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Abstract

This project has been prepared as part of the MSc degree in Chemical Engineering from NTNU.

The project looks at process control of multiple input multiple output (MIMO) processes with neg-

ative relative gain array (RGA) elements. Control structures paired on these negative elements, us-

ing proportional-integral (PI) regulators, are tested and simulated using Simulink and MATLAB. The

project looks at three case studies: a static gain process with delay, two coupled tanks and a binary

distillation column.

Control that tracks set-points can be achieved with parings on negative RGA elements, but should

be avoided if possible. Compared to pairings on positive RGA elements negative elements gives poor

failure tolerance and tends to give initial inverse responses. Negative pairings may be preferable

where the process dynamics are considerably faster than for the positive elements.
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1 Introduction

The relative gain array, RGA, was introduced by Bristol in 1966 [1]. It provides a tool for assessing the

steady state gains from input to output for multi-variable coupled systems. The RGA is a tool for as-

sessing and picking the control structures that look most promising to achieve the control objectives.

One of the assertions emerging from Bristol’s paper was that it was very undesirable to couple on

negative RGA elements. Shinskey also extends the RGA analysis looking at the consequences of pair-

ing feedback controllers on negative RGA elements [2]. The main counterpoints against negative

pairings that emerge from these works are:

1. That the transfer function between input/output for a negative element will be non-minimal

phase or unstable

2. Pairing a two-by-two process on a negative element with feedback controllers forces one of

the controllers to have positive feedback. Thus if one of the controllers then goes off-line, for

example due to saturation or being put in manual by operators, the control structure is left in

a highly undesirable state where the remaining controllers gain has the wrong sign.

3. Pairing on negative elements results in inverse responses

Grosdidier, Morari and Holt expands the RGA analysis in their paper by methodically testing and

proving, the qualitative arguments made by Bristol and Shinskey [3].

This project looks at the performance of controllers coupled on negative RGA-elements.
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2 Theory

Often in many process control applications for multiple-input-multiple-ouput (MIMO) systems only

steady state gains or simple models such as first order plus time delay (FOPTD) models are available

for evaluation [3]. Such a system may be represented be represented by a transfer function matrix

G(s) that relates input U to output Y.

Y(s) = G(s)U(s) (2.1)

Where Y is a vector of m output states, in this context controlled variables (CV’s). U is a vector of n

input variables, or manipulated variables (MV’s). The matrix of transfer functions G(s) has a dimen-

sion n×m, where element gi j (s) of G(s) relates input ui to output y j . All transfer functions are given

as Laplace transforms.

The state state gain matrix, K, can be obtained directly from process data or as the limit of trans-

fer functions in G:

K = lim
t→∞G(t ) = lim

s→0
G(s) = G(0) (2.2)

For the scope of this paper only systems with two inputs and outputs (2×2 systems) have been con-

sidered. This kind of system is illustrated in Figure 1 which illustrates a simple binary distillation

column. The aim with control of the distillation column is to control the composition of light com-

ponent in the bottom and top product from the column (mole fraction Xb and Yd ). This is achieved

by adjusting the two MV’s: the vapour flow (V ) from the reboiler and liquid reflux flow (L) from the

condenser. This example is studied in Section 3.3.

u1

u2

G11(s)

G12(s)

G21(s)

G22(s) y2

y1

Figure 1: A schematic representation of a distilation column and it’s representation in a block dia-
gram as a 2×2-system
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2.1 SISO Control of MIMO systems

Process control of systems with a single input that controls a single output, SISO control, has been

extensively studied for optimal and stable operation. Procedures for designing and tuning SISO con-

trollers are readily available from literature such as the Skogestad/Simple internal model control

(SIMC). This method tunes the controller based on a first (FOPTD) or second order (SOPTD) transfer

function with time delay. All controllers in this paper are tuned using the SIMC method. This is out-

lined in section 2.7 of the book Multivariable Feedback Control, analysis and design [4].

However most real world problems involve multiple MV’s and target CV’s. Some degree of inter-

actions between inputs and outputs is expected for most control problems, such as V effecting both

compositions Xb and Yd the distillation column in Figure 1. This means that the controllers in the

plant will disturb each other as they try to reach the set-point for their CV, which can severely impair

controller performance [5].

The RGA provides a measurement of the degree of interactions (discussed in Section 2.3). Other

multivariable techniques such as decoupling and cascade control aim to reduce the impact of the

interactions. These are not considered in this paper, which looks at SISO controller performance in

a MIMO (2×2) system with controller pairings on negative RGA elements.

For square systems with as many MV’s as CV’s (n = m), there are n! possible control structures [2].

Most of these designs will be poorly suited for control. The RGA provides a simple and powerful tool

to evaluate and choose candidate control structures for further analysis. Figure 2 shows the two pos-

sible control structures for a 2×2 system. The controller is a proportional-integral controller or pure

integral controller (Section 3.1). The controller on cascade Laplace form is given as

Ci (s) = Kc
τi s +1

τi s
(2.3)

y2

Diagonal Controller

u1

u2

G11(s)

G12(s)

G21(s)

G22(s)

y1

C2(s)

C1(s)

C1sp

C2sp

y2

y1

C2sp

C1sp

Off-diagonal Controller

u1

u2

G11(s)

G12(s)

G21(s)

G22(s)C1(s)

C2(s)

Figure 2: SISO control options for a 2× 2-system. The red lines indicate the interaction from one
controller to the other output.
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2.2 Calculation of the RGA

The relative gain array, Λ, is given as the open loop gain over the closed loop gain for each element

in Y and U. The open loop gain is the gain in an output yi for an input u j with all other inputs, u’s,

constant, whilst the closed loop gain is the gain in yi for input u j with all other outputs, y’s constant.

This can be written as

λi j = Open-loop gain

Closed-loop gain
= (∂yi /∂u j )uk 6= j

(∂yi /∂u j )yl 6=i
(2.4)

The total RGA for a process with m output elements in Y and n in inputs U is then

Λ=

u1 u2 · · · un

y1

y2
...

ym


λ11 λ12 · · · λ1n

λ21 λ22 · · · λ2n
...

...
. . .

...

λm1 λm2 · · · λmn


(2.5)

2.2.1 RGA for 2×2-system

Given a steady-state model of a 2×2-system, for example obtained from Figure 1 by setting s=0 [5]

y1 = K11u1 +K12u2 (2.6)

y2 = K21u1 +K22u2 (2.7)

The open loop gain is simply ( ∂yi

∂u j

)
uk 6= j

= Ki j (2.8)

The method for obtaining the closed loop gain for (∂y1/∂u1)y2 is shown below:

y2 = 0 ⇒ (2.9)

u2 =−K21

K22
u1 ⇒ (2.10)

y1 =
(
K11 − K12K21

K22

)
u1 ⇒ (2.11)( ∂y1

∂u1

)
y2

= K11

(
1− K12K21

K11K22

)
(2.12)
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This gives the following open and closed loop gains

( ∂y1

∂u1

)
u2

= K11

( ∂y1

∂u1

)
y2

= K11

(
1− K12K21

K11K22

)
( ∂y1

∂u2

)
u1

= K12

( ∂y1

∂u2

)
y2

= K12

(
1− K11K22

K12K21

)
( ∂y2

∂u1

)
u2

= K21

( ∂y2

∂u1

)
y1

= K21

(
1− K11K22

K12K21

)
( ∂y2

∂u2

)
u1

= K22

( ∂y2

∂u2

)
y1

= K22

(
1− K12K21

K11K22

)
(2.13)

Which gives the RGA

Λ=



1

1− K12K21

K11K22

1

1− K11K22

K12K21

1

1− K12K21

K11K22

1

1− K11K22

K12K21


=

 λ 1−λ
1−λ λ

 (2.14)

Where λ=λ11

The RGA of larger systems can be determined by the following expression [4]

Λ= K⊗ (K−1)T (2.15)

Where ⊗ is the Haddamard/Schur product, which gives the product of each corresponding element

in two matrices of the same dimensions. For non-square systems, with an unequal number of ele-

ments (n>m or n<m), the calculation above can be performed with the pseudo inverse of K [6].

2.3 Properties of the RGA

The RGA has several important properties.

1. It is normalized as all elements in each column are equal to one [6]. For square systems (n=m)

the sum of each row is also equal to one. This greatly increases the ease of calculation as not

all elements have to be determined to obtain the full array, as can be seen from equation 2.14

(only λ11 is necessary to compute).

2. From the definition of the RGA it clear that the elements, λi j are dimensionless and indepen-

dent of units and scaling of the variables.

3. Presents an evaluation of the sensitivity to uncertainty in the gain K. If a single element Ki j is

changed to Ki j (1−λi j ) the gain matrix K becomes singular, this is illustrated in Section 3.1.1.
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4. Provides a measurement of two-way interaction, how the inputs interact and effect outputs

in relation to each other. Large RGA elements, greater than 5-10, indicate strong interactions

between the manipulated variable (u’s) and outputs (y’s) [4].

The recommendation for pairing controllers is to

1. Pair CV’s with MV’s on RGA elements as close to one as possible (at frequencies of control

interest) [5]. This is to minimise controller interaction.

2. Avoid negative negative RGA elements at steady state λi j > 0 this is to avoid right hand plane

(RHP)-zeros, see Section 3.2 [4].

2.3.1 Zero Elements, One Way and Non-interacting Processes

The RGA for systems with a limited or no degree of interaction is simply the identity matrix. This

is shown for a 2× 2-system with no degree of interaction, Equation 2.16, and one way interaction,

Equation 2.17. Note that the one-way interactive plant may be upper or lower triangular and still

give an identity RGA matrix [3].

K =
K11 0

0 K22

⇒λ= 1 ⇒Λ=
1 0

0 1

= I (2.16)

K =
K11 K12

0 K22

⇒λ= 1 ⇒Λ= I (2.17)

Surprisingly feedback control on the "wrong" elements where there is no or only one way interaction

between the CV and MV can be made to work, because the controller introduces the necessary in-

teraction [4]. An example of this is shown in Section 3.2 which looks at zero couplings for a coupled

tank system.

2.3.2 Negative Elements

From the properties of the RGA it is clear that for any system with an element λi j > 1 there must be

a corresponding negative element in the same column or row. For the 2×2-system this will be when

the product of the off-diagonal steady state gains are greater than their diagonal counterparts

K12K21 > K11K22 (2.18)

Feedback control on negative RGA elements causes positive feedback through the indirect feedback

loop (red lines in Figure 2). This can be mitigated by changing the sign of one of the controllers.

However this structure is failure sensitive, if the other loop then is opened the remaining controller
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has the wrong gain and gives positive feedback which causes the controller to fail [2]. This effect is

shown for the Model Column A in Figure 8 for pairing on negative off-diagonal RGA-elements which

fails for Yd when the Xb controller is put in manual.

Another issue related to control pairings on negative RGA-elements are inverse responses. The nega-

tive values indicates that numerator and denominator of the open loop gain have opposite gains. For

the 2×2-case interaction from other control loops drives the output in the opposite of the desired

direction. The indirect response has to travel through two process and a controller block before the

output moves in the correct direction, giving an initial response away from the desired value, an in-

verse response [2]. Inverse responses are indicated by right hand plane (RHP)-zeroes [7]. A negative

RGA element does not indicate the presence of a RHP-zero directly, it is a necessary but not sufficient

criteria [3] [4]. An example of an inverse response is available in Figure 3
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3 Case Studies

3.1 A Two way Interactive Plant

The results in this section is an expansion of Example 10.16 in Multivaribale Feedback and Control

[4]. Consider the two way interactive plant (delay with gain)

G(s) = e−s

1 g12

5 1

 (3.1)

3.1.1 Illustration of RGA Property 3

The inverse gain matrix and RGA are given by the following

G(0)−1 = 1

1−5g12

 1 −g12

−5 1

 (3.2)

Λ= 1

1−5g12

 1 −5g12

−5g12 1

 (3.3)

The plant is singular for g12 = 0.2, this can be seen as the RGA elements greatly increase as g12 → 0.2

Λ(g12 = 0.17) =
 6.7 −5.7

−5.7 6.7

 Λ(g12 = 0.19) =
 20 −19

−19 20

 (3.4)

3.1.2 Control with Pairing on Negative-element

The increasing elements of the RGA indicate an increasing degree of interaction between the two out-

puts, meaning that two SISO controllers trying to keep their set-point will be "fighting" each other

for control of their CV. To counteract this effect the two I-controllers are decomposed in time with

τI1 = 5 and τI2 = 1 for the diagonal pairing and τI1 = −1 τI2 = 5 for the off-diagonal (The controller

in "possession" of the largest element, g21 = 5, is set to be the slowest). Figure 3 shows the step re-

sponses for the pairings on the positive and negative RGA elements. Both controllers work but the

pairing on the negative element gives inverse response which is highly undesirable for control. Both

controllers are also slow at reaching their set-points due to the very interactive nature of the plant.

The Simulink model and MATLAB code for the simulation are available in Appendix C.1
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0 5 10 15 20 25 30 35 40
−1.5
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−0.5

0

0.5

1

1.5
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Diagonal Controller
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2
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Figure 3: Step responses for diagonal positive RGA pairing and off diagonal negative pairing with
g12 = 0.17. Step in Y1 after 0 s and Y2 after 20 s
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3.2 Two Coupled Tanks: Pairing on Zero Elements

Figure 4: Schematic of two tanks with levels L1 and L2 connected together with instream F11 out-
stream F12 and recycle streams F21 and F22

An example of a scenario where couplings on zero RGA elements are possible is the two tank con-

figuration in Figure 4. We want to control the levels of both tanks for disturbances to magnitude of

the feed and recycle stream. There are four control structures that can be conceived for this example

where the input to the system, the throughput manipulator (TPM/feed disturbance), is kept fixed in

F11. The control structures are available in Figure 5.

Structure 1 and 3 are diagonal couplings on RGA elemenets where λ = 1, see equations 3.6 and 3.8.

For these independent loop design is possible for the controllers. Structures 2 and 4 are couplings on

zero diagonal RGA elements. This is shown in Equation 3.7 and 3.9. The controller for level 1 has to

be closed and in operation for the level 2 controller to work.

3.2.1 Mathematical Model for Coupled Tanks

The transfer functions from the input streams Fi j to the tank level Li is expressed by the following

integrating plus time delay process

L =
L1

L2

= e−θs

s

F11 −F12 −F21 +F21

F21 −F22

 (3.5)

Neglecting the TPM’s (disturbances), the controller transfer functions, G(s)i = L(s)/u(s)i , and RGA’s

are:

For structure 1, u1 = [F12 F21]T

G1(s) = e−θs

s

−1 −1

0 1

 Λ1 =
1 0

0 1

 (3.6)
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For structure 2, u2 = [F21 F12]T

G2(s) = e−θs

s

−1 −1

1 0

 Λ2 =
0 1

1 0

 (3.7)

For structure 3, u3 = [F12 F22]T

G3(s) = e−θs

s

−1 1

0 −1

 Λ3 =
1 0

0 1

 (3.8)

For structure 4, u4 = [F22 F12]T

G4(s) = e−θs

s

 1 −1

−1 0

 Λ3 =
0 1

1 0

 (3.9)

3.2.2 Simulation Results

Figure 6 shows the tank level response for step changes in the TPM’s. All four control structures work,

but the direct acting structures, 1 and 3, are far better at controlling the tank levels. The zero elements

FC12

LC1

LC2

R-TPM FC21

TPM

Structure 1

FC12

LC1

LC2

R-TPM FC21

TPM

Structure 2

FC12

Structure 3

LC1

LC2

FC22 R-TPM

TPM FC12TPM

Structure 4

LC1

LC2

FC22 R-TPM

Figure 5: Control schemes for feedback control on the two tank levels. The TPM (throughput manip-
ulator) block symbolises the disturbance feed to the tank, the Recycle-TPM, R-TPM, symbolises the
recycle disturbance. Note that all the controllers are diagonal for these structures.
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coupling, structures 2 and 4, for level L2 controlled by stream F12 only works with the L1 controller in

operation. Should this controller somehow fail for example by saturation or being put in manual the

L2 controller will fail. The poor performance of structures 2 and 4 becomes even more distinct with

larger delays as the control system has to wait for the delays in both tanks before it can take corrective

action for the level of tank 2. This effect is shown in for control structure 1 and 2 with delays of 0 s

and 2 s in Figure A.1 in Appendix A.

The Simulink model and MATLAB code for generating these results are available in Appendix C.2.

The level controllers tuning and the derivation of the closed loop transfer functions for structure 2

and 4 are available in Appendix A.
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Figure 6: Simulation results for the various control structures of the two tank example with θ = 0.5s.
Stepchanges of magnitude 1 m are made for the TPM after 5 seconds and the R-TPM after 50 seconds.
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3.3 Distillation Column A: Pairing on Negative Elements

A practical example of where one might be forced to pair on negative RGA-elements is a binary dis-

tillation column such as in Figure 1. The scenario is that in previous operation the column has been

prone to saturate the boil up rate V and the composition control of the valuable bottom product

(Xb) has been coupled with reflux flow L. This is the "wrong" coupling in the sense that it is slow and

paired far away from the CV that is supposed to control. For a reduced feed rate the reboiler is less

prone to max out and composition control of the top product. Yd is also desirable and possible.

We wish control the composition of Xb and Yd , the molar fraction (dimensionless) of light com-

ponent in the bottom and top product , by adjusting the reflux flow L and the vapour boil up rate V

(both kmol/min). Equation 3.10 shows the transfer functions with the corresponding RGA-matrix for

Model Column A. [8]. The delay of 3 minutes is added to element g21 to model the time it takes from

adjusting reflux L till it affects the bottom composition xB .Yd

Xb

= 1

50s +1

 0.878 −0.864

1.082e−3s −1.096

L

V

 Λ=
 35.1 −34.1

−34.1 35.1

 (3.10)

The compositions controllers are tuned using the SIMC method. For this scenario the XB controller

is already in place and it is tuned to be as fast as possible with τc = θ = 3 min. Then the transfer

function for Yd /V is estimated as a FOPTD transfer function by a step change in V . The Yd controller

is tuned on the basis of this estimation. The transfer function estimation and controller tunings are

available in Appendix B.

The controller configuration is simulated for a step of magnitude 0.01 in Xb after 5 minutes and Yd

after 500 minutes, Figure 7 shows these step responses. For comparison the controller performance

paired on the diagonally positive RGA-elements is also simulated with the same step changes. Figure

8 shows the controller performance with Xb in manual for both the off-diagonal and diagonal pair-

ings.

The large RGA elements indicates a large degree of interaction between the manipulated flows L

and V on both the compositions, this is also clear from the simulation where it takes a long time to

reach the set-point especially for Yd . For the off diagonal pairings a set-point change in one of the

CV’s has an adverse effect on the set-point tracking of the other variable. This effect is almost invisi-

ble with the diagonal pairing for the tracking of Xb with a set-point change in Yd . The pairing on the

negative elements give an inverse response for Yd and this controller fails when Xb is put in manual

(Figure 8). Whilst the controller for Yd coupled on the diagonal positive elements pairing still tracks

the set-point.
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Figure 7: Step responses for off-diagonal and diagonal control of model Column A. Step in Xb after 5
min and Yd after 500 min. Compositions in deviation variables
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Figure 8: Step responeses for off-diagonal and diagonal control of model Column A with the Xb con-
troller in manual for both pairings. Same compositions steps as for Figure 7 and compositions in
deviation variables
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4 Conclusion

Designing stable control structures paired on negative RGA elements is possible, as all the negatively

paired simulations show. Negative pairings may be beneficial over positive ones, where the dynamics

are beneficial (faster) than for the positive elements. This is a weakness of the RGA as it was defined

by Bristol in Equation 2.4 that it does not consider the dynamics of the process.

Negative pairings introduce inverse responses for processes with considerable time delays. Control

paired on negative elements structures are also failure sensitive to other controllers being deacti-

vated. These are serious limitations to pairing on negative RGA-elements.

5 Further Work

Further work would be to look at cases with faster dynamics for negative RGA pairings, such as Gag-

nepain and Seborgs paper [9] and a deeper look at RHP-zeroes and their impact on controller per-

formance with regards to inverse response and controller stability.
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A Coupled Tanks Calculations

A.1 Tuning Controllers

The level controller for L1 is tuned independently with the SIMC method on element g11(s) =±e−θs/s

for all four control structures. Which gives the following settings for τc,L1 = θ:

Kc,L1 =
1

k ′
1

2θ
(A.1)

τc,L1 = min(τ=∞,4(2θ)) = 8θ (A.2)

For control structure 1 and 3 the controller settings for L2 follows the same procedure as for L1.

A.1.1 Control Structure 2

After closing the loop for level control of L1 we can obtain the transfer function for L2, with its MV

F12, ĝ22

ĝ22 = g22 − g21c1g12

1+ c1g11
=−g21

c1g11

c1g11 +1
(A.3)

With g22 = 0, g11 = g 12, c1 = Kc1 (τc1 s+1)/s, Kc1 = 1/2θ ,τc1 = 8θ and linearising the expression for the

delay in the denominator e−θs = 1−θs

c1g11

c1g11 +1
= (8θs +1)e−θs

(16θ2s2 +8θs)e−θs
= (8θs +1)e−θs

8θ2s2 +7θs +1
= (8θs +1)e−θs

(1.44θs +1)(5.56sθs +1)
' 8

5.56

e−θs

(1.44θs +1)
(A.4)

ĝ22 = 1.44
e−2θs

s(1.44θs +1)
' 1.44

e−2.72θs

s
(A.5)

With the SIMC rules for τc2 = 2.72θ this gives the following controller settings

Kc2 =
1

1.44

1

2×2.72θ
τi2 = min(τ=∞,4(τc2 +2.72θ)) = 8×2.72θ (A.6)

A.1.2 Control Structure 4

For control structure g11 = −g12 and we get a gain reversal for ĝ22 and Kc2 . compared to control

structure 2

A.2 Effect of Delay

The effect of increasing delay on control structure 1 and 2 are shown in A.1. The response for struc-

ture 2 with a 2 second delay is out of scale compared to the other results. This shows the serious

impairment of performance for increasing delay for zero element pairings
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Figure A.1: Effect of delay on level control for structure 1 and 2 for stepchanges in TPM and R-TPM
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B Distillation Column A Calculations

B.1 Controller Settings

B.1.1 Off-diagonal controllers

The controller settings for the off-diagonal couplings are for the fast Xb controller coupled with L

(τc Xb = θ21 = 3)

Kc Xb =
1

K21

τ21

τc XB +θ21
= 1

1.082

50

2∗3
= 7.7 (B.1)

τI Xb = min
(
τ21,4(τc Xb +θ21

)= 8θ21 = 24 (B.2)

The settings for the Yd -controller are based on the model in Equation B.9. For stable control the time

constant was set to τcYd = 140

KcYd = 1

KK̂12

τ̂12

τcYd + θ̂12
= 5.6 (B.3)

τI Yd = min
(

ˆτ12,4(τc Xb + ˆθ12
)= ˆθ12 = 40 (B.4)

B.1.2 Diagonal controllers

The controller settings for the diagonal couplings are:

For the fast Xb controller coupled with V (τc Xb = 0.5)

Kc Xb =
1

K22

τ22

τc XB +θ22
= 1

−1.096

50

2∗0.5
=−91.2 (B.5)

τI Xb = min
(
τ22,4(τc Xb +θ22

)= 8θ22 = 2 (B.6)

Yd controller coupled with L (τcYd = 2.5)

KcYd = 1

K11

τ11

τc XB +θ11
= 1

0.878

50

2∗2.5
= 1.1 (B.7)

τI Yd = min
(
τ11,4(τcYd +θ11

)= 4τc XB = 10 (B.8)

B.2 Step response for Off-Diagonal Tuning

Figure B.1 shows the response for Yd with a step response in V , this was used to esitmate the FOPTD

transfer function for Ĝ12 = Yd /V . The code for this simulation is available in Appendix C.3.2.
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C Simulink Models and MATLAB code

C.1 Two Way Interacitve Plant

C.1.1 Simulink Model

Figure C.1: Simulink model for the off diagonal controller of the coupled plant

C.1.2 MATLAB code

MATLAB code for simulating step responses for both diagonal and off diagonal controller couplings

to generate Figure 3.

1 clear all

2 close all

3 clc

4 %Script for 2*2 Model execution Example 10.16 From Multivariable control

5 %Negative RGA diagonal pairing

6 %The process model:

7 %Generic transfer function

8 g12=0.17; %%%%Model parameter%%%%

9 %The process model

10 K11=1;

11 K12=g12;

12 K21=5;

13 K22=1;

14

15 %Delays

16 Th11=0.5;

17 Th12=0.5;

18 Th21=0.5;
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19 Th22=0.5;

20 %The RGA

21 K=[K11 K12;K21 K22];

22 RGA=K.*(pinv(K).');

23 %Diagonal

24 %Simulation for positive Diagonal pairings

25 %Controller 1

26 Ti1=5;

27 %Controller 2

28 Ti2=1;

29 %Step 1

30 t_step1=0;

31 K_step1=1; %Step in y1

32 %Step 2

33 t_step2=20;

34 K_step2=1; %Step in y1

35 %Simulation

36 tn='Model2by2_DiagCtrl';

37 t_model=40;

38 sim(tn)

39 fig=figure;

40 subplot(211)

41 Y1ht=0:Y1.time((length(Y1.time)));

42 Y1h=ones(size(Y1ht));

43 Y2h=zeros(size(Y1ht));

44 %Plotting Results

45 hold on

46 plot(Y1.time,Y1.signals.values)

47 plot(Y2.time,Y2.signals.values,'r')

48 legend('Y_1','Y_2')

49 axis([0 t_model −1.5 2])

50 xlabel('Time [s]','fontsize',14)

51 ylabel('y','fontsize',14)

52 title('Diagonal Controller','fontsize',14)

53 plot(Y1ht,Y1h,'−−k')
54 plot(Y1ht,Y2h,'−−k')
55 grid

56 hold off

57 %Off Diagonal

58 %Simulation for Negative non−diagonal pairings

59 %Controller 1

60 Ti1=−1;
61 %Controller 2

62 Ti2=5;

63 %Simulation

64 tn='Model2by2_NonDiagCtrl';

65 sim(tn)
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66 subplot(212)

67 Y1ht=0:Y1.time((length(Y1.time)));

68 Y1h=ones(size(Y1ht));

69 Y2h=zeros(size(Y1ht));

70 %Plotting Results

71 hold on

72 plot(Y1.time,Y1.signals.values)

73 plot(Y2.time,Y2.signals.values,'r')

74 axis([0 t_model −1.5 2])

75 xlabel('Time [s]','fontsize',14)

76 ylabel('y','fontsize',14)

77 title('Off Diagonal Controller','fontsize',14)

78 plot(Y1ht,Y1h,'−−k')
79 plot(Y1ht,Y2h,'−−k')
80 grid

81 hold off

82 thicklines

83 print(fig,'−dpdf','MFC1016step.eps')

C.2 Coupled Tanks

C.2.1 Simulink Model

Figure C.2: Example Simulink model of control structure 1 for the coupled tanks simulation
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C.2.2 MATLAB code

MATLAB code for generating the delay effect plot in Figure A.1. The code for evaluating all structures

used for Figure 6 follows the same structure.

1 % Script: Simulation of recirculation tank system

2 % Model file: pairing01MJB.mdl,pairing02MJB.mdl,pairing03MJB.mdl,pairing04MJB.mdl

3 % Calls: scenariodefMJB.m, plotsimMJB.m

4 %

5 % ==============================

6 % (c) Krister Forsman, Martin Bland

7 % ==============================

8 % Created 2014−09−11; Latest modifications. 2014−09−23
9 clear all

10 close all

11 % Define scenario

12 sd=scenariodefMJB;

13

14 %Main figure

15 %# centimeters units

16 X = 21; %# A4 paper size

17 Y = 29.7; %# A4 paper size

18 xMargin = 0.5; %# left/right margins from page borders

19 yMargin = 0.5; %# bottom/top margins from page borders

20 xSize = X − 2*xMargin; %# figure size on paper (widht & hieght)

21 ySize = Y − 2*yMargin; %# figure size on paper (widht & hieght)

22

23 fig = figure('Menubar','none');

24 set(fig, 'PaperUnits','centimeters')

25 set(fig, 'PaperSize',[X Y])

26 set(fig, 'PaperPosition',[xMargin yMargin xSize ySize])

27

28 %Subplot 1

29 %Control Structures 1 \theta=0

30 tn='pairing01MJB';

31 % Control parameters [Kc, Ti, TD, a]

32 % [Kc Ti TD a]

33 %Delay

34 td=0.0;

35 c1=[−1 4 0 1];

36 c2=[ 1 4 0 1];

37 %Simulation

38 sim(tn)

39 %Levels

40 h1=subplot(421);

41 hold on
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42 plot(t,[y1 y2])

43 axis([0 sd.Tdur −15 30])

44 grid

45 str=sprintf(['Delay=0s Structure 1: C_1: K_c=%0.3g, T_i=%0.3g, C_2: '...

46 'K_c=%0.3g, T_i=%0.3g'],c1(1:2),c2(1:2));

47 title(str,'interpreter','tex','fontsize',12)

48 legend({'Level 1','Level 2'},'location','northeast');

49 xlabel('Time [s]','fontsize',12);

50 ylabel('Levels [m]','fontsize',12);

51 hold off

52 %Flows

53 h2=subplot(422);

54 hold on

55 plot(t,[q11 q12 q21 q22])

56 axis([0 sd.Tdur −8 16])

57 grid

58 str=sprintf('Tank Flows');

59 title(str,'interpreter','tex','fontsize',12)

60 legend({'F11','F12','F21','F22'},'location','northeast');

61 xlabel('Time [s]','fontsize',12);

62 ylabel('Flows[m^3/h]','fontsize',12);

63 thicklines

64 %Subplot 2

65 %Control Structure 1 \theta=2

66 tn='pairing01MJB';

67 % Control parameters [Kc, Ti, TD, a]

68 % [Kc Ti TD a]

69 td=2;

70 c1=[−0.25 16 0 1];

71 c2=[ 0.25 16 0 1];

72 %Simulation

73 sim(tn)

74 %Levels

75 h1=subplot(423);

76 hold on

77 plot(t,[y1 y2])

78 axis([0 sd.Tdur −15 30])

79 grid

80 str=sprintf(['Delay=2s Structure 1: C_1: K_c=%0.3g, T_i=%0.3g, C_2: '...

81 'K_c=%0.3g, T_i=%0.3g'],c1(1:2),c2(1:2));

82 title(str,'interpreter','tex','fontsize',12)

83 xlabel('Time [s]','fontsize',12);

84 ylabel('Levels [m]','fontsize',12);

85 hold off

86 %Flows

87 h2=subplot(424);

88 hold on
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89 plot(t,[q11 q12 q21 q22])

90 axis([0 sd.Tdur −8 16])

91 grid

92 str=sprintf('Tank Flows');

93 title(str,'interpreter','tex','fontsize',12)

94 xlabel('Time [s]','fontsize',12);

95 ylabel('Flows[m^3/h]','fontsize',12);

96 thicklines

97 hold off

98 %Subplot 3

99 %Control Structure 2 \theta=0

100 tn='pairing02MJB';

101 % Control parameters [Kc, Ti, TD, a]

102 % [Kc Ti TD a]

103 td=0;

104 c1=[−1 4 0 1];

105 c2=[−0.255 10.9 0 1];

106 %Simulation

107 sim(tn)

108 %Levels

109 h1=subplot(425);

110 hold on

111 plot(t,[y1 y2])

112 axis([0 sd.Tdur −15 30])

113 grid

114 str=sprintf(['Delay=0s Structure 2: C_1: K_c=%0.3g, T_i=%0.3g, C_2: '...

115 'K_c=%0.3g, T_i=%0.3g'],c1(1:2),c2(1:2));

116 title(str,'interpreter','tex','fontsize',12)

117 xlabel('Time [s]','fontsize',12);

118 ylabel('Levels [m]','fontsize',12);

119 hold off

120 %Flows

121 h2=subplot(426);

122 hold on

123 plot(t,[q11 q12 q21 q22])

124 axis([0 sd.Tdur −8 16])

125 grid

126 %Subplot 4

127 %Control Structure 2 \thea=2

128 tn='pairing02MJB';

129 % Control parameters [Kc, Ti, TD, a]

130 % [Kc Ti TD a]

131 td=2;

132 c1=[−0.25 16 0 1];

133 c2=[−0.016 43.52 0 1];

134 %Simulation

135 sim(tn)
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136 %Levels

137 h1=subplot(427);

138 hold on

139 plot(t,[y1 y2])

140 axis([0 sd.Tdur −15 30])

141 grid

142 str=sprintf(['Delay=2s Structure 2: C_1: K_c=%0.3g, T_i=%0.3g, C_2: '...

143 'K_c=%0.3g, T_i=%0.3g'],c1(1:2),c2(1:2));

144 title(str,'interpreter','tex','fontsize',12)

145 xlabel('Time [s]','fontsize',12);

146 ylabel('Levels [m]','fontsize',12);

147 hold off

148 %Flows

149 h2=subplot(428);

150 hold on

151 plot(t,[q11 q12 q21 q22])

152 axis([0 sd.Tdur −8 16])

153 grid

154 str=sprintf('Tank Flows');

155 title(str,'interpreter','tex','fontsize',12)

156 xlabel('Time [s]','fontsize',12);

157 ylabel('Flows[m^3/h]','fontsize',12);

158 thicklines

159 print(fig,'−dpdf','All_structures.eps')

C.3 Distillation Column A

C.3.1 Simulink Models

Figure C.3: Simulink model for generating FOPTD model for Yd for the off diagonal Distillation con-
trol
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Figure C.4: Simulink model for simulating step responses for off diagonal pairings for Distillation
Column A. The diagonal pairing was simulated by changing the feedback structure

Figure C.5: Simulink model for simulating step responses for off diagonal pairings for Distillation
Column A with Xb in manual. The diagonal pairing was simulated by changing the feedback struc-
ture

C.3.2 MATLAB Code

Script for obtaining step response for Yd for step in V :

1 %Simulation settings

2 t_model=200;

3 t_stepV=0;

4 K_stepV=1;

5 t_stepXb=801;

6 K_stepXb=0.0;

7

8 %Model settings

9 %L−>Xd Liquid downcomer with Xd

10 K11=0.878;

11 T11=50;
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12 Th11=0;

13 %V−>Xd vapour boilup with Xd

14 K12=−0.864;
15 T12=50;

16 Th12=0;

17 %L−>Xb
18 K21=1.082;

19 T21=50;

20 Th21=3;

21 %V−>Xb
22 K22=−1.096;
23 T22=50;

24 Th22=0;

25 %Controller X_B Coupling on G21 (SIMC−rules)
26 TcXb=Th21; %Tc=Th %%%%%Tuning knob%%%%%

27 KcXb=(1/K21)*(T21/(TcXb+Th21));

28 TiXb=min(T12,4*(TcXb+Th21));

29 tn='Model2by2_NonDiagCtrl_StepVXd';

30 sim(tn)

31 close all

32 hold on

33 plot(Y1.time,Y1.signals.values)

34 grid

35 s=tf('s');

36 Gh=0.026*exp(−23*s)/((40*s+1));
37 step(Gh)

38 %plot(V.time,V.signals.values)

Script for modeling step responses for the Distillation Column A:

1 %TKP 4550 Project

2 %Author: Martin Jonathan Bland, December 2014

3 %

4 %Disillation Model execution of both negative and positive RGA−pairings
5 %With the controller for Xb turned off

6 %Simulation settings

7 t_model=1000;

8 t_stepXb=5;

9 K_stepXb=0.01;

10 t_stepYd=500;

11 K_stepYd=0.01;

12 %L−>Xd Liquid downcomer

13 K11=0.878;

14 T11=50;

15 Th11=0;

16 %V−>Xd vapour boilup with Xd

17 K12=−0.864;
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18 T12=50;

19 Th12=0;

20 %L−>Xb
21 K21=1.082;

22 T21=50;

23 Th21=3;

24 %V−>Xb
25 K22=−1.096;
26 T22=50;

27 Th22=0;

28 %−−−−Off Diagonal Control−−−−%
29 %Controller 1 L−>XB Coupling on G21 (SIMC−rules)
30 Tc1=Th21; %Tc=Th %%%%%Tuning knob%%%%%

31 KcXb=(1/K21)*(T21/(Tc1+Th21));

32

33 TiXb=min(T12,4*(Tc1+Th21));

34 %Controller 2 V−>XD Coupling on G12

35 % ^G(s)=Gh=0.026*exp(−23*s)/((40*s+1));;
36 K12m=0.026;

37 T12m=40;

38 Th12m=23;

39 Tc2=250; %%%%% Tuning knob %%%%%

40 KcYd=(1/K12m)*(T12m/(Tc2+Th12m));

41 TiYd=min(T12m,4*(Tc2+Th12m));

42 tn='Model2by2_NonDiagCtrl';

43 sim(tn)

44 fig=figure;

45 subplot(211)

46 hold on

47 plot(Y1.time,Y1.signals.values,'r')

48 plot(Y2.time,Y2.signals.values)

49 plot(Ydsp.time,Ydsp.signals.values,'−−r')
50 plot(Xbsp.time,Xbsp.signals.values,'−−b')
51 axis([0 t_model −0.005 0.025 ])

52 thicklines

53 legend('Y_d','X_b')

54 xlabel('Time [min]','fontsize',14)

55 ylabel('Composition X_d Y_d','fontsize',14)

56 title('Off Diagonal Composition Control','FontSize',16)

57 grid

58 %−−−−Diagonal Control−−−−%
59 %Controller 1 V−>Xb Coupling on G22 (SIMC−rules)
60 Tc1=0.5; %Tc=Th %%%%%Tuning knob%%%%%

61 KcXb=(1/K22)*(T22/(Tc1+Th22));

62 TiXb=min(T22,4*(Tc1+Th22));

63 %Controller 2 V−>Yd Coupling on G11 (SIMC−rules)
64 Tc2=2.5;
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65 KcYd=(1/K11)*(T11/(T11+Th11));

66 TiYd=min(T11,4*(Tc2+Th11));

67 tn='Model2by2_DiagCtrl';

68 sim(tn)

69 subplot(212)

70 hold on

71 plot(Y1.time,Y1.signals.values,'r')

72 plot(Y2.time,Y2.signals.values)

73 plot(Ydsp.time,Ydsp.signals.values,'−−r')
74 plot(Xbsp.time,Xbsp.signals.values,'−−b')
75 axis([0 t_model −0.005 0.025 ])

76 thicklines

77 xlabel('Time [min]','fontsize',14)

78 ylabel('Composition X_d Y_d','fontsize',14)

79 title('Diagonal Composition Control','FontSize',16)

80 grid

81 print(fig,'−dpdf','SimpleDiststep.eps')

Code for simulation of column a with Xb controller in manual:

1 %TKP 4550 Project

2 %Author: Martin Jonathan Bland, December 2014

3 %

4 %Disillation Model execution of both negative and positive RGA−pairings
5 %With the controller for Xb turned off

6 t_switch=0;

7 t_model=1000;

8 t_stepXb=5;

9 K_stepXb=0.01;

10 t_stepYd=500;

11 K_stepYd=0.01;

12 %Process Model

13 %L−>Xd
14 K11=0.878;

15 T11=50;

16 Th11=0;

17 %V−>Xd
18 K12=−0.864;
19 T12=50;

20 Th12=0;

21 %L−>Xb
22 K21=1.082;

23 T21=50;

24 Th21=3;

25 %V−>Xb
26 K22=−1.096;
27 T22=50;



C.3 Distillation Column A 35

28 Th22=0;

29 %−−−−Off Diagonal Control−−−−%
30 %Controller 1 L−>XB Coupling on G21 (SIMC−rules)
31 Tc1=Th21; %Tc=Th %%%%%Tuning knob%%%%%

32 KcXb=(1/K21)*(T21/(Tc1+Th21));

33 TiXb=min(T12,4*(Tc1+Th21));

34 %Controller 2 V−>XD Coupling on G12

35 % ^G(s)=Gh=0.026*exp(−23*s)/((40*s+1));;
36 K12m=0.026;

37 T12m=40;

38 Th12m=23;

39 Tc2=125; %%%%% Tuning knob %%%%%

40 KcYd=(1/K12m)*(T12m/(Tc2+Th12m));

41 TiYd=min(T12m,4*(Tc2+Th12m));

42 tn='Model2by2_NonDiagCtrl_switch';

43 sim(tn)

44 fig=figure;

45 subplot(211)

46 hold on

47 plot(Y1.time,Y1.signals.values,'r')

48 plot(Y2.time,Y2.signals.values)

49 plot(Ydsp.time,Ydsp.signals.values,'−−r')
50 plot(Xbsp.time,Xbsp.signals.values,'−−b')
51 axis([0 t_model −0.01 0.025 ])

52 thicklines

53 legend('Y_d','X_b')

54 xlabel('Time [min]','fontsize',14)

55 ylabel('Composition X_d Y_d','fontsize',14)

56 title('Off Diagonal Composition Control','FontSize',16)

57 grid

58 %−−−−Diagonal Control−−−−%
59 %Controller 1 V−>Xb Coupling on G22 (SIMC−rules)
60 Tc1=0.5; %Tc=Th %%%%%Tuning knob%%%%%

61 KcXb=(1/K22)*(T22/(Tc1+Th22));

62 TiXb=min(T22,4*(Tc1+Th22));

63 %Controller 2 V−>Yd Coupling on G11 (SIMC−rules)
64 Tc2=2.5;

65 KcYd=(1/K11)*(T11/(T11+Th11));

66 TiYd=min(T11,4*(Tc2+Th11));

67 tn='Model2by2_DiagCtrl_Switch';

68 sim(tn)

69 subplot(212)

70 hold on

71 plot(Y1.time,Y1.signals.values,'r')

72 plot(Y2.time,Y2.signals.values)

73 plot(Ydsp.time,Ydsp.signals.values,'−−r')
74 plot(Xbsp.time,Xbsp.signals.values,'−−b')
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75 axis([0 t_model −0.01 0.025 ])

76 thicklines

77 xlabel('Time [min]','fontsize',14)

78 ylabel('Composition X_d Y_d','fontsize',14)

79 title('Diagonal Composition Control','FontSize',16)

80 grid

81 print(fig,'−dpdf','SimpleDistSwitch.eps')
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