process and pass on information. Each neuron consists of three parts in general:
The dendrites that recieve signals from surrounding neurons, the neuron cell body, and

the axon that passes on signals to other neurons. Each neuron can be inhibited or excited



through recieving signals from other neurons. This signal is in the form of complex time

series of electrical signals which allow humans to make complex decisions.[[11]]

Artificial neural networks(ANN) are motivated to replicate this behaviour, and can be
described as computing systems derived from the biological neural networks. Analogous
to the biological neural network, ANNs consist of artifical interconnected neurons that
can recieve signals from other neurons.[3] This signal is then processed before it is sent to
other neurons until the output neurons are reached. This can be seen in Figure 2, which
shows an example of an ANN. Each circle represents a neuron and the arrows represent

the flow of information and connections between the neurons.

Input Layer Hidden Layer  Output Layer

Figure 2: An example of an ANN.

The network in is a special classification of ANN’s. It is called Multilayer per-
ceptron(MLP) and is a fully connected feedforward ANN. Fully connected implies that
the output of a neuron, referred to as a perceptron, is calculated using every output in
the previous layer. Feedforward implies that the network is not cyclical, meaning that the

output of a perceptron is only dependant on perceptrons from previous layers.

An MLP is composed of minimum three layers: an input layer, a hidden layer, and an
output layer. By using nonlinear activation functions in the hidden layers an MLP can be
used to solve nonlinear regression problems. In order to achieve this property, a suitable
learning method which is capable of converging to a local minimum when the training

data is not linearly seperable must be chosen.[[17]



The signal of a neuron is computed from the sum of its input connections in addition to
some bias, 3. Each connection is also associated with a weight, noted w. The output 1;

of the j-th neuron is calculated by the following equation:

py=a (Z wii + 5]-) = a5 + 5) ™

=1

where z; is the input from the ¢-th neuron and wj is its respective weight. Equivelantly,
chT is the transposed weight vector and 7 is the input vector for the j-th neuron. a is the
neuron’s activation function which transforms the output, often to the interval (-1, 1) or

(0, 1). In a primitive example, 11; could be computed by the following activation function

1 if  wiTa+6;>0
b = 8)
0 otherwise

which is known as the binary step function with a threshold of zero. The calculation of

the perceptron’s signal is showcased in [Figure 3.[1]

X1\ W1
Xy W

ws — > M
X3

Wn

Figure 3: Perceptron calculation.

Each input with its associated weight is summed together in addition to a bias. The sum

is then passed through the activation function to produce the neuron’s signal.

In order for a neural network to produce meaningful outputs it needs to be trained. This is

commonly done by processing data with a given input vector and an ideal output vector. An



objective function is assigned to the neural network. The objective function indicates the
error between the current predicted outputs compared to the true outputs. Mean squared
error is typically used as the ANN’s objective function:

min 33" sy — 1i)? ©)

-G n
@6 "1 j=1

where ¢ and 5 is the neural networks weight and bias vectors, m is the number of outputs
for the neural network, 7 is the number of training samples, and (z;; — 1 j)2 is the squared
residual between the real value and predicted value of the output, j;;. The objective
function can be minimized by applying a learning method to the ANN. This is typical for
problems where there are measurements available for the output to be predicted, known as
supervised learning. Supervised learning is an iterative process, where for each iteration
the objective function is evaluated and subsequently the weights and biases are updated
in the direction that mimizes it. This allows the ANN to produce increasingly accurate
outputs. The process is repeated until the objective function is minimized to an acceptable

level.[[10]

2.2.1 Activation Functions

An activation function is in ANNs a method of transforming the output of a perceptron.
Activation functions differ in several important properties which make them suitable for
different tasks: Linearity, range, differentiability, monotonicity and others. The choice of
activation function is important for the performance of the ANN, but is not necessarily
straight forward. As previously stated, in order for an ANN to solve nonlinear problems
it must have nonlinear activation functions. Intuitively this must be true, because a linear
combination of linear combinations is still linear. The simplest activation function, the

identity function, is a linear function that keeps the output untransformed:[[12]

flx)== (10)

Consider an ANN whose objective is to predict the probability of some arbitrary classifi-

cation: The weighted sum of an output perceptron is given as » . ; w;x; + 3, which can



take on any value. The output range of each output perceptron should be transformed to
be in the range of (0, 1) in order for the network to give logical probability predictions.

This can be achieved by using the Sigmoid activation function given in [Equation 11].

(11

The Sigmoid function maps very small values to 0 and very large values to 1. This gives
the ANN the capability to predict the probability of all given classifications and output
the classification with the highest probability. It is also continuously differentiable with an
easy-to-calculate derivative, and monotonic. The property of being continuously differen-
tiable is important for performance when using gradient based learning methods, and the
property of being monotonic guaranties a convex error surface for a single-layer model.

shows the mapping of the Sigmoid function.[9]

Sigmoid function

10 A

0.8 1

0.6 1

fix)

0.4 1

0.2 A

0.0 1

=100 -75 50 -25 00 25 50 75 10.0
x

Figure 4: The S-shaped Sigmoid function.

Another commonly used activation function is the rectified linear unit (ReLU). ReLU
has shown successful results in achieving good performance compared with other long-

established activation functions. [20] The ReLLU activation function is defined as



f(z) = max(0, x) (12)

and has been shown to perform better than the Sigmoid function, despite being non-

differentiable at zero. shows the mapping of the ReLU function.[23]

RelLU function

10 4

fix)

-10.0 =75 =50 =25 00 25 5.0 75 100
X

Figure 5: The rectified linear unit.

2.2.2 Backpropagation

Backpropagation is an algorithm commonly used in MLPs for training. The algorithm
uses gradient descent to determine how the weights and biases should be updated, and has

the ability to approximate nonlinear functions given nonlinear activation functions. [5]

For the network to learn, it must have an objective function to minimize. As previously
stated, mean squared error is commonly used. Mean squared error has smooth derivative
properties and a penalty for large errors. The algorithm must search the hypothesis space
defined by all possible weight and bias combinations for every perceptron to minimize the
objective function. Gradient descent is a commonly used method to traverse the hypoth-
esis space in an attempt to find the combination of weights and biases that minimizes the

objective function.[[19]

Gradient descent is the method of taking the partial derivative of the objective function

-,

MSE(&,8) = E with respect to each weight and bias. This gives information about

10



which direction will minimize the objective function. Consider the derivative of the ob-
jective function with respect to a given weight k for perceptron p, wy,,, for a single output

network as motivation:
oF

Owpyp

(13)

If the derivative is positive, then decreasing the weight will result in a smaller error. Like-
wise, if the derivative is negative, then increasing the weight results in a smaller error.
This implies that the change applied to the weight should be a function of the negative

derivative. We define the change as follows:

OFE

S = N D
P

(14)

where 7 is defined as the method’s learning rate. The learning rate is a specified number
between O and 1, and describes how much the weights should be updated between each
learning iteration. Determining a good learning rate is important for performance of the
network. If the learning rate is small the network requires more training iterations and
might get stuck before reaching an optimal solution. If the learning rate is large the net-
work does not require as many training iterations, but might learn sub-optimal weights
and the training process could be unstable. The change in weights can also be written on

vector form

OE OFE OE OF

; sy : (15)
7 Owi1’ Owar Own—11 Owpy

AG = —nVE(@) = —

where Ad is a vector of weight changes, V F/(&J) is the gradient of E with respect to each
individual weight, [ is the number of layers and n is the number of perceptrons in the last

layer.[[1]

In order to speed up the training of the ANN, a momentum term can also be added to

quation 14|.

E _

Awyy =
where the momentum term, «, is a chosen value between O and 1, and Aw,;pl is the weight
change from the previous weight update. The momentum term allows previous movements

in the weight hypothesis space to be taken into account when updating the weights in the

current training iteration. Momentum can also have the added benefit of being able to

11



pass through local minima and flat regions in the hypothesis space. Similarily to learning
rate, the value of the momentum term is chosen by the implementer of the MLP, and is

referred to as a hyperparameter.[4]

There exists several variations of the gradient descent method. Stochastic gradient descent
is a method that updates the weights based on the mean squared error of one training data
sample. Batch gradient descent updates the weights based on the mean squared error of all
training data samples, n. Mini-batch gradient descent updates the weights after b training
data samples where 1 < b < n. Another variation is Adaptive Moment Estimation (Adam).
Adam differs from the other methods in that it calculates individual learning rates for each

weight and bias. The weight update equation for Adam is given as

Awgy = — vz7+ i (17)

where M, is the estimate of an exponential moving average of the gradient, /¥y is the
estimate the squared gradient, and 7 and € are user specified constants. Adam has shown

good results for large networks with many tuneable parameters.[(]

In order to make use of Equation 16, the partial derivative of the error with respect to
wyp must be expressed analytically. The method of stochastic gradient descent does this

for output perceptrons by calculating the partial differential of the error for each training

iteration, F; = 5 >0 (pj — fij)*:

8wkp - awkp 5 Z(:u’] /’L]) (18)
7j=1

where m is the number of ouput perceptrons. The derivative of (y; — /2]-)2 is zero for all

output perceptrons except p. The summation can be removed and j set equal to p.




= (i) =2
= U = i)

(p — (W} - 7)) (19)

Where a is the activation function of the output perceptron associated with weight wy,,.
The derivative of the activation function is non-zero only for wy,, in the weight vector wy,.

Using the Sigmoid function as activation function it follows:

OE;
Owgp

= —(up — Hp)a(wkp - Thp) (1 — a(Wkp - Thp)) - Ty (20)

Combining and 2( to get the final weight training equation for output percep-

trons:

Awkp = U(Hp - :Ujp)a(wkrp : xkp)(l - a(wkp : SUkp)) " Thp + aAW];pl (21)

The weight training rule changes based on the chosen activation function, but the procedure
for obtaining is the same. The weight training rule for hidden perceptrons can
be derived in a similar manner, but the rule must also consider wy,’s effect on the output
for perceptrons in layers closer to the output layer, Deeper Layers. The training rule

using the Sigmoid function is given as:

Awkp = na(wkpxkp)(l — a(wkpxkp))xkp Z CJ3¢] + OéAwk_pl (22)
jeDeeper Layers

Where ¢; is calculated from:

a(w;7y)(1 — a(w)ay))(uj — 4ij) if 7 is an output perceptron
¢j =
a(W55) (1 = a(WiT5)) Yo hepeeperLayers When  if  j is a hidden perceptron
(23)

13



2.3 Tuning hyperparameters

The perfomance of ANNs is heavily dependant on the choice of hyperparameters. The
hyperparameters include learning rate, momentum, activation functions, batch size and
number of epochs, but the architectural structure itself could also be considered as hyper-
parameters. The number of hidden layers, the number of perceptrons in each layer and
choice of learning method should also be explored when searching for the ANN with best

performance.

The most primitive way of tuning hyperparameters is hand-tuning. This is both time

consuming and often relies on insight and knowledge that is difficult to quantify.

A more common method is grid search. Grid search explores all given combinations of
hyperparameters in an attempt to find the best combination. This is obviously extremely
computationally expensive and time consuming, as the number of combinations increases
exponentially with the number of hyperparameters. In addition, grid search does not take
into account the magnitude of performance impact for each hyperparameter. Some hyper-
parameters might be irrelevant for performance compared to others. Random grid search,
a similar method which randomly choses hyperparameter combinations, has been shown
to be able to find equally good or better hyperparameters compared with grid search while
using a modicum of computational cost. It is however, mathematically unsatisfactory and

not easily replicable.[[13]

A better method is that of Bayesian optimization. Bayesian optimization has proven to be
a powerful tool capable of outperforming human experts and search methods, while using

a fraction of the computational cost.[2]

Bayesian optimization works by treating the neural network as a black box, f(6), whose
inputs are the hyperparameters, 6. The black box is assigned a Gaussian process prior
which describes the probabilistic belief about the neural network p(f) = GP(f; i, o2).
Each time a new set of hyperparameters is evaluated, knowledge about the neural net-
work is realized. This produces a Bayesian posterior probability distribution, p(f|D) =

GP(f|D; p, o?), which follows another GP. The posterior probability gives information
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about the likely values of f(#) for a given 6. The explicit objective of Bayesian optimiza-

tion is to find the best set of hyperparameters, 6%, that globally minimizes f(6).[8]

0" = argnbin f(6) (24)

To find 6*, the combination of hyperparameters to test is chosen based on previous knowl-
edge about the behaviour of the neural network. The method of chosing a new hyper-
parameter combination is called an acquistion function. The most common acquisition

function is expected improvement(EI)

where f’ is the best value of f(6) observed so far and F,, is the expectation taken under
the Bayesian posterior distribution of f(#) given observations f(61)...f(6,,). El evaluates
£(0) at the point § which improves upon f’ the most. If f(6) is closer to minimum, then

the expected improvement is f/ — f(6), otherwise it is zero as f’ is still the best point.

can be analytically solved as

EL,(0) = (f' — u(0)) @ (f'; 1(6),05°(6,0)) + a>(0,0)N (f'; u(6),0°(6,0)) (26)

where £4(6) is the mean function derived from the Gaussian process prior and (6, 9) is

the normally distributed covariance function of the prior. The next evaluation point, ,,41

is chosen as the argument that maximizes
On1 = arg max EIL,(0) (27)

can be maximised by looking at the two terms. The first term can be increased
by evaluating f(6) at points where 1(6) is small. The second term can be increased by
evaluating f(6) at points where the covariance is large. This can be understood as a com-

promise between exploration and exploitation. The acquistion function explores the areas
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where there is large uncertainty, and it exploites the areas where the mean is small. Using
this algorithm the hyperparameter space is explored in a way that reduces the number of

unnecessary evaluations, i.e where the mean is large and the variance is small.[21]

Upper confidence bound(UCB) is another commonly used acquisition function. UCB is
similar to expected improvement as it compromises between exploration and exploitation

in the same manner. UCB is defined as

UCB(0,k) = u(0) + ko (0) (28)

where 14(6) is the mean function of the prior,  is a user specified constant and o (0) is stan-
dard deviation of f(6). x determince the balance between exploitation and exploration.

The larger « is, the more explorative the acquisition function is. [[7]
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3 Heat exchanger application

This section presents the reader with the framework for which the case studies are based
on. In the first section the model and data is presented. The second section gives an
overview of the different methods of using artificial neural networks to operate the heat
exchanger network optimally. The third section presents the different case studies that

were conducted.

3.1 Heat exchanger network with three stream splits

The process to be approximated is a heat exchanger network with stream splits. The
network has three branches, each with one heat exchanger. The objective of the heat
exchanger network is to maximize the transfered heat between the cold stream and the
hot streams. In simpler terms, the goal is to maximize T. illustrates the heat

exchanger network.

The,1 Th,1
a Ty
T, \ Theo Tho J T
T
F, B 2
1-a-3 Ts
The,3 Th 3

Figure 6: Overview of the heat exchanger network with three branches.

The network has several variables. The outlet temperature, inlet temperature and flow of
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the cold stream, 7', Ty and Fp. For heat exchanger ¢ = 1, 2, 3: the cold outlet temperature,
hot inlet temperature, hot outlet temperature, overall heat transfer coefficient and hot mass
flow, T3, T} i, The,i» UA; and wy, ;. Lastly, the branch split fractions is given as «, 3 and

1—oz—ﬁ,whereoz:F£1and/B:F%.

It is necessary to determine what constitutes optimal operation for this heat exchanger
network in order to be able to maximize the temperature. Under the assumptions that
arithmetic mean temperature difference can be used to describe the heat transfer driving
force, no phase changes and constant heat capacities, Jaschke temperatures can be used to
describe optimality. This also assumes that the benefit of recovering energy is independant
of which branch it is recovered from. From the theory in it follows that optimal
operation is achieved when control variable c is equal to zero. c for this heat exchanger

network is given as:

Tj1 =T
e [T Tus 29)
Tro—Ty3

where T';1, Ty and T';3 are the Jdschke temperatures of branch one, two and three,

respectively. Furthermore, we define c; and co as the Jéischke temperature differences:
c1=Tj1—Ty3

co=Tjo—Tj3 (30)

Data is required for an artifical neural network to be able to train, validate and test. A first
principle model with noise is used to generate data. Data is provided to the neural network
in the form of measurement sets. Each measurement set represents a scenario where only
a select number of variables are measured in the heat exchanger network. Several training
data sets is therefore generated by the first principle model of the heat exchanger network,
where operation is either optimal or sub-optimal. This allows for several methods when
using neural networks in order to operate the heat exchanger network optimally. The dif-
ferent measurement sets is given in Equation 31|. Each column represents a measurement

set.
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Measurement sets = | T, 5 The1 Thes Ths (31)

Thz The3 wpa

— — wh72 —

— — wh73 —

Sixteen data sets are generated in total. One data set for each measurement set at opti-
mal operating conditions and at sub-optimal operating conditions. This is done for both
training and test data. Each data sample also contains the values of «, 3, T, and ¢. In
addition to this, disturbances on the plant is available in order to make it possible to sim-

ulate the heat exchanger network in a closed loop. The given disturbances, d, are shown

in Equation 32:

Wh,1
Wh,2
Wh,3
d=| T, (32)
Th,2
UA,;
UAs
UAs
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3.2 Artificial Neural Network Methods

Using the generated data sets makes it possible to use supervised learning to build ANNS.
The objective of the neural network is to be able to predict a given variable as close to
the real value as possible. This is done by minimizing the mean squared error objective

function

min % > Z(sz — 1iij)? (33)

where ¢ and 5 is the neural networks weight and bias vectors, m is the number of out-
puts for the neural network, n is the number of training samples, and (p;; — u}j)g is the
mean squared error between the real value and predicted value of the output, f1;;. The
different neural network methods described in this section are based on which output the
neural networks are trying to predict. The output of the neural networks should be a pa-
rameter which can give information with respect to operating the heat exchanger network

optimally.

It is difficult to decide which architecture of a given neural network will give the best
performance, as alluded to in fubsection 2.2. In order to minimize the objective function
in Equation 33, the neural network’s hyperparameters must be given. This is a challenge,
as the choice of hyperparameters is not obvious. Bayesian optimization is therefore used
to overcome this challenge. The implementation of Bayesian optimization is done with
AutoKeras in Python, an efficient neural network search system, and uses UCB as its aqui-
sition function.[]15] AutoKeras is built on the machine learning software TensorFlow.[[1§]

The general procedure for creating the neural networks can be seen in Algorithm [,

Algorithm 1 ANN General Procedure
1: procedure CREaTE ANN

2: Required: Dataset

3: x <+ get_measurements(Dataset) > Get inputs for ANN
4: w < get_optimal_outputs(Dataset) > Get real outputs
5: ANN «+ AutoKeras(x, ) > Get best model from Bay. opt.
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AutoKeras will in step 5 of the algoritm determine the suitable choice of hyperparame-
ters. Our methods consists of training the generated neural network on one thousand data
samples. AutoKeras can however generate very large neural networks with hundreds of
thousands of tuneable parameters. Using neural networks with such a difference in num-
ber of parameters and data samples raises concern for overfitting. Luckily, AutoKeras

automatically deals with this by using dropout, a regularization technique.

3.2.1 Predicting optimal inputs

The first method is constructing an ANN that predicts the optimal splits av,,¢ and Bopi.
This gives information which can be directly used to operate the heat exchanger network
at optimal conditions. A closed loop analysis can be done for this method by applying
the predicted optimal inputs to the first principle model. This will generate new measure-
ments. The new measurements can be used by the neural network to predict a new pair of
optimal inputs. The cycle is repeated until the change in optimal inputs is below a speci-
fied tolerance. The last generated optimal input pair is then applied to the first principle
model to determine the achieved temperature. An overview of the closed loop analyis can

be seen in Algorithm ).

Algorithm 2 Closed loop analysis: cvop:&Bopt

1: procedure
2: Required: AN N, ap._1, Br—1, tol

3: while (o — ag_1) > tolor (B — Bx—1) > tol do

4: A1 < O

5: Br—1 < Bk

6: measurements <— First principle model
7: ag, B + AN N (measurements)

An alternative strategy for applying this method is to use two ANNs for a,: and Bopt,
instead of one ANN with two outputs. The closed loop analysis procedure is the same as

with one model.
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3.2.2 Predicting the objective function

The second method constructs an ANN that predicts the heat exchanger network’s temper-
ature based on the available measurements. This does not provide much useful information
in an open loop analysis. However, finite elements can be used in a closed loop analysis
to predict the gradients of T, g—g & g%- This is done by starting at a random, but feasable
operating point o, Sy and the corresponding 7j. Finite elements is then used to estimate
the gradients of 7T". Inside the loop a small change, A, is applied to « and 3 in the di-
rection that maximises 7". New measurements are then generated from the first principle
model. A new value of 7' can then be predicted by the neural network. Subsequently, a
new estimation of the gradient can be done. This continues until the estimated gradients
are below a set tolerance value. An overview of the closed loop analysis can be seen in

Algorithm f.
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Algorithm 3 Closed loop analysis: T
1: procedure

2: Required: AN N, «ag, Bo, 1o, o, 3, tol, A
3 T < AN N (openloop)

4: ?TZ; < Finite elements

5: g% < Finite elements

6: while ( L) > tol or (4 5) > tol do

7 ap — o
8: a+—a+A- sign(‘g%) > Add A to « in the direction of max T
9: To < T
10: measurements <— First principle model
11: T < AN N (measurements)
12: 8 < Finite elements
13:
14: Po < B
15: B+ B+A- 51gn( )
16: To+ T
17: measurements <— First principle model
18: T < AN N (measurements)
19: a 5 < Finite elements

3.2.3 Predicting the Jidschke temperature differences

The third method constructs an ANN that predicts the Jdschke temperature differences, c;
and ¢y from Equation 30. This does not give much information in an open loop analysis,
but optimal operation can be achieved in a closed loop analysis similar to method two.
The Jaschke temperature differences give information regarding which direction « and 3
should be changed in order to drive c; and co to zero. This method can also be done with
two ANNSs that predict one Jdschke temperature difference each. The algorithm for this

method is the same as Algorithm [3, except the finite elements steps are not needed.
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3.3 Case Studies

The case studies are divided into five groups based on the neural network method that
was used. Each case study group has four case studies, based on which measurement set

was used to train the neural network model. An overview of the case studies is shown in

[Table 1.

Case study group one uses one neural network model to predict the optimal split ratios,
aopt and Sope. The data is taken from a heat exchanger network which is operating opti-

mally.

Case study group two uses two neural network models to predict cvop and Bope, respec-

tively. The data is the same as used in case study group one.

Case study group three uses one neural network model to predict the current temperature
based on plant measurements. The case studies also address the neural networks perfor-
mance in closed loop analysis, where changes in « and (3 are used to estimate the gradient
of T with respect to a and 3 based on finite elements. This is done to drive the temperature

towards its optimal value.

Case study group four uses one neural network model to predict the Jdschke temperature
differences. Similar to the previous case study group, these case studies also investigates
the networks ability to use the predictions in a closed loop analysis. The closed loop

analysis’ goal is to drive the Jdschke temperature differences to zero.

Case study group five uses two neural network models to predict the Jaschke temperature

differences. The same closed loop analysis from case study group four is used.
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Table 1: Summary of cases studies.

Case Inputs Output | No. of models
1.1 | Ty Ty T T3 Thy Tha Ths Qopt Bopt 1
1.2 | To Tha The2 Thes Thet The2 Thegs Qopt Bopt 1
1.3 | To T Theyr The2 Thes Fo  Fpi Fho Frz | Gopt Bopt 1
14 Ty T  Thy Tho Ths a B Qopt Bopt 1
21 |Ty T T T3 Thy Tho Thps Qopt  Popt 2
22 | To Thy The2 Thesd Thetr The2 Thes Qopt Bopt 2
23 | To T  Ther Thep Thes Fo  Fra Fro Fnz | aopr Bopt 2
24 |Ty T Thy Tho Tha a B Qopt  Popt 2
31 | Ty 1T T T3 Thy Tho Thg T 1
32 | To Thy The2 Thes3 They The2 Thegs T 1
33 |To T  Ther Thep They Fo  Fpa Fho g T 1
34 |1Ty T Thyp Tho Thgs « I} T 1
4.1 o T4 15 T3 Thy  Tho Thgs c1 co 1
42 1Ty Tha The2 The3d Theq The2 Thes c1 &) 1
43 | Ty T  Then Thep Thes Fo  Fni Fra Fpz | &) 1
44 | Ty T Thy The Ths o B o e 1
51 |Ty TW T Ts T Tho Ths o e 2
52 | To Thy The2 Thes Then The2 Thes o 2
53 |To T Then Thep They Fo  Frai Fra Frz | o 2
54 |1Ty T Thi  Tho Ths « I} cl Co 2
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4 Results

This section presents results of each case study. The neural network architecture generated
from Bayesian optimization is presented. Furthermore, the network’s open loop predic-
tions and closed loop performance is shown. Both open loop mean squared error(OLMSE)
and closed loop mean squared error(CLMSE) is reported. OLMSE is the mean squared
error of the difference between achieved temperature in open loop and optimal tempera-
ture. Similarily for CLMSE, except for the difference between achieved temperature in
closed loop and optimal temperature. Only one illustrative example of the results is shown
for each case study group, as the figures are very similar. The figures of the remaining case
studies can be seen in [Appendix B. Some figures include a bisecting line. This represents
the values of true predictions for the neural network. In layman’s terms, good predictions

are close to the bisecting line.

4.1 Case Study Group 1

Case study group one utilizes measurements from the heat exchanger model under optimal

operating conditions. The output is the optimal split ratios.

shows the generated neural network architectures from AutoKeras using Bayesian

optimization.

Table 2: Generated neural network architectures.
Case | Hidden Layers | Perceptrons | Activation Functions | Tuneable Parameters
1.1 3 16,16, 16 | ReLU, ReLU, ReLU 913
1.2 1 16 ReLU 177
1.3 1 16 ReLU 213
1.4 1 16 ReLU 241

and f§ shows the prediction of the optimal inputs in open loop for case study 1.1.
The figures show that the neural network is able to encapsulate the nature of the optimal
inputs. This is especially true near the center of the bisecting line, where the majority

of the datapoints lie. The predictions are less accurate near the edges where the data is
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sparse.
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Figure 7: Prediction of «,, in open Figure 8: Prediction of 3., in open
loop. loop.

and [L(J shows the prediction of the optimal inputs in closed loop for case study
1.1. The predictions show a similar pattern to the open loop predictions, as the predictions

are more accurate near the center. However, the closed loop analysis has more outliers.

Prediction of ul_opt - closed loop Prediction of u2_opt - closed loop
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Figure 9: Prediction of oy in closed Figure 10: Prediction of 3, in closed

loop. loop.

and [12 shows histograms of the residual between the optimal temperature and
the achieved temperature by the predicted stream splits for case study 1.1. It is evident
that the residual is quite similiar for both the open and closed loop. One can however

observe a higher frequency of residuals above 0.2 for the closed loop.
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Figure 11: Residual between optimal
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Figure 12: Residual between optimal
temperature and predicted temperature

in closed loop.

Table 3 shows the results of case study group one. The results show a similar performance

between case 1.1, 1.2 and 1.4. Case study 1.3 has a significantly higher mean squared

error, especially in the closed loop.

Table 3: The results of case study group one.

Case | OLMSE | CLMSE
1.1 | 0.00956 | 0.0153
1.2 | 0.00268 | 0.0126
1.3 | 0.01433 | 0.0551
1.4 | 0.00641 | 0.00921

4.2 Case Study Group 2

Case study group two is structured similarily to case study group one. The goal for both

is to predict oy and 3. However, case study group two generates two neural networks

to attempt this.

shows the generated neural network architectures from AutoKeras using Bayesian

optimization.
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Table 4: Generated neural network architectures.

Case Hidden Layers Perceptrons Activation Functions Tuneable Parameters

2.1 2 32,16 ReLU, ReLU 801
2 16, 256 ReLU, ReLU 4752
2.2 3 32,32,32 ReLU, ReLU, ReLU 2401
2 32,64 ReLU, ReLLU 2433
2.3 2 32,32 ReLU, ReLU 1428
2 32,64 ReLU, ReLLU 2516
24 2 32,32 ReLU, ReLU 1345
3 32,32,32 ReLU, ReLU, ReLU 2401

and [14 shows the prediction of the optimal inputs in open loop for case study

2.1. Similarily to case study group one, the predictions are close to optimal near the center.

Prediction of ul_opt - open loop Prediction of u2_opt - open loop
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Figure 13: Prediction of oy in open Figure 14: Prediction of [3,, in open

loop. loop.

and [L§ shows the prediction of the optimal inputs in closed loop. The prediction
of avopt looks almost identical to the open loop figure. The prediction of 3,,; however has

several outliers generated in the closed loop analysis.
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Figure 15: Prediction of a,; in closed Figure 16: Prediction of 3, in closed
loop. loop.

and [1§ shows histograms of the residual between the optimal temperature and
the achieved temperature by the predicted stream splits. It is evident that the residual is

quite similiar for both the open and closed loop.
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Figure 17: Residual between optimal Figure 18: Residual between optimal
temperature and predicted temperature temperature and predicted temperature
in open loop. in closed loop.

Table [ shows the results of case study group two.
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Table 5: The results of case study group two.

Case | OLMSE | CLMSE

2.1 | 0.00487 | 0.0222
2.2 ] 0.00822 | 0.00828
2.3 | 0.00885 | 0.0328
2.4 | 0.00690 | 0.0108

There is little variation in the results, as all cases report similar mean squared errors for

both open and closed loop. However, measurement set two provided the best CLMSE.

4.3 Case Study Group 3

Case study group three predicts the outlet temperature of the heat exchanger network.

shows the generated neural network architectures from AutoKeras using Bayesian

optimization.

Table 6: Generated neural network architectures.

Case | Hidden Layers | Perceptrons | Activation Functions | Tuneable Parameters
3.1 1 512 ReLU 4624
32 2 16, 1024 ReLU, ReLU 18576
33 2 16, 32 ReLU, ReLU 756
34 2 128,512 ReLU, ReLU 70145

shows the open loop prediction of T'. The figure is very similar to the open loop

predictions of av,y and 3, in case study group one and two. However, the magnitude of

the error between the prediction and true value is much larger.
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Figure 19: Prediction of 7" in open loop.

The open loop predictions are used in Algorithm P in order to obtain the closed loop
predictions of the temperature. [Fig (J shows the closed loop results of case study

3.1. The histogram shows the residual between the optimal temperature and the achieved

temperature in the closed loop.
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Predicted residual

Figure 20: Residual between optimal temperature and achieved temperature in closed

loop.

Table [ shows the results of case study group three. The open loop results can not be
use directly to calculate an error between optimal temperature and achieved temperature,

therefore only CLMSE is presented. Case study 3.4 stands out from the results, as it is
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three orders of magnitude smaller compared with the second best case. This could be due

to the fact that the generated neural network for case 3.4 was much larger compared with

the other cases.

Table 7: The results of case study group three.

Case | CLMSE
3.1 | 0.1320
3.2 1.75
33 1.02
34 | 0.0001

4.4 Case Study Group 4

Case study group four predicts the Jaschke temperature differences.

shows the generated neural network architectures from AutoKeras using Bayesian

optimization.
Table 8: Generated neural network architectures.
Case | Hidden Layers | Perceptrons | Activation Functions | Tuneable Parameters
4.1 2 1024, 32 ReLU, ReLU 41073
4.2 2 256, 256 ReLU, ReLU 68369
4.3 3 512, 16, 1024 | ReLU, ReLLU, ReLU 39013
4.4 1 512 ReLU 7185

and P2 shows the prediction of the Jischke temperature differences in open loop

for case 4.2. The data is from a sub-optimal first principle model, therefore we want to

use Algorithm [ to drive the predicted Jaschke temperature differences towards zero.
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Figure 21: Prediction of ¢; in open loop. Figure 22: Prediction of c» in open loop.

The results of the closed loop analysis for case 4.2 is given in [Figure 23. The histogram
shows that the neural network was able to achieve a temperature within one degree of the

true optimal temperature by using Algorithm 3.
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Figure 23: Closed loop analysis.

The closed loop results of case study group four is given in Table 9. Similarily to case
study group three, only the closed loop results are relevant for determining the achieved
temperature compared to the optimal temperature. Case study 4.1 achieved the best result

while case study 4.2 achieved the worst.
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Table 9: The results of case study group four.

Case | CLMSE
4.1 | 0.0510
4.2 0.741
4.3 0.526
4.4 0.173

4.5 Case Study Group 5

Case study group four predicts the Jdschke temperature differences using two neural net-

works.

able 10 shows the generated neural network architectures from AutoKeras using Bayesian

optimization.

Table 10: Generated neural network architectures.

Case Hidden Layers Perceptrons  Activation Functions Tuneable Parameters

5.1 2 256, 1024 ReLU, ReLLU 271376
3 512,32,32 ReLU, ReLU, ReLU 21616
52 1 128 ReLU 1168
2 16,512 ReLU, ReLLU 11472
53 3 32,256,32 ReLU, ReLU, ReLU 18324
3 512,32,128 ReLU, ReLU, ReLU 25908
54 1 128 ReLU 1680
1 1024 ReLU 9232

and 25 shows the prediction of the Jaschke temperature differences in open loop
for case 5.1. shows better predictions compared to , especially near

the ends.
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Figure 24: Prediction of ¢; in open loop. Figure 25: Prediction of c» in open loop.

The results of the closed loop analysis is given in [Figure 2d. The histogram shows that the
neural network was able to achieve a temperature within one degree of the true optimal
temperature for all data samples by using Algorithm [. Almost all data samples achieved

an error of at most 0.4 from the optimal temperature.
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Figure 26: Closed loop analysis.

The closed loop results of case study group five is given in [Table 11. Case study 5.1
outperformed the other case studies by as much as two orders of magnitude. This could be
due to measurement set one containing the measurements needed to calculate the Jaschke
temperature differences. Another cause could be the size of the neural network generated,
as it has more than ten times the number of tuneable parameters compared to the second

largest network in the case study group. The other cases had poor performance with the
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worst closed loop result of all cases. Case 5.4 was unable to converge in the closed loop,

due to calculating split fractions that summed to more than 1. This resulted in illogical

achieved temperatures whose value were larger than the optimal value.

Table 11: The results of case study group four.

Case CLMSE
5.1 0.0276
5.2 2.11
53 6.06
5.4 | Unconverged

The CLMSE results showcases that case 5.1 was able to get a good performance in the

closed loop despite its open loop prediction of co being poor. On the other hand, the

performance of the case study group was very volatile.
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5 Discussion

The closed loop results show that all methods were able to achieve close-to-optimal oper-
ation for the heat exchanger network. Every case group managed to get a CLMSE of less
than 0.06 for atleast one case. Case 3.4, where 1" was estimated and optimal operation
was achieved with finite elements, had the lowest CLMSE. shows a histogram

of the residuals for this case.

250 A

200 4

=
L%}
[=]

Frequency

=
[=]
=

0.00 002 004 0.06 0.08 010
Predicted residual

Figure 27: Histogram of residuals for case 3.4

shows that case 3.4 had a maximum residual of just over 0.02 with the majority
of residuals being below 0.01. This implies that the heat exchanger network was operated
within at most 0.02 degrees from the optimal outlet temperature for all data samples by

using the generated neural network and Algorithm f3.

Cases 1.2, 1.4, 2.2 and 2.4 had the best results in group 1 and 2. Measurement set four was
expected to perform well, as ap; and 3¢, which the neural network is trying to predict
for this case, is part of the measurement set. The performance of the other measurement
sets did not deviate much in performance. This could indicate that the prediction of the
optimal split ratios is independant of which measurements are available. Alternatively,
it could indicate that the outputs of the neural network is not accurate enough to be non-
trivial. This is supported by the fact that the hypothesys space of T" with respect to « and 3

is relatively flat near the optimum, so predictions can be considered good in a large region.
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The measurement sets seemingly had a bigger impact on performance in case group three,

as there were four orders of magnitude between the best and worst case.

Case group four and five showed similar results. Both had the best CLMSE when using
measurement set one. This was expected, as the measurement set contains the variables
needed to calculate the Jaschke temperature differences. The performance between using
one and two models was also illustrated well by the results. Two models were able to
achieve a better CLMSE compared to one model when using measurement set one, while
one model performed better with the other three measurements sets. In addition to this,
case 5.4 with two models were unable to converge in a closed loop, as they were outputting
illogical values for o and § in the closed loop algorithm. This indicates that using one

model was better than two models.

The first method of predicting o,y and 3, is seemingly more robust compared with the
two other methods. The closed loop results for case group one and two had less variation
across the measurement sets compared with group three, four and five. The CLMSE
for group one and two ranged between 0.00828 and 0.0551, while for case three it ranged
between 0.0001 and 1.75. Furthermore, group four’s CLMSE ranged between 0.0510 and
0.741, while group five had an unconverged case. This could indicate that the expected

result of method one is on average better than the other two methods.

The neural networks generated from AutoKeras varied greatly with respect to architec-
ture. The largest network from case 5.1 had 271 376 tuneable paremeters, while the
smallest network from case 1.2 had only 177 tuneable parameters. AutoKeras choses the
architectures based on the best open loop performance. As a result of this, the depen-
dency of closed loop performance and network size is difficult to determine. The results
does however indicate that the largest neural networks in general performed better than
small networks. The smallest network within a study group never achieved the smallest
CLMSE. However, the largest network in study group three and five achieved the smallest
error. There does not seem to be a clear cause for why the variation between network
architectures is so large. Part of the variation can however be attributed to the complexity

of each case group method, as case group 1 and 2 generated smaller networks compared
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with case group 3, 4 and 5. Furthermore, the data used in case group 1 and 2 is not the
same as for case group 3, 4 and 5. As mentioned in section 3.2, the size of the networks
could indicate overfitting. For instance, case 5.1 had over 270 000 tuneable parameters
in its model for predicting c;. One would normally expect overfitting when the number
of parameters is much larger than the number of training samples, which is 1000 for this
case. However, AutoKeras uses dropout to counteract overfitting, so it should not be of
concern. ReLU and the Adam learning method was chosen for all networks, which is

expected as both have shown good results compared to their respective alternatives.

40



6 Conclusion

The objective of this project was to investigate neural networks’ abilities to aid in achieving
optimal operation of a heat exchanger network with three stream splits. Optimal operation
was defined as the maximisation of the cold outlet temperature, T'. Under the assumptions
proposed by Jaschke and Skogestad (2014), this could be achieved by having the Jaschke
temperature of each branch be of equal value. Three main methods were used: Predicting
the optimal stream splits of the heat exchanger network, predicting the outlet temperature,
and predicting the Jaschke temperature differences. Each method carried out a closed loop
analysis using Algorithm [ and [ to determine each method’s ability to achieve optimal

operation.

Data was gathered from a first principle model and used as input for the neural networks.
Both optimal data and sub-optimal data was used. The data was split into four different
groups based on which measurements were available to the neural networks. AutoKeras
with integrated Bayesian optimization was used to generate the best neural network achi-

tectures.

The results of the closed loop analysis showed that all methods were able to achieve close-
to-optimal operation for the heat exchanger network with three stream splits. Every group
had at least one case that managed to get a closed loop mean squared error of 0.06 or less.
The method of using the neural network to predict 7" with measurement set 4 had the best
performance. It had a mean squared error of 0.0001, and almost all of its achieved tem-
peratures had a residual of less than 0.02 degrees from optimal operation. The variations
within the individual case study groups indicated that the method of predicting o, and

Bopt gave the most consistent performance in closed loop.

6.1 Future work

The work done in this project can be extended by investigating how the proposed neural
network methods compare to a standard PI or PID controller for achieving optimal oper-
ation. Reactions to changes in disturbances and setpoints should be investigated. Further-

more, the oscillatory behaviour can be compared for a wide range of operating conditions
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to test stability of both neural network methods and PI or PID controllers.

The dependancy of training samples could also be further investigated. This project has
used 1000 training samples to train each neural network model. The performance gained
by increasing the number of training samples, or performance lost by removing training

samples would be of interest to quantify.
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A Appendix - Python Scripts

A.1 Python Code 1

Listing 1: Prediction of optimal inputs

# —«— coding: utf -8 —=—

399 9

Created on Mon Oct 26 11:02:48 2020

@author: Espen Karlsen

3999

import numpy as np

import pandas as pd

import tensorflow as tf

import os as os

from autokeras import StructuredDataRegressor
from matplotlib import pyplot

from sklearn.metrics import mean_squared_error

from hex3_output import hex3_output

# 9%% Meta

# def nmeural_network_model(csv_data, csv_test_data ,

meas_set):

csv_data = ’meas_3_opt.xlsx’
csv_test_data = 'meas_3_test_opt.xlsx’
msn = 3

[’T0’, °'T1’, °'Thi’, ’T2’, °'Th2’,

# meas_set
y)

# meas_set
"Th3e ’]

meas_set = [’TO’, ’T’, ’Thle’, ’Th2e’, ’Th3e’,
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[’TO’, °Thl’, °'Th2’, °'Th3’, ’'Thle’,

msn,

T3, °'Th3
"Th2e ’,

w0’ , ’whl



>, °wh2’, ’wh3’]

# meas_set = [’TO’, 'T’, °'Thl’, ’'Th2’, ’'Th3’, ’alpha’, °’

beta ’]

# %% Load the dataset

data = pd.read_excel(csv_data)

data_test = pd.read_excel(csv_test_data)

dataset = np.array(data)

data_test = np.array(data_test)

np.random. shuffle (dataset) # randomise the data

np.random. shuffle (data_test) # randomise the data

# %% Split into input (X) and output (Y) variables

n_measurements = len(meas_set) #number of

measurements vary between 7 and 9

n_parameters = 11

n_outputs = 2

X = dataset[:, O:n_measurements ]

Y = dataset[:, n_measurements+n_parameters:n_measurements

+n_parameters+n_outputs ]

X = tf .keras.utils .normalize (X)

# 9%

# tensorboard_callback = tf.keras. callbacks. TensorBoard (

log_dir="logs /OneModel {} ’. format(int(time.time())))

# earlystopping_callback = tf.keras.callbacks.

EarlyStopping (monitor="val_loss ’, patience=200)
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reg = StructuredDataRegressor(max_trials=15, directory=o0s
.path.normpath(’C:/’), overwrite=True, loss="

mean_squared_error’, tuner=’bayesian’)

reg.fit(x=X, y=Y, verbose=2, batch_size=40, epochs=25)

model = reg.export_model ()

## model. predict(x_train)

# 9%% Test Data

test_rows = 999

random_test_data = np.random.randint(0, len(data)-
test_rows)

# random_test_data = 1

test_x = data_test[random_test_data:random_test_data +
test_rows , O:n_measurements ]

test_p = data_test[random_test_data:random_test_data +
test_rows , n_measurements:n_measurements+n_parameters ]

test_y = data_test[random_test_data:random_test_data +
test_rows , n_measurements+n_parameters:n_measurements+
n_parameters+3]

test_ju = data_test[random_test_data:random_test_data +
test_rows , n_measurements+n_parameters+3:
n_measurements+n_parameters+5]

test_b = data_test[random_test_data:random_test_data +

test_rows , n_measurements+n_parameters +5 1]
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test_ul = test_y[:, O]

test_u2 = test_y|[:, 1]

test_u = test_y[:, 0:2]

test_j = test_y[:, 2]

test_x = tf.keras.utils.normalize(test_xX)

# %% Prediction — open loop

prediction_open_loop = model. predict(test_x)

J_open_loop = []

for i in range(test_rows):

plant_open_loop = hex3_output(prediction_open_loop|[i

I, test_p[i])

J_open_loop.append(plant_open_loop[0])

# 9%% Prediction — closed loop

tol = le-7
meas_dict = {’TO’ .0, 'T1”
3,
"Th1”> : 4, ’Th2’
Thle’ : 7,
"Th2e’ : 8, ’Th3e’
oo 11,
'wh2’ 12, ’wh3’
beta’ : 15,
w0’ : 16}
iteration_limit = 100

J_closed_loop = []
Ju = [[1], []]
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prediction_closed_loop_ul

Il
—
—

prediction_closed_loop_u2

1l
—
[—

alpha = 0.5
cl_fail =0

for i in range(test_rows):

it = 0 # iteration checker

measurement_list = test_x[i:i+1] # to get 7 by 1
instead of 7 by 0

u_opt0 = [1, 1]

u_opt = model. predict(measurement_list)[0]

u_imp = u_opt

while (abs(u_imp[0] — u_opt0O[0]) > tol or abs(u_imp
[1] — u_optO[1]) > tol) and it < iteration_limit:

u_opt0 = u_imp

# get measurements from plant based on prev u_opt
# this will give us new measurements

plant = hex3_output(u_imp, test_pl[i])

plant] = plant[0]

plant_measurements = plant[1] # jascke herel23 ,

# collect the measurements relevant to our case

# delete previous measurements

measurement_list = []

for measurement in meas_set:
measurement_list.append( plant_measurements [

meas_dict[ measurement]] )

# add bias to our plant measurements and

normalize
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for j in range(len(measurement_list)):
measurement_list[j] += test_b[i][]]
measurement_list = tf .keras.utils.normalize (

measurement_list)

# calculate new u_opt based on measurements
u_opt = model. predict(measurement_list) [0]

u_imp = u_opt0 + (u_opt — u_optO)=alpha

# iteration control
it += 1
print (i, it)
if it == iteration_limit:
print (*Closed—loop._analysis.did_not.converge.
for_datarow:_{0:d}_({1:d}_+_1)" " .format(i +
1, 1))
cl_fail += 1
prediction_closed_loop_ul .append(u_imp[0])
prediction_closed_loop_u2.append(u_imp[1])
J = hex3_output(u_imp, test_p[i])[0]
J_closed_loop .append(J)

# Gradiant approximation
# J is the newest calculated temperature, plant] is
the previous one

# obtained in the loop

# Ju_meas = hex3_output(u_imp, test_p[i])[l]

TO = plant_measurements [ meas_dict[ *TO]]

J_ul = ((plant_measurements [ meas_dict[ ’T1 ]] — TO) =2
/ (plant_measurements [ meas_dict[ "Thl1’]] - TO)) -

((plant_measurements [ meas_dict[ T3’ ]] — TO)==2 / (
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plant_measurements [ meas_dict[ "Th3’]]- TO0))

J_u2 = (plant_measurements[meas_dict[ T2 ]] — TO) =2
/ (plant_measurements [ meas_dict[ 'Th2’]] - TO) - (
plant_measurements [ meas_dict[ T3’ ]] — TO)==2 / (
plant_measurements [ meas_dict[ "Th3’]]- TO)

Ju[O].append(J_ul)

Ju[l].append(J_u2)

# 9%% Compute loss
Open_loop_loss = 0
Closed_loop_loss = 0
for i in range(len(test_x)):
Open_loop_loss += —(J_open_loop[i] — test_j[i])

Closed_loop_loss += —(J_closed_loop[i] - test_j[i])

# Mean squared error
MSE_J_ol = mean_squared_error(test_j , J_open_loop)

MSE_J_cl = mean_squared_error(test_j , J_closed_loop)

# 9%% Plotting

# Plot prediction of ul_opt : open loop — bisecting line

pyplot.title (’Prediction._of_ul_opt_—_open.loop’)

pyplot.scatter (test_ul , prediction_open_loop[:,0], c="k’,
s=3)

bisecting_line = np.linspace (min(test_ul ), max(test_ul))

pyplot.plot(bisecting_line , bisecting_line , c="k’)

pyplot.xlabel (’u_optl_real )

pyplot.ylabel ("u_optl_predicted )

pyplot.show ()
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# Plot prediction of ul_opt : closed loop — bisecting
line

pyplot. title (’Prediction._of_ul_opt_.—_closed._loop’)

pyplot.scatter (test_ul , prediction_closed_loop_ul , c="k’,
s=3)

bisecting_line = np.linspace(min(test_ul ), max(test_ul))

pyplot.plot(bisecting_line , bisecting_line , c="k’)

pyplot. xlabel (’u_optl_real )

pyplot.ylabel ("u_optl_predicted )

pyplot.show ()

# Plot prediction of u2_opt : open loop — bisecting line

pyplot.title (’Prediction._of_u2_opt_—_open.loop’)

pyplot.scatter (test_u2 , prediction_open_loop[:,1], c="k’,
s=3)

bisecting_line = np.linspace (min(test_u2), max(test_u2))

pyplot.plot(bisecting_line , bisecting_line , c="k’)

pyplot. xlabel ("u_opt2_.real ”)

pyplot.ylabel ("u_opt2_predicted )

pyplot.show ()

# Plot prediction of ul_opt : closed loop — bisecting
line

pyplot. title (’Prediction_of_u2_opt_—_closed_loop’)

pyplot.scatter (test_u2 , prediction_closed_loop_u2, c="k’,
s=3)

bisecting_line = np.linspace (min(test_u2), max(test_u2))

pyplot.plot(bisecting_line , bisecting_line , c="k’)

pyplot. xlabel (’u_opt2_real )

pyplot.ylabel ("u_opt2_predicted )
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pyplot.

show ()

#Plot prediction of J_opt

pyplot.

title (’Prediction_of_J_opt.closed —loop._.—_[MS{0:d}]

>.format(msn))

pyplot.scatter (test_j ,J_closed_loop, c="k’, s=3)

bisecting_line = np.linspace(min(test_j), max(test_j))

pyplot.plot(bisecting_line , bisecting_line , c="k’)

pyplot.xlabel (’Data_Sample_Index )

pyplot.ylabel (’J_opt’)

pyplot.legend ()

pyplot.show ()

pyplot. hist([a-b for (a, b) in zip(test_j, J_open_loop)],
bins=50, color="k’, ec=’white’)

pyplot. xlabel (’Predicted_residual ’)

pyplot.ylabel (’Frequency )

pyplot.show ()

pyplot. hist([a-b for (a, b) in zip(test_j, J_closed_loop)
], bins=50, color="k’, ec=’white’)

pyplot. xlabel (’Predicted_residual ’)

pyplot.ylabel (’Frequency ’)

pyplot.show ()

model . summary ()

print (MSE_J ol, MSE_J cl, ”\n”, cl_fail)
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A.2 Python Code 2

Listing 2: Prediction of optimal inputs - two models

# —+— coding: utf -8 —=—

3999

Created on Thu Nov 5 18:16:39 2020

@author: Espen

DOUBLE Al MODEL

3999

import numpy as np
import pandas as pd
import tensorflow as tf

import os as os

from autokeras import StructuredDataRegressor
from matplotlib import pyplot
from sklearn.metrics import mean_squared_error

from hex3_output import hex3_output

# %% Meta
# def neural_network_model(csv_data, csv_test_data , msn,

meas_set):

csv_data = ’meas_4_opt. xlsx’
csv_test_data = 'meas_4_test_opt.xlsx’
msn = 4

# meas_set = [’TO’, °'T1’, ’Thl’, °’T2’, ’'Th2’, ’T3’, ’Th3
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']
# meas_set

"Th3e ’]

# meas_set = [’TO’, ’'T’, 'Thle’, ’'Th2e’, ’'Th3e’,

whil’, ’'wh2’, ’'wh3’]

[’TO’, °Thl’, °'Th2’, °'Th3’, ’'Thle’,

"Th2e ’,

,WO ),

meas_set = ['TO’, 'T’, *Thl’, *Th2’, °Th3’, ’alpha’, °

beta ’ ]

# %% Load the dataset

data = pd.read_excel(csv_data)

data_test = pd.read_excel(csv_test_data)
dataset = np.array(data)

data_test = np.array(data_test)

np.random. shuffle (dataset) # randomise the data

np.random. shuffle (data_test) # randomise the data

# %% Split into input (X) and output (Y) variables

n_measurements = len(meas_set) #number of

measurements vary between 7 and 9

n_parameters = 11

n_outputs = 2

X = dataset[:, O:n_measurements ]

Y_1 = dataset[:, n_measurements+n_parameters:

n_measurements+n_parameters+n_outputs —1]
Y_2 = dataset[:, n_measurements+n_parameters+1:

n_measurements+n_parameters+n_outputs ]

X = tf .keras.utils .normalize (X)
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# %% Autokeras

regl = StructuredDataRegressor(max_trials=15, directory=
os.path.normpath(’C:/ail ’), overwrite=True, loss=’
mean_squared_error’, tuner=’greedy’)

regl . fit(x=X, y=Y_1, verbose=2, batch_size=40, epochs=25)

modell = regl.export_model ()

modell . summary ()

reg2 = StructuredDataRegressor(max_trials=15, directory=
os.path.normpath(’C:/ai2’), overwrite=True, loss="’
mean_squared_error’, tuner=’greedy’)

reg?2.fit(x=X, y=Y_2, verbose=2, batch_size=40, epochs=25)

model2 = reg2.export_model ()

model2 . summary ()

# 9%% Test Data

test_rows = 999

random_test_data = np.random.randint(0, len(data)-
test_rows)

# random_test_data = 1

test_x = data_test[random_test_data:random_test_data +
test_rows , O:n_measurements |

test_p = data_test[random_test_data:random_test_data +
test_rows , n_measurements:n_measurements+n_parameters ]

test_y = data_test[random_test_data:random_test_data +
test_rows , n_measurements+n_parameters:n_measurements+
n_parameters+3]

test_ju = data_test[random_test_data:random_test_data +
test_rows , n_measurements+n_parameters+3:

n_measurements+n_parameters+5]
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test_b = data_test[random_test_data:random_test_data +

test_rows ,

test_ul = test_y[:, O]

test_u2 = test_y[:, 1]

test_u = test_y[:, 0:2]

test_j = test_y[:, 2]

test_x = tf.keras.utils.normalize(test_x)

# 9%% Prediction — open loop
prediction_open_loop_1 = modell. predict(test_x)

prediction_open_loop_2 = model2. predict(test_x)

J_open_loop = []

for i in range(test_rows):

n_measurements+n_parameters +5:]

plant_open_loop = hex3_output ([ prediction_open_loop_1

[il,

prediction_open_loop_2[i]],

test_pl[i])

J_open_loop.append(plant_open_loop [0][0])

# 9%% Prediction — closed loop

tol = le-7
meas_dict = {’TO’ 0, 'T1”
3,
"Th1”  : 4, °Th2’
Thle’ : 7,
"Th2e’ : 8, ’Th3e’
oo 11,
'wh2’  : 12, ’wh3’
beta’ : 15,
w0’ : 16}
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iteration_limit = 100

J_closed_loop = []

prediction_closed_loop_ul

Il
—_
—

prediction_closed_loop_u2
alpha = 0.5
cl_fail =0

1l
—
[—

for i in range(test_rows):

it = 0 # iteration checker

measurement_list = test_x[i:i+1] # to get 7 by 1
instead of 7 by 0

# measurement_list = np.asarray(measurement_list)

u_opt0 = [1, 1]

u_optl = modell. predict(measurement_list)[0][0]

u_opt2 = model2. predict (measurement_list)[0][0]

u_imp = [u_optl, u_opt2]

while (abs(u_imp[0] — u_optO[0]) > tol or abs(u_imp
[1] — u_optO[1]) > tol) and it < iteration_limit:

u_opt0 = u_imp

# get measurements from plant based on prev u_opt
# this will give us new measurements

plant = hex3_output(u_imp, test_pl[il])

plant] = plant[0]

plant_measurements = plant[1] # jascke herel23 ,

# collect the measurements relevant to our case
# delete previous measurements
measurement_list = []

for measurement in meas_set:
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measurement_list.append( plant_measurements [

meas_dict[ measurement]] )

# add bias to our plant measurements and
normalize

for j in range(len(measurement_list)):
measurement_list[j] += test_b[i][]]

measurement_list = tf.keras.utils.normalize (

measurement_list)

# calculate new u_opt based on measurements

u_optl = modell. predict(measurement_list)[0][0]

u_opt2 = model2. predict(measurement_list)[0][0]
u_impl = u_optO[0] + (u_optl — u_optO[0])=+alpha
u_imp2 = u_optO[1] + (u_opt2 — u_optO[1])=alpha
u_imp = [u_impl, u_imp2]

# iteration control
it += 1
print(i, it)
if it == iteration_limit:
cl_fail += 1
print (*Closed-loop.analysis.did_not.converge.

for_datarow:_{0:d}_({1:d}_+_1)"  .format(i +
1, 1))

prediction_closed_loop_ul .append (u_imp[0])

prediction_closed_loop_u2.append(u_imp[1])

hex3_output(u_imp, test_p[i])[O0]

J_closed_loop.append(J)
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# Gradiant approximation

# J is the newest calculated temperature, plant] is
the previous one

# obtained in the loop

# Ju_meas = hex3_output(u_imp, test_p[i])[l]

TO = plant_measurements [ meas_dict[ *TO’]]

J_ul = ((plant_measurements[ meas_dict[ ’T1 ]J] — TO) =2
/ (plant_measurements [meas_dict[ Thl1’]] - TO)) -
((plant_measurements [ meas_dict[ T3 ]] — TO)=*=2 / (
plant_measurements [ meas_dict[ "Th3’]]- TO0))

J_u2 = (plant_measurements[meas_dict[ T2 ]] — TO) =2
/ (plant_measurements [ meas_dict[ 'Th2’]] - TO) - (
plant_measurements [ meas_dict[ T3’ ]] — TO)==2 / (
plant_measurements [ meas_dict[ "Th3’]]- TO)

Ju[O].append(J_ul)

Ju[l].append(J_u2)

# %% Compute loss

Open_loop_loss = 0

Closed_loop_loss = 0

i in range(len(test_x)):
Open_loop_loss += —(J_open_loop[i] — test_j[i])

Closed_loop_loss += —(J_closed_loop[i] — test_j[i])

# Mean squared error

MSE_J_ol = mean_squared_error(test_j , J_open_loop)

MSE_J_cl = mean_squared_error(test_j , J_closed_loop)

# 9%% Plotting

60



# Plot prediction of ul_opt : open loop — bisecting line

pyplot. title (’Prediction_of_ul_opt_—_open_loop’)

pyplot.scatter (test_ul , prediction_open_loop_1, c="k’, s
=3)

bisecting_line = np.linspace (min(test_ul ), max(test_ul))

pyplot.plot(bisecting_line , bisecting_line , c="k’)

pyplot.xlabel (’u_optl_real )

pyplot.ylabel ("u_optl_predicted )

pyplot.show ()

# Plot prediction of ul_opt : closed loop — bisecting
line

pyplot. title (’Prediction_of_ul_opt_—_closed_loop’)

pyplot.scatter (test_ul , prediction_closed_loop_ul , c="k’,
s=3)

bisecting_line = np.linspace (min(test_ul ), max(test_ul))

pyplot.plot(bisecting_line , bisecting_line , c="k’)

pyplot. xlabel ("u_optl_real )

pyplot.ylabel (’u_optl _predicted’)

pyplot.show ()

# Plot prediction of u2_opt : open loop — bisecting line

pyplot.title (’Prediction._of_u2_opt_—_open.loop’)

pyplot.scatter (test_u2 , prediction_open_loop_2, c="k’, s
=3)

bisecting_line = np.linspace (min(test_u2), max(test_u2))

pyplot.plot(bisecting_line , bisecting_line , c="k’)

pyplot. xlabel(’u_opt2_real )

pyplot.ylabel ("u_opt2_predicted ’)

pyplot.show ()
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# Plot prediction of ul_opt : closed loop — bisecting
line

pyplot. title (’Prediction_of_u2_opt_—_closed_loop’)

pyplot.scatter (test_u2 , prediction_closed_loop_u2, c="k’,
s=3)

bisecting_line = np.linspace (min(test_u2), max(test_u2))

pyplot.plot(bisecting_line , bisecting_line , c="k’)

pyplot. xlabel (’u_opt2_real )

pyplot.ylabel ("u_opt2_predicted )

pyplot.show ()

#Plot prediction of J_opt

pyplot.title (’Prediction_of_J_opt.closed —loop.—_[MS{0:d}]
>.format (msn))

pyplot.scatter (test_j ,J_closed_loop, c="k’, s=3)

bisecting_line = np.linspace(min(test_j), max(test_j))

pyplot.plot(bisecting_line , bisecting_line , c="k’)

pyplot. xlabel (’Data.Sample_Index )

pyplot.ylabel (’J_opt’)

pyplot.legend ()

pyplot.show ()

pyplot. hist([a-b for (a, b) in zip(test_j, J_open_loop)],
bins=50, color="k’, ec=’white’)

pyplot. xlabel (’Predicted_residual ’)

pyplot.ylabel (’Frequency )

pyplot.show ()

pyplot. hist([a-b for (a, b) in zip(test_j, J_closed_loop)
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], bins=50, range=(0, 0.4), color="k’, ec=’white’)
pyplot. xlabel (’Predicted_residual ’)
pyplot.ylabel (’Frequency )
pyplot.show ()

modell . summary ()
model2 . summary ()

print (MSE_J ol, MSE_J cl, ”\n”, cl_fail)
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A.3 Python Code 3

Listing 3: Prediction of temperature

# —+— coding: utf-8 —x—

3999

Created on Sat Nov 28 10:13:34 2020

@author: Sommerjobb

999

import numpy as np
import pandas as pd
import tensorflow as tf

import os as os

from autokeras import StructuredDataRegressor
from matplotlib import pyplot
from sklearn.metrics import mean_squared_error

from hex3_output import hex3_output

# 9%% Meta
# def neural_network_model(csv_data, csv_test_data , msn,

meas_set):

csv_data = ’grad_meas_3.xlsx’

csv_test_data = ’“grad_meas_3_test.xlsx’
csv_opt_split = “grad_meas_3_opt_split. xlsx’
msn = 3

# meas_set [’TO0’, °’T1’, ’'Thl’, °'T2’, °’Th2’, ’'T3’, ’Th3

y)

# meas_set

[’TO’, °Thl’, °'Th2’, °'Th3’, ’'Thle’, ’'Th2e’,
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"Th3e ’]

meas_set = [’TO’, ’T’, ’Thle’, ’Th2e’, 'Th3e’, 'wO0’, ’whl
>, wh2’, ’wh3’]

# meas_set = [’TO’, 'T’, °'Thl’, ’'Th2’, ’'Th3’, ’alpha’,
beta ’]

# 9%% Load the dataset

data = pd.read_excel(csv_data)

data_test = pd.read_excel(csv_test_data)

data_opt_split = pd.read_excel(csv_opt_split, header=None
)

dataset = np.array(data, dtype=np.float32)

data_test = np.array(data_test, dtype=np.float32)

data_opt_split = np.array(data_opt_split, dtype=np.
float32)

np.random. shuffle (dataset) # randomise the data

# np.random. shuffle(data_test) # randomise the data

# %% Split into input (X) and output (Y) variables

n_measurements = len(meas_set) #number of
measurements vary between 7 and 9

n_parameters = 11

n_outputs = 1

X = dataset[:, O:n_measurements] # float32 is the
standard for tensorflow

Y = dataset[:, n_measurements+n_parameters+2:

n_measurements+n_parameters+2+n_outputs ]

X = tf .keras.utils .normalize (X)
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XY =X

XY[:,:=1] =Y

XY=XY[XY[:,0].argsort ()]

# %% Autokeras

reg = StructuredDataRegressor(max_trials=3,seed=1,
directory=o0s.path.normpath(’C:/ Temperature ’),
overwrite=True, loss=’mean_squared_error’, tuner=’
bayesian )

reg.fit(x=XY[0:400, 0:8], y=XY[0:400, 8], validation_data
=(XY[400:600, 0:8], XY[400:600, 8]), verbose=2,
batch_size =40, epochs=25)

model = reg.export_model ()

model . summary ()

# 9%% Test Data

test_rows = 15

random_test_data = np.random.randint(0, len(data)-
test_rows)

# random_test_data = 1

test_x = data_test[random_test_data:random_test_data +
test_rows , O:n_measurements |

test_p = data_test[random_test_data:random_test_data +
test_rows , n_measurements:n_measurements+n_parameters ]

test_y = data_test[random_test_data:random_test_data +
test_rows , n_measurements+n_parameters:n_measurements+
n_parameters+3]

test_ju = data_test[random_test_data:random_test_data +

test_rows , n_measurements+n_parameters+3:
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n_measurements+n_parameters+5]
test_b = data_test[random_test_data:random_test_data +

test_rows , n_measurements+n_parameters+5:]

test_opt_split = data_opt_split[:, random_test_data:

random_test_data + test_rows ]

test_ul = test_y[:, O]

test_u2 = test_y|[:, 1]

test_u = test_y[:, 0:2]

test_j = test_y[:, 2]

test_x = tf.keras.utils.normalize(test_x)

# %% Prediction — open loop

prediction_open_loop = reg.predict(test_x)

# pyplot. scatter (prediction_open_loop , test_j)

# bisecting_line = np.linspace(min(test_j), max(test_j))
# pyplot. plot(bisecting_line , bisecting_line)

# pyplot.show()

# pyplot. title ( Prediction of ul_opt — open loop ’)

mse_ol = mean_squared_error(test_j , prediction_open_loop)

pyplot. title (’Prediction_of_temperature_.—_MSE.=_{0:.4f}".
format (mse_ol))

pyplot.scatter (test_j , prediction_open_loop, c¢="k’, s=3)

bisecting_line = np.linspace(min(test_j), max(test_j))

pyplot.plot(bisecting_line , bisecting_line , c="k’)

pyplot. xlabel (’Actual_temperature ’)

pyplot.ylabel (’Predicted _temperature ’)
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pyplot.show ()

# %% Closed loop analysis

prediction_closed_loop []

[]
0

J_opt_list

invalid_tot

tol = 0.5
iteration_limit = 500
delta = 0.005
meas_dict = {’TO’ 0, 'T1” 1, 'T2” 2, ’T3”
3,
"Th1”’ 4, *Th2’ 5, ’Th3”’ 6, "’
Thle’ 7,
"Th2e’ 8, 'Th3e’ 9, 'T’ 10, ’whl
oo 11,
"wh2”’ 12, ’wh3’ 13, ’alpha”’ 14, °
beta’ 15,
w0’ 16}

for i in range(test_rows):

0

it =

plant_opt

test_opt_split[l, i]]

J_opt plant_opt[0]

J_opt_list.append(J_opt)

0.401851312
0.505778624

ul_0
u2_ 0

hex3_output ([ test_opt_split [0,

i]’
, test_pf[i])

# these values are taken from

# grad_meas_1_opt. xlxs
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J_0 = 132.3978169

ul = 0.10
u2 = 0.60
J = prediction_open_loop[i]
Jul = (J - J_0)/(ul - ul_0)
Ju2 = (J - J_0)/(u2 — u2_0)

while ((abs(Jul) > tol or abs(Ju2) > tol) and it <
iteration_limit):
HA#AHAHHHHH R AR ARG R AR AR AR AR A##H Update based on ul
HHARHHH AR HHHARARAH B R AR AR AR
# update O-data
ul_0 = ul
J.O =1

# update inputs

ul += deltasnp.sign(Jul[0])

if ul > 1 or ul < 0:
print(”Invalid_ul:.”, ul)
invalid _tot += 1

break

# get new measurements from plant
plant = hex3_output([ul, u2], test_pl[i])
plant] = plant[0]

plant_measurements = plant[1]

# collect the measurements relevant to our case

# delete previous measurements
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measurement_list = []
for measurement in meas_set:
measurement_list.append( plant_measurements [

meas_dict[ measurement]] )

# add bias to our plant measurements and
normalize

for j in range(len(measurement_list)):
measurement_list[j] += test_b[i][]]

measurement_list = tf.keras.utils.normalize (
measurement_list)

# measurement_list = np.array(measurement_list
dtype=np. float32)

J = model. predict (measurement_list) [0]

if (ul - ul_0) == 0: # avoid divison by zero
Jul = np.array ([0])

else:
Jul = (J-J_0)/(ul - ul_0)

print(J, J_O, abs(J - J_0), Jul, Ju2, ul, u2)

# iteration control

it += 1

print(i, it, ’ul’)

if it == iteration_limit:

print ( 'Closed—-loop.analysis.did_not.converge.

for_.datarow:.{0:d}_({1:d}_+_1)" . format(i +
1, 1))

RARABABHHHAHARAR AR AR AR AR AR #H##H Update based on u?2
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HARBABARAH AR AR AR AR AR HARARS

u2_ 0 = u2
J.O =1
u2 += delta=np.sign(Ju2[0])

if u2 > 1 or u2 < O:
print(”Invalid_u2:.7, u2, 1)
invalid_tot += 1

break

# get new measurements from plant
plant = hex3_output([ul, u2], test_pl[il])
plant] = plant[O0]

plant_measurements = plant[1]

# collect the measurements relevant to our case

# delete previous measurements

measurement_list = []

for measurement in meas_set:
measurement_list.append( plant_measurements [

meas_dict[ measurement]] )

# add bias to our plant measurements and
normalize

for j in range(len(measurement_list)):
measurement_list[j] += test_b[i][]]

measurement_list = tf .keras.utils.normalize (
measurement_list)

# measurement_list = np.array(measurement_list
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dtype=np. float32)

J = model. predict (measurement_list) [0]

if (u2 — u2_0) == 0: # avoid divison by zero
Ju2 = np.array ([0])

else:
Ju2 = (J-J_0)/(u2 - u2_0)

print(J, J_0, abs(J - J_0), Jul, Ju2, ul, u2)

# iteration control

it += 1

print (i, it, ’‘u2’)

if it == iteration_limit:

print (*Closed—loop._analysis.did_not.converge.

for_datarow:_{0:d}_({1:d}_+_1)" " .format(i +
1, 1))

prediction_closed_loop .append(plant])

print(”Invalid:_.”, invalid_tot)

#remove nan
it_nan = 0
while it_nan < len(prediction_closed_loop):
if np.isnan(prediction_closed_loop[it_nan]):
del prediction_closed_loop[it_nan]
del J_opt_list[it_nan]
it_nan —= 1

it_nan += 1

#plot
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mse = mean_squared_error(J_opt_list ,
prediction_closed_loop)

pyplot. title (’Temperature_achieved.in_closed_loop_.—_MSE_=
.{0:.4f}’ . format(mse))

pyplot.scatter (J_opt_list, prediction_closed_loop, c=’k’
, $=3)

bisecting_line = np.linspace (min(J_opt_list), max(
J_opt_list))

pyplot.plot(bisecting_line , bisecting_line, c¢="k’)

pyplot.xlabel (’Optimal_temperature ’)

pyplot.ylabel (’Achieved_temperature ’)

pyplot.show ()

res = [a-b for (a, b) in zip(J_opt_list,
prediction_closed_loop)]

pyplot. hist(res, bins=50, color="k’, ec=’white’, range
=(0,1))

pyplot. xlabel (’Predicted_residual ’)

pyplot.ylabel (’Frequency )

pyplot.show ()

# 9%% Compute loss

Open_loop_loss = 0

for i in range(len(test_x)):

Open_loop_loss += —(prediction_open_loop[i] — test_j)

# Mean squared error

MSE_J_ol = mean_squared_error(test_j ,

prediction_open_loop)
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# 9%% Print model summary

model . summary ()
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A4 Python Code 4

Listing 4: Prediction of ¢

# —+— coding: utf -8 —=—

3999

Created on Tue Nov 17 21:00:05 2020

@author: Espen Karlsen

999

import numpy as np

import pandas as pd

import tensorflow as tf

import itertools as itt

import os as os

import time as time

from autokeras import StructuredDataRegressor
from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import SGD

from keras import metrics

from matplotlib import pyplot

from sklearn.preprocessing import normalize
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error

from hex3_output import hex3_output

# %% Meta
# def neural_network_model(csv_data, csv_test_data , msn,
meas_set):

csv_data = ’grad_meas_4.xlsx’
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]

csv_test_data = ’“grad_meas_4_test. xIsx

“grad_meas_4_opt_split. xlsx’

csv_opt_split
msn = 4

[’ro’, ’'ri’, °'Thi’, ’T2’, °'Th2’, ’'T3’, °'Th3

# meas_set
']

# meas_set [’TO’, °Thl’, °'Th2’, °'Th3’, ’'Thle’, ’'Th2e’,

"Th3e ’]

# meas_set = ['TO’, 'T’, 'Thle’, °'Th2e’, ’'Th3e’, ’'w0’, ’
whil’, ’wh2’, ’wh3’]

meas_set = [’TO’, °T*, Thl1’, *Th2’, °*Th3’, ’alpha’, ~

beta ]

# %% Load the dataset

data = pd.read_excel(csv_data)

data_test = pd.read_excel(csv_test_data)

data_opt_split = pd.read_excel(csv_opt_split, header=None
)

# data = data.drop(data[(data[ u_opt_2°] > 0.59) & (data
[u_opt_2°] < 0.61)].index)

#Dinesh proposal

dataset = np.array(data)

data_test = np.array(data_test)

data_opt_split = np.array(data_opt_split, dtype=np.
float32)

np.random. shuffle (dataset) # randomise the data

# np.random. shuffle(data_test) # randomise the data

# %% Split into input (X) and output (Y) variables

n_measurements = len(meas_set) #number of
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measurements vary between 7 and 9

n_parameters = 11

n_outputs = 2

X = dataset[:, O:n_measurements ]

Y = dataset[:, n_measurements+n_parameters+3:

n_measurements+n_parameters+3+n_outputs ]

X = tf .keras.utils .normalize (X)

# 9%

# tensorboard_callback = tf.keras. callbacks. TensorBoard(
log_dir="logs /OneModel {} ’. format(int(time.time())))

# earlystopping_callback = tf.keras.callbacks.

EarlyStopping (monitor="val_loss ’, patience=200)

reg = StructuredDataRegressor(max_trials=15, directory=os

.path.normpath(’C:/’), overwrite=True, loss="

mean_squared_error’, tuner=’bayesian’)

reg.fit(x=X, y=Y, verbose=2, batch_size=40, epochs=25)

model = reg.export_model ()

model . summary ()

## model. predict(x_train)

# %% Test Data
test_rows = 999
random_test_data = np.random.randint (0, len(data)-

test_rows)
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# random_test_data = 1

test_x = data_test[random_test_data:random_test_data +
test_rows , O:n_measurements |

test_p = data_test[random_test_data:random_test_data +
test_rows , n_measurements:n_measurements+n_parameters ]

test_y = data_test[random_test_data:random_test_data +
test_rows , n_measurements+n_parameters:n_measurements+
n_parameters+3]

test_ju = data_test[random_test_data:random_test_data +
test_rows , n_measurements+n_parameters+3:
n_measurements+n_parameters+5]

test_b = data_test[random_test_data:random_test_data +

test_rows , n_measurements+n_parameters +5:]

test_opt_split = data_opt_split[:, random_test_data:

random_test_data + test_rows ]

test_ul = test_y[:, O]

test_u2 = test_y|[:, 1]

test_u = test_y[:, 0:2]

test_j = test_y[:, 2]

test_x = tf.keras.utils.normalize(test_x)

# %% Prediction — open loop

prediction_open_loop = model. predict(test_x)

mse_ol_1 = mean_squared_error(test_jul[:,0],
prediction_open_loop [:,0])

mse_ol_2 = mean_squared_error(test_jul[:,1],

78



prediction_open_loop [:,1])

pyplot.scatter (prediction_open_loop[:,0], test_jul[:,0],
c="k’, s=3)

pyplot. title (’Prediction_of .Jul —_MSE_.=.{0:.4f} . format(
mse_ol_1))

bisecting_line = np.linspace (min(test_jul[:,0]), max(
test_jul[:,0]))

pyplot.plot(bisecting_line , bisecting_line, c¢="k’)

pyplot.xlabel (’Predicted_Jul ’)

pyplot. xlabel (’Real_Jul )

pyplot.show ()

pyplot.scatter (prediction_open_loop[:,1], test_jul:,1],
c="k’, s=3)

pyplot. title (’Prediction_of_Ju2 .- MSE.=_{0:.4f}’.format (
mse_ol_2))

bisecting_line = np.linspace (min(test_jul[:,1]), max(
test_jul[:,1]))

pyplot.plot(bisecting_line , bisecting_line, c¢="k’)

pyplot.xlabel (’Predicted_Ju2’)

pyplot. xlabel (’Real_Ju2’)

pyplot.show ()

# 9%% Prediction — closed loop

invalid_tot = 0

iteration_limit = 200
tol = 0.5
delta = 0.001
meas_dict = {’TO’ .0, 'T1° 1, 'T2° 2, 'T3°
3,
Thl1> : 4, Th2” : 5, *Th3”’ 6, 7
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Thle’ : 7,

"Th2e’ : 8, Th3e’ : 9, T’ : 10, ’whl
oo 11,

>wh2”’ 12, ’wh3”’ : 13, “alpha’ : 14, °
beta’ : 15,

w0’ : 16}

J_closed_loop = []
J_opt_list = []

1l
—
[—

prediction_closed_loop_ul

I
—
—

prediction_closed_loop_u2

alpha = 0.5

for i in range(test_rows):

it =0

plant_opt = hex3_output([test_opt_split[0, i],
test_opt_split[1l, i]], test_pl[i])

J_opt = plant_opt[0]

J_opt_list.append(J_opt)

ul 0
u2_0
J 0 = 132.3978169

0.401851312 # these values are taken from

0.505778624 # grad_meas_1_opt. xlxs

0.10
0.60

ul

u2

Jul = prediction_open_loop[i, O]

Ju2 = prediction_open_loop[i, 1]
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while ((abs(Jul) > tol or abs(Ju2) > tol) and it <

iteration_limit):

ul —= deltaxnp.sign(Jul)

if ul > 1 or ul < 0:
print(”Invalid_ul:.”, ul)
invalid _tot += 1

break

u2 —= deltaxnp.sign(Ju2)

if u2 > 1 or u2 < 0:
print(”Invalid_u2:.7, u2, 1)
invalid _tot += 1
break
# get measurements from plant based on prev u_opt
# this will give us new measurements
plant = hex3_output([ul, u2], test_pl[i])
plant] = plant[0]

plant_measurements = plant[1] # jascke herel23 ,

# collect the measurements relevant to our case

# delete previous measurements

measurement_list = []

for measurement in meas_set:
measurement_list.append( plant_measurements [

meas_dict[ measurement]] )

# add bias to our plant measurements and
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normalize
for j in range(len(measurement_list)):
measurement_list[j] += test_b[i][]]
measurement_list = tf.keras.utils.normalize (

measurement_list)

Ju = model. predict(measurement_list)[0]

Jul = Jul[O0]

Ju2 = Jul[l]

# iteration control

it += 1

print (i, it, ul, u2, Jul, Ju2)

if it == iteration_limit:

print (*Closed—loop._analysis.did_not.converge.

for_datarow:_{0:d}_({1:d}_+_1)" " .format(i +
1, 1))

prediction_closed_loop_ul .append(ul)
prediction_closed_loop_u2.append(u2)

J = hex3_output([ul, u2], test_p[i])[O0]
J_closed_loop .append(J)

print(”Invalid:_.”, invalid_tot)

mse = mean_squared_error(J_opt_list, J_closed_loop)

pyplot. title (’Temperature_achieved_in_closed._loop_—_MSE_=
~.{0:.4f}’ . format(mse))

pyplot.scatter (J_opt_list, J_closed_loop, c¢="k’, s=3)

bisecting_line = np.linspace (min(J_opt_list), max(
J_opt_list))

pyplot.plot(bisecting_line , bisecting_line, c¢="k’)
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pyplot.xlabel (’Optimal_temperature ’)
pyplot.ylabel (’Achieved_.temperature ’)
pyplot.show ()

res = [a-b for (a, b) in zip(J_opt_list, J_closed_loop)]

>

pyplot. hist(res, bins=50, color="k’, ec=’white’, range
=(0,1))

pyplot. xlabel (’Predicted_residual ’)

pyplot.ylabel (’Frequency )

pyplot.show ()

model . summary ()
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A.5 Python Code 5

Listing 5: Prediction of ¢ - two models

# —+— coding: utf -8 —=—

3999

Created on Sat Dec 12 11:12:57 2020

@author: Sommerjobb

999

import numpy as np

import pandas as pd

import tensorflow as tf

import itertools as itt

import os as os

import time as time

from autokeras import StructuredDataRegressor
from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import SGD

from keras import metrics

from matplotlib import pyplot

from sklearn.preprocessing import normalize
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error

from hex3_output import hex3_output

# 9% Meta
# def neural_network_model(csv_data, csv_test_data , msn,

meas_set):
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)

csv_data = ’grad_meas_4.xlsx

csv_test_data = ’“grad_meas_4_test. xlsx’
csv_opt_split = “grad_meas_4_opt_split. xlsx’
msn = 4

# meas_set = [’TO’, °'T1’, °'Thl’, ’'T2’, ’'Th2’, ’T3’, ’Th3
']

# meas_set
"Th3e ’]

# meas_set = ['TO’, °'T’, ’'Thle’, ’'Th2e’, ’'Th3e’, ’'w0’, °’

[’TO’, °Thl’, °'Th2’, °'Th3’, ’'Thle’, ’Th2e’,

whil’, °‘wh2’, ’‘wh3’]
meas_set = [’T0’, °T’, *Thl’, *Th2’, °*Th3’, ’alpha’, °

beta ]

# %% Load the dataset

data = pd.read_excel(csv_data)

data_test = pd.read_excel(csv_test_data)

data_opt_split = pd.read_excel(csv_opt_split, header=None
)

# data = data.drop(data[(data[ u_opt_2°] > 0.59) & (data
[u_opt_2’] < 0.61)].index)

#Dinesh proposal

dataset = np.array(data)

data_test = np.array(data_test)

data_opt_split = np.array(data_opt_split, dtype=np.
float32)

np.random. shuffle (dataset) # randomise the data

# np.random. shuffle(data_test) # randomise the data

# 9%% Split into input (X) and output (Y) variables
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n_measurements = len(meas_set) #number of

measurements vary between 7 and 9

n_parameters = 11
n_outputs = 2
X = dataset[:, O:n_measurements ]|

Y1l = dataset[:, -2]
Y2 = dataset[:, -—1]

X = tf .keras.utils .normalize (X)

# 9%

# tensorboard_callback = tf. keras. callbacks. TensorBoard (
log_dir="logs /OneModel {} . format(int(time.time())))

# earlystopping_callback = tf. keras.callbacks.

EarlyStopping (monitor="val_loss ’, patience=200)

regl = StructuredDataRegressor(max_trials=15, directory=
os.path.normpath(’C:/GradOne’), overwrite=True, loss=’
mean_squared_error’, tuner=’bayesian’)

regl.fit(x=X, y=Y1, verbose=2, batch_size=2, epochs=35)

modell = regl.export_model ()

modell . summary ()

reg2 = StructuredDataRegressor(max_trials=15, directory=
os.path.normpath(’C:/GradTwo’), overwrite=True, loss=’
mean_squared_error’, tuner=’bayesian’)

reg?2.fit(x=X, y=Y2, verbose=2, batch_size=2, epochs=35)

model2 = reg2.export_model ()

model2 . summary ()

## model. predict(x_train)
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# %% Test Data

test_rows = 15

random_test_data = np.random.randint (0, len(data)-
test_rows)

# random _test_data = 1

test_x = data_test[random_test_data:random_test_data +
test_rows , O:n_measurements |

test_p = data_test[random_test_data:random_test_data +
test_rows , n_measurements:n_measurements+n_parameters ]

test_y = data_test[random_test_data:random_test_data +
test_rows , n_measurements+n_parameters:n_measurements+
n_parameters+3]

test_ju = data_test[random_test_data:random_test_data +
test_rows , n_measurements+n_parameters+3:
n_measurements+n_parameters+5]

test_b = data_test[random_test_data:random_test_data +

test_rows , n_measurements+n_parameters+5:]

test_opt_split = data_opt_split[:, random_test_data:

random_test_data + test_rows ]

test_ul = test_y|[:, O]

test_u2 = test_y|[:, 1]

test_u = test_y[:, 0:2]

test_j = test_y[:, 2]

test_x = tf.keras.utils.normalize(test_x)
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# 9%% Prediction — open loop

prediction_open_loopl = modell.predict(test_x)

prediction_open_loop2 = model2. predict(test_x)

mse_ol_1 = mean_squared_error(test_jul[:,0],
prediction_open_loopl)

mse_ol_2 = mean_squared_error(test_jul[:,1],

prediction_open_loop2)

pyplot.scatter (prediction_open_loopl , test_jul[:,0], c¢=’k
>, s=3)

pyplot. title (’Prediction_of Jul —_MSE_.=.{0:.4f} . format(
mse_ol_1))

bisecting_line = np.linspace (min(test_jul[:,0]), max(
test_jul[:,0]))

pyplot.plot(bisecting_line , bisecting_line, c¢="k’)

pyplot.xlabel (’Predicted_Jul *)

pyplot. xlabel (’Real_Jul ’)

pyplot.show ()

pyplot.scatter (prediction_open_loop2, test_jul[:,1], c="k
7, s=3)

pyplot. title (’Prediction_of_Ju2 .- MSE.=_{0:.4f}’.format(
mse_ol_2))

bisecting_line = np.linspace (min(test_jul[:,1]), max(
test_jul[:,1]))

pyplot.plot(bisecting_line , bisecting_line, c¢="k’)

pyplot.xlabel (’Predicted_Ju2’)

pyplot. xlabel (’Real_Ju2’)

pyplot.show ()

# 9%% Prediction — closed loop

invalid_tot = 0
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iteration_limit = 200
tol = 0.5
delta = 0.001
meas_dict = {°TO’ 0, 'T1” 1, 'T2° 2, ’T3”
3,
"Th1” 4, *Th2’ 5, ’Th3” 6,
Thle’ 7,
"Th2e’ 8, ’Th3e’ 9, T’ 10, ’whl
oo 11,
"wh2’ 12, ’wh3’ 13, ’alpha’ 14, °
beta’ 15,
w0’ 16}

J_closed_loop []

[]

prediction_closed_loop_ul

J_opt_list

prediction_closed_loop_u2

0.5

alpha

in range(test_rows):

0

for i

it =

plant_opt

test_opt_split[1, i]]

J_opt plant_opt[0]

J_opt_list.append(J_opt)

ul_0 = 0.401851312
u2_0 = 0.505778624
J_0 = 132.3978169

hex3_output ([ test_opt_split [0,

i]’
, test_pf[i])

# these values are taken from

# grad_meas_1_opt. xlxs
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ul = 0.10
u2 = 0.60
Jul = prediction_open_loopl[i]
Ju2 = prediction_open_loop2[i]

while ((abs(Jul) > tol or abs(Ju2) > tol) and it <

iteration_limit):

ul —= deltaxnp.sign(Jul)

if ul > 1 or ul < 0:
print(”Invalid_ul:.”, ul)
invalid_tot += 1

break

u2 —= delta=np.sign(Ju2)

if u2 > 1 or u2 < 0:
print(”Invalid_u2:.”, u2, i)
invalid _tot += 1
break
# get measurements from plant based on prev u_opt
# this will give us new measurements
plant = hex3_output([ul, u2], test_pl[i])
plant] = plant[0]

plant_measurements = plant[1] # jascke herel23 ,

# collect the measurements relevant to our case

# delete previous measurements
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measurement_list = []
check = 0
for measurement in meas_set:
if check == 1 or check == 3 or check ==
measurement_list.append (
plant_measurements [ meas_dict[
measurement ]]J[0] )
else:
measurement_list.append (
plant_measurements [ meas_dict][
measurement |] )
# add bias to our plant measurements and
normalize
for j in range(len(measurement_list)):
measurement_list[j] += test_b[i][]]
measurement_list = tf.keras.utils.normalize (
measurement_list)
measurement_list = np.asarray(measurement_list).
astype (’float32’)
Jul = modell. predict(measurement_list)[0]
Ju2 = model2. predict(measurement_list)[0]
# iteration control
it += 1
print(i, it, ul, u2, Jul, Ju2)

if it == iteration_limit:

print ( 'Closed—-loop.analysis.did_not.converge.

for_datarow:_{0:d}_({1:d}_+_1)  .format(1i +

1, 1))

prediction_closed_loop_ul .append(ul)

prediction_closed_loop_u2.append(u2)
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J = hex3_output([ul, u2], test_p[i])[0]
J_closed_loop .append(J)

print(”Invalid:_.”, invalid_tot)

mse = mean_squared_error(J_opt_list, J_closed_loop)

pyplot. title (’Temperature_achieved_in_closed._loop_—_MSE_=
~.{0:.4f}’ . format(mse))

pyplot.scatter (J_opt_list, J_closed_loop, c¢="k’, s=3)

bisecting_line = np.linspace (min(J_opt_list), max(
J_opt_list))

pyplot.plot(bisecting_line , bisecting_line, c¢="k’)

pyplot.xlabel (’Optimal_temperature ’)

pyplot.ylabel (’Achieved_temperature ’)

pyplot.show ()

res = [(a-b)[0] for (a, b) in zip(J_opt_list,
J_closed_loop)]

pyplot. hist(res, bins=50, color="k’, ec=’white’, range
=(0,5))

pyplot. xlabel (’Predicted_residual ’)

pyplot.ylabel (’Frequency ’)

pyplot.show ()

modell . summary ()

model2 . summary ()
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B Appendix - Case Study Figures
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Figure 28: Prediction of vy in open
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B.2 Casel.3
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Figure 34: Prediction of oy in open

loop.
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loop.
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B.3 Caseld
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Figure 42: Prediction of «ay; in closed

loop.
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B.4 Case?2.2
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Figure 48: Prediction of ay; in closed

loop.
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Figure 47: Prediction of f3,,; in open

loop.
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Figure 49: Prediction of 3, in closed

loop.
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B.5 Case2.3
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B.6 Case24
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Figure 60: Prediction of ay; in closed

loop.
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loop.
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Figure 61: Prediction of 3, in closed

loop.
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B.7 Case 3.2
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Figure 64: Prediction of 7" in open loop.
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Figure 65: Residual between optimal temperature and achieved temperature in closed

loop.
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B.8 Case 3.3

Prediction of temperature - MSE = 39.7386
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Figure 66: Prediction of 7" in open loop.

Frequency
B 8 & & B =#

=
=]

(=]

0.0 02 04 06 08 10
Predicted residual

Figure 67: Residual between optimal temperature and achieved temperature in closed

loop.
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B.9 Case34

Prediction of temperature - MSE = 40.6803
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Figure 68: Prediction of 7" in open loop.
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Figure 69: Residual between optimal temperature and achieved temperature in closed

loop.
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B.10 Case4.1
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Figure 70: Prediction of c; in open loop.
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Figure 71: Prediction of c» in open loop.
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Figure 72: Closed loop analysis.
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Figure 73: Prediction of ¢; in open loop.
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Figure 74: Prediction of co in open loop.
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Figure 75: Closed loop analysis.

B.12 Case 4.4

Prediction of Jul - MSE = 691.0348 Prediction of Ju2 - MSE = 1267.9439
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Figure 76: Prediction of ¢; in open loop. Figure 77: Prediction of ¢; in open loop.
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Figure 78: Closed loop analysis.

B.13 Case 5.2

Prediction of Jul - MSE = 172.8231
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Figure 79: Prediction of ¢; in open loop.
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Prediction of JuZ - MSE = 1151.5299
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Figure 80: Prediction of ¢; in open loop.
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Figure 81: Closed loop analysis.

B.14 Case5.3

Prediction of Jul - MSE = 733.8387
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Figure 82: Prediction of c; in open loop.
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Prediction of Ju2 - MSE = 1017.1094
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Figure 83: Prediction of ¢; in open loop.
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B.15 Case54
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Figure 85: Prediction of ¢; in open loop.
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Figure 86: Prediction of ¢; in open loop.

shows how 5.4 created illogical inputs which achieved temperatures of larger

value than the optimal value.
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Temperature achieved in closed loop - MSE = 1882 0421
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Figure 87: Closed loop analysis.
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