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Abstract

Severe slugging in the North Sea offshore oil production is a costly problem, which can
cause plant trips and even shut-downs. Slugging appears in risers connected to subsea pipelines.
Making a steady-state model of a riser-pipeline system using machine learning, with experi-
mental data from a small-scale anti-slug control rig was the objective of this project. A vir-
tual flowmeter model was made where gas and liquid flow rates were predicted from pressure
measurements and the choke valve position. Multiphase flow measurements are important to
optimise oil and gas production, and virtual flowmeters could be a beneficial alternative to mul-
tiphase flow meters. Feedforward neural network models were used to make the virtual flow
meter model. Three approaches were tried, making a baseline model, combining first principle
models with deep learning and transfer learning where a model trained on simulation data was
used as the source model. The baseline model was good at predicting the liquid flow rate but
failed at predicting the gas flow rate. The bad prediction of the gas flow rate was attributed to
the data set having too little variation in the gas flow rate. Combining a first principle model
with deep learning did not improve predictions of the gas flow rate, neither did the transfer
models. To conclude, modelling the multiphase flow rates using deep learning was not suc-
cessful, as none of the approaches managed to model the gas flow rate. The liquid flow rate
was however convincingly estimated. To improve the performance producing more lab data,
covering a larger gas flow range is recommended.

i



Contents
Table of Contents iii

List of Tables iv

List of Figures vii

Abbreviations viii

List of Symbols ix

1 Introduction 1

2 Theory 1
2.1 Slug flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1.1 Riser slugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Anti-slug control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Jahanshahis simplified four-state model . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Surrogate Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Method 6

4 Baseline feedforward neural network model 7
4.1 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Feature engineering 12
5.1 Global feedforward network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1.1 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Transfer learning 16
6.1 First approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Second approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Third approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Conclusion 26
7.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography 28

ii



Appendix i

A Esmaeils four-state model i
A.1 Dynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A.2 Tuning parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A.3 Outflow conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A.4 Pipeline model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
A.5 Riser model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
A.6 Gas flow model at riser base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
A.7 Liquid flow model at riser base . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
A.8 Phase distribution model at outlet choke valve . . . . . . . . . . . . . . . . . . . . iv

B Simplified model iv

C Experimental setup v

D Online radial basis function network vi

E Training set prediction plots viii
E.1 Baseline model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
E.2 Feature model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
E.3 Transfer models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

F Pressure drop plots xix

iii



List of Tables
4.1 Performance table for the three models . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1 Performance table for the updated model, comparing with the performance of sim-

plified FPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.1 Performance table for the two transfer model compared with the simulation model. 18
6.2 Performance table for the transfer model compared with the simulation model . . . 21
6.3 Performance table for the transfer model compared with the simulation model. . . . 23

iv



List of Figures
2.1 Riser slug cycle[7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Pipeline-riser system[6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Graphical representation of a feedforward neural network . . . . . . . . . . . . . . 6
4.1 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow

rates, for a model trained on raw experimental data, on the test set. Inputs, targets
and predictions were filtered with a low-pass filter with a cut-off frequency of 0.2 Hz 9

4.2 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for a model trained on filtered input data, on the test set. Inputs, targets and
predictions were filtered with a low-pass filter with a cut-off frequency of 0.2 Hz . . 10

4.3 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for a model trained on averaged input data, on the test set. Inputs, targets and
predictions were filtered with a low-pass filter with a cut-off frequency of 0.2 Hz . . 11

5.1 Updated predicted gas and liquid flow rates plotted against experimental gas and
liquid flow rates and the simplified FPM gas and liquid flow rate predictions, for
bias prediction model, for test set. Inputs, targets, FPM predictions and updated
predictions were filtered with a low-pass filter with a cut-off frequency of 0.2 Hz . . 14

5.2 Updated predicted gas and liquid flow rates plotted against experimental gas and
liquid flow rates, for bias prediction model, for the test set. Inputs, targets, and
updated predictions were filtered with a low-pass filter with a cut-off frequency of
0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.1 Three ways transfer learning can improve learning[11] . . . . . . . . . . . . . . . 17
6.2 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow

rates, for the simulation model, on the test set. Inputs, targets and predictions were
filtered with a low-pass filter with a cut-off frequency of 0.2 Hz . . . . . . . . . . . 18

6.3 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for a transfer model where the last layer was retrained on experimental data,
on the test set. Inputs, targets and predictions were filtered with a low-pass filter
with a cut-off frequency of 0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.4 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for a transfer model where the last two layers were retrained on experimental
data, on the test set. Inputs, targets and predictions were filtered with a low-pass
filter with a cut-off frequency of 0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . 20

6.5 Transfer learning approach two model structure . . . . . . . . . . . . . . . . . . . 21
6.6 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow

rates, for a transfer model which uses predictions from simulation network as extra
input, on the test set. Inputs, targets and predictions were filtered with a low-pass
filter with a cut-off frequency of 0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . 22

v



6.7 Updated predicted gas and liquid flow rates plotted against experimental gas and
liquid flow rates and the simulation model gas and liquid flow rate predictions, for a
bias prediction model, on the test set. Inputs, targets, simulation model predictions
and updated predictions were filtered with a low-pass filter with a cut-off frequency
of 0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.8 Updated predicted gas and liquid flow rates plotted against experimental gas and
liquid flow rates, for a bias prediction model, on the test set. Inputs, targets and
updated predictions were filtered with a low-pass filter with a cut-off frequency of
0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

C.1 Experimental setup of Anti-slug control rig . . . . . . . . . . . . . . . . . . . . . v
D.1 Performance plot of the average updated prediction for each steady-state section

compared with the average first principle model predictions. . . . . . . . . . . . . vii
E.1 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow

rates, for model trained on raw experimental data, on the train set. Inputs, targets
and predictions were filtered with a low-pass filter with a cut-off frequency of 0.2 Hz viii

E.2 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for model trained on filtered input data, on the train set. Inputs, targets and
predictions were filtered with a low-pass filter with a cut-off frequency of 0.2 Hz . . ix

E.3 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for model trained on averaged input data, on the train set. Inputs, targets and
predictions were filtered with a low-pass filter with a cut-off frequency of 0.2 Hz . . x

E.4 Updated predicted gas and liquid flow rates plotted against experimental gas and
liquid flow rates and the simplified FPM gas and liquid flow rate predictions, for
bias prediction model, on the train set. Inputs, targets, FPM predictions and updated
predictions were filtered with a low-pass filter with a cut-off frequency of 0.2 Hz . . xi

E.5 Updated predicted gas and liquid flow rates plotted against experimental gas and
liquid flow rates, for bias prediction model, on the train set. Inputs, targets, and
updated predictions were filtered with a low-pass filter with a cut-off frequency of
0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

E.6 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for the simulation model, on the the train set. Inputs, targets and predictions
were filtered with a low-pass filter with a cut-off frequency of 0.2 Hz . . . . . . . . xiii

E.7 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for a transfer model where the last layer was retrained on experimental data,
on the train set. Inputs, targets and predictions were filtered with a low-pass filter
with a cut-off frequency of 0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

E.8 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for a transfer model where the last two layers were retrained on experimental
data, on the train set. Inputs, targets and predictions were filtered with a low-pass
filter with a cut-off frequency of 0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . xv

vi



E.9 Predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for a transfer model which uses predictions from simulation network as extra
input, on the train set. Inputs, targets and predictions were filtered with a low-pass
filter with a cut-off frequency of 0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . xvi

E.10 Updated predicted gas and liquid flow rates plotted against experimental gas and
liquid flow rates and the simulation model gas and liquid flow rate predictions, for a
bias prediction model, on the train set. Inputs, targets, simulation model predictions
and updated predictions were filtered with a low-pass filter with a cut-off frequency
of 0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

E.11 Updated predicted gas and liquid flow rates plotted against experimental gas and
liquid flow rates, for a bias prediction model, on the train set. Inputs, targets and
updated predictions were filtered with a low-pass filter with a cut-off frequency of
0.2 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

F.1 Pressure drop over pipeline and riser for test data set. The pressure drops were
filtered with a low-pass filter with a cut-off frequency of 0.2 Hz . . . . . . . . . . . xix

F.2 Pressure drop over pipeline and riser for train data set. The pressure drops were
filtered with a low-pass filter with a cut-off frequency of 0.2 Hz . . . . . . . . . . . xx

vii



Abbreviations

MSE = mean square error
FPM = first principle model
FFNN = feed forward neural network
ReLu = rectified linear units

viii



List of Symbols

Z = Top-side choke valve opening
Qg = Volumetric gas flow rate
Ql = Volumetric liquid flow rate
P1 = Buffer tank pressure
P2 = Riser top point pressure
P3 = Mixing point pressure
P4 = Riser low point pressure
mg,p = mass of gas in pipeline
ml,p = mass of liquid in pipeline
mg,r = mass of gas in riser
ml,r = mass of liquid in riser
X = Input data set
Y = Output data set
x = Input
y = Output

ix



1 Introduction
In this project, the objective was to make a steady-state model, of a slug-flow system using feedfor-
ward neural networks. Different pressure measurements in the system alongside the topside choke
valve position was used to predict volumetric gas and liquid flow. The data-driven deep learning
model were made using data produced in a small-scale anti slug lab at NTNU. The data used in
this project was produced as a part of a summer job for SUBPRO. Three approaches to solving this
problem would be attempted:

• First approach: Make a baseline model, which is a basic feedforward model, made using only
experimental data.

• Second approach: Combine first principle knowledge about the system with a feedforward
model.

• Third approach: Transfer learning, make simulation data, make a model using simulation
data, and repurpose this model to make a model with the experimental data.

The type of model which is to be made is a steady-state virtual flow meter. A virtual flow meter
is a mathematical model which estimates multiphase flow rates from available measurements like
pressure and temperature[2]. In industry multiphase flow meters are commonly used to estimate
multiphase flow, but as they must be physically installed in the pipelines, and maintained, it would
be beneficial to model multiphase flow from more available measurements, like pressure measure-
ments. Accurate flow measurements are important for optimal operation of oil and gas production.

2 Theory

2.1 Slug flow
Slug flow is a multiphase flow regime characterised by varying flow through the cross-sections in
pipelines. In multiphase flows, the different phases can spatially distribute itself in many different
ways dependent on flow conditions, like flow velocity and pipeline angles. These are called flow
regimes. There are many different flow regimes in pipelines, some of these are stratified flow, an-
nular flow, bubble flow, slug flow and churn flow. There are different kinds of slug flow.[9]

• Hydrodynamic slugging, this is a form of slugging which develops in horizontal pipes.
These slugs are created when liquid waves in the gas-liquid interface of the pipelines grow
big enough to cover the cross-section of the pipeline and close it off.

• Riser slugging, this is a kind of slugging which develops in the bottom of the riser, where
it is connected to a down-sloping pipeline. The intersection is blocked by liquid and a slug
created which grows up in the riser and back in the pipeline. The slug continuous to grow
until the pressure upstream is large enough to blow the slug out of the riser.
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• Terrain slugging is slugging which occur in pipelines going along rough seafloor. Liquid
accumulates in the inclined sections and slugs are built.

• Transient slugging is slugging related to changing operating conditions, like changing flow
rates, which happens during start-up and shut-down.

2.1.1 Riser slugging

Riser slugging is the most serious slug flow regime for oil/water systems. In the most extreme
cases, the riser slugs can be several hundred meters long and fill the entire riser. The separators in
the topside facilities are not large enough to handle such large slugs, so if a slug of this size enters
the separator units it can cause a plant trip and stop production. Smaller slugs are also problematic
as it will lead to poor separation and increased wear and tear on the equipment.[9] Frequent changes
in flow cause unwanted flaring and lower the capacity of the separator and compressor units.[5]

The behaviour of riser slugging can be described by a four-step cycle as seen in figure 2.1.

• Step 1 Liquid accumulates in the low point of the riser, due to gravity and blocks the pipe.
For this to happen the gas and liquid velocities must be sufficiently low.

• Step 2 When the hydrostatic head of the liquid increases faster then the pressure drop over
the riser, the slug grows.

• Step 3 The pressure drop over the riser overcomes the hydrostatic head and the liquid is
pushed out of the riser. This is accompanied by a pressure drop, which leads to the gas
expanding and increased velocities in the riser.

• Step 4 Gas starts penetrating the slug and the driving force is too low to push out the remain-
ing liquid. The remaining liquid accumulates in the low point of the riser and the cycle is
restarted.

2



Figure 2.1: Riser slug cycle[7]

2.2 Anti-slug control
Due to the unstable flow behaviour of riser slugging it is necessary to counteract it in some capacity.
The conventional ways of counteracting slugging are using slug catchers and topside Choking[6].
A slug catcher is a large tank between the riser and topside processing facility which acts as a buffer
for the slugs. This solution is more of a design problem than control problem, and a slug catcher
requires a lot of space on the topside facility which might not be available. By closing the topside
choke valve severe slugging can be counteracted but at the cost of increasing the back pressures of
the subsea oil wells. This reduces the production rate. Alternatively, automatic anti-slug control
can be applied. By using anti-slug control the flow regime boundaries can be moved such that
slugging regions can become non-slugging regions. This way slugging can be counteracted with-
out significantly reducing the production rate. To design good control systems, good models are
needed.

2.3 Jahanshahis simplified four-state model
A simplified first principle model describing cyclic slug flow was previously formulated by Jahan-
shahi and Skogestad.[6] This model describes the system using four states, the four states being:

• mg,p: mass of gas in pipeline

• ml,p: mass of liquid in pipeline

• mg,r: mass of gas in riser

• ml,r: mass of liquid in riser

3



The changes in the states are described using simple mass balances over each phase in each subsec-
tion. The phase distributions in the sections of the model are found using simple relations, with the
gas and liquid flows at the riser base being described by an orifice equation. Four tuning parameters
are used to fit the model to different riser-pipeline systems. The rest of the model can be found in
Appendix A.

Figure 2.2: Pipeline-riser system[6]

2.4 Surrogate Modeling
An alternative to first principle models is data-driven surrogate models. A surrogate model is a
simple numerical representation of a complex model[10]. Surrogate models are also called reduced
order models or response surfaces as complex state-space models can be reduced to simple input-
output mappings. The benefits of surrogate models are that they can reduce the computational cost,
making computations faster. This can be important in applications like model predictive control
or real-time optimization. Many different functions can be used to make surrogate models like
artificial neural networks.

2.5 Machine learning
Machine learning is the study of algorithms which makes computers able to learn how to solve
tasks without having been explicitly programmed. For a computer to solve a task it needs some
algorithm, but for some tasks, algorithms are difficult to develop. Machine learning is trying to
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make a model by having the computer learn from a data set called ”training data”[1]. In machine
learning, a model is defined with some parameters, and during training, the optimal parameters are
found. Statistics are used to build models, and the models can be evaluated by testing them on a
”test data set”, which is data the model has not seen during training.

There are different kinds of learning: supervised learning which can include classification and
regression, unsupervised learning and reinforcement learning to name a few[1]. In supervised
learning, the model is trained using input data X with accompanying output labels Y, to find some
input-output mapping. In classification problems, the goal is to assign an input to a finite number
of classes. In regression problems, the goal is to predict continuous outputs based on inputs. In
unsupervised learning output labels Y, are not available, only input data X. The goal is then instead
to find patterns in the input data, like clustering where the goal is to find clusters in the input data.
In reinforcement learning, the output of the model is a sequence of actions. So the success of the
algorithm is if the actions the model perform leads to achieving some goal. This could, for example,
be to make a model which had the goal to control the level of a tank by manipulating a valve.

2.6 Deep learning
Deep learning is a class of machine learning algorithms which is based on artificial neural networks.
The simplest deep learning model is the feedforward neural network also called deep feedforward
network or multilayer perceptron[4]. These models are called feedforward networks because in-
formation flows forward through the network from input x to output y. A network with feedback
in which information flows backwards is called recurrent network. A FFNN is composed of sev-
eral functions in a chain, with each functions acting as a layer of the model, with the number of
functions determining the depth of the model. The function of the FFNN model with n layers is,

y = f(x; θ) = fn(fn−1(...f 2(f 1(x)))) (2.1)

zi = f i(zi−1; θi) = gi(W
T
i zi−1 + bi) (2.2)

where y is the output of the model, x is the input of the model, f i representing the ith layer of the
model, zi being the output of the ith layer, and the input for layer i+1, gi is the activation function
of layer i, θ being the parameters of the model, with θi being the parameters of layer i consisting off
Wi being the matrix containing the weights from layer i-1 to layer i, and bi being the biases of each
layer. In this case z0 = x, and zn = y. x is the input layer of the model, also called the feature layer.
The final layer fn is called the output layer. The layers in between the input layer and the output
layer are called hidden layers as their outputs are hidden. The units in the layers are called neurons,
and the amount of neurons in each layer is the width of the layer. A graphical representation of a
FFNN can be seen in figure 2.3
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Figure 2.3: Graphical representation of a feedforward neural network

For FFNN there are many different choices for activation functions g(z). For regression models a
linear activation function is used for the output layer. For the hidden layers a number of different
activation functions can be used. A much used activation function is the rectified linear units acti-
vation function[4]. The form of the ReLu activation function is g(z) = max(0,z). Other activation
functions used for hidden layers are Sigmoid g(z) = 1

1+e−z , or the hyperbolic tangent function g(z)

= tanh(z). Another activation function is the radial basis function, gi(z) = exp (−β ‖x− ci‖2),
with ci being the center vector for neuron i. Parameters ci and β must be found during training.

To train a FFNN to solve some task a performance measurement is needed so that the model can
evaluate its own performance. A loss function is needed. For regression FFNN models mean square
error is used. There are different kinds of training algorithms used, with stochastic gradient descent
and its variants being the most used[4]. In this algorithm, a minibatch of the training data is used to
calculate the gradient per step. An important parameter of this algorithm is the learning rate εwhich
affects how much the model parameters are updated per step. The gradient is calculated using an
algorithm called back-propagation in which information flows backwards through the network to
calculate the gradient. Adam is a variant of the stochastic gradient descent algorithm, which gets
its name from adaptive moment[4]. It is an adaptive learning rate optimization algorithm. This
algorithm uses the concept of momentum where gradient information from previous steps is used
when updating the parameters.

3 Method
The goal of this project was to make a data-driven steady-state model of a pipeline riser system,
based on experimental data. Different approaches to achieve this goal were attempted. The ma-
chine learning technique used to achieve this goal is deep learning. A virtual flowmeter model
was constructed, where the steady-state gas and liquid flow rates were predicted from steady-state
pressure measurements and the choke-valve opening.

The data used to make the models was experimental data produced at a small scale Anti-slug control
rig at the Department of Chemical Engineering at NTNU. The data was produced in the summer
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as a part of a summer internship for SUBPRO. The data produced was time-series data, where the
topside choke valve opening Z, volumetric gas flow rate Qg, volumetric liquid flow rate Ql, buffer
tank pressure P1, mixing point pressure P3, riser bottom pressure P4 and riser top pressure P2
was measured. Most of the data was measured with a sampling rate of 10 Hz, but some data was
measured with a sampling rate of 1 Hz.

Since a steady-state model was made, only a subsection of the experimental data was used. Slug-
ging occurs when the topside choke valve opening is greater than 15 %, so the data with the topside
choke valve opening of 15 or less was used as the data set for this project. Transient data was
removed from the data set, and the data set was divided into 63 different time series sections which
were assumed to be at steady state. The data sections have varying length both in terms of the
number of data points, and the time duration of each. The total amount of data points was 227011,
with a total time of the data being 34285 seconds or around 9.5 hours. The difference between the
number of data points and time duration is due to the sampling rate not being the same for all the
sections when producing the experimental data.

To model the experimental pipeline-riser system, three approaches were tried. The first approach
was to create a deep learning model using only experimental data. The second approach was
to combine deep learning with a first principle model. The third approach was to create a deep
learning model using simulation data and use this for transfer learning.

4 Baseline feedforward neural network model
The first approach was to create a baseline model of the system. A baseline model is a model made
using only raw data. To create a deep FFNN the data set needs to be split into a training set used
to train the model, and a test set used to evaluate the performance of the model. The data set was
divided such that the training set contained the data where Z was 10% or lower, with the test set
then containing the remaining data where Z was 11% or higher. The training set then consists of
43 of the 63-time series sections, 156120 data points, with a time duration of 23066 seconds or
6.4 hours. The test set consist of 20 of the 63-time series sections, 70891 data points, with a time
duration of 11219 seconds or 3.1 hours. This division of the total data set into training and test set
was used for all three approaches.

The experimental data contains a lot of noise and some preprocessing might be appropriate. In
addition to noise, the assumption of steady-state is not necessarily true for all the data, as the sys-
tem is still in the process of settling in many cases in the experimental data. While some noise
can improve performance and make the model more robust[4], too much noise could make train-
ing difficult. A low pass filter could be used to reduce the amount of high-frequency noise in the
data. Alternatively, since the data was divided into time series sections which are assumed to be at
steady-state, the mean of one or more input or output features could be used for the entire section.
Three different ways of preprocessing the data were applied to the training data set, in this project.
The first was to simply not do anything and train on unaltered experimental data. The second was
to filter the input features Z, P1, P2, P3 and P4 with a first-order low pass filter with a cut off
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frequency of 0.2 Hz, while leaving the output unaltered. The third way was to use the average for
each time series section for the entire section, for the input features.

A deep FFNN was used to make a data-driven model. To train the model the Adam optimization
algorithm was used, with a learning rate of 0.001. This was used for all deep learning models in
this project. Different architectures, epochs, and batch sizes were tested for the three different ways
of preprocessing the training data set. For the unaltered data set the model used had a depth of 15
hidden layers, each 10 nodes wide with ReLu activation function. For the filtered data set and the
data set with the mean input features, the model used had a depth of 10 hidden layers, each 10
nodes wide with ReLu activation function. All models trained for 2 epochs with a batch size of 32.
Standardising the training data before training such that it has 0 mean and a standard deviation of
1 was attempted but resulted in bad generalisation and was therefore not considered.

Mean square error was used as the loss function when training the models. To evaluate the models
MSE is used as well, but since there is noise in the experimental outputs Qg and Ql(targets), and
noise in the inputs which was expected to propagate to the model predictions, filtered input data
was used to make predictions when calculating the MSE. The predictions and targets was filtered
using a low pass filter with a cut-off frequency of 0.2 Hz. The Tensorflow software in python was
used to train and evaluate deep learning models in this project.

4.1 Results and Discussion
The three models were evaluated and their performance is given in table 4.1.

Table 4.1: Performance table for the three models

preprocessing
test MSE train MSE

Qg Ql total Qg Ql total

Raw data 9.6× 10−3 3.5× 10−2 4.5× 10−2 9.6× 10−3 9.7× 10−2 1.0× 10−1

Filtered 9.2× 10−3 2.0× 10−2 3.0× 10−2 3.7× 10−3 5.7× 10−2 6.1× 10−2

Averaged 1.0× 10−2 2.7× 10−2 3.8× 10−2 4.2× 10−3 5.5× 10−2 5.9× 10−2

From the performance table, the model trained on filtered input features generalized the best, having
the lowest MSE for both outputs. The model trained on unfiltered experimental data generalized
the worst in total but performed slightly better at predicting Qg than the model trained on the mean
input features. The model trained on unfiltered experimental data performed the worst on the train
data set as well, performing the worst for both outputs. The model trained on mean input features
performed overall the best on the train data set, but not a lot better than the model trained on filtered
input data.
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Figure 4.1: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for a
model trained on raw experimental data, on the test set. Inputs, targets and predictions were filtered with a
low-pass filter with a cut-off frequency of 0.2Hz

In figure 4.1 the predicted Qg and Ql from the model trained on unfiltered input data, is plotted
against the experimental data, for the test data. The prediction was made with filtered input data,
and both the prediction and experimental data was filtered as well to make the plot more readable.
As can be seen in the figure the model predicts Qg to be slightly less than 4.5 l/min for all the
different input combinations, which leads to a small offset when the target is 4.5 l/min, but a
large offset when it is 4 l/min. It appears the model fits Qg to just one value instead of finding a
relation between input and output. For Ql the prediction was much better. There were oscillatory
predictions, but these probably propagate from the oscillatory pressure measurements. The network
was quite good at predicting Ql, learning the trends, but it under predicts for the larger flow rates.
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Figure 4.2: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for
a model trained on filtered input data, on the test set. Inputs, targets and predictions were filtered with a
low-pass filter with a cut-off frequency of 0.2Hz

In figure 4.2 the predictedQg andQl from the model trained on filtered input data, is plotted against
the experimental data, for the test data. The prediction was made with filtered input data, and both
the prediction and experimental data was filtered as well to make the plot more readable. For this
model as well Qg was predicted to be almost 4.5 l/min, but with a smaller offset. Just as with the
other model, no relation between different inputs and output was found for Qg The model is good
at predicting Ql, being quite a lot better at predicting the larger flow rates compared to the model
trained on unfiltered data.
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Figure 4.3: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for
a model trained on averaged input data, on the test set. Inputs, targets and predictions were filtered with a
low-pass filter with a cut-off frequency of 0.2Hz

In figure 4.3 the predicted Qg and Ql from the model trained on mean input data, is plotted against
the experimental data, for the test data. The prediction was made with filtered input data, and both
the prediction and experimental data is filtered as well to make the plot more readable. Unlike the
two previous models, a relation between the prediction of Qg and the inputs can be seen. When P1
increases so do the prediction of Qg ever so slightly. This change was, however, unrelated to target.
As with the two other models it predicts Qg to be around 4.5 l/min no matter the input, not finding
a proper relation between input and output as well. The prediction of Ql was quite good, but not
as good as the model trained on filtered input features. The model under predicts Ql for high flow
rates, and over predicts Ql when Z is 15%.

All three models had the same problem when trying to predict Qg, where no relation between input
and output was found. This can be seen in figure 4.2 when the target value for Qg was 4 l/min as
the prediction continued to be the same as when the target is 4.5 l/min. The reason for this lack
of a proper input-output mapping for Qg is that the train data set is not diverse enough. For most
of the experimental data, the value of Qg was 4.5 l/min, so expecting to map a relation which can
barely be found in the experimental data is optimistic. The prediction of Ql was, however, good
for all three baseline models trained, but from both the performance table and the plots the form
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of preprocessing which gave the best prediction on the test set was to filter the input training data.
Because of this, filtering the input data was done for the rest of the models trained in this project.

5 Feature engineering
The second approach was to attempt to combine a FPM - first principle model with deep learning.
This is similar to feature engineering, which is a process of using knowledge about the data and
the system being modelled, to create inputs/features which makes generalization better[3]. This
could include input/feature selection in which the most important inputs for prediction are found,
or using knowledge about the system to transform raw data into more useful data.

In this project a FPM was combined with machine learning, by constructing a data-driven model
which predicts the model bias of a simplified FPM:

ŷ = y∗(u) + φ(u) (5.1)

Where ŷ is the updated prediction, y∗ is the FPM prediction, φ is the bias prediction and u is model
inputs.

Jahanshahis simplified four-state model was used as the basis for the FPM. Jahanshahis simplified
four-state model is a dynamic state-space model, where the pressures Pin, Prb and Prt are the
outputs, and the mass flow rates wg,in and wl,in, and the topside choke valve opening Z are the
inputs. Some modifications and simplifications must be made to the model before it can be used
for the intended purpose. First of all the object of this project was to predict the flow rates from
pressure and choke valve opening measurements, so the modified model must have Z, Pin, Prb and
Prt as inputs, and wg,in and wl,in as outputs. To achieve this the simplifying assumptions that there
is no friction in the pipeline or riser was made. The dynamic model was simplified to a steady-state
model by setting the differential equations to zero. This gives:

wg,in = wg,rb = wg,out = wg

wl,in = wl,rb = wl,out = wl

With this relation the model was rewritten as a set of equations in which wg and wl could be
calculated from Z, Pin, Prb and Prt. The rest of the simplified model can be found in Appendix B

5.1 Global feedforward network
With a simplified first principle model using pressure data and choke valve opening as input, pre-
dicting flow rates, a deep FFNN model modelling the model bias can be constructed. As with the
approach of making a model only using lab data, some preprocessing of the data is necessary. The
first principle model requires Pin to be greater than Prb which in turn must be greater than Prt,
to solve. In this model P1 will be used as Pin, P2 will be used as Prt and P4 will be used as
Prt. Due to noise in the experimental data, P4 is occasionally greater than P1 and likewise P2
is sometimes greater than P4. This can be removed by filtering the pressure data. Two cases of
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preprocessing the input data were considered. The first one was to filter it with a low pass filter
with a cut off frequency of 0.2 Hz. The second was to use the mean for each time series section as
the input for the entire section. The first approach was the most successful and used to train a model.

The model was trained using the train data set with filtered input features. The input features used
was Z, P1, P2 and P4, with the training targets being the difference between the experimental
Qg and Ql, and the simplified first principle model predictions for the same parameters. Different
architectures were tested, and the architecture used was one with 10 hidden layers, with 10 nodes
in each hidden layer. The model was trained for 1 epoch, with a batch size of 32.

5.1.1 Results and Discussion

The updated model was evaluated and its performance is given alongside the performance of the
simplified FPM in table 5.1

Table 5.1: Performance table for the updated model, comparing with the performance of simplified FPM

model
test MSE train MSE

Qg Ql total Qg Ql total

FPM 1.2 2.0× 10−2 1.2 1.7 3.0× 10−1 2.0
Bias model 1.2× 10−1 3.9× 10−2 1.6× 10−1 1.6× 10−1 3.7× 10−2 2.0× 10−1

From the performance table it can be seen that the simplified FPM is quite good at predicting Ql

on the test set, but bad at predicting Qg. The bias updating model makes a lot of improvements on
predicting Qg, but it makes bad corrections on Ql as it performs worse on the test set. On the train
set, the FPM performs badly for both outputs, and the bias updating model makes improvements
by improving the performance for both outputs.
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Figure 5.1: Updated predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates and the simplified FPM gas and liquid flow rate predictions, for bias prediction model, for test set.
Inputs, targets, FPM predictions and updated predictions were filtered with a low-pass filter with a cut-off
frequency of 0.2Hz

In figure 5.1 the simplified FPM predictions and the bias updated predictions of Qg and Ql are
plotted against the experimental data. The predictions were made with filtered input data, and both
the predictions and the experimental outputs were filtered as well. As can be seen in the figure the
bias model improves in predicting Qg compared to the simplified FPM. The FPM predictions of
Qg were varying quite a lot for certain sections, which makes it difficult to tell if the bias model
improves. The FPM is good at predicting Ql, with the bias model making bad corrections which
makes the predictions worse. The exception to that is when the water flow rate is 5 l/min.
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Figure 5.2: Updated predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for bias prediction model, for the test set. Inputs, targets, and updated predictions were filtered with a
low-pass filter with a cut-off frequency of 0.2Hz

By using a FPM to make initial predictions and correcting the prediction with a FFNN model,
predicting the model bias, it was assumed that the learning problem could be simplified. Having
the main structure of the prediction being made by a FPM, and making small corrections on paper
seems like an easy task. This, however, requires the FPM to make somewhat predictable predic-
tions. In this project a steady-state model was to be constructed, so a steady-state FPM model was
used to make the initial predictions. While the data used in this project is assumed to be at steady
state, it was very clear from figure 5.2 that this was not the case. The topside choke valve opening
Z was not constant, but instead oscillating around its setpoint. This can also be observed in the
pressure measurements as the pressures are oscillating. In figures F.2 and F.1 in appendix ?? it
can be observed that the pressure drop between P1 and P4, as well as the pressure drop between
P4 and P2 are not constant either. Since a steady-state FPM was used to make predictions, it was
sensitive to the deviations from steady-state when estimating the outputs. This was especially true
when the pressure drops in the system are not constant, which leads the prediction of Qg changing
a lot, when the system should be at steady state. This makes learning the model bias difficult.

When the FPM prediction of Qg was relatively stable, the bias model managed to make good cor-
rections improving the prediction, however, for the sections where the predictions were varying a
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lot, the bias model did not manage to make good corrections. Overall the prediction of Qg was not
improved by this approach at combining a FPM with a FFNN model.

The FPM prediction ofQl was a lot better than the predictions ofQg. On the test set, the predictions
were so good that the corrections from the FFNN model made the predictions worse. This means
the prediction of Ql using the steady-state FPM was not affected as strongly by the inputs deviating
from steady-state, compared with Qg. The reason for this was probably because mass flow rates
are estimated in the FPM and not volumetric flow rates. Water, which was the liquid used in this
system has a density approximately 1000 times as large as that of air, which was the gas used in
this system. This means a small change in the total mass flow rate calculation, due to the inputs not
being steady state, would lead to a larger percentage-wise change in the gas flow rate compared to
the change in the liquid flow rate.

The reason for the bad bias prediction on the test set was probably due to the difference in model
bias for the test and train set. From figure E.5 it can be observed that for low choke valve openings
Z, the bias of the FPM was quite large, as the FPM was over predicting Ql, with the bias becoming
less for increasing values. At the highest choke valve opening in the train data set, there was no
model bias. In the test set, the choke valve opening was greater than for the train set, with the
model bias being small or non-existing. As the trend in the train set is that the FPM overpredicts
at low choke valve openings, and predicts correctly when the choke valve opening is 10%, the bias
correction model believes that the FPM will start underpredicting Ql for the test set, and makes
corrections to correct this non-existing underprediction.

Compared to the baseline model this approach was not an improvement. The baseline model pre-
dicted Ql better on the test set than this approach. The baseline model did not manage to find any
meaningful relationship between the inputs and outputs, due to a limited data set. Transforming the
outputs by modelling the difference between the experimental data and the predictions of a FPM,
might make it possible to model the relation between the inputs and Qg, however, the FPM model
used was too sensitive to deviations from steady-state in the train and test data set to make good
predictions.

6 Transfer learning
Transfer learning is a machine learning technique where the learning of a new task is improved by
re-purposing an old model which solves a similar task[11][8]. The idea is that by using transfer
learning, a new task can be learned with less training, less data and/or with a lower generalization
error. There are three ways in which transfer learning can improve learning. The first is to give a
better start for training, the second is to give a larger initial slope when training (larger improvement
in performance when training), and the third is giving a higher asymptote (higher performance).
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Figure 6.1: Three ways transfer learning can improve learning[11]

In this project, transfer learning would be attempted by training a model on simulation data cover-
ing a larger data range than the range of the experimental data and using that as the source model
for transfer learning. By using a simulation model covering a larger range of data, the goal was
to make an experimental model which can give more accurate prediction over a larger range than
the baseline model. Simulation data were generated using Jahanshahis simplified four-state model.
The steady-state data was generated for Z ∈ [4, 15] %, Qg ∈ [2, 6] l/min and Ql ∈ [2, 6] l/min.
With this data set, a FFNN model was trained, with a depth of 10 hidden layers, a width of 10 nodes
in each layer, ReLu activation function in each layer, trained for 100 epochs with a batch size of
32. The input features of this model were Z, Pin, Prt and Prb, with the outputs being Qg and Ql.
When repurposing this model for transfer learning P1 will be used for Pin, P2 will be used for Prt

and P4 will be used for Prb.

6.1 First approach
Three approaches of transfer learning were attempted in this project. For all three approaches, the
training data was preprocessed by having the input features filtered with a low pass filter with a
cut-off frequency of 0.2 Hz. The first approach was to retrain parts of the simulation model using
experimental data. To retain some of the original model structure only the last layers were retrained.
Two models were trained, one where only the last layer was retrained, and one where the two last
layers were retrained. The models were retrained for 5 epochs with a batch size of 32.

6.1.1 Results

In table 6.1 below the simulation model, the transfer model which had only the last layer retrained,
and the transfer model which had the two last layers retrained evaluated on the test and train data.
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Table 6.1: Performance table for the two transfer model compared with the simulation model.

model
test MSE train MSE

Qg Ql total Qg Ql total

Sim model 3.7× 10−1 5.7× 10−2 4.3× 10−1 7.3× 10−1 3.6× 10−1 1.1
Last layer 9.3× 10−3 1.1× 10−1 1.2× 10−1 5.9× 10−3 1.9× 10−1 2.0× 10−1

2 Last layers 1.1× 10−2 4.5× 10−2 5.6× 10−2 4.7× 10−3 1.8× 10−1 1.9× 10−1

The generalization for the transfer models improved with the amount layers which were retrained,
with the test MSE for the model which retrained the two layers being half of the test MSE for
the model which only retrained the last layer. The train MSE for both transfer models were very
similar, with the model which retrained two layers being slightly better.
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Figure 6.2: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for the
simulation model, on the test set. Inputs, targets and predictions were filtered with a low-pass filter with a
cut-off frequency of 0.2Hz

In figure 6.2 the predictions of Qg and Ql using the simulation model, are plotted against the
experimental data. The predictions were made with filtered input data, and both the predictions
and the experimental outputs were filtered as well. The simulation model was somewhat good at
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predicting Ql but slightly underpredicts when the liquid flow rate is high, and when Z is larger than
13%. The simulation model underpredicts Qg, and the predictions are varying a lot.
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Figure 6.3: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for a
transfer model where the last layer was retrained on experimental data, on the test set. Inputs, targets and
predictions were filtered with a low-pass filter with a cut-off frequency of 0.2Hz

In figure 6.3 the predictions of Qg and Ql using the model which retrained the last layer, are
plotted against the experimental data. The predictions were made with filtered input data, and both
the predictions and the experimental outputs were filtered as well. This model underpredicts Ql

when Z was larger than 13%, just as the simulation model but with a larger deviation from the
target variable, but it does, however, makes better predictions when Ql is around 5 l/min. For the
prediction of Qg, this model does the same as the models trained using only experimental data and
it predicts Qg to be 4.5 l/min for all inputs.
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Figure 6.4: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for a
transfer model where the last two layers were retrained on experimental data, on the test set. Inputs, targets
and predictions were filtered with a low-pass filter with a cut-off frequency of 0.2Hz

In figure 6.4 the predictions of Qg and Ql using the model which retrained the last two layers, are
plotted against the experimental data. The predictions were made with filtered input data, and both
the predictions and the experimental outputs were filtered as well. Just as the other transfer model,
this predictsQg to be 4.5 l/min for all inputs. It is better at predictingQl but slightly underpredicts.

6.2 Second approach
The second approach was to use the predictions from the simulation model as extra input features
for a new FFNN model alongside the other input features.

ŷsim = Φsim(u)

ŷ = Φtransfer([u
T , ŷT

sim]T )

Where ŷsim is the simulation predictions, Φsim is the simulation model, u is the input, ŷ is the
transfer model predictions, and Φtransfer is the transfer model. Here the total model would be two
models in series as shown in figure 6.5.
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Figure 6.5: Transfer learning approach two model structure

A FFNN Transfer model was constructed and trained. The inputs into this model were Z, P1, P2,
P4, Q̂gsim and Q̂lsim. Different architectures were tested and a structure consisting of 4 hidden
layers, with 10 nodes in each and ReLu activation function was used. The models were trained for
3 epochs with a batch size of 32.

6.2.1 Result

The transfer model was evaluated and its performance was listed in table 6.2 below.

Table 6.2: Performance table for the transfer model compared with the simulation model

model
test MSE train MSE

Qg Ql total Qg Ql total

Sim model 3.7× 10−1 5.7× 10−2 4.3× 10−1 7.3× 10−1 3.6× 10−1 1.1
Transfer model 1.1× 10−2 2.9× 10−2 4.0× 10−2 4.3× 10−3 4.8× 10−2 5.2× 10−2

The transfer model in this approach improved the generalization compared to the transfer models in
the first approach, it also performed better on the train data in the first approach. In figure 6.6 below,
the predictions of Qg and Ql using the model which retrained the last layer, were plotted against
the experimental data. The predictions were made with filtered input data, and the predictions
were filtered as well. The model is bad at predicting Qg, just as the models trained using only
experimental data, predicting it to be 4.5 l/min. The prediction of Ql is mostly good,
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Figure 6.6: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for a
transfer model which uses predictions from simulation network as extra input, on the test set. Inputs, targets
and predictions were filtered with a low-pass filter with a cut-off frequency of 0.2Hz

6.3 Third approach
The third approach was to train a model which predicts the bias between the simulation model
and the experimental data, similar to what was attempted in the feature engineering section of
the project. The depth of the transfer bias model was 10 layers, each 10 nodes wide, with ReLu
activation functions. The model was trained for 5 epochs with a batch size of 32.

6.3.1 Results

The third approach at transfer learning was also evaluated and the performance is listed in table 6.3
below.
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Table 6.3: Performance table for the transfer model compared with the simulation model.

model
test MSE train MSE

Qg Ql total Qg Ql total

Sim model 3.7× 10−1 5.7× 10−2 4.3× 10−1 7.3× 10−1 3.6× 10−1 1.1
Bias model 4.1× 10−2 2.4× 10−2 6.5× 10−2 1.2× 10−2 1.8× 10−2 3.0× 10−2

As seen in the table this third approach was better at predicting Ql compared to the other two ap-
proaches at transfer learning, it was, however, worse at predicting Qg having a larger test error than
the two other approaches. Compared to the transfer learning approach which attempted something
similar, this approach performed better. This model also improved performance compared to the
simulation model. Below in figure 6.7 the simulation model predictions and the bias transfer model
predictions ofQg andQl are plotted against the experimental data. The predictions were made with
filtered input data, and both the predictions and the experimental outputs were filtered as well. As
can be seen, the transfer model predicting the simulation model bias makes great improvements at
predicting Ql. While mostly improving the prediction of Qg, the correction is not that good as it
adjusts the prediction to be close to 4.5 l/min, even when it should be corrected to 4 l/min.
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Figure 6.7: Updated predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates and the simulation model gas and liquid flow rate predictions, for a bias prediction model, on the test
set. Inputs, targets, simulation model predictions and updated predictions were filtered with a low-pass filter
with a cut-off frequency of 0.2Hz
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Figure 6.8: Updated predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for a bias prediction model, on the test set. Inputs, targets and updated predictions were filtered with a
low-pass filter with a cut-off frequency of 0.2Hz

6.4 Discussion
Three approaches of doing transfer learning were tried, to try and improve predictive performance.
This was not achieved and no improvement was not made by this approach. The largest problem of
the baseline model was its inability to make meaningful predictions of Qg, so using a model which
could make meaningful predictions of Qg as a starting point for further training seemed like a good
idea. But for all the three approaches tried, the same problem arose as with the baseline model, that
no meaningful relationship between the inputs and the prediction of Qg was achieved. For all three
models, the prediction of Qg was around 4.5 l/min, no matter what the input or target data was,
just as was the case for the baseline model.

The model which was used as a basis for transfer learning was trained on simulation data covering
a larger span of gas and liquid flow rates. This model was evaluated using experimental data in
figures 6.2 and E.6. As can be seen in the figures the simulation model models the trends of Ql

quite well, and is a good starting point to make a model which predicts Ql as small adjustments
should correct the predictions. The predictions of Qg are not that good. The simulation model
underpredicts Qg for all the data, and the predictions are varying a lot. There is little connection
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between the prediction of Qg and the target.
When retraining the last layers of the simulation model, the idea was to make small changes to
the simulation model and have some of the structure from the model remain in the transfer model,
making only small modifications to adjust the model to the experimental data. This did not work
well, as a Qg was predicted to be the same value for all input combinations. This was the same
problem as for the baseline model. This makes sense as retraining the last layers is similar to train-
ing a new shallow model, using the output from the last hidden layer as input. While these new
input features could improve performance, the problem with having a limited data set is not solved.
So the predictions forQg was not improved. It should be noted by retraining just two layers the pre-
diction ofQl was improved a lot, however, the prediction was worse than that of the baseline model.

The second approach to transfer learning was similar to the first attempt, by using predictions from
the simulation model as input to a new model. This resulted in the same problems, where the
overall model is good at predicting Ql but fails to find a mapping of Qg. The extra inputs from the
simulation model helped improve generalization of Ql using a smaller model, only 4 hidden layers
deep, but it did not negate the problem of limited variation in the data set for Qg.
The third approach where a model was trained on experimental data to predict the model bias of
the simulation model, did not manage to improve the prediction of Qg either. The prediction of Ql

is improved and is quite good. This was expected as small adjustments needed to be made to the
simulation model to improve the performance.

7 Conclusion
In this project the goal was to make a steady-state model of a riser pipeline system based on ex-
perimental data, using machine learning. Volumetric gas and liquid flow rates were to be predicted
using pressure measurements in the system and the topside choke valve position. The system to
be modelled was a small scale experimental rig, in which experimental was used. To achieve this
goal three approaches were attempted. The first approach was to construct a baseline feedforward
neural network model. This model was successful in predicting the liquid flow rate but did not
manage to make good predictions of the gas flow rate. This was attributed to a data set with little
variation in gas flow rate. The second approach was to combine first principle knowledge about
the system with machine learning. A feedforward model predicting the bias of a simplified first
principle model was constructed. This approach did not improve performance, as the liquid flow
rate prediction was worse, and the gas flow prediction being unsatisfactory. The third approach was
to train a feedforward neural network model on simulation data and repurpose this model to make
a model predicting the experimental data. This was attempted in three different ways. The first was
to retrain the last layers of the simulation model, the second was to use the simulation predictions
as additional input and the third was to make a model predicting the bias of the simulation model.
While all these three approaches managed to model the liquid flow rate quite well, they did not
manage to improve the prediction of the gas flow rate compared to the baseline model.

To conclude, the volumetric liquid flow rate was possible to model using the available data set. The
gas flow rate, however, was not possible to model. This was because the gas flow rate measurements
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in the experimental data had too little variation. The attempts at combining deep learning with a first
principle model or doing transfer learning did not negate the effect of a limited data set. To improve
the predictions of the volumetric gas flow rate, more experimental data are needed, covering a larger
range.

7.1 Further work
To make a model which is better at predicting the volumetric flow rate the best course of action
is to produce more lab data, covering a larger range of gas flow rates. While other measures to
improve the prediction might be done, expanding the training data would improve predictions the
most. With a larger data set, other attempts at transfer learning could be attempted. The idea of
using transfer learning was to retain the structure of the simulation model and only tweak it slightly,
to better fit the lab data. In this project, this was attempted by only training parts of the model, but
that resulted in the retrained parts of the model changing a lot. What could be attempted is to train
the entire simulation model, but adding a penalty to changing the parameters of the model, thereby
reducing the number of changes made to the model. Besides, more traditional feature engineering
could be attempted by creating new features, like the pressure drop over the pipeline or the riser.
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A Esmaeils four-state model

A.1 Dynamic equations

dmg,p

dt
= wg,in − wg,rb (A.1)

dml,p

dt
= wl,in − wl,rb (A.2)

dmg,r

dt
= wg,rb − wg,rt (A.3)

dmg,r

dt
= wg,rb − wg,rt (A.4)

A.2 Tuning parameters
• Kh: correction factor for liquid level in pipeline

• Cv1: topside choke valve opening

• Kg: coefficient for gas flow through low point

• Kl: coefficient for liquid flow through low point

A.3 Outflow conditions
wout = Cv1f (z)

√
ρrt max (Prt − Ps, 0) (A.5)

f(z) = z, 0 ≤ z ≤ 1

Z = 100z, 0 ≤ Z ≤ 100

wl,out = αm
l,rtwout (A.6)

wg,out =
(
1− αm

l,rt

)
wout (A.7)

αm
l,rt =

αl,rtρl
αl,rtρl + (1− αl,rt) ρg,r

(A.8)

ρrt = αl,rtρl + (1− αl,rt) ρg,r (A.9)
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A.4 Pipeline model

ᾱl,p =
ρ̄g,pwl,in

ρ̄g,pwl,in + ρlwg,in

(A.10)

ρ̄g,p =
Pin,nomMg

RTp
(A.11)

m̄l,p = ρlVpᾱl,p (A.12)
hd = Dp/ cos(θ) (A.13)
h̄ = Khhdᾱl,p (A.14)

h = h̄+

(
ml,p − m̄l,p

Ap (1− ᾱl,p) ρl

)
sin(θ) (A.15)

ρg,p =
mg,p

Vg,p
(A.16)

Vg,p = Vp −ml,p/ρl (A.17)

Pin =
ρg,pRTp
Mg

(A.18)

∆Pfp =
ᾱl,pλpρlŪ

2
sl,inLp

2Dp

(A.19)

1√
λp

= −1.8 log10

[(
ε/Dp

3.7

)1.11

+
6.9

Rep

]
(A.20)

Rep =
ρlŪsl,inDp

µ
(A.21)

Ūsl,in =
4wl,in

πD2
pρl

(A.22)
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A.5 Riser model

Vg,r = Vr −ml,r/ρl (A.23)

ρg,r =
mg,r

Vg,r
(A.24)

Prt =
ρg,rRTr
Mg

(A.25)

ᾱl,r =
ml,r

Vrρl
(A.26)

ρ̄m,r =
mg,r +ml,r

Vr
(A.27)

∆Pfr =
ᾱl,rλrρ̄m,rŪ

2
m (Lr + Lh)

2Dr

(A.28)

1√
λr

= −1.8 log10

[(
ε/Dr

3.7

)1.11

+
6.9

Rer

]
(A.29)

Rer =
ρ̄m,rŪmDr

µ
(A.30)

Ūm = Ūsl,r + Ūsg,r (A.31)

Ūsl,r =
wl,in

ρlAr

(A.32)

Ūsg,r =
wg,in

ρg,rAr

(A.33)

A.6 Gas flow model at riser base

wg,rb = 0, h ≥ hd (A.34)

wg,rb = KgAg

√
ρg,p∆Pg, h < hd (A.35)

∆Pg = Pin −∆Pfp − Prt − ρ̄m,rgLr −∆Pfr (A.36)

Ag = Ap

(
hd − h
hd

)2

, h < hd (A.37)

Ag = 0, h ≥ hd (A.38)
(A.39)

A.7 Liquid flow model at riser base

wl,rb = KlAl

√
ρl∆Pl (A.40)

∆Pl = Pin −∆Pfp + ρlgh− Prt − ρ̄m,rgLr −∆Pfr (A.41)
Al = Ap − Ag (A.42)
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A.8 Phase distribution model at outlet choke valve

αl,rt = 2ᾱl,r − αl,rb =
2ml,r

Vrρl
− Al

Ap

(A.43)

B Simplified model
This is a simplified version of Jahanshahis 4-state model reshaped as a input output model, predict-
ing wg and wl from Z, Pin, Prb and Prt. Qg and Ql are then calculated using the standard density
for air and water. The assumptions made are steady-state and no friction.

ρg,r =
PrtMg

RTr
(B.1)

ρ̄m,r =
Prb − Prt

gLr

(B.2)

ml,r = ρl
Vr(ρ̄m,r − ρg,r)

ρl − ρg,r
(B.3)

ρg,p =
MgPin

RTp
(B.4)

Ag = Ap

(
hd − h
hd

)2

, h < hd (B.5)

Ag = 0, h ≥ hd (B.6)
Al = Ap − Ag (B.7)

αl,rt =
2ml,r

Vrρl
− Al

Ap

(B.8)

αm
l,rt =

αl,rtρl
αl,rtρl + (1− αl,rt) ρg,r

(B.9)

ρrt = αl,rtρl + (1− αl,rt) ρg,r (B.10)
∆Pl = Pin − Prb + ρlgh (B.11)
∆Pg = Pin − Prb (B.12)

Due to the steady state assumption,

w = win = wrb = wrt

wg = wg,in = wg,rb = wg,rt

wl = wl,in = wl,rb = wl,rt

This gives a set of two non-linear equations with h as unknown. This set of equations is solved for
h, and wg and wl is calculated.
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w = Cv1f (z)
√
ρrt max (Prt − Ps, 0) (B.13)

wl = αm
l,rtw (B.14)

wg =
(
1− αm

l,rt

)
w (B.15)

wl = KlAl

√
ρl∆Pl (B.16)

wg = KgAg

√
ρg,p∆Pg (B.17)

C Experimental setup
The experimental rig consists of a reservoir tank, buffer tank and top tank connected by a pipeline
and riser as seen in figure C.1. There is also a pump, pumping the liquid in the reservoir tank
through the system. The pipes have an inner diameter of 2 cm. The pipeline is 4 m long with an
inclination angle of 15 degrees. The riser is 3 m long. The buffer tank is used to simulate a 70 m
long pipeline, with the volume of the buffer tank and pipeline being that of a 70 m long pipe.

Figure C.1: Experimental setup of Anti-slug control rig

Water is used as the liquid in the system, and air is used as the gas in the system. In the experimental
rig, the gas flow is set by giving a setpoint to a flow controller, while the water flow is manipulated
by manually opening or closing a globe valve after the pump. The topside choke valve can also be
manipulated by giving a setpoint to a controller which opens or closes the valve. The pressure is
measured at four points in the model:

• P1, the pressure in the buffer tank

• P2, the pressure in the at the top of the riser
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• P3, the pressure after the mixing point of the liquid and gas

• P4, the pressure in the at the bottom of the riser

D Online radial basis function network
The feature engineering model formulation, where a machine learning model was used to model
the bias of a first principle model was attempted online using a radial basis function network. A
radial basis function network is a shallow neural network, which is a neural network with only one
hidden layer. The activation function used was a normalized radial basis function. A normalized
radial basis function is ui(x) = gi(x)∑N

j=1 gj(x)
. The model was trained online, training on a given num-

ber of previously measured data points given by a backwards time horizon. The centres ci in the
radial basis functions were found using k-means clustering on the training data, with the cluster
centroid for each cluster being the centre ci for each node. The weights of the model were then
found using standard regression.

With a backwards time horizon of 80 s and 5 nodes in the hidden layer, this was tested on the data
set. Training on the previous 80 steps, model corrections were made to next time step. This was
done for the entire data set. Figure D.1 is a performance plot where the average updated prediction
for each steady-state section is plotted against the average target value, and compared against the
average first principle model predictions. As can be seen, the average updated prediction is really
good for both gas and liquid flow rate.
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Figure D.1: Performance plot of the average updated prediction for each steady-state section compared with
the average first principle model predictions.
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E Training set prediction plots

E.1 Baseline model
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Figure E.1: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for
model trained on raw experimental data, on the train set. Inputs, targets and predictions were filtered with a
low-pass filter with a cut-off frequency of 0.2Hz
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Figure E.2: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for
model trained on filtered input data, on the train set. Inputs, targets and predictions were filtered with a
low-pass filter with a cut-off frequency of 0.2Hz
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Figure E.3: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for
model trained on averaged input data, on the train set. Inputs, targets and predictions were filtered with a
low-pass filter with a cut-off frequency of 0.2Hz
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E.2 Feature model
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Figure E.4: Updated predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates and the simplified FPM gas and liquid flow rate predictions, for bias prediction model, on the train set.
Inputs, targets, FPM predictions and updated predictions were filtered with a low-pass filter with a cut-off
frequency of 0.2Hz
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Figure E.5: Updated predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for bias prediction model, on the train set. Inputs, targets, and updated predictions were filtered with a
low-pass filter with a cut-off frequency of 0.2Hz
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E.3 Transfer models
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Figure E.6: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for
the simulation model, on the the train set. Inputs, targets and predictions were filtered with a low-pass filter
with a cut-off frequency of 0.2Hz
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Figure E.7: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for a
transfer model where the last layer was retrained on experimental data, on the train set. Inputs, targets and
predictions were filtered with a low-pass filter with a cut-off frequency of 0.2Hz
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Figure E.8: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for a
transfer model where the last two layers were retrained on experimental data, on the train set. Inputs, targets
and predictions were filtered with a low-pass filter with a cut-off frequency of 0.2Hz
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Figure E.9: Predicted gas and liquid flow rates plotted against experimental gas and liquid flow rates, for a
transfer model which uses predictions from simulation network as extra input, on the train set. Inputs, targets
and predictions were filtered with a low-pass filter with a cut-off frequency of 0.2Hz
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Figure E.10: Updated predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates and the simulation model gas and liquid flow rate predictions, for a bias prediction model, on the train
set. Inputs, targets, simulation model predictions and updated predictions were filtered with a low-pass filter
with a cut-off frequency of 0.2Hz
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Figure E.11: Updated predicted gas and liquid flow rates plotted against experimental gas and liquid flow
rates, for a bias prediction model, on the train set. Inputs, targets and updated predictions were filtered with
a low-pass filter with a cut-off frequency of 0.2Hz
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F Pressure drop plots
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Figure F.1: Pressure drop over pipeline and riser for test data set. The pressure drops were filtered with a
low-pass filter with a cut-off frequency of 0.2Hz
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Figure F.2: Pressure drop over pipeline and riser for train data set. The pressure drops were filtered with a
low-pass filter with a cut-off frequency of 0.2Hz
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