
Modelling and Optimization of a Two-Stage Compressor Train

Adriaen Verheyleweghen, (verheyle@stud.ntnu.no)

Supervisors: Sigurd Skogestad & Johannes Jäschke

December 10, 2014

Abstract

A model for a two-stage refrigeration cycle was implemented in MATLAB. Dynamic simulations were done
to verify the model. The model was optimized at steady state to minimize the energy consumption and the
nominal operating point was found. It was found that the model had no unconstrained degrees of freedom
left. An alternative case were it was attempted to maximize the heat transfer, was also studied.

CONTENTS

Contents

2

LIST OF TABLES

List of Figures

List of Tables

3

LIST OF TABLES

List of Symbols

Symbol Explanation

γavg Adiabatic ratios. Average ratio between specific heats, [-]
Corresponding variable in script: POL

δi Coefficients for calculating HFL as a function of temperature.

ζi Coefficients for calculating HFG as a function of temperature.

η Polytropic efficiency of compressor, [-]

λi Coefficients for calculating ν as a function of temperature.

ν Liquid specific volume, [m3/kg]

φi Coefficients for calculating z as a function of temperature

A Constant in the Antoine equation

B Constant in the Antoine equation

C Constant in the Antoine equation

Ci Constants for calculating CP as a function of temperature

Cii Constants for compressor curves

CP Heat capacity, [J/kg K]

CV Valve constant, [kg/s
√

bar]

ei Constants for compressor curves

FCP Product of flowrate and heat capacity of external cooling stream, [W/K]

FG Mass flow of vapour stream, [kg/s]

FGCD Discharge flow rate of vapour out of the compressor, [kg/s]

FGCS Suction flow rate of vapour in to the compressor, [kg/s]

FGV Volumetric flow rate of vapour into compressor, [m3/s]
(Corresponding variable in script: FGS)

FL Mass flow of liquid stream , [kg/s]

g Gravitational constant, [m/s2]

h Compressor head, [m]
(Corresponding variable in script: HH)

hs Scaled compressor head, [m]
(Corresponding variable in script: HS)

H Enthalpy in the tank, [J]

HFL Specific enthalpy of the liquid stream, [J/kg]

HFG Specific enthalpy of the vapour stream, [J/kg]

k Polytropic constant, [-]
(Corresponding variable in script: G)

Mw Molecular weight, [kg/mol]

N Fractional compressor speed based on normal operation, [-]

p Constant in compressor curve. Value depends on compressor.

P Pressure in tank, [bar]

4

LIST OF TABLES

PS Suction pressure, [bar]

q Constant used in compressor curve. Value depends on compressor.

Q Heat transferred in evaporator or condenser, [W]

R Universal gas constant, [J/K mol]

T Temperature in tank, [◦C]

TD Discharge temperature from compressor, [◦C]

TPI Inlet temperature of process stream to evaporator or condenser, [◦C]

TPO Outlet temperature of process stream from evaporator or condenser, [◦C]

TS Interstage mixing temperature / suction temperature into the compressor, [◦C]

UA Product of heat transfer coefficient and heat transfer area for a heat exchanger, [W/K]

V Volume of the tank [m3]

VG Specific volume of vapour refrigerant, [m3/kg]

W Mass accumulated in tank, [kg]

WL Liquid inventory in tank, [kg]

WLV Volumetric liquid inventory in tank, [m3]

WV Vapour inventory in tank, [kg]

XV Fractional valve opening of valve, also used to refer to the valve itself, [-]

z Compressability factor, [-]

List of Abbreviations

Abbreviation Explanation

CV Controlled variable

DAE Differential algebraic equation

DOF Degrees of freedom

HP High pressure

IP Intermediate pressure

LP Low pressure

MV Manipulated variable

SS Steady-state

TPM Throughput manipulator

5

1 INTRODUCTION

1 Introduction

This report is the final product of a project on ’Modelling and Optimization of a Two-Stage Compressor
Train’. The projected was conducted by Adriaen Verheyleweghen under supervision of Johannes Jäschke
and Sigurd Skogestad.

The aim of this project is to model and simulate a two-stage refrigeration cycle. The finished model is
to be optimized and a control structure will be proposed to keep the plant at optimal operating conditions
despite disturbances. It will be attempted to come up with a self-optimizing control structure. The model
will largely be based on previous work done by Basel Asmar [4]. The model will be implemented in MATLAB.

The report is divided into three parts. The first part contains some background theory on optimizing control.
The main part of the report summarizes the results from the modelling work, including the dynamic be-
haviour of the model, the optimal operating conditions given the defined constraints and the self-optimizing
control structure. The final section contains a discussion of the results. Additional material such as MATLAB
code is placed in the appendix.

1.1 Process description

The process flow diagram of the studied process can be seen in Figure 1. The process is based on a similar
plant operated by Exxon Mobile. The working fluid is propylene.

Condenser
N

XV1

XV3XV2

FCP3

Receiver

Compressor 2Compressor 1Turbine

Evaporator 1 Evaporator 2

Figure 1: Process flow diagram of the studied process.

The process consists of two compressors in a series configuration which are driven by a single steam turbine.
The compressed working fluid is condensed in the condenser using air cooling. A receiver is used as a buffer
tank.

From the receiver the process stream is sent to an intermediate pressure (IP) flash evaporator. Only a
small process load is removed at this stage. The fraction of gas and liquid can be adjusted by opening or
closing the valves XV1 and XV2.

The saturated liquid is expanded over XV2 and evaporated in the low pressure (LP) kettle reboiler. The

6

1 INTRODUCTION

main process load is removed in the kettle reboiler. The heating of the working fluid is achieved with heating
coils which are submerged in the two evaporators. On the inside of the coils flows a hot process stream which
is sought to be cooled down.

A detailed description of the model equations and the necessary assumptions are given in Section 3

7

2 TOP DOWN PROCEDURE FOR CONTROL STRUCTURE DESIGN

Part I

Theory
This part contains some basic theory. It is meant to give a brief summary of the applied methods such as
the steps in the top-down procedure for control structure design. It is assumed that the reader already has
insight in the described theory. If the reader lacks the necessary background knowledge, it is recommended
to read Skogestads paper on the subject [10] for a quick introduction. The idea behind this part is to give
the reader a quick reminder of the applied theory, but it is not strictly necessary to read it in order to
understand the rest of the report.

2 Top down procedure for control structure design

The top down procedure for control structure design is a useful tool for determining what needs to be
controlled [10]. Skogestad defines four steps for the top down procedure:

2.1 Defining the operational objective

The first step is to define the objective. The objective is defined as a cost function which is to be minimized,
subject to a set of equality constraints and a set of inequality constraints.

min
u
J(u, d) s.t g1(u, d) = 0 , g2(u, d) ≤ 0 (1)

Common objectives for control include maximization of throughput and minimization of energy consumption.
Linear combinations of multiple objectives can also be used to find the optimal trade-off. The objectives
very often relate to some kind of economic cost.

The constraints, i.e. the functions g1 and g2, must also be defined. The limits imposed on the variables
depend on the physical constraints of the equipment, product specifications etc. The model equations are
included as part of the equality constraints.

2.2 Degree of freedom analysis

The degrees of freedom of a system are used to control it. The number of dynamic degrees of freedom can be
found by counting the number of MV’s. Typically only those degrees of freedom which have a steady-state
effect will have an effect on the cost. The number of steady-state degrees of freedom can be expressed as:
[10]

Nss = NMV −N0 (2)

Where N0 are the number of dynamic degrees of freedom which have no steady-state effect. Jensen and
Skogestad describe a method for finding the steady-state degrees of freedom of refrigeration cycles [7]. For
a single component, the steady-state degrees of freedom equal to the number of MVs minus the number of
liquid receivers exceeding the first one.

After the degrees of freedom have been found, the process can be optimized using the remaining degrees of
freedom. The problem is a mathematical programming problem and is solved using numerical tools. Con-
straints that are on their respective limits are called active constraints. Active constraints will need to be
be controlled since they have a large effect on the cost function, as can be seen from Equation (3). Equation
(3) shows the truncated Taylor expansion of the cost function around the nominal point, written in terms
of the independent variables.

J(c, d) = J∗(c, d) + λ
(
cact − c∗act(d)

)
+ (c− c∗(d))TJcc(c− c∗(d)) (3)

In the above equation, c are the independent variables and cact are active constraints. λ is the Lagrange
multiplier. The star (*) subscript indicates values at the nominal point. As can be seen, the cost function is

8

2 TOP DOWN PROCEDURE FOR CONTROL STRUCTURE DESIGN

linearly correlated to the active constraints. For small disturbances, this means that the active constraints
contribute more to the loss than the unconstrained variables. This means that the active constraints must
be controlled.

2.3 Implementation of optimal solution

The optimal solution that is found is implemented. As discussed previously, some of the degrees of freedom
must be used to control the active constraints. Any remaining degrees of freedom can be used to control
the process in such a way that the operation is optimal even when disturbances occur. This is called self-
optimizing control, since the loss stays acceptably low even though the process is disturbed. It would be
preferable to control the gradient of the cost directly, such that Ju = 0 at all times. Unfortunately this is
often not possible since the gradient is difficult to measure. Instead, one chooses to control a combination
of inputs such that it stays at a constant setpoint. If H is chosen correctly, this will ensure that Ju ≈ 0.

c = Hy (4)

Where H is called the selection matrix. There are different methods to find H:

• Brute force evaluation. Evaluate Loss = J(c + εn, d) − J∗(u), where εn is the implementation error,
and select the variable c with the smallest loss.

• Nullspace method. Choose H such that HF = 0, where F is the sensitivity matrix defined as F = ∂y∗

∂d .
The nullspace method gives zero loss from optimal operation for any disturbance given that there is
no implementation error, but it can only be used if there are enough measurements. The number of
measurements must satisfy the inequality nu + nd ≤ ny. For a detailed description of the nullspace
method, see Alstad and Skogestad [1].

• Exact local method. Since the nullspace method is only accurate if there is no implementation error,
the exact local method was developed by Alstad et. al. [2] with roots in the exact method proposed
by Halvorsen et. al. [6]. The exact local method involves minimizing the problem

min
H
||J0.5

uu (HGy)−1H[FWdWny]||F (5)

For information about the notation it is referred to the original paper by Alstad. Otherwise the method
and the corresponding notation will be explained when used later in the report.

Alstad and Skogestad give the following criteria for the choice of self-optimizing variables

1. c should be insensitive to disturbances at the optimum, i.e. the optimum should not be expected to
move when the process is disturbed.

2. The optimum should be flat to minimize the effect of implementation error. That is to say that Jcc
should be small, i.e. that the concavity of J∗ is small.

3. c should be easy to implement and control. This means for example that temperature and pressure
measurements are preferred to composition measurements, as they are cheaper and more reliable.

2.4 Production rate and inventory control

Lastly, it is necessary to choose where to set the production rate. The throughput manipulator lets the
operators choose how to operate the plant. If no degrees of freedom are left, the process does not have a
possibility to set the production rate. Instead, the throughput is determined by upstream process units. The
location of the TPM should be chosen such that it is close to any bottlenecks in the process [3].

Gas and liquid inventories must be controlled to keep them within acceptable bounds as defined by the
constraints. Aske and Skogestad defined consistent inventory control as ”An inventory control system is
consistent if it can achieve acceptable inventory regulation for any part of the process, including the individ-
ual units and the overall plant”[3]. In other words, the mass balance must be satisfied for the overall process

9

2 TOP DOWN PROCEDURE FOR CONTROL STRUCTURE DESIGN

and for the individual units. Local consistency adds the additional criterion that each unit must fulfil the
mass balance, even when viewed separately from the process as a whole.

For a closed system, it is advised to set the TPM to one of the streams inside the loop to avoid snow-
balling. The snowballing effect describes the steady-state phenomenon when a small change in the feed to
the system results in a large change in the recycle flow rate [9]. This effect can be avoided by moving the
TPM inside the recycle loop. It is also necessary to leave one of the inventories inside the loop uncontrolled.
Not doing so will overspecify the system and violate the consistency rules [3].

10

3 MODELLING

Part II

Results

3 Modelling

The necessary equations and correlations for modelling the process were found in Chapter 3 of Asmar’s thesis
[4]. A complete description of the model can be found there. The core assumptions done in the modelling
can be summarized as follows:

• Compressors are modelled based on compressor curves for existing equipment. This means that the
model must be rewritten if applied to a different system.

• The coils in the evaporators are fully submerged at all times. The heat transfer coefficient for the
heat transfer between the working fluid and the hot process streams is assumed to be independent
of temperature. A constant value for UA is thus used. It is also assumed that there is no heat loss
through the walls of the equipment.

• The process streams are modelled as single-phase streams. Their thermodynamic properties such as
heat capacity are assumed to be constant on the given temperature interval.

• The thermodynamic properties of propylene are approximated as linear functions of the temperature
over the studied temperature interval. The relationship between the saturation pressure and temper-
ature is given by the Antoine equation.

• The process equipment has no capacity and does not undergo thermal expansion.

• The levels are assumed to be linearly correlated to the volumetric liquid hold-ups in the tanks. This
assumption fails if the cross-sectional area of the tank is not constant.

• Propylene expands adiabatically over expansion valves. This results in a pressure and temperature
drop, as heat is removed from the working fluid to form flash-vapour.

The system contains a number of implicit variables such as the temperatures. The system can be written
as a combination of differential and algebraic equations. DAE-systems of this kind are solved in MATLAB
with the built-in ode15s procedure.

Inspection shows that the system has 5 degrees of freedom. These 5 degrees of freedom are represented
as control valves in Figure 1. XV1, XV2 and XV3 are valve openings, whereas N is to the rotational speed
of the steam turbine and FCP3 corresponds to the heat removed from the condenser.

3.1 Model equations

The following sections describe the system of equations that has to be solved, in detail. The model equations
will be presented in a logical order, though the final model does not depict this.

All model equations are taken from Asmar [4]. They are repeated here for reader convenience. Asmar
describes a general system consisting of n compression stages. The notation has been kept even though this
report considers a process consisting of only two evaporators and two compressors.

All parameters that are used in the equations are summarized in Appendix A.

11

3 MODELLING

3.1.1 Evaporators

WVi

WLi

FLi+1

Ti+1

Pi+1

FLi

Ti

Pi

TPiI

TPiO

FCPi

Qi

FGi

VGi

PSi

Ti

Vi+1 Vi

Figure 2: Illustration of an evaporator.

The mass balance for the evaporator shown in Figure 2 can be written as

dWi

dt
= FLi+1 − FLi − FGi (6)

where FL are the liquid flows in and out of the evaporator and FG is the gas flow rate of the evaporator.
This gives the change in refrigerant hold-up W in the evaporator. From the hold-up W , the level can be
calculated indirectly. Assuming that the cross-sectional area of the evaporator is constant, i.e. that the
evaporator is cylindrically-shaped, then the level of the refrigerant is proportional to the volumetric liquid
hold-up, WLV .

Li ∝WLVi (7)

The volumetric liquid hold-up can be calculated as

WLVi = WLi · vf,i (8)

Where vf is the liquid specific volume of propylene. The specific volume is assumed to be a linear function
of temperature, and can thus be calculated as

vf,i = λ1 + λ2 · Ti (9)

where λi are constant coefficients which are determined experimentally. The values for the coefficients are
given in Table 8 in the Appendix.

12

3 MODELLING

The liquid hold-up WL can not be calculated directly, but must instead be calculated iteratively from
the mass balance over the vessel inventory

Wi = WLi +WVi (10)

Flow rates are determined by the fractional valve openings of the control valves. The flows are assumed to
be proportional to the square root of the pressure drop over the valve.

FLi+1 = XV Li · CV Li

√
∆P (11)

In the above equation, XV L is the fractional valve opening and CV L is a constant coefficient. The same
equation is used for calculating the vapour flow rates.

FGi = XVGi · CV Gi

√
∆P (12)

For the first evaporator, there is no valve on the vapour outlet, such that the flow rate solely depends on the
suction pressure of the compressor.

The pressure in the evaporator is the saturation pressure Pi, which is a function of the temperature. Antoine’s
equation is used to calculate the saturation pressure as a function of temperature.

Pi = exp

(
A− B

Ti − C

)
(13)

In the above equation, A, B and C are constants. The values of the constants are given in Table 3 in the
Appendix. The saturation temperature Ti must be calculated from the energy balance. Since the energy
balance cannot be solved explicitly for the temperature, it must be calculated iteratively.

Hi = WLi ·HFLi +WVi ·HFGi (14)

The dynamic energy balance for the evaporator can be written as

dHi

dt
= (HFL · FL)i+1 − (HFL · FL)i − (HFG · FG)i +Qi (15)

where HFL is the specific enthalpy of the liquid stream and HFG is the specific enthalpy of the gas stream.
Qi is the heat transferred from the process stream inside the heating coils to the refrigerant in the vessel.
The specific enthalpies are assumed to be linear functions of the temperature

HFGi = ζ1 + ζ2 · Ti (16)

HFLi = δ1 + δ2 · Ti (17)

The heat load Qi is specified through the temperatures of the process stream in and out of the evaporator, in
addition to the process stream mass flow rate. These parameters are either specified or used as disturbances
in the calculations.

Qi = FCPi (TPii− TPio) (18)

TPio = (1− αi)Ti+1 + αiTPii (19)

where

αi = exp

(
−Ui ·Ai

FCPi

)
(20)

U and A are the heat transfer coefficient and the heat transfer area, respectively. FCP is the product of the
heat capacity and the flowrate of the process stream.

13

3 MODELLING

3.1.2 Condenser and receiver

FLr = FLn+1

Tr

TPci

TPco

TDn

FGCDn

FCPc

QcWVc

TC

FLc

WLr

Figure 3: Illustration of the condenser and receiver

After the vapour refrigerant exits the second compressor, it enters the condenser with pressure equal to the
discharge pressure of the compressor. The refrigerant exchanges heat with cold air and condenses. The
temperature is calculated using the Antoine equation. Condensed refrigerant is stored inside the receiver, as
it is assumed that no liquid refrigerant remains in the condenser. The mass balance over the condenser can
thus be written as

dWVc
dt

= FGCDn − FLc (21)

The total vapour hold-up can be calculated by summation of the vapour contained in the receiver and the
vapour contained in the condenser. Since the condenser does not contain any liquid, the vapour hold-up in
the condenser equals to the total condenser volume.

V Gc = Vc + Vr − (WLr · vf,r) (22)

The receiver liquid hold up WLr is calculated from a total balance over all inventories in the system.

WLr = W −
n∑
i

Wi −WVc (23)

For this system n = 2, meaning that the total mass in the system equals to the masses contained in the two
evaporators plus the mass contained in the condenser and the receiver.

14

3 MODELLING

It can be shown that the energy balance simplifies to

dTr
dt

=
FLc

WLr
(Tc − Tr) (24)

In the above expression, the liquid refrigerant flow rate from the condenser, FLc, can be calculated as

FLc =
Qc

HFGc −HFLc
(25)

The specific enthalpies of the gas phase and the liquid phase are calculated using Equations (16) and (17)
with the corresponding condenser temperature. Qc is calculated the same way as for the two evaporators,
using Equations (18), (19) and (20).

3.1.3 Compressor

N

FGCDi

PDi

TDi

FGi

Pi

Ti

FGi

PSi

Ti

FGCDi-1

PDi-1

TDi-1

FGCSi

PSi

TSi

Figure 4: Illustration of a generic compressor stage. Notice that the figure must be modified for the first
compression stage, as it does not have interstage mixing.

The suction mass flowrate into the compressor is given by

FGCSi = FGVi
Mw · PSi

TSi ·R · zi
(26)

This is the equation of state where TS and PS are the suction temperature and pressure, z is the compress-
ability factor and FGV is the inlet volumetric vapour flowrate of refrigerant. Mw is the molecular weight
of propylene and R is the universal gas constant. The compressability factor z is approximated as a linear
function of the temperature

z = φ1 + φ2 · T (27)

15

3 MODELLING

As can be seen from Figure 4, the suction mass flowrate entering the compressor generally must satisfy
the following mass balance

FGCSi = FGCDi+1 + FGi (28)

where FGCD is the discharge mass flow rate from the previous compressor and FG is the vapour flow rate
from the corresponding evaporator. Equation (28) does not apply to the first compressor stage, as there is
no interstage mixing.

The interstage mixing temperature TS is calculated from the energy balance.

TSi =
TDi−1 · FGCDi−1 + Ti · FGi

FGCDi−1 + FGi
(29)

The compressor equations are based on compressor curves. These are curves relating to the performance of
the compressor which are found from experimental data.

FGVi
Nq

= fi(hsi) (30)

In the above expression, N is the fractional compressor speed, q is a constant and f is the compressor curve.
Each compressor has a unique compressor curve and q-value. hs is the scaled compressor head, and is defined
as

hsi =
hi
Np

(31)

p is a constant value depending on the compressor.

For polytropic compression, the compression head can be expressed as

hi = ki
R

g ·Mw
(TDi − TSi) (32)

g is the gravitational constant. The discharge temperature can be calculated as

TDi =
TSi(

PDi

PSi

) 1
ki

(33)

ki is a constant value which is defined as

ki =
n

n− 1
=

ηγavg,i
γavg,i − 1

(34)

In the above expression, n is the polytropic exponent and ν is the polytropic efficiency of the compressor,
which is given by

ηi = f2i(hsi) (35)

Similarly to the compressor curve f , f2 is found by fitting experimental data from a specific compressor
unit. Finally, γavg is the averaged ratios between the specific heats (adiabatic ratios) between suction and
discharge.

γavg =
1

2

(
CPIi

CPIi −R
+

CPOi

CPOi −R

)
(36)

CPI is the heat capacity at inlet (suction) conditions, whereas CPO is the heat capacity at outlet (discharge)
conditions. The heat capacities are approximated as fifth order polynomials of the temperature.

CP = C1 + C2 · T
(
C3 + C4 · T (C5 + C6 · T)

)
(37)

16

4 DYNAMIC SIMULATION

The values of the coefficients in Equation (37) are given in Table 4 in the Appendix.

By fitting data from the supplier to the performance of the compressors, the compressor curve for the
first compressor was found to be

f1(hs1) =
FGV1

Nq
=
C11 · hs1 − C12

C13
(38)

For the second compressor

f2(hs2) =
FGV2

Nq
= C24 + C25log

((√
TX2 + 1

)
− TX

)
(39)

TX is defined as

TX =
C21

tan
(

C22−hs2
C23

) (40)

The parameters for Equation (38) can be seen in Table 9 in the Appendix. The parameters for Equation
(39) can be seen in Table 10 in the Appendix.

In a similar fashion, f2 is found by fitting actual performance data. For both compressors, the follow-
ing relationship can be used

ηi = f2i(hsi) = e1 · hsi + e2 − 10(e3·hsi−e4) (41)

The parameters for Equation (41) can be seen in Table 11 in the Appendix.

3.2 Implementation in MATLAB

The original model by Asmar is written in ACSL and had to be translated to MATLAB. The differences
between the original script by Asmar and the script that was implemented in MATLAB were mainly a result
of the differences between the programming languages. Though the actual model equations stayed the same,
the rest of the script had to be rewritten to work in MATLAB. ACSL is structured very unlike MATLAB.
First, all variables are initialised and initial estimates are assigned to them. The equations are then stated
as algebraic or differential equations and integrated directly through a call to the INTEG-function. The
order of the equations does not seem to be of importance, so that variables can be used before values have
assigned to them. In MATLAB it is necessary to define the set of equations in chronological order and then
call an integrator such as ode15s from a different script to integrate the equation system.

The resulting MATLAB-code can be seen in Appendix REF

4 Dynamic simulation

In this section, the dynamic behaviour of the developed model is described. Though the focus of this report
is not primarily to study the dynamic behaviour of the model, it is necessary to do so in order to find out
which variables need to be controlled in the stabilizing layer of the control structure, i.e. finding variables
which are not self-regulatory [8]

4.1 Controlling the levels

It was attempted to find a steady state solution of the equation system, i.e. solving the following equation

f(x) =

[
fdiff

falg

]
= 0 (42)

fdiff =
∂g(x)

∂t
(43)

17

4 DYNAMIC SIMULATION

However, simulations revealed that the levels were not self-regulatory, and that they would integrate to
positive or negative infinity. A fairly constant level is desired to make sure that the coils in the evaporators
are submerged at all times. It was therefore decided to implement controllers before attempting to optimize
the system. P-controllers were chosen because of their ease of implementation. The resulting setpoint offset
can be accepted because there is no need to control the levels tightly.

In correspondence with the rules on consistent inventory control proposed by Aske and Skogestad [3] one of
the inventories was left uncontrolled. This was done to avoid over-specification of the mass streams in the
closed system. It was chosen to control the levels of the two evaporators, L1 and L2, and leave the level of
the receiver, L3, uncontrolled. The uncontrolled inventory will be indirectly controlled when all the other
inventories are controlled (the total mass in the system is conserved), but the control will be slow due to
the large time delay. This large time delay will cause large variations in the level. Since the receiver is the
largest inventory in the loop, it is best suited to deal with level variations. The two smaller inventories have
smaller tolerances for level variations, and thus require tighter level control. An illustration of the proposed
control structure can be seen in Figure 5

LI

LC

LI

LC

N

XV1

XV3XV2

FCP3

L2L1

Figure 5: Process flow diagram of the studied process with the two added level control structures.

The selection of MV’s for controlling the two levels was based on intuition and general pairing rules. XV2
was paired with L1 since it has the most direct effect. XV3 could also have been chosen, but this would have
lead to local inconsistency [3] and is a violation of the ”pair close” tuning rule. After closing the first level
control loop, XV3 and XV1 are the only remaining CV’s having a direct effect on the L2. Both fullfill the
”pair close”-rule, but since XV3 has a more direct effect on the level, L2 was paired with XV3.

The controllers were tuned by trail and error. It was found that a Kc-value of 0.5 gave satisfactory distur-
bance rejection without causing the controllers to saturate.

4.2 Dynamic responses

After the liquid inventories were controlled, the dynamic performance of the model was tested. The responses
to a setpoint change in L1 are seen in Figure 6. A disturbance in TP1I was also simulated. The results of
the simulation can be seen in Figure 7.

The responses seem okay at first glance. A more in-debt analysis of the results can be found in the discussion

18

4 DYNAMIC SIMULATION

in Section 7.1. The main focus of this project is the steady-state behaviour of the model, and the rest of the
report will deal with the steady-state behaviour of the model unless something else is stated.

0 �00 �000 ��00 �000
�

���

�

�

�
�

0 �00 �000 ��00 �000
0��

0��

0��

�

�
�

0 �00 �000 ��00 �000
�

���

�

�

�
�

0 �00 �000 ��00 �000
0���

0��

0���

�

�
�

0 �00 �000 ��00 �000
���

���

���

���

�

�
�

0 �00 �000 ��00 �000
����

�����

����

�

�
�

0 �00 �000 ��00 �000
�����

���

�����

�����

�

�
�

0 �00 �000 ��00 �000
�����

���

�����

�

�
�

0 �00 �000 ��00 �000
��0��

��0���

��0��

��0���

�

�
�

0 �00 �000 ��00 �000
���

����

���

����

�

�
�
�

0 �00 �000 ��00 �000
���

�

���

�

�

�
�
�

0 �00 �000 ��00 �000
�

���

�

�

�
�
�

0 �00 �000 ��00 �000
���

�����

�����

�����

�

�
�
�
�

0 �00 �000 ��00 �000
�����

�����

���

�

�
�
�
�

0 �00 �000 ��00 �000
�0���

�0���

�0���

�

�
�
�
�

Figure 6: Dynamic responses for some selected variables for a 10% increase in the setpoint of L1

0 �00 �000 ��00 �000
���

�

���

�

�
�

0 �00 �000 ��00 �000
0��

0��

0��

�

�

�
�

0 �00 �000 ��00 �000

��

�

���

�

�

�
�

0 �00 �000 ��00 �000
0��

�

���

���

�

�
�

0 �00 �000 ��00 �000
�

���

�

���

�

�
�

0 �00 �000 ��00 �000
��

����

��

����

�

�
�

0 �00 �000 ��00 �000
��0

���

��0

�

�

0 �00 �000 ��00 �000
��0

���

�
0

�

�

0 �00 �000 ��00 �000
��0

���

���

���

�

�

0 �00 �000 ��00 �000
�

���

�

�

�
�
�

0 �00 �000 ��00 �000
�

�

�

�

�

�
�
�

0 �00 �000 ��00 �000
�

�

�

�

�
�
�

0 �00 �000 ��00 �000
���

��0

���

���

�

�
�

0 �00 �000 ��00 �000
�
�

�

�
�

�
�

�

�
�

0 �00 �000 ��00 �000
�0�

�0�

��0

�

�
�

Figure 7: Dynamic responses for some selected variables for a 5% increase in TP1I.

19

5 STEADY-STATE OPTIMIZATION

5 Steady-state optimization

This section describes how the optimal operating conditions were found.

5.1 Determining the steady-state effect of the levels

At first the author ran the optimization with the setpoints for the level controllers being two optimizable
degrees of freedom. The optimization showed that the setpoints influenced the total energy consumption.
However, closer inspection showed that this behaviour was caused by numerical instability and that the cost
function was not influenced by the levels after all. Figure 8 shows the optimal value of the cost function J as
a function of the setpoints for L2 and L1. The cost function is more or less constant for all combinations of
L2 and L1, except when both setpoints go towards their minimum values. Most likely this is a result of the
optimizer not being able to find a solution that satisfies the constraints, and thus stalling prematurely. The
figure also shows a small ’trench’ for L1 approximately equal to 3.7. It is not known what causes this, but
it is likely to be attributed to numerics and not represent an actual steady-state effect of the level setpoints.

2
3

4
5

6
7

0.5

1

1.5

2
2

3

4

5

6

7

8

x 10
5

L1 setpointL2 setpoint

C
os

t f
un

ct
io

n,
 J

Figure 8: Optimal value of cost function J with fixed values for the setpoints of L1 and L2

Though levels can have a steady-state effect, as is the case for non-equilibrium liquid phase reactors [8], they
do not effect the steady state in this case. The opposite would have been true if the heat-transfer in the
cooling coils would have depended on the liquid level in the tank, but this effect is not included in the model.

The two level-controllers remove two steady-state degrees of freedom, so that the remaining steady-state

20

5 STEADY-STATE OPTIMIZATION

degrees of freedom is reduced to three. This follows from Equation (2). The same result can be found by
applying the method to find steady-state degrees of freedom of refrigeration cycles described by Jensen and
Skogestad.

5.2 Nominal operating conditions

The nominal operating conditions can be found by minimizing a nonlinear mathematical programming
problem. The cost function that is to be minimized is the total energy consumption of the two compressors.
Constraints were introduced to keep the variables within a reasonable operating ranges. In chapter 5 of
Asmar’s thesis[4], the ranges for some of the process variables are given. The constraints for the measured
variables and the inputs are given in Table 1 and Table 2, respectively.

Table 1: Ranges for the measured variables, taken from [4]. Notice that the unit for the levels is m3. This
is because the volumetric liquid hold-up is controlled rather than the level.

Variable L1 L2 L3 P1 P2 P3 TP,1,o FL,2 FL,3 FG,2

[m3] [m3] [m3] [bar] [bar] [bar] [K] [kg/s] [kg/s] [kg/s]

Lower boundary 2.9 0.6 6.9 0 3 12 200 0 0 0
Upper boundary 6.4 1.6 13.7 2 6 18 300 5.47 7.18 6.31

Table 2: Ranges for the input variables, taken from [4]

Variable XV1 XV2 XV3 N FCP3
[-] [-] [-] [-] [J

s K]

Lower boundary 0 0 0 0.9 116
Upper boundary 1 1 1 1.1 348

Other, unconstrained state variables were specified to lie within the range zero to infinity. In addition to
the constraints on the inputs and the state variables, the optimizer needs a set of equality and inequality
constraints. The DAE-system was provided as an equality constraint, meaning that the steady-state optimal
conditions are found. The setpoints for the levels were also set as equality constraints. The maximum allow-
able outflow temperatures of the process streams from the evaporators were specified as inequality constraints.

In addition to the specified constraints for the variables, one must also specify the load of the refrigera-
tion cycle, otherwise the optimizer will attempt to shut down the process by letting N and FCP3 go to their
lower limits. XV1 was approaching its lower limit, but the upper pressure constraint for P2 was reached
before this happened. Relaxing the pressure constraint led to XV1 fully closing. The load was specified as
inequality constraints for the outflow temperatures of the process streams from the evaporators. TP2O is
required to lower than or equal to 276.75◦C. The upper limit of TP1O is set to 226.20◦C. These values were
found in Appendix A of Asmar’s thesis [4]

Figure 5.2 shows the calculated optimum given the set of constraints previously mentioned. It can be
noted that FCP3 is at its upper limit, making it an active constraint. Both constrained process outflow
temperatures, TP2O and TP1O, are at their upper allowable limits. This is to be expected, since lowering
their temperatures would lead to higher energy consumption. These constraints are thus also active. All
active constraints are coloured red in Figure 5.2. The cost function evaluates to an energy consumption of
7.989 · 105 W.

21

6 ALTERNATIVE PROCESS LAYOUT

LI

LC

LI

LC

N: 0.9912

XV1: 0.810

XV3: 0.710XV2: 0.700

FCP3: 348.00

L3: 7.622L2: 0.900L1: 3.100

FL2: 2.84 FL3: 4.36T1: 222.88

P1: 0.900

T2: 262.51

P2: 4.200

FG1: 2.84

T3: 310.31

P3: 15.203

TP1O TP2O

TP1I TP2I

TD: 310.31TC: 358.13TA: 295.08 TB: 283.70

PA: 3.893

FG2: 1.52

FG3: 4.36 FL4: 4.36

TP3O: 308.12

TP3I: 303.00

280.40

276.75

235.20

226.20

J: 7.989e+05 J/s

5.3 Self-optimizing control

It was originally planned to find a self-optimizing control structure for the process. However, this requires
unconstrained degrees of freedom. The results from the optimization show that three constraints are active
at the nominal point. This leaves zero unconstrained degrees of freedom left which can be used for self-
optimizing control. In other words, the process is constrained in such a way that only one solution is
possible at the optimal operating point.

6 Alternative process layout

In an attempt to free one degree of freedom in the system, it was suggested that one could connect the process
streams such that the outflow from the second evaporator becomes the inflow of the first evaporator. The
idea behind this is to decrease the number of independent heat load specifications from two to one. The cost
function was also changed such that the objective was to maximise heat transfer rather than minimizing the
energy consumption. It was thought that this would give an additional degree of freedom being the distri-
bution of transferred heat between the two evaporators. The proposed process layout can be seen in Figure 9

Since the heat transfer is very different in the two evaporators, it was not possible to just connect them
without adjusting the parameters. This proved to be a non-trivial task, as the optimizer struggled to find a
solution of the updated process. The flow rates of the two process streams were combined to give the new
flow rate of the process stream. The product of the heat transfer areas and the heat transfer coefficients,
UA, were difficult to adjust. Hereafter, UA will be referred to simply as the heat transfer area. This makes
logical sense because the heat transfer coefficient is expected to remain relatively constant, while the area
can be moved from one evaporator to the other. It should be mentioned that the distribution of area is
a question of design optimization and not control optimization. As such, it does not really concern this
project. However, since the alternative case needs to have properly defined parameters, it will be explored
how changing the design could lead to a less or more interesting case.

It was attempted to move heat transfer area from one evaporator to the other while keeping the overall
area constant. This led to problems as the optimizer would not find a solution. Initial conditions were either
badly defined or the system was set up in such a way that no solution existed. It was observed that the
optimizer was able to find a solution if both heat transfer areas were reduced to about 30 W/K. It was also
noticed that small changes in the distribution of the areas led to a change in the active constraints. In order
to find the active constraint regions, the system was optimized for a range of areas around 30 W/K. The

22

6 ALTERNATIVE PROCESS LAYOUT

Condenser
N

XV1

XV3XV2

FCP3

Reciever

Compressor 2Compressor 1Turbine

Evaporator 1 Evaporator 2

Figure 9: Process flow diagram of the considered alternative process.

resulting active constraint regions can be seen in Figure 10. The corresponding cost function can be seen in
Figure 11

Eight main constraint regions are observed. The active constraints in each region are, beginning on the
top, going clockwise:

• Region 1 (grey): XV1, FCP3 and XV2.

• Region 2 (dark blue): XV1, XV2 and XV3.

• Region 3 (red): XV1, XV3 and P3.

• Region 4 (purple): N, XV1 and XV3.

• Region 5 (orange): N, XV1 and FCP3.

• Region 6 (blue): N, FCP3 and XV2.

• Region 7 (pink): N, XV2 and XV3.

• Region 8 (green): XV2.

All the constraints are active and at their upper limits. There are some other constraint regions as well, but
these regions are very small. A total of 21 regions were found.

23

6 ALTERNATIVE PROCESS LAYOUT

Figure 10: Active constraint regions for different combinations of the heat transfer areas in the two evapo-
rators.

Figure 11: Cost as a function of the heat transfer areas U1A1 and U2A2.

Since there are three active constraints in all regions except for region eight, it is not possible to implement a
self-optimizing control structure for most combinations of U1A1 and U2A2. It would be theoretically possible
to implement self-optimizing control in region eight since there is only one constrained degree of freedom

24

6 ALTERNATIVE PROCESS LAYOUT

in this region. That leaves two unconstrained degrees of freedom for optimization. It is also observed that
the border between region two and region three gives the lowest possible value of the cost function for the
studied intervals of U1A1 and U2A2. Which region it is best to be in will be discussed in greater detail in
the discussion in Section 7

25

7 DISCUSSION OF THE RESULTS

Part III

Discussion, conclusion and suggestions for
further work

7 Discussion of the results

This section tries to explain the results from Part II.

7.1 Dynamic responses

The dynamic behaviour of the developed model is described in Section 4. Since the levels were not self-
regulatory, they had to be controlled. As can be seen from Figure 6 and Figure 7, the levels are now
controlled. The responses are relatively slow, as L1 seems to have a closed-loop time constant of about 250
seconds. This response can be attributed to the poor tuning of the controller. The P-controller was not
tuned systematically. Instead, a Kc value was chosen such that the controller would not saturate given a
reasonable (10%) disturbance. Faster control can be achieved by tuning the controller more aggressively,
though this might lead to saturation. It is also observed that L2 reacts quite slowly to a setpoint change in
L1 due to delay. This can be avoided by implementing a cascade or feed-forward controller. However, this
was not deemed necessary. Finally, it is observed that L3 is as slow as the slowest of the two other levels.
This is because it is not controlled directly.

From Figure 6 it can be seen that there is a steady-state offset for L1. As the setpoint for the level is
increased by 10% from 3.1 to 3.41, the actual steady-state value of L1 is closer to 3.5. The offset is due to
the lack of integral action, since the levels are controlled by pure P-controllers. It can also be seen that the
response of T3 is very slow. This is probably due to the large capacity of the system and the transport delay.

Figure 7 shows the dynamic responses to a disturbance in TP1I. The 5% increase in TP1I leads to a
larger amount of heat transferred to the refrigerant, which causes more refrigerant to evaporate. This leads
to the observed drop of the level in the first evaporator. The level controller reacts by opening XV2, which
causes the level in the second evaporator to drop as well. L3 follows after a little delay. T1 rises due to the
increased heat transfer. T2 follows quite quickly due to the pressure equilibrium that is established in the
saturated refrigerant. T3 increases much more slowly due to the large capacity of the tank. It takes much
more time to heat up the large hold-up of refrigerant in the receiver. The hold-up of liquid in the receiver
is more than eight times larger than that of the second evaporator, so it makes sense that the temperature
increases much more slowly. The increased pressure spreads almost immediately from P1 to P3 to P2, as is
to be expected.

Overall, the dynamic responses seem to correspond well with what is expected from intuition and the-
ory. It is therefore safe to assume that the implemented model gives a reasonable approximation of the
actual process.

7.2 Steady-state optimization

As already discussed, it is expected that the setpoints for the levels do not have a steady-state effect based on
literature. A brute-force evaluation of the cost function for different setpoints shows the same result. With
the exception of when both setpoints were close to their lower boundaries, the cost function is approximately
constant. The observed deviations for small values of L1 and L2 were most likely due to violations of the
upper constraint for L3. The border between the stable region and the unstable region seems to follow
a linear relationship, which strengthens this theory. The border line represents the case where the upper
constraint for L3 is active. The linearity of the border follows directly from the mass balance.

At the nominal operating point it was found that both the upper temperature specifications for the process

26

7 DISCUSSION OF THE RESULTS

outflows were active. This makes sense, as the objective was to minimize the energy consumption. Cooling
the process streams more than necessary would be a give-away of energy and thus increase the cost. Since
both heat loads can be specified independently, it is possible to have both active. In addition, it was observed
that the condenser duty is maximised by letting the flow of air being at its upper constraint. This is to be
expected since more cooling leads to a lower pressure and a lower temperature in the evaporators, allowing
for more cooling. Since there is no cost associated with the condenser, this constraint will always be active
when trying to minimize the energy consumption.

When no heat load was specified, it was observed that N went to its lower boundary. This is to be ex-
pected, since the optimizer tries to minimize the energy consumption by shutting of the compressor train.
FCP3 also went to its lower boundary to avoid pressure drop which would cost unnecessary energy loss in
the compressor train. P2 was at its upper boundary since the valve XV2 was trying to close completely to
avoid bypass of gas. By closing XV2 it can be made sure that all the gas goes through both compressors,
thus utilizing the energy as efficiently as possible.

Based on these two cases, it seems that the optimizer was set up properly and that the model gives reasonable
results.

7.3 Alternative process layout

The alternative case was defined in order to free some degrees of freedom by combining the two heat load
specifications to one. It was hoped that this would open up a degree of freedom being the distribution of
liquid in the two tanks, i.e. how much cooling is done in each of the evaporators.

Problems arose when trying to find fitting parameters for the new model. The distribution of heat transfer
area in the two evaporators caused trouble as it was not possible to distribute the old heat transfer areas
equally between the two evaporators. A solution was found when U1A1 was set equal to approximately 30
W/K. However, the active constraints are very sensitive to the exact distribution of area, as can be seen in
Figure 10. A total of 21 different constraint combinations were observed, though most of them only existed
in a single point or in very small regions. It is therefore relatively safe to assume that the eight main regions
are the correct ones, whereas the smaller ones were caused by numerical error or strange model behaviour
on the border between two constraint regions.

All except for one of the main constraint regions have three active constraint. Region eight is the ex-
ception with only one active constraint. It is theoretically possible to implement self-optimizing control in
this region, but this might not be the best overall solution. As can be seen from Figure 11, the total heat
transfer is larger in region two and three. Whether or not it is better to stay in region eight depends on
the sensitivity of the cost function there. It would be preferable to have a flat cost function curve at this
point [8][5] In addition, it is desirable that changes in the inputs do not cause any constraints to become
active, as that would make control very difficult as some sort of event detection would be needed to switch
between different control structures. The desire for a flat optimum obviously goes for all constraint regions.
The sensitivity has not yet been found, so it is difficult to say which of these eight regions would be the best
choice for implementation.

It is worthwhile to notice that the attempt to gain additional degrees of freedom by connecting the two
evaporators, failed. There are still three active constraints and zero unconstrained degrees of freedom in the
system, with the exception of the previously mentioned region eight. It is hard to spot a reason for why the
active regions are placed where they are, but it could seem as if the optimizer tries to maximise the heat
transfer in the most effective evaporator first and then maximise the other one if possible. This means that
the distribution of heat in the two evaporators does not give a degree of freedom as previously assumed.
However, this is just a very early hypothesis that needs more investigation to be verified.

It should also be mentioned at this point that while the above discussion assumes that the distribution
of heat transfer area can be chosen freely to optimize the operation, this is generally not possible. The

27

9 SUGGESTIONS FOR FURTHER WORK

plant has predetermined equipment that needs to be operated as optimal as possible, even though the plant
might run more efficiently if the process layout was changed. It is not the objective of the control engineer
to change the layout of the plant, but rather to operate the existing plant to the best of its abilities. But
the determination of the constraint regions is not completely useless from a control point of view. Once the
design has been finalized and the plant has been built, the process can still go from one constraint region to
another. Fouling inside the evaporator can lead to a decrease in the heat transfer coefficient, thus lowering
the UA-value. If the plant is designed in such a way that it operates in region three, for example, it is very
likely that it switches from region three to region two or four over time due to fouling. This knowledge will
be valuable to the operators of the plant.

8 Conclusion

A model for a two-stage refrigeration cycle was implemented in MATLAB. Dynamic simulations were done
to verify the model. The model was optimized at steady state and the nominal operating point was found.
Degree of freedom analysis showed that not enough unconstrained degrees of freedom were left to implement
self-optimizing control. An alternative case was created to get more degrees of freedom. Finding the optimal
parameters for the new models is non-trivial, since a large amount of active constraint regions are present.
One of the constraint regions only contains one active constraint, so it would be possible to implement a
self-optimizing control structure in this region. This was not done due to time restrictions.

9 Suggestions for further work

• Look at the alternative case in depth. Determine what region is most realistic or interesting to study.

• Exxon suggested that one should let the differences TP1I-T1 and TP2I-T2 be constant instead of TP1I
and TP2I. The cost function should be changed to include a trade-off between the energy consumption
and the recovery of high-value molecules as indicated by the heat transfer in the evaporators.

• Dynamic optimization / MPC

28

REFERENCES

References

[1] Vidar Alstad and Sigurd Skogestad. Null space method for selecting optimal measurement combinations
as controlled variables. Industrial & engineering chemistry research, 46(3):846–853, 2007.

[2] Vidar Alstad, Sigurd Skogestad, and Eduardo S Hori. Optimal measurement combinations as controlled
variables. Journal of Process Control, 19(1):138–148, 2009.

[3] Elvira Marie B Aske and Sigurd Skogestad. Consistent inventory control. Industrial & engineering
chemistry research, 48(24):10892–10902, 2009.

[4] Basel Nashat Asmar. Control of a two-stage refrigeration cycle, 1991.

[5] James J. Downs and Sigurd Skogestad. An industrial and academic perspective on plantwide control.
Annual Reviews in Control, 35(1):99 – 110, 2011.

[6] Ivar J. Halvorsen, Sigurd Skogestad, John C. Morud, and Vidar Alstad. Optimal selection of controlled
variables†. Industrial & Engineering Chemistry Research, 42(14):3273–3284, 2003.

[7] Jørgen Bauck Jensen and Sigurd Skogestad. Steady-state operational degrees of freedom with application
to refrigeration cycles. Industrial & Engineering Chemistry Research, 48(14):6652–6659, 2009.

[8] Truls Larsson and Sigurd Skogestad. Plantwide control-a review and a new design procedure. Modeling,
Identification and Control, 21(4):209–240, 2000.

[9] William L. Luyben. Snowball effects in reactor/separator processes with recycle. Industrial & Engi-
neering Chemistry Research, 33(2):299–305, 1994.

[10] Sigurd Skogestad. Control structure design for complete chemical plants. Computers & Chemical
Engineering, 28(1–2):219 – 234, 2004. Escape 12.

29

A PARAMETERS USED FOR THE SIMULATIONS

Appendices

A Parameters used for the simulations

In the following tables, the coefficients for the model equations will be given. All values were taken from
Asmar [4]

Table 3: Coefficients for the Antoine equation in Equation (13)

Variable A B C
[-] [-] [-]

Value 9.0825 1807.53 26.15

Table 4: Coefficients for calculating the heat capacity of propylene in Equation (37). Calculated heat capacity
has units J/(kgK)

Variable C1 C2 C3 C4 C5 C6

Value 3.707 0.01 23.439 0.001 −11.594 2.2033 · 10−3

Table 5: Coefficients for calculating the compressibility of propylene as a function of temperature in Equation
(27)

Variable φ1 φ2

[-] [K−1]

Low pressure 0.995 0
Intermediate pressure 0.566 1.26 · 10−3

High pressure 2.97 · 10−3 −0.194

Table 6: Coefficients for calculating the specific vapour enthalpy of propylene as a function of temperature
in Equation (16)

Variable ζ1 ζ2
[J/kg] [J/kgK]

Low pressure 747.441 1.36908
Intermediate pressure 663.375 1.63599
High pressure 474.0188 2.09759

Table 7: Coefficients for calculating the specific liquid enthalpy of propylene as a function of temperature in
Equation (17)

Variable δ1 δ2
[J/kg] [J/kgK]

Low pressure 7.16036 2.63768
Intermediate pressure 7.16036 2.63768
High pressure 95.5601 2.32367

30

A PARAMETERS USED FOR THE SIMULATIONS

Table 8: Coefficients for calculating the specific volume of propylene as a function of temperature in Equation
(9)

Variable λ1 λ2

[J/kg] [J/kgK]

Low pressure 8.05418 · 10−4 3.934 · 10−6

Intermediate pressure 5.91479 · 10−4 4.777 · 10−6

High pressure 7.493 · 10−6 −2.00589 · 10−4

Table 9: Coefficients for the compressor curve for the first compressor in Equation (38)

Variable C11 C12 C13

[m3/s] [m4/s] [m]

Value 1.9928 16791 8756.4

Table 10: Coefficients for the compressor curve for the second compressor in Equation (39) and Equation
(40)

Variable C21 C22 C23 C24 C25

[-] [m] [m] [m3/s] [m3/s]

Value 0.45615 10296 2956.2 0.816051 0.27585

Table 11: Coefficients for the compressor curves for both compressors in Equation (41)

Variable e1 e2 e3 e4

[m−1] [-] [m−1] [-]

Compressor 1 6.47 · 10−5 0.353 7.101 · 10−4 6.5963
Compressor 2 4.098 · 10−5 0.364 11.218 · 10−4 12.445

31

B MATLAB-CODE

B MATLAB-code

This section contains the MATLAB-code which was used to calculate all the results. Only the model for the
first case is included, as the alternative case is almost identical with the exception of some minor changes
to the parameter initialisation, a new cost function and a new model equation being the condition that the
inlet to the first evaporator is the outlet from the second evaporator.

B.1 Model equations

DAE-system which is to be integrated.

1 function out = model(t,x,u,params)

2

3 % Description

4

5 %% Extracting states:

6 H1 = x(1); % Diff.

7 H2 = x(2); % Diff.

8 T3 = x(3); % Diff.

9 W1 = x(4); % Diff.

10 W2 = x(5); % Diff.

11 W4 = x(6); % Diff.

12

13 T1 = x(7); % Alg.

14 T2 = x(8); % Alg.

15 PA = x(9); % Alg.

16 TA = x(10); % Alg.

17 TC = x(11); % Alg.

18 TD = x(12); % Alg.

19 HH1 = x(13); % Alg.

20 HH2 = x(14); % Alg.

21 WV1 = x(15); % Alg.

22 WV2 = x(16); % Alg.

23

24 XV2 = x(17); % Controller

25 XV3 = x(18); % Controller

26

27 L1dummy = x(19); % Dummy

28 L2dummy = x(20); % Dummy

29 L3dummy = x(21); % Dummy

30 P1dummy = x(22); % Dummy

31 P2dummy = x(23); % Dummy

32 P3dummy = x(24); % Dummy

33 TP1Odummy = x(25); % Dummy

34 TP2Odummy = x(26); % Dummy

35 TP3Odummy = x(27); % Dummy

36 FG1dummy = x(28); % Dummy

37 FG2dummy = x(29); % Dummy

38 FG3dummy = x(30); % Dummy

39 FL2dummy = x(31); % Dummy

40 FL3dummy = x(32); % Dummy

41 FL4dummy = x(33); % Dummy

42 TBdummy = x(34); % Dummy

43

44 %% Extracting inputs and disturbances

32

B MATLAB-CODE

45

46 L1sp = u(1);

47 L2sp = u(2);

48 N = u(3);

49 XV1 = u(4);

50 FCP3 = u(5);

51

52 %% Defining parameters

53

54 if ~exist(’params’,’var’)

55 params = init_params();

56 end

57

58 W = params.W;

59 V1 = params.V1;

60 V2 = params.V2;

61 V3 = params.V3;

62 VC = params.VC;

63 C11 = params.C11;

64 C12 = params.C12;

65 C13 = params.C13;

66 C21 = params.C21;

67 C22 = params.C22;

68 C23 = params.C23;

69 C24 = params.C24;

70 C25 = params.C25;

71 E11 = params.E11;

72 E12 = params.E12;

73 E13 = params.E13;

74 E14 = params.E14;

75 E21 = params.E21;

76 E22 = params.E22;

77 E23 = params.E23;

78 E24 = params.E24;

79 U1A1 = params.U1A1;

80 U2A2 = params.U2A2;

81 U3A3 = params.U3A3;

82 CV1 = params.CV1;

83 CV2 = params.CV2;

84 CV3 = params.CV3;

85 FCP1 = params.FCP1;

86 FCP2 = params.FCP2;

87 TP1I = params.TP1I;

88 TP2I = params.TP2I;

89 TP3I = params.TP3I;

90 A = params.A;

91 B = params.B;

92 C = params.C;

93 R = params.R;

94 MW = params.MW;

95 G = params.G;

96 C1 = params.C1;

97 C2 = params.C2;

98 C3 = params.C3;

33

B MATLAB-CODE

99 C4 = params.C4;

100 C5 = params.C5;

101 C6 = params.C6;

102

103 %% Algebraic equations

104

105 P1 = exp(A - B/(T1 - C));

106 Z1 = 0.955 + 0.0*T1;

107

108 HS1 = HH1/(N^2.19);

109 FG1S= (N^1.56)*(C11*HS1 - C12)/(HS1 - C13);

110 FG1 = FG1S*MW*P1*100/(T1*R*Z1);

111

112 % ----------------------

113

114 P2 = exp(A - B/(T2 - C));

115 FG2 = XV1*CV1*sqrt(P2-PA);

116

117 TB = (TA*FG1 + T2*FG2)/(FG1+FG2);

118 Z2 = 0.566 + 1.26E-3*TB;

119

120 % ----------------------

121

122 P3 = exp(A - B/(TD - C));

123 Z3 = -0.194 + 2.97E-3*TD;

124

125 HS2 = HH2/(N^2.11);

126 TX = C21/(tan((C22-HS2)/C23));

127 FG3S = (N^1.79)*(C24 + C25*log(sqrt(TX^2+1)-TX));

128 FG3 = FG3S*MW*PA*100/(TB*R*Z2);

129

130 % ----------------------

131 % Enthalpies

132 HFG1 = 747.441 + 1.36908*T1;

133 HFG2 = 663.375 + 1.63599*T2;

134 HFG3 = 474.018 + 2.09759*TC;

135

136 HFL2 = 7.16036 + 2.63768*T2;

137 HFL3 = 95.5601 + 2.32367*T3;

138 HFL4 = 95.5601 + 2.32367*TD;

139

140 HW1V = 747.441 + 1.36908*T1;

141 HW1L = 7.16036 + 2.63768*T1;

142

143 HW2V = 663.375 + 1.63599*T2;

144 HW2L = 7.16036 + 2.63768*T2;

145

146 % ----------------------

147

148 A1 = exp(-U1A1/FCP1);

149 TP1O = (1-A1)*T1 + A1*TP1I;

150 Q1 = FCP1*(TP1I - TP1O)

151

152 A2 = exp(-U2A2/FCP2);

34

B MATLAB-CODE

153 TP2O = (1-A2)*T2 + A2*TP2I;

154 Q2 = FCP2*(TP2I - TP2O)

155

156 A3 = exp(-U3A3/FCP3);

157 TP3O = (1-A3)*TD + A3*TP3I;

158 QC = FCP3*(TP3I - TP3O);

159

160 % ----------------------

161

162 FL2 = XV2*CV2*sqrt(P2-P1);

163 FL3 = XV3*CV3*sqrt(P3-P2);

164 FL4 = -QC/(HFG3-HFL4);

165

166 ETA1 = E11*HS1 + E12 - 10^(E13*HS1 - E14);

167

168 CPI1 = C1 + C2*T1*(C3 + C4*T1*(C5 + C6*T1));

169 CPO1 = C1 + C2*TA*(C3 + C4*TA*(C5 + C6*TA));

170

171 G1 = 0.5*(CPI1/(CPI1-R) + CPO1/(CPO1-R));

172 POL1 = ETA1*G1/(G1-1);

173

174 ETA2 = E21*HS2 + E22 - 10^(E23*HS2 - E24);

175

176 CPI2 = C1 + C2*TB*(C3 + C4*TB*(C5 + C6*TB));

177 CPO2 = C1 + C2*TC*(C3 + C4*TC*(C5 + C6*TC));

178

179 G2 = 0.5*(CPI2/(CPI2-R) + CPO2/(CPO2-R));

180 POL2 = ETA2*G2/(G2-1);

181

182 WL1 = W1 - WV1;

183 WL2 = W2 - WV2;

184 W3 = W - W1 - W2 - W4;

185

186 HL1 = WL1*HW1L;

187 HV1 = WV1*HW1V;

188

189 HL2 = WL2*HW2L;

190 HV2 = WV2*HW2V;

191

192 VF1 = 8.05418E-4 + 3.934E-6*T1;

193 VF2 = 5.91479E-4 + 4.777E-6*T2;

194 VF3 = -2.00589E-4 + 7.493E-6*TD;

195

196 V1G = V1 - WL1*VF1;

197 V2G = V2 - WL2*VF2;

198 V4G = V3 + VC - W3*VF3;

199

200 VG1 = V1G/WV1;

201 VG2 = V2G/WV2;

202 VG4 = V4G/W4;

203

204 L1 = WL1*VF1;

205 L2 = WL2*VF2;

206 L3 = W3*VF3;

35

B MATLAB-CODE

207

208 PTH1 = 0.5*FG1*(CPO1+CPI1)*(TA-T1)*1000/MW;

209 PTH2 = 0.5*FG3*(CPO2+CPI2)*(TC-TB)*1000/MW;

210 PTHTOT = PTH1 + PTH2;

211

212 %% Defining the derivatives

213

214 dH1 = HFL2*FL2 - HFG1*FG1 + Q1;

215 dH2 = HFL3*FL3 - HFL2*FL2 - HFG2*FG2 + Q2;

216 dT3 = FL4*(TD - T3)/W3;

217 dW1 = FL2 - FG1;

218 dW2 = FL3 - FL2 - FG2;

219 dW4 = FG3 - FL4;

220

221 dx = [dH1; dH2; dT3; dW1; dW2; dW4];

222

223 %% Defining the residuals

224

225 % Algebraic

226 T1resid = H1 - HL1 - HV1;

227 T2resid = H2 - HL2 - HV2;

228 PAresid = FG3 - FG1 - FG2;

229 TAresid = TA - T1*((PA/P1)^(1/POL1));

230 TCresid = TC - TB*((P3/PA)^(1/POL2));

231 TDresid = P3 - Z3*R*TD/(MW*VG4*100);

232 HH1resid = HH1 - POL1*(R*1000/(G*MW))*(TA - T1);

233 HH2resid = HH2 - POL2*(R*1000/(G*MW))*(TC - TB);

234 WV1resid = P1 - Z1*R*T1/(MW*VG1*100);

235 WV2resid = P2 - Z2*R*T2/(MW*VG2*100);

236

237 % Controllers

238 KcL1C = 0.5;

239 L1Cresid = (0.2441 - XV2) + (L1sp - L1)*KcL1C;

240

241 KcL2C = 0.6;

242 L2Cresid = (0.2961 - XV3) + (L2sp - L2)*KcL2C;

243

244 resids = [T1resid; T2resid; PAresid; TAresid; TCresid; TDresid;...

245 HH1resid; HH2resid; WV1resid; WV2resid; L1Cresid; L2Cresid;...

246];

247

248 % Dummies

249 L1resid = L1-L1dummy;

250 L2resid = L2-L2dummy;

251 L3resid = L3-L3dummy;

252

253 P1resid = P1-P1dummy;

254 P2resid = P2-P2dummy;

255 P3resid = P3-P3dummy;

256

257 TP1Oresid = TP1O-TP1Odummy;

258 TP2Oresid = TP2O-TP2Odummy;

259 TP3Oresid = TP3O-TP3Odummy;

260

36

B MATLAB-CODE

261 FG1resid = FG1-FG1dummy;

262 FG2resid = FG2-FG2dummy;

263 FG3resid = FG3-FG3dummy;

264

265 FL2resid = FL2-FL2dummy;

266 FL3resid = FL3-FL3dummy;

267 FL4resid = FL4-FL4dummy;

268

269 TBresid = TB-TBdummy;

270

271 resids = [resids; L1resid; L2resid; L3resid; P1resid; P2resid; P3resid; ...

272 TP1Oresid; TP2Oresid; TP3Oresid; FG1resid; FG2resid; FG3resid;...

273 FL2resid; FL3resid; FL4resid; TBresid];

274

275 %% Output

276

277 out = [dx; resids];

278

279 end

Initialisation of the parameters

Creates struct of parameters.

1 function params = init_params()

2

3 % Refrigerant inventory [kg]

4 params.W = 6500;

5

6 % Vessels sizes [m3]

7 params.V1 = 20; % LP evaporator

8 params.V2 = 3.393; % IP evaporator

9 params.V3 = 18.85; % Receiver

10 params.VC = 4.15; % Condenser

11

12 % Coefficients for curve fittings for first compressor performance

13 params.C11 = 1.9928;

14 params.C12 = 16791;

15 params.C13 = 8756.4;

16

17 % Coefficients for curve fittings for second compressor performance

18 params.C21 = 0.45615;

19 params.C22 = 10296;

20 params.C23 = 2956.2;

21 params.C24 = 0.816051;

22 params.C25 = 0.27585;

23

24 % Coefficients for curve fittings for first compressor isentropic efficiency

25 params.E11 = 6.47E-5;

26 params.E12 = 0.353;

27 params.E13 = 7.101E-4;

28 params.E14 = 6.5963;

29

30 % Coefficients for curve fittings for second compressor isentropic efficiency

31 params.E21 = 4.098E-5;

37

B MATLAB-CODE

32 params.E22 = 0.364;

33 params.E23 = 1.121E-3;

34 params.E24 = 12.445;

35

36 % Combined overall heat transfer coefficients and heat transfer areas

37 % in the two evaporators and the condenser [J/(s.K)]

38 params.U1A1 = 146.066; % LP evaporator

39 params.U2A2 = 5.5479; % IP evaporator

40 params.U3A3 = 420.643; % Condenser

41

42 % Valve constants [kg/(s.bar0.5)]

43 params.CV1 = 3.39814; % Vapour valve

44 params.CV2 = 2.233338; % First liquid valve

45 params.CV3 = 1.85435; % Second liquid valve

46

47 % Combined process stream flowrate and specific heat capacity [J/(s.K)]

48 params.FCP1 = 111.394; % LP evaporator

49 params.FCP2 = 24.32; % IP evaporator

50

51 % Process stream inlet temperatures [K]

52 params.TP1I = 235.2; % Process stream in LP evaporator

53 params.TP2I = 280.4; % Process stream in IP evaporator

54 params.TP3I = 303.0; % Cooling air in the condenser

55

56 % Antoine Equation coefficients for propylene

57 params.A = 9.0825;

58 params.B = 1807.53;

59 params.C = 26.15;

60

61 % General constants

62 params.R = 8.314; % Gas constant [J/(mol.K)]

63 params.MW = 42.081; % Propylene molecular weight [kg/kmol]

64 params.G = 9.81; % Gravity acceleration [m/s2]

65

66 % Specific heat capacity equation coefficients for propylene

67 params.C1 = 3.707;

68 params.C2 = 0.01;

69 params.C3 = 23.439;

70 params.C4 = 0.001;

71 params.C5 = -11.594;

72 params.C6 = 2.2033E-3;

73

74 end

B.2 Integrator

Integrates the model using ode15s. First call to fsolve is to create good initial values for the integrator, but
this step seems unnecessary.

1 function [t,x] = integrator()

2 % Description

3

4 %%%

5 %% Calculating the steady state with the given inputs

6 %%%

38

B MATLAB-CODE

7

8 % Initial estimates for the states

9

10 % Differential states

11 W1ic = 1.8790e+03;

12 W2ic = 509.5381;

13 T3ic = 310.3064;

14 H1ic = 1.1346e+06;

15 H2ic = 3.6506e+05;

16 W4ic = 524.1002;

17

18 x0_diff = [H1ic; H2ic; T3ic; W1ic; W2ic; W4ic]; % Diff.

19

20 % Algebraic states

21 T1ic = 222.8800;

22 T2ic = 262.5103;

23 PAic = 3.8933;

24 TAic = 295.0822;

25 TCic = 358.1332;

26 TDic = 310.3064;

27 HH1ic = 7.5895e+03;

28 HH2ic = 8.7647e+03;

29 WV1ic = 36.1681;

30 WV2ic = 21.8629;

31

32 XV2ic = 0.7000;

33 XV3ic = 0.7096;

34

35 x0_alg = [T1ic; T2ic; PAic; TAic; TCic; ...

36 TDic; HH1ic; HH2ic; WV1ic; WV2ic; XV2ic; XV3ic]; % Alg.

37

38 % Additional (non-state) variables

39 L1ic = 3.1;

40 L2ic = 0.9;

41 L3ic = 7.6216;

42

43 P1ic = 0.9;

44 P2ic = 4.2;

45 P3ic = 15.2025;

46

47 TP1Oic = 226.2000;

48 TP2Oic = 276.7510;

49 TP3Oic = 308.1249;

50

51 FG1ic = 2.8400;

52 FG2ic = 1.5245;

53 FG3ic = 4.3646;

54

55 FL2ic = 2.8400;

56 FL3ic = 4.3646;

57 FL4ic = 4.3646;

58

59 TBic = 283.7050;

60

39

B MATLAB-CODE

61 x0_add = [L1ic; L2ic; L3ic; P1ic; P2ic; P3ic; TP1Oic; TP2Oic; TP3Oic; ...

62 FG1ic; FG2ic; FG3ic; FL2ic; FL3ic; FL4ic; TBic];

63

64 x0 = [x0_diff; x0_alg; x0_add]; % Combining diff, alg and additional

65

66 % Initial conditions for the inputs

67 L1spic = 4.0118;

68 L2spic = 1.5892;

69 Nic = 0.9912;

70 XV1ic = 0.8097;

71 FCP3ic = 348.00;

72

73 u0 = [L1spic; L2spic; Nic; XV1ic; FCP3ic];

74

75 % Calculating the steady state

76 g = @(x) model([],x,u0);

77

78 x_SS = fsolve(g,x0);

79

80 %%%

81 %% Calculating responses to disturbances / setpoint changes

82 %%%

83

84 % Doing a step change in L1 setpoint

85 u = u0;

86 %u(1) = u(1)*1.1;

87

88 % Parametrizing the function to pass extra parameters to it (u and params)

89 params = init_params;

90 %params.TP1I = params.TP1I*1.05;

91 g = @(t,x) model(t,x,u,params);

92

93 % Defining the constant, singular mass matrix M

94 M = diag([ones(1,length(x0_diff)),zeros(1,length(x0_alg)+length(x0_add))]);

95

96 J = @(t,x) jac(t,x,u);

97

98 % Setting the options for the ODEsolver

99 %options = odeset(’Jacobian’,J,’Mass’,M,’MStateDependence’,’none’,...

100 % ’MassSingular’,’yes’,’RelTol’,1e-4,’Vectorized’,’off’);

101

102 options = odeset(’Mass’,M,’MStateDependence’,’none’,...

103 ’MassSingular’,’yes’,’RelTol’,1e-4,’Vectorized’,’off’);

104

105 tspan = [0:0.5:2000];

106 [t,x] = ode15s(g,tspan,x_SS,options);

107

108 % Calculating the corresponding outputs from the states

109 L1 = x(:,19);

110 L2 = x(:,20);

111 L3 = x(:,21);

112 P1 = x(:,22);

113 P2 = x(:,23);

114 P3 = x(:,24);

40

B MATLAB-CODE

115 T1 = x(:,7);

116 T2 = x(:,8);

117 T3 = x(:,3);

118 TP1O = x(:,25);

119 TP2O = x(:,26);

120 TP3O = x(:,27);

121 FG2 = x(:,29);

122 FL2 = x(:,31);

123 FL3 = x(:,32);

124

125 % Plotting the results

126 figure()

127

128 hold on

129 subplot(5,3,1); plot(t,L1)

130 xlabel(’t’); ylabel(’L1’)

131 subplot(5,3,2); plot(t,L2)

132 xlabel(’t’); ylabel(’L2’)

133 subplot(5,3,3); plot(t,L3)

134 xlabel(’t’); ylabel(’L3’)

135 subplot(5,3,4); plot(t,P1)

136 xlabel(’t’); ylabel(’P1’)

137 subplot(5,3,5); plot(t,P2)

138 xlabel(’t’); ylabel(’P2’)

139 subplot(5,3,6); plot(t,P3)

140 xlabel(’t’); ylabel(’P3’)

141 subplot(5,3,7); plot(t,T1)

142 xlabel(’t’); ylabel(’T1’)

143 subplot(5,3,8); plot(t,T2)

144 xlabel(’t’); ylabel(’T2’)

145 subplot(5,3,9); plot(t,T3)

146 xlabel(’t’); ylabel(’T3’)

147 subplot(5,3,10); plot(t,FG2)

148 xlabel(’t’); ylabel(’FG2’)

149 subplot(5,3,11); plot(t,FL2)

150 xlabel(’t’); ylabel(’FL2’)

151 subplot(5,3,12); plot(t,FL3)

152 xlabel(’t’); ylabel(’FL3’)

153 subplot(5,3,13); plot(t,TP1O)

154 xlabel(’t’); ylabel(’TP1O’)

155 subplot(5,3,14); plot(t,TP2O)

156 xlabel(’t’); ylabel(’TP2O’)

157 subplot(5,3,15); plot(t,TP3O)

158 xlabel(’t’); ylabel(’TP3O’)

159 hold off

160

161 end

B.3 Steady-state optimization

Optimizing the model using fmincon.

1 function [y,fval,exitflag] = opt(u0,x0,params)

2

3 if (~exist(’params’,’var’))

41

B MATLAB-CODE

4 params = init_params();

5 end

6

7 if (~exist(’u0’,’var’)) || isempty(u0)

8 % Inputs

9 L1spic = 4.0118;

10 L2spic = 1.5892;

11 Nic = 0.9912;

12 XV1ic = 0.8097;

13 FCP3ic = 348.00;

14 u0 = [L1spic; L2spic; Nic; XV1ic; FCP3ic];

15 end

16 if (~exist(’x0’,’var’)) || isempty(x0)

17 % Differential states

18 H1ic = 1.1346e+06;

19 H2ic = 3.6506e+05;

20 W1ic = 1.8790e+03;

21 W2ic = 509.5381;

22 T3ic = 310.3064;

23 W4ic = 524.1002;

24 x0_diff = [H1ic; H2ic; T3ic; W1ic; W2ic; W4ic]; % Differential

25

26 % Algebraic states

27 T1ic = 222.8800;

28 T2ic = 262.5103;

29 PAic = 3.8933;

30 TAic = 295.0822;

31 TCic = 358.1332;

32 TDic = 310.3064;

33 HH1ic = 7.5895e+03;

34 HH2ic = 8.7647e+03;

35 WV1ic = 36.1681;

36 WV2ic = 21.8629;

37 XV2ic = 0.7000;

38 XV3ic = 0.7096;

39 x0_alg = [T1ic; T2ic; PAic; TAic; TCic; ...

40 TDic; HH1ic; HH2ic; WV1ic; WV2ic; XV2ic; XV3ic]; % Algebraic

41

42 % Additional (non-state) variables

43 L1ic = 3.1;

44 L2ic = 0.9;

45 L3ic = 7.6216;

46 P1ic = 0.9;

47 P2ic = 4.2;

48 P3ic = 15.2025;

49 TP1Oic = 226.2000;

50 TP2Oic = 276.7510;

51 TP3Oic = 308.1249;

52 FG1ic = 2.8400;

53 FG2ic = 1.5245;

54 FG3ic = 4.3646;

55 FL2ic = 2.8400;

56 FL3ic = 4.3646;

57 FL4ic = 4.3646;

42

B MATLAB-CODE

58 TBic = 283.7050;

59 x0_add = [L1ic; L2ic; L3ic; P1ic; P2ic; P3ic; TP1Oic; TP2Oic; ...

60 TP3Oic; FG1ic; FG2ic; FG3ic; FL2ic; FL3ic; FL4ic; TBic]; % Additional

61

62 x0 = [x0_diff; x0_alg; x0_add]; % Combining diff, alg and additional

63 end

64

65 g = @(x) model([],x,u0,params);

66

67 x0 = fsolve(g,x0); % Get initial guess

68

69 y0 = [u0; x0]; % Combining inputs and states

70

71 %% Constraints

72 lb=zeros(length(y0),1);

73 lb(3) = 0.0; % N

74 lb(4) = 0; % XV1

75 lb(5) = 116; % FCP3

76 lb(22) = 0; % XV2

77 lb(23) = 0; % XV3

78 lb(24) = 2.9; % L1

79 lb(25) = 0.6; % L2

80 lb(26) = 6.9; % L3

81 lb(27) = 0; % P1

82 lb(28) = 3; % P2

83 lb(29) = 12; % P3

84 lb(30) = 200; % TP1O

85 lb(34) = 0; % FG2

86 lb(36) = 0; % FL2

87 lb(37) = 0; % FL3

88

89 ub=ones(length(y0),1)*1e12;

90 ub(3) = 1.1; % N

91 ub(4) = 1; % XV1

92 ub(5) = 348; % FCP3

93 ub(22) = 1; % XV2

94 ub(23) = 1; % XV3

95 ub(24) = 6.4; % L1

96 ub(25) = 1.6; % L2

97 ub(26) = 13.7; % L3

98 ub(27) = 2; % P1

99 ub(28) = 6; % P2

100 ub(29) = 18; % P3

101 ub(30) = 300; % TP1O

102 ub(34) = 6.31; % FG2

103 ub(36) = 5.47; % FL2

104 ub(37) = 7.18; % FL3

105

106 %% Optimization

107

108 % fmincon options

109 alg = ’Interior-Point’;

110 %alg = ’sqp’;

111 options = optimset(’TolFun’,10e-7,’TolCon’,10e-7,’MaxFunEvals’,1e4,...

43

B MATLAB-CODE

112 ’MaxIter’,1e4,’Display’,’none’,’Algorithm’,alg,’Diagnostics’,’off’...

113);

114

115 % Call fmincon to optimize the model

116 nlconpar = @(y) nlcon(y,params);

117 [y,fval,exitflag] = fmincon(@cost,y0,[],[],[],[],lb,ub,nlconpar,options);

118

119 name = {’L1sp’,’L2sp’,’N’,’XV1’,’FCP3’,’H1’,’H2’,’T3’,’W1’,’W2’,’W4’,...

120 ’T1’,’T2’,’PA’,’TA’,’TC’,’TD’,’HH1’,’HH2’,’WV1’,’WV2’,’XV2’,...

121 ’XV3’,’L1’,’L2’,’L3’,’P1’,’P2’,’P3’,’TP1O’,’TP2O’,’TP3O’,’FG1’,...

122 ’FG2’,’FG3’,’FL2’,’FL3’,’FL4’,’TB’...

123 };

124

125 if exitflag ~= 1

126 fprintf(’Exitflag not equal to 1! \n\n’)

127 end

128

129 upper_limit = abs(ub./y)-1;

130 lower_limit = 1-abs(lb./y);

131 err_tol = 1e-7;

132 for i = 1:length(y0)

133 if upper_limit(i) < err_tol

134 fprintf(’Active constraint: %s at upper limit \n’,name{i})

135 elseif lower_limit(i) < err_tol

136 fprintf(’Active constraint: %s at lower limit \n’,name{i})

137 end

138 end

139

140 function [j] = cost(y)

141

142 %% Objective function

143

144 % Unpacking the parameters

145 T1 = y(12);

146 TA = y(15);

147 TB = y(39);

148 TC = y(16);

149 FG1 = y(33);

150 FG3 = y(35);

151

152 %% Calculating the cost

153

154 % General constants

155 MW = 42.081;

156

157 % Specific heat capacity equation coefficients for propylene

158 C1 = 3.707;

159 C2 = 0.01;

160 C3 = 23.439;

161 C4 = 0.001;

162 C5 = -11.594;

163 C6 = 2.2033E-3;

164

165 CPI1 = C1 + C2*T1*(C3 + C4*T1*(C5 + C6*T1));

44

B MATLAB-CODE

166 CPO1 = C1 + C2*TA*(C3 + C4*TA*(C5 + C6*TA));

167

168 CPI2 = C1 + C2*TB*(C3 + C4*TB*(C5 + C6*TB));

169 CPO2 = C1 + C2*TC*(C3 + C4*TC*(C5 + C6*TC));

170

171 % Energy consumption

172 PTH1 = 0.5*FG1*(CPO1+CPI1)*(TA-T1)*1000/MW;

173 PTH2 = 0.5*FG3*(CPO2+CPI2)*(TC-TB)*1000/MW;

174 PTHTOT = PTH1 + PTH2;

175

176 j = PTHTOT;

177

178 function [c ,ceq] = nlcon(y,params)

179

180 % Inputs

181 u = y(1:5);

182 % State variables

183 x = y(6:end);

184

185 % Nonlinear inequality constraints C(x)<0

186 c=[x(25)-226.2,...

187 x(26)-276.751];

188

189 % Nonlinear equality constraints C(x)=0

190 ceq=[model([],x,u,params);...

191 y(24)-3.1 ; ...

192 y(25)-0.9 ; ...

193];

194

B.4 Finding active constraint regions

1 A1int = linspace(5,55,101);

2 A2int = linspace(5,55,101);

3

4 map1 = zeros(length(A1int),length(A2int));

5 map2 = zeros(length(A1int),length(A2int));

6 map3 = zeros(length(A1int),length(A2int));

7

8 for i = 1:length(A1int)

9 for j = 1:length(A2int)

10 try

11 p = init_params;

12 p.U1A1 = A1int(i);

13 p.U2A2 = A2int(j);

14 [y,fval,exit,cvu,cvd] = opt(u0,x0,p);

15 if exit > 0

16 map1(i,j) = cvu;

17 map2(i,j) = cvd;

18 map3(i,j) = fval;

19 else

20 map1(i,j) = exit;

21 map2(i,j) = exit;

22 end

45

B MATLAB-CODE

23 catch err

24 if strcmp(err.identifier,’optim:barrier:UsrNonlConstrUndefAtX0’)

25 map1(i,j) = -10;

26 map2(i,j) = -10;

27 else

28 rethrow(err)

29 end

30 end

31 end

32 end

33 combimap = (map1+map2*1i);

34 for i = 1:101

35 for j = 1:101

36 Z(i,j) = getflag(combimap(i,j));

37 end

38 end

39 X = A1int;

40 Y = A2int;

41 h = pcolor(Y,X,Z);

42 set(h, ’EdgeColor’, ’none’);

1 function flag = getflag(z)

2 switch z

3 case -10 - 10i;

4 flag = -1;

5 case 0;

6 flag = -1;

7 case -2 - 2i

8 flag = -1;

9 case 0 + 32i

10 flag = 1;

11 case 56

12 flag = 2;

13 case 4194304

14 flag = 3;

15 case 4194312

16 flag = 4;

17 case 4194320

18 flag = 5;

19 case 4194344

20 flag = 6;

21 case 4194352

22 flag = 7;

23 case 8388632

24 flag = 8;

25 case 8388664

26 flag = 9;

27 case 12582920

28 flag = 10;

29 case 12582928

30 flag = 11;

31 case 12582952

32 flag = 12;

33 case 12582960

46

B MATLAB-CODE

34 flag = 13;

35 case 4194304 + 16777216i

36 flag = 14;

37 case 0 + 67108864i

38 flag = 15;

39 case 16 + 67108864i

40 flag = 16;

41 case 536870912

42 flag = 17;

43 case 536870912 + 67108864i

44 flag = 18;

45 case 545259536

46 flag = 19;

47 case 545259544

48 flag = 20;

49 case 549453840

50 flag = 21;

51 otherwise

52 fprintf(’unknown z: %14.14f, %14.14f\n’,real(z),imag(z))

53 flag = 0;

54 end

55 end

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

47

	Introduction
	Process description

	I Theory
	Top down procedure for control structure design
	Defining the operational objective
	Degree of freedom analysis
	Implementation of optimal solution
	Production rate and inventory control

	II Results
	Modelling
	Model equations
	Evaporators
	Condenser and receiver
	Compressor

	Implementation in MATLAB

	Dynamic simulation
	Controlling the levels
	Dynamic responses

	Steady-state optimization
	Determining the steady-state effect of the levels
	Nominal operating conditions
	Self-optimizing control

	Alternative process layout

	III Discussion, conclusion and suggestions for further work
	Discussion of the results
	Dynamic responses
	Steady-state optimization
	Alternative process layout

	Conclusion
	Suggestions for further work
	Appendices
	Parameters used for the simulations
	MATLAB-code
	Model equations

