
Abstract

An important part of operation of petroleum wells is to to maximize the oil production
from wells, and insure that they are optimally operated at all times. To avoid the need
to re-optimize every time a disturbance occur, it is desired to construct a simple control
structure for well manifolds. The goal is to keep the system at optimal operation by
control rather than re-optimization.

The scope of this project is to develop a well model based on first principles and physical
equations and modified the model to give the GOR-behavior we want to examine. Each
model is tested and optimized in a two-well manifold. In the optimization problem the
oil flow rate is maximized, subject to an active gas constraint. The optimal solutions
found from simulations are compared against the following optimization criteria:

(
∂qg
∂qo

)
i

=
(
∂qg
∂qo

)
j

It is known that keeping this ratio equal for all the wells ensures optimal operation
of the manifold. The overall goal is to find variables that can be used to control this
relation when disturbances occur in the petroleum wells. This project a first step towards
reaching this goal.
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Chapter 1

Introduction

The operation of petroleum reservoirs is a large and advanced area and reservoir man-
agement is conducted in many timescales. The superior planning for a reservoir expands
from a month to a year perspective. This step sets the general operational goals for the
whole reservoir. This involves decisions like setting production rates form the wells and
strategical planning like well locations [1]. On a short time horizon, typically a day or a
few hours, the operation of the wells is decided. This is the time scale of interest for us.

A petroleum production system is often build up by many well-manifolds, which connects
several wells from the same reservoir [2]. This causes the production from one of the
wells to affect the rest of the wells in the same manifold. The challenge is to decide
how to operate the wells together in order to maximize the total oil production from the
manifold. A simple sketch on how the whole system can look is given in Figure 1.1.

Figure 1.1: A simple sketch of a petroleum well system, where three manifolds are
connecting three wells each. And all the manifold are connected to the same platform.

7



8 CHAPTER 1. INTRODUCTION

Both oil, gas and water is extracted form the wells, and transported through pipelines
to a platform connecting all the manifolds of a sub-sea petroleum system. On board
the platform the three phases are separated. Separation processes are expensive and
resources on board a platform are usually limited. Thus, there is usually a limitation on
how much gas such a separation facility can handle. The operation of the manifold are
therefore subject to a constraint on the gas flow.

When optimizing the operation of petroleum well-manifolds we want to maximize the
the oil rate and minimize the gas flow rate. The gas-oil-ratio (GOR) is of significant
importance since it indicates how much gas is produced per amount of oil. In the case
where we want to maximize the oil production and restrain the gas production, it will
be optimal to produce at the highest rate from the well with the lowest GOR.

Optimization of the manifolds is usually performed under the assumption that the gas-
oil-ratios (GOR) in the wells are constant. The optimization involves getting operational
data from the operators in the north sea and run the optimization through with a
complex model of the process. It is time consuming and normally conducted only once
or twice per day.

Figure 1.2: Normal operation of petroleum wells (to the left), and desired operational
scheme for the petroleum wells (to the right).

The problem is that the GOR changes due to disturbances in the well reservoir. When
a disturbance occur, the operation of the wells are no longer optimal, however the dis-
turbance is not accounted for until the process is re-optimized. Since the optimization
is executed so seldom, this leads to longer periods of non-optimal operation of the man-
ifold. It is therefore desirable to construct a simple control structure for the wells in a
manifold, to control the operation back to optimal after a disturbance has occurred.

In the case where the manifold is operated under constrained conditions, we already know
the optimal solution. The optimization criteria is described in Urbanczyk and Watten-
bargers article Optimization of well Rates under Gas Coning Conditions [3]. Where it
is said that the optimal way to operate a manifold, is to keep the change in the gas rate
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with respect to an infinite small change in the oil flow equal for all the wells. However,
we do not know how to control the wells in order to keep the manifold at this condition.
The problem is that we do not have a way to express the derivative of the gas rate with
respect to the oil rate. In order to control the system we need a way to either directly
measure this change rate or express the rate by variables we can measure.

The scope of this project is two folded. Firstly we want to develop a well model based
on first principles and physical equations, and connect two wells into a manifold. Second
we want to study the well behavior for different types of wells and optimize the two-well
manifold. We will compare the behavior for wells based on different GOR-expressions.
The models are therefore modified to give the behavior we want to examine. The man-
ifold is also optimized for disturbances in the GOR-expression. The optimal solutions
are tested against the optimal criteria given in Urbanczyk and Wattenbargers article.

The development of the model is done in Chapter 2 and Chapter 3. The modeling
process involves both the derivation of the equations for each part of the system and
solving the system of equations.

The optimization part of the project starts with its own introduction in Chapter 4. When
the models are complete they will be modified to account for different GOR expression,
this is done in Chapter 5, and a two-well manifold is put together. The well models are all
calibrated from the same test case-wells, in order to compare the different well behaviors.
The test-case wells is presented in 6 together with an analysis of the different well types
the models represent. The manifold is optimized in Chapter 7, and the analysis of the
optimal solutions are also given there.
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Chapter 2

Developing the Model

2.1 The well system

To predict the behavior of different well types we need a model. Most of the time models
are constructed by using experimental data and/or fundamental chemical and physical
equations. A model is normally a simpler presentation of the real world, describing the
behavior of the system. We will base our models on simple physical equations and first
principles. In total four different well types will be studied, all based on different GOR
expressions. In this chapter and the next, equations for the physical model are derived
and solved.

In the first place the system consists of a reservoir, one well, a pipeline with one valve,
and an outlet, as illustrated in Figure 2.1. The system is divided into nodes, where each
sub-system between the nodes can be described by the same equation. The four system
nodes are
Node 1: The reservoir outer wall, short: R
Node 2: The well bottom hole, short: wf
Node 3: The inlet of the valve. short: wh
Node 4: The outlet after the valve: short out

11



12 CHAPTER 2. DEVELOPING THE MODEL

Figure 2.1: The petroleum well with one well, a pipeline with one valve, and an outlet.

2.2 From Node 1 to Node 2 - Darcy’s law

Oil and gas does not lay in reservoirs as lakes or rivers, the fluids are stored in pores
in the rock beneath the seafloor. This means that the oil and gas flow through porous
media from the reservoir and to the well bottom hole. To describe this flow one can use
Darcy’s law [5]. With the right assumptions one can describe the flow through porous
media with a quite simple expression, where the flow velocity is directly proportional
with the pressure difference across the porous media. The system is illustrated in Figure
2.2. Darcy’s law valid for fluid such as oil and gas can be expressed as:

v = q

A
= −k

µ

(
∂P

∂L
− 0.433γ cosα

)
(2.1)

Where
v = apparent fluid velocity, cm/sec
A = cross-sectional area of flow, cm2

k = permeability of porous medium, darcies
µ = fluid viscosity, centipoise (cp)
∂P
∂L = pressure gradient over the length of the flow path, atm/cm
γ = fluid spesific gravity
α = angel of dip measured counterclockwise between the vertical direction downward
and the inclined plane of the fluid flow.
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Figure 2.2: The flow through the reservoir to the well head.

This equation can be simplified by assuming linear fluid flow (i.e α = 0), that the flow
occurs in a horizontal direction, in a laminar regime, no chemical reaction and that
there is only one fluid present in the system of pores. Rearranging and then integration
Equation 2.1 gives under the mentioned conditions a very simple expression which gives
the relationship between the pressure drop between two point in the porous media and
the resulting linear flow rate between the point.

v = q

A
= −k

µ

∂p

∂L
(2.2)

q

∫ L

0
dL = −kA

µ

∫ p2

p1
dp

q = −kA
µL

∆P (2.3)

Where
L = length of linear flow path, cm
∆P = pressure drop (p1 − p2) of flowing fluid over the length L, atm

If one assume that the density ρ is constant for liquid, one can rewrite Equation 2.3 to
mass basis:

m = qρ = −kAρ
µL

∆P (2.4)
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Accounting for a compressible fluid

In the integration of Equation 2.2 it is assumed that the flow is not a function of the
pressure. This is however a rather poor assumption for the gas phase flow. So the
expression needs to be modified to account for the pressure dependence of the gas phase.

It is now necessary to take into account that q is a function of the pressure. This is done
by first assuming ideal gas, and substituting the following equation for q in Equation
2.2 :

q = mg

ρ
= nRT

PA
= mg

M

RT

PA

Which gives the following expression to be integrated:

mg

M

RT

PA
= −k

µ

∂p

∂L
(2.5)

Integration of Equation 2.5 gives the relationship between the pressure difference in the
reservoir and the gas mass flow.

m

∫ L

0
dL = −kMA

µRT

∫ p2

p1
Pdp

m = k1
(
p2

2 − p2
1

)
where k1 = constant = − kMA

µRT∆L (2.6)

Calculating the constants

The constants in Darcy’s law are system specific and can be found by using a well test
case. If the mass flow rates for all the three phases for a specific well flow pressure and
reservoir pressure are know, the constants can be calculated. Thus, the values of the
parameters making up the constant is not needed explicit. The equations for the flow
in the reservoir is then simply:

mo = ko(P2 − P1)
mw = kw(P2 − P1)
mg = kg(P 2

2 − P1)2

(2.7)
(2.8)
(2.9)

Where the k-values must be decided specifically for each system at hand. The way the
pressure difference is stated here (∆P = P2 − P1) the k-values will be negative.



2.3. FROM NODE 2 TO NODE 3 - THE MECHANICAL ENERGY BALANCE 15

2.2.1 Using the gas-oil-ratio to describe the gas flow rate

Instead of using only Darcy’s law, one can also apply the gas oil ratio (GOR), which
describes the amount of gas produced per amount of oil. It can be expressed as:

GOR = mg

mo
(2.10)

Assuming that the oil flow always follows Darcy’s law, we are able to relate the flow
pattern of gas to the GOR-expression rather than using Darcy’s law. This relation
is very useful for studying wells with different GOR expressions. In cases where the
GOR-expression is varied for the well model the flow rate of gas will then be expressed
as:

mg = GOR ·mo (2.11)

2.3 From Node 2 to Node 3 -
The mechanical energy balance

Figure 2.3: The flow through the pipeline from the well head to the valve

To describe the flow through the pipeline, the mechanical energy balance is applied,
expressed for a stationary, continuous process in Equation 2.12 [6]. An illustration of
the system in which there equations describer is given in Figure 2.3.
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mα2
v2

3
2 +mgL2 +m

∫ p3

p2

dp

ρ
+ Φ = mα1

v2
2
2 +mgL1 +Ws (2.12)

This expression can be simplified by making certain assumptions, and even with these
assumptions the equation will turn out to be quite useful. If one assume that there
is no friction (Φ = 0), no work is done (Ws = 0) and the kinetic energy is ignored
(mα2

v2
2
2 = 0), and write Equation 2.12 on deviation form instead of integrated form the

equation becomes:

dp = ρgdL (2.13)

Where dp is the pressure difference over a small length dL, g is the gravity constant and
ρ is the fluid density.

For liquids where the density is independent of pressure, this equation is solved quite
easily. It is however, not that straight forward for gasses where the density is a function
of pressure. If we assume ideal gas the density can be expressed as a function of pressure.

ρi.gg = PM

RT
(2.14)

Combing Equation 2.13 and Equation 2.14 gives:

dp

P
= Mg

RT
dL

Which when integrated gives the pressure drop for a pure (ideal) gas flowing in a vertical
pipeline.

[ln(P )]p3
p2

= PM

RT
∆L

The problem is that the flow form the reservoir is a mix of oil, gas and water. In order
to solve this problem all the phases are put together in a pseudo fluid which contains all
the three phases. And we can operate with a mixed density expressed as:

ρmix = vgρ
i.g
g + voρo + vwρw (2.15)

Oil is known to be a slightly compressible fluid, but it will be assumed that both water
and oil in incompressible. The densities ρo and ρw are therefore constant for the further
calculations. Instead of expressing the mixed density in terms of volume factions, we
want to expressed in terms of mass, and we use the correlation for the volume fraction
of phase ϕ:
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vϕ =
mϕ
ρϕ

vtot

Where the total volume of oil, gas and water is:

vtot = mg

ρi.gg
+ mo

ρo
+ mw

ρw

The mixed density can now be expressed on mass flow basis (Equation 2.16). The
pressure dependence of the gas phase is also accounted for, by substituting the expression
given in Equation 2.14 for the gas density.

ρmix = mo +mg +mw

vtot
= mo +mg +mw

mgRT
MP + mo

ρo
+ mw

ρw

(2.16)

To find the pressure drop for the pseudo fluid in the pipeline we use the mixed density
when integrating Equation 2.13.

∫ p3

p2

1
ρmix

dp =
∫ p3

p2

(
mgRT

MgP
+ mo

ρo
+ mw

ρw

)
dp = mtotg

∫ z3

z2
dL

To make the expression neater the constant parameters are compiled together as:

D = mgRT

Mg
and B = mo

ρo
+ mw

ρw
(2.17)

Integration gives the expression for the pressure drop over the pipe line. The integration
limits are from the top of the pipeline (P3) to the bottom (P2), so the pressure difference
∆P = P2 − P3 is the pressure at the well head (node 2) minus the pressure before the
valve (node 3) (ref. Figure 2.3).

[Dln(P ) +BP ]p3
p2 = mtotg∆L (2.18)

The equation must be solved implicit due to the “ln-to-P”-part. For simplicity, we want
to be able to solve the equation directly, and an approximation for the ln-expression is
applied.

The expression can be approximated to a simpler expression by using a series expansion
on the natural logarithm. The approximation is given in the equation below.

[ln(P )]p3
p2 = ln(P2

P3
) = ln(∆P + P3

P3
) = ln(1 + ∆P

P3
) ≈ ∆P

P3
(2.19)
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The pressure drop over the pipeline can then be expressed as a function of the pipe
length L.

∆P = P2 − P3 = mtotgP2
D + P2B

L (2.20)

The pressure drop profile for both Equation 2.18 and Equation 2.20 are shown in Figure
2.4. We found the difference between the two to be tolerable, and the approximated
expression will be used in the further calculations.
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Figure 2.4: The pressure drop over the pipe line, the solid line shows the pressure
drop calculated from the exact equation, while the dashed line shows the approximated
pressure drop.

2.4 From Node 3 to Node 4 - The valve equation

This part of the system involves the valve. The valve will cause a pressure drop in the
steam flowing through it. The system is illustrated in Figure 2.5.

2.4.1 Describing the pressure drop from the mechanical energy balance

To describe the flow over the valve both the mass balance and the mechanical energy
balance is needed. First the general equation will be derived for a compressible fluid,
such as a gas.

Conservation of mass balance gives:

w = ρ1v1S1 = ρ2v2S2
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Figure 2.5: The flow over the valve. The nodes are place right after and right before the
valve openings.

Where:
w is the mass flow
v is the the volumetric flow rate [m3/s]
ρ is the fluid density.
and S is the cross sectional area at point 1 and 2

The mechanical energy balance is:

v2
2

2α2
− v2

1
2α1

+
∫ p2

p1

1
ρ
dp+ 1

2v
2ev = 0

By combining the mass balance and the mechanical energy balance one can eliminate the
flow rate v1 and v2. The expression for the mass flow rate as a function of the pressure
drop is then found, as given in Equation 2.21.

w = ρ2S2

√√√√√√ −2α2

∫ p2

p1

1
ρ
dp

1− α2
α1

(ρ2S2
ρ1S1

)2 + α2ev
(2.21)

To make the expression simpler some assumptions can be made, and the expression will
still be useful. Four assumptions that can be made are:

1. ev = 0

2. The velocity profile at the inlet (index 1) is so flat that α1 = 1

3. The velocity profile at the outlet (index 2) is given by the approximate profile so
that 1

α2
= ( SS0

)2

4. Assume that S2=S0

With these assumptions the general expression for the mass flow rate of a compressible
fluid through a valve is:
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w = Cdρ2S0

√√√√√√−2
∫ p2

p1

1
ρ
dp

1− (ρ2S0
ρ1S1

)2
(2.22)

To be able to solve this equation on must have the expression for the density as a function
of pressure. And the expression derived earlier for the pseudo fluid mixed density ρmix
given in Equation 2.16 is used. The following relation was found for the flow through
the pipeline and can also be used to solve the integral in Equation 2.22.

∫ p2

p1

1
ρmix

dp = 1
mtot

∫ p2

p1

mgRT

MP
+ mo

ρo
+ mw

ρw
dp = 1

mtot
[Dln(P ) +BP ]P2

P1

From this we now have the mass flow rate through the valve, expressed as a function of
the pressure drop (∆P ), the fluid density (ρmix(P)), the pipe dimensions (S1) and the
valve opening (S1) (Equation 2.23).

w = Cdρmix,2S0

√√√√√√−2
∫ p2

p1

1
ρmix

dp

1− (ρmix,2S0
ρmix,1S1

)2
= Cdρmix,2S0

√√√√√−2 1
mtot

[Dln(P ) +BP ]P2
P1

1− (ρmix,2S0
ρmix,1S1

)2
(2.23)

The discharge coefficient Cd is to account for errors in the assumptions made about
ev, α1 and α2. The coefficient must be determined experimentally, and depends on
Reynolds number and the relation between S0 and S. When one assume that S2 = S0
the α2 is nearly unit, and it has been found that Cd is about the same for compressible
and incompressible fluids. For well designed venturi meters the value is about 0.98.

Even with the assumptions made for the original equation, this expression is still quite
complicated. The pressure drop will therefore be described by the valve equation instead.
The derivation follows in the next section.

2.4.2 Describing the pressure drop by the valve equation

The flow through a valve can be changed by changing the valve position (here labeled
z). The valve position set the valve opening and is therefore controlling the flow through
the valve. The valve equation describes the relation between the flow, valve opening and
the pressure drop. The valve equation for non-compressible fluids are given in Equation
2.24.

q = Cdf(z)A
√

∆P
ρ

= Cv

√
∆P
ρ

(2.24)
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On mass flow basis the relation m = qρ is used, and the equation becomes:

m = ρq = Cv
√
ρ∆P (2.25)

Where
Cd is the valve constant
f(z) is the valve characteristics
A is the cross section area for the valve
and Cv is the valve coefficient.

Instead of using the complicated approach explained earlier, we will make use of an
average density to account for the fact that we have gas (compressible fluid) in our
system. Rather than integrating the density over the pressure drop the average of the
densities before and after the valve are used in the valve equation. The assumption of a
pseudo one phase fluid for the multiphase flow is still applied. Thus, the mixed density
are averaged as shown in Equation 2.26, where P3 and P3 is the density at the inlet and
outlet, respectively.

ρ̄mix = ρmix,P3 − ρmix,P4

2 (2.26)

Using this expression in Equation 2.25 results in a much simpler expression for the
pressure drop over the valve. The new expression can be solved directly for the mass
flow as a function of the valve opening and the pressure drop over the valve.

m = Cv

√
ρmix,P3 − ρmix,P4

2 (P3 − P4) (2.27)

An important notion it that the valve equation gives the mass flow in kg/s. When using
the valve equation in the model calculations the valve constant, Cv, must be scaled to
give the mass flow in kg/d.

2.4.3 Valve parameters

The parameters needed in the valve equation are the valve constant Cv and the valve
characteristic f(z). The valve constant is also called the flow coefficient, it gives the
valves efficiency at allowing fluid to flow through it. It depends on the valve opening z,
and varies for different valves depending on each valves flow capacity. The expression
for Cv is given in Equation 2.28.

Cv = Cdf(z)A (2.28)

The f(z) gives the valve characteristic, and is a function of how the valve is opening
related to the flow rate through it. The three most common valves used in control
are linear valves, equal percentage vales and quick opening valves (Figure 2.6). One
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Figure 2.6: The mass flow through the valve as a function of the valve opening, dashed
line for a logarithmic valve, solid line for a linear valve, and dotted line for a parabolic
valve.

Table 2.1: Valve specifications

Parameter Value

Cd Valve constant 1×86400
A Cross-section area 5.56 cm2

f(z) Valve characteristic z

important relation between f(z) and z is that their limits have to match. When z is 0
the valve is completely closed, which means that f(0) = 0, and the same for a fully open
valve when z = 1, f(z) = 1.

For simplicity the valve in the model is selected to be a linear control valve. The
specifications for the valve are given in Table 2.1.

2.5 Summary of the equations, variables and parameters

The well model is now fully described by a set of equations. What still remains it to
decide the different parameters and variables. Some can be found in literature, the rest
on the other hand must be found from a well test case. This will be done in a later
chapter (Chapter 6). The equations are summed up and labeled f1 to f8 in Table 2.2.
The parameters are listen in Table 2.3, with an estimated value and a short explanation
for each of them.
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Table 2.2: The equations describing the system, and the unknown variables

Eq. nr. Equation Variable

f1 : mtot −mg −mo −mg −mw = 0 mtot,mg,mo,mw

f2a : mg − kg
(
P 2

2 − P 2
1
)

= 0 mg, P2
f2b : mg −GOR ·mo = 0 mg,mo, P2
f3 : mo − ko (P2 − P1) = 0 mo, P2
f4 : mw − kw (P2 − P1) = 0 mw, P2
f5 : p2 − P3 − mtotgP2

D+P2B
z = 0 mtot,mg,mo,mw, P2, P3

f6 : mtot − Cv
√
ρ̄mix(P4 − P3) = 0 mtot, P3, ρmix,3, ρmix,4

f7 : ρmix,3 = mtot
D
P3

+B mtot,mg,mo,mw, P3, ρmix,3

f8 : ρmix,4 = mtot
D
P4

+B mtot,mg,mo,mw, ρmix,4

Where
D: mgRT

Mg

B: mo
ρo

+ mw
ρw

ρ̄mix
ρmix,3+ρmix,4

2

Table 2.3: Parameters in the system equation

Parameter Value Explanation Units

Mg 16.04 × 10−3 Molar weight of natural gas (assumed pure CH4) kg/mol
ρgas 0.656 Density of natural gas in the reservoir kg/m3

ρoil 800 Density of oil at STP kg/m3

ρwater 1000 Density of water at STP kg/m3

A 5.56 Cross-sectional area of valve cm2

ki Constant in Darcy’s law, system specific
R 8.314 Gas constant Jmol/K = m3 Pamol/K
L 1000 Length of the pipeline m
T 373 Temperature, assumed constant K
P1 300 Reservoir pressure bar
P4 100 Pressure after valve Pa = kg s2/m
g 9.8 Gravity constant m/s2

Cd 0.98 Discharge coefficient no units
z [0, 1] Valve opening no units

f(z) z Valve characteristic no units
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Chapter 3

Solving the Model Equations

3.1 Constructing the incidence matrix

The complete system of equations describing the flow from the reservoir through the top
valve was given in the previous chapter. They are repeated here in Table 3.1. In this
chapter the equation system will be solved.

The equation set is a sparse set of non linear equations with 8 equations and 8 unknown
variables

For these type of equations it is often possible to find subsets of the equations [7]. Some
of these subsets can be solved by themselves and the solution of one subset can be used to
solve another until all the subsets are solved. The underlying structure of these subsets
can be found by constructing the equations incidence matrix. Where the rows of the
matrix is the equations, and each column represent a unknown variable. If a variable
occur in one of the equations, it will get a “1” in that row, if the space is filled with a “0”
it indicates that an equation is not depending on that variable. The incidence matrix of
the well model equation is given in Figure 3.1

There are different approaches to locate the subset of equations. One approach is to
move the rows and columns around. The goal is to get a lower triangular matrix by
moving the row with the most “1’s” to the bottom and the row with the least“1’s” to
the top. In addition the to moving the columns around as well. A more systematic
approach is following an algorithm starting by dedicating one variable to each equation,
and then drawing up a node for each equation (also called graph theory), and connecting
all the equations depending on the same variable. The graph theory approach was done
for this system of equations, however all the nodes collapsed into one node, indicating
that the equations cannot be divided into subsets to be solve individually.

Since the systematic graph theory approach failed to give a simple way to solve the
sytem of equations, the rows and columns are moved around in order to sort the incidence
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Table 3.1: The equations describing the system, and the unknown variables

Eq. nr. Equation Variable

f1 : mtot −mg −mo −mg −mw = 0 mtot,mg,mo,mw

f2a : mg − kg
(
P 2

2 − P 2
1
)

= 0 mg, P2
f2b : mg −GOR ·mo = 0 mg,mo, P2
f3 : mo − ko (P2 − P1) = 0 mo, P2
f4 : mw − kw (P2 − P1) = 0 mw, P2
f5 : p2 − P3 − mtotgP2

D+P2B
z = 0 mtot,mg,mo,mw, P2, P3

f6 : mtot − Cv
√
ρ̄mix(P4 − P3) = 0 mtot, P3, ρmix,3, ρmix,4

f7 : ρmix,3 = mtot
D
P3

+B mtot,mg,mo,mw, P3, ρmix,3

f8 : ρmix,4 = mtot
D
P4

+B mtot,mg,mo,mw, ρmix,4

Where
D: mgRT

Mg

B: mo
ρo

+ mw
ρw

ρ̄mix
ρmix,3+ρmix,4

2

matrix into a lower triangular matrix. Form the matrix (Figure 3.1) )we see that equation
f2, f3, f4 contains only two 1’s and will be placed on the top. Equation f7 contains six
1’s and will be placed on the bottom, and the rest of the equations will be placed in
order between them. The sorted incidence matrix is shown in Figure 3.2. As the graph
theory already indicated, the matrix shows that it is not possible to create subset of
equations to be solved for this system. All the equations must therefore be solved at the
same time.



mtot mo mg mw P2 P3 ρmix,3 ρmix,4

f1 1 1 1 1 0 0 0 0
f2 0 0 1 0 1 0 0 0
f3 0 1 0 0 1 0 0 0
f4 0 0 0 1 1 0 0 0
f5 1 1 1 1 1 1 0 0
f6 1 0 0 0 0 1 1 1
f7 1 1 1 1 0 1 1 0
f8 1 1 1 1 0 0 0 1


Figure 3.1: The incidence matrix of the well model equations
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

P2 mg mo mw mtot P3 ρmix,3 ρmix,4

f2 1 1 0 0 0 0 0 0
f3 1 0 1 0 0 0 0 0
f4 1 0 0 1 0 0 0 0
f1 0 1 1 1 1 0 0 0
f5 1 1 1 1 1 1 0 0
f7 0 1 1 1 1 1 1 0
f8 0 1 1 1 1 0 0 1
f6 0 0 0 0 0 1 1 1


Figure 3.2: The incidence matrix of the well model equations

3.2 Solving the system by iteration

The trick to solve this set of equations is to realize that the mass flow is a preserved
quantity. Consequently, the total mass flow found in the reservoir form equation Equa-
tion f1 (Darcy’s law), must be equal the mass flow given in for example Equation f6
(valve equation). This can be used to iterate on. To find a good iterative variable one
can examining the incidence matrix closer. The Equation f6 is taken out of the system
and this equation will function as a control equation. The iterative variable is chosen to
be P2. One can now iterate on the error between the total mass flow found in equation
f1 and the mass flow found the f6 at a given pressure in node 2. If the error is zero the
guessed P2 is correct.

The iterative variable P2 and the control equation are indicated as a blue column and
blue row respectively (Figure 3.2). With this variable and equation parted from the
equation system the “inner matrix” is a lower triangular matrix, which can easily be
solved. The iteration is done by fzero in Matlab.



28 CHAPTER 3. SOLVING THE MODEL EQUATIONS



Chapter 4

Introduction
Optimizing the Manifold

Now that the modeling part of the project is done, the well behavior will be studied
by using two test cases. A manifold consisting of two wells are constructed in order to
study how the two wells are effecting each other. This also makes it possible to optimize
the manifold operation, by finding the best way to operate the two wells together.

In addition to the well model based only on first principles, three different GOR expres-
sions are used as a basis for well models. The GOR expression will affect the expression
for the gas flow rate. This is done in order to study different types of wells. The models
will be named after which GOR expression is used in the model.

The well behavior can be indicated by constructing a plot with the boundaries for when
the well is a pure oil or pure gas well. The wells examined are mix-phase wells and
will lay somewhere in between these boundaries. When studying a manifold it can be
useful to know if the well is closer to a pure liquid- or gas-phase well. These plots give
information on how the production of gas from the mixed-phase wells are compared to
a pure-phase well.

Figure 4.1: The manifold consisting of two wells
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The main focus in this section is the optimization of the manifold, where the aim is to
maximize the oil production. The production is however subject to limitations on the
gas flow. The goal with the optimization is to find the optimal way to operate the two
wells together, in order to produce as much oil as possible without violating the gas
constraint.

In the case where the manifold is operated under constrained conditions, we already know
the optimal solution. The optimization criteria is described in Urbanczyk and Watten-
bargers article Optimization of well Rates under Gas Coning Conditions [3]. They state
that the optimal way to operate a manifold is to keep the following ratio equal for all
the wells (

∂qg
∂qo

)
well a

=
(
∂qg
∂qo

)
well b

(4.1)

In the article the optimization condition is given on a volumetric basis. The well models
developed here are expressed in terms of mass, thus the optimization condition will also
be given on a mass basis.

(
∂mg

∂mo

)
well a

=
(
∂mg

∂mo

)
well b

(4.2)

The two well manifold will always be operated under constrained conditions. This means
that the optimal solutions found after optimizing the manifold should always follow the
optimization condition. The expressions (Equation 4.2) for the well models will therefore
be found, and tested with the values obtained from optimization of the system.



Chapter 5

The Gas-Oil-Ratio

The gas-oil-ratio (GOR) is the relation between the amount of gas out of a well system
over the amount of oil. This relation can be express either on volumetric basis or on
mass basis, as shown in Equation 5.1 and 5.2 respectively. Since all the equations for
the physical model is expressed in terms of mass, the GOR based on relation between
the mass flows will be used.

GORq = qg
qo

(5.1)

GORm = mg

mo
(5.2)

The GOR expresses how much gas i produced per amount of oil from a manifold. Usually,
it is desired to produce as little gas per amount of oil as possible (i.e a low GOR).
Different GOR models will effect the behavior of the system, and therefore how to run
it at optimal conditions.

In this report four different GOR models will be studied. The first is the GOR relation
which is directly derived from the equations for mass flow expressed by Darcy’s law. The
three others are made up to give the behavior we want to investigate, namely an increase
in the GOR when the production increases. Meaning that when the oil production goes
up, so does the production of gas in the system.

The GOR relations to be studied at are presented under, where GORD is the GOR
derived by using Darcy’s law, and GOR1−3 are ratios we made up.
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GORD = kg
ko

(Pwf + PR) (5.3a)

GOR1 = kg
ko

(P 2
wf − P 2

R) (5.3b)

GOR2 = kg
ko

(Pwf − PR) (5.3c)

GOR3 = kg
ko

(Pwf − PR)2 (5.3d)

The expressions describe the change in GOR with increasing production (Pwf → 0).
The change in GOR can be predicted merely by studying the expressions. Increasing the
production will cause GORD to decrease. For GOR1 the increase will be the difference of
the pressures squared. The expression for GOR2 indicates that GOR2 is linear increasing
with production, while GOR3 is quadratic increasing with production. The change in
the GOR expressions with respect to increasing well production are also shown in Figure
5.1.
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Figure 5.1: The gas-oil-ratio for each of the GOR models used in this report plot against
the pressure at the wellhead. The plots show how the GOR changes with the production
rare, where in this case maximum production is at Pwf = 150, and no production is
when Pwf = PR = 300
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Chapter 6

Case Studies

In the case study a two well manifold will be applied. Each manifold will consist of two
wells noted well a and well b, the system is presented in Figure 6.1.

For all the well case studies two common base-wells will be used to calibrate the k-values
used in the expressions for the mass flow rates in the reservoir. The two base-wells are
presented in Table 6.1. Base-well 1 will be used to calibrate the a wells and base-well 2
will be used to calibrate the b wells for the models.

The mass flow rates for the oil and water will follow Darcy’s law regardless of the GOR
expression used for the well. The k-values for the oil and water expressions will therefore
not change, and can be calculated only once. The expression for the gas flow rate change
when the GOR changes and new k-values must be calculated for each GOR used for the
well. The calculations are given next.

Figure 6.1: The two well model used in the test cases
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Table 6.1: Base-wells used to calibrate the case studies

Well 1 Well 2 Units

PR 300 300 bar
Pwf 150 162 bar
mg 56 429 98 892 kg/d
mo 461 997 531 841 kg/d
mw 144 599 501 450 kg/d

6.1 The mass flow rate expressions

The relation between the mass flow rates and the GORm is given in equation 6.1

GOR = mg

mo
(6.1)

The mass flow of the oil will be assumed to follow Darcy’s law as before, and can therefore
be expressed as:

mo = ko(Pwf − PR) (6.2)

Since the oil flow rate follow Darcy’s law in all the cases, this means that when the GOR
expressions changes, the expression for the mass flow rate must be adjusted accordingly.
Rearranging Equation 6.1, the mass flow rate can be expressed as:

mg = GOR ·mo (6.3)

The expression for the gas flow rate can then be found by applying the different GOR
expressions to be studied (Equation 6.4a-d). The kg-values can then be calculated using
the two base-wells. All the k-values for all the different GORs are given in Table 6.2

GORD = kg
ko

(Pwf + PR) (6.4a)

GOR1 = kg
ko

(P 2
wf − P 2

R) (6.4b)

GOR2 = kg
ko

(Pwf − PR) (6.4c)

GOR3 = kg
ko

(Pwf − PR)2 (6.4d)
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Table 6.2: k-values for the different wells cases

Well a Well b Units

ko -3080 -3854 kg/bar
kw -964 -3634 kg/bar

kg,GORD -0.836 -1.551 kg/bar2

kg,GOR1 0.0056 0.0112 kg/bar3

kg,GOR2 2.508 5.1928 kg/bar3

kg,GOR3 -0.0167 -0.0376 kg/bar3

6.2 Well types

When examining a well, it can be useful to know what type of well one is studying. One
way to describe a well behavior is by plotting the relative pressure to the relative mass
flow. For this part it is assumed that the well only produces oil and gas, meaning that
the presence of water is ignored. This did not affect the resulting behavior of the wells
significantly, and made the calculations easier.

The relative mass flow is the total mass flow over the maximum mass flow from the well.
mtot

mmax
tot

(6.5)

The maximum flow rate will occur when the well flow pressure is at minimum (Pwf=0),
and is the maximum oil flow plus the maximum gas flow.

mmax
tot = mmax

o +mmax
g (6.6)

By setting Pwf = 0 in the oil and gas flow expressions for the different well models, the
maximum well flow is:

GORD: mmax
totD

= koPR + kgP
2
R (6.7a)

GOR1: mmax
tot1 = koPR + kgP

3
R (6.7b)

GOR2: mmax
tot2 = koPR + kgP

2
R (6.7c)

GOR3: mmax
tot3 = koPR + kgP

3
R (6.7d)

If the well only produced oil, kg is zero, and likewise if the well only produced gas,
ko is zero. This can be used to graph the boundary-curves for the wells in the plot,
one reference curve for only liquid flow and one for only gas flow. The graph for the
two-phase wells we are investigating will be somewhere in between these two reference
curves.
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The relative mass flow rate expression will vary for the different well models depending
on the GOR expression. The expressions describing the well behavior are given below
(Equation 6.8a-d). The complete derivation of the expressions can be found in Appendix
A.

GORD:
mtotD

mmax
totD

= 1− a
(
Pwf
PR

)
+ (1-a)

(
Pwf
PR

)2
(6.8a)

GOR1:
mtot1

mmax
tot1

= 1− a
(
Pwf
PR

)
+ (1-a)

((
Pwf
PR

)3
−
(
Pwf
PR

)2
−
(
Pwf
PR

))
(6.8b)

GOR2:
mtot2

mmax
tot2

= 1− a
(
Pwf
PR

)
+ (1-a)

((
Pwf
PR

)2
−
(2Pwf
PR

))
(6.8c)

GOR3:
mtot3

mmax
tot3

= 1− a
(
Pwf
PR

)
+ (1-a)

((3Pwf
PR

)2
+
(
Pwf
PR

)3
−
(3Pwf
PR

))
(6.8d)

Where a is defined as:

a = mmax
o

mmax
g +mmax

o

and likewise (1-a) =
mmax
g

mmax
g +mmax

o

, 0 ≤ a ≤ 1

A typical well type is a “Solution-Gas Drive Well”, the properties of such wells are
described in Vogel’s article Inflow Performance Relationships for Solution-Gas Drive
Wells from 1960 [9]. In this type of wells the GOR decreases when the production
increases (Pwf → PR). This corresponds with the GOR behavior for the well based on
first principles, which was linearly decreasing with increasing production.

The three other models shows an opposite behavior. When the production is increased,
the amount of gas per amount of oil increases. This behavior was also found when
analyzing the wells based on GOR1, GOR2 and GOR3 in Chapter 5.

The well based on an increase of the quadratic difference, GOR1, resembles a pure liquid
well (Figure 6.2b), whereas the linear increasing (GOR2) (Figure 6.2c) is closer to a pure
gas phase well model. The well described by the quadratic increasing relation (GOR3)
is placed somewhere in between and will resemble a mixed-phase well (Figure 6.2d).

An interesting observation is that the behavior of the well depends strongly on the GOR
expression used for the model. The well models are all calibrated from the the same
base-well (Table 6.1), meaning that the amount of oil and gas present in the reservoir
are the same, the well shows different behaviors depending on the GOR expression.
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Figure 6.2: In this figure the relative pressure (pwfPR
) is plot against relative mass flow rate

for well the different models. The boundary conditions for a pure liquid and a pure gas
phase well is also plotted. The well models studied are placed in between the boundaries
of a pure-phase well.
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Chapter 7

Optimizing the Manifold

7.1 Theory

In many engineering problem you are left with one (or more) degrees of freedom, i.e
variables that can be manipulated to give several different solutions. In these cases there
will be a numerous amount of solutions. As a consequence, the solution found depends
on the value(s) of the manipulative variable(s) in the system. This extra variable can be
used to optimize the process, resulting in the best performance possible of the system.
In a complex problem it is not always easy to immediately say which solution is the best,
and algorithms to identify the optimal solution, that is to say the optimal values of the
manipulative variables, must be used.

A general optimization problem can be formulated:

max
x

f(x) or min
x
−f(x) (7.1a)

Subject to:

h(x) = 0 (7.1b)
g(x) ≤ 0 (7.1c)

The objective function f is the function to be minimized or maximized by varying the
decision (or manipulative) variable x. The optimization is limited by the equation h(x) =
0 and the inequality g(x) ≤ 0, making this a constrained optimization problem. This
means that the optimal value of x must satisfy the constraints. The constraints makes up
a feasible region limiting the performance for the system. Not satisfying the constraints
might lead to unrealistic values of the process variables and unfeasible solutions.
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7.2 The optimization problem

The optimization problem is to maximize the oil production from the system. The cost
function will therefore in this case be the amount of oil, which is to be maximized. In
addition, there is an upper limit on how much gas that can be extracted from the system.
During the optimization this constraint is always active, meaning that the manifold is at
maximum production. When the gas constraint it reached the oil production is limited
since producing more oil would result in more gas as well, violating the gas constraint.

Since the goal is to maximize oil flow subject to a constraint on the gas flow, it will be
optimal to produce most from the well with the lowest GOR value. However, it is not
clear how to operate the wells together. As the production increase the GOR value are
affected, which causes the GOR for each well to change during production. The goal
with the optimization is to find the optimal ratio to produce from the two wells for a
given gas constraint.

The manipulating variables of the system are the valve openings, z. The optimization
solution will be how to operate the valves for the two wells, in order to produce as
much oil as possible without violating the gas flow constraint. There is also a constraint
considering the valves, since the valve opening can only operate between fully open or
fully closed. Mathematically the problem can be stated:

Cost function

max
za,zb

(mo,a +mo,b) = min
za,zb

−(mo,a +mo,b) (7.2a)

Subject to the following constraints:

mg,a +mg,b ≤ mmax
g (7.2b)

0 ≤zi ≤ 1 i = a, b (7.2c)

The wells are optimized for different gas constraints, and for each constraint there is an
optimal solution. The result of the optimization will therefore show how the solution
varies with different constraints. For each gas constraint value the optimal solution for
the valve openings, the pressure before the valve and the optimal oil flow rate out of the
manifold is found.

The well optimization problem is solved using fmincon in Matlab. This integrated
Matlab function finds the constrained minimum of a multi-variable function, and solves
problems on the same form as the well optimization problem faced here. In this case we
want to maximize the oil production, and must therefore try to minimize the negative
value of the oil production, since fmincon minimizes the function value.
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7.2.1 Optimal operation of the well model based on physical equations

As shown earlier, the GOR for the model based on first principals and physical equations
is:

GORD = kg
ko

(Pwf + PR)

The flow rates of oil and gas are in this model described by Darcy’s law.

mo = ko(Pwf − PR)
mg = kg(P 2

wf − P 2
R)

The equations show that maximum production will be when Pwf is equal to 0, and the
minimum production, or no production, will occur when Pwf is equal to PR. This result
is consistent with the anticipation that this well model is a Solution-Gas Drive Well as
we found from the GOR analysis executed earlier. In the same analysis we found that
for this type of well, the production is at maximum the GOR is at it’s minimum.

Consequently, the well with the lowest GOR should increase the production first, as
the gas constraint increases. If the first well reaches its maximum production, without
violating the constraint on the gas production, the well with the second lowest GOR
should start producing and so on. Because of the simplicity of this well model the
optimal solution is trivial, and optimization is not really needed as long as the GOR is
known for the wells.

In order to see the effect different limits on the maximum gas mass flow will have on
the system (Figure 7.1a-c), the problem is still solved as an optimization problem using
fmincon in Matlab.
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Figure 7.1: The optimal solution for the manifold where the well models are based on
physical equations. Plot a) shows the maximum oil production as a function of the gas
constraint value. In plot b) the pressure profile for the pressure before the control valve
is plot, and the actual opening of the valve is shown in plot c).
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7.2.2 Optimization of the models based on a gas-oil-ratio

The same optimization scheme was run for the three models the GOR expression:

GOR1 = kg
ko

(P 2
wf − P 2

R) (7.5a)

GOR2 = kg
ko

(Pwf − PR)

GOR3 = kg
ko

(Pwf − PR)2

The solution is in these cases more complex than to max-out the well with the lowest
GOR value first and then start producing from the well with the second lowest GOR.
When the total production increases, the solutions will depend on the change in the GOR
for both of the wells. The goal is to find the optimal way to produce form both of the
wells simultaneously to maximize the total oil flow, while staying within the constraint
for the gas production.

The solution is divided into two regions and they are divided by a blue line in the plots
(Figure 7.2-7.4). One region occur when the two wells are increasing the production
simultaneously. In this region the optimal solution is non-trivial. The optimal solution
involves adjusting both wells at the same time as the gas constraint is raised. As the
gas constraint increases so does the production form both the wells, causing the GOR to
change. In this region optimization is needed in order to find the optimal way to operate
the wells.

The other region is after one of the wells (well a) has reached maximum production. The
optimal solution is now trivial. As the gas constraint increases, the only way to further
increase the total production, is to increase the production from the other well (well b).
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Figure 7.2: The optimal solution for the model based on the GOR1 expression. Plot a)
shows the maximum oil production as a function of the gas constraint value. In plot b)
the pressure profile for the pressure before the control valve is plotted, and the actual
opening of the valve is shown in plot c).
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Figure 7.3: The optimal solution for the model based on the GOR2 expression. Plot a)
shows the maximum oil production as a function of the gas constraint value. In plot b)
the pressure profile for the pressure before the control valve is plotted, and the actual
opening of the valve is shown in plot c).
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Figure 7.4: The optimal solution for the model based on the GOR3 expression. Plot a)
shows the maximum oil production as a function of the gas constraint value. In plot b)
the pressure profile for the pressure before the control valve is plotted, and the actual
opening of the valve is shown in plot c).
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7.2.3 Discussion

An important finding from the optimization is that the pressure profile for the pressure
before the valve (P3) is independent of the valve characteristic. This is valid for all the
models studied. The optimal solutions for the valve opening are different depending on if
a linear of logarithmic valve is used. Whereas the pressure profile before the valve is the
same for both the valve types. To control the flow through the valve one can therefore
control the pressure before it without taking into consideration the valve characteristic.
For this reason, the further analyzes of the system will only take into account the change
in the pressure before the valve.

Because the wells are calibrated and based on the same base-wells, they have the same
maximum production of oil, which is around 1000 t/d. The optimization problem be-
comes unconstrained after the limit on gas production reaches just above 150 t/d. After
this point the valves saturate, and even if we raise the allowance on maximal gas flow
rate the oil production is constant. With this high allowance on the gas production the
solution is simply to produce max from both the wells.

The model based on a decreasing GOR with increasing production, GORD

As expected, the optimal solution for the well based on physical principles is trivial.
Until the pressure before wella is constant, and maximum production for this well is
reach (Figure 7.1b), the pressure before the valve in wellb is unchanged. This means
that the valve in wellb does not start to open until the valve in wella is fully open.
Wella is the well with the lowest GOR value, and as the gas constraint becomes higher
the production from wella increases until it reaches maximum production. Once wella
reaches maximum production, wellb starts producing. The production keep increasing
until wellb also reaches maximum production.

The models based on an increasing GOR with increasing production

More interesting are the solutions for the three other well models, where the GOR are
increasing when the production increases. The shift between the non-trivial and trivial
solution is clearly visible in both the pressure profile and the valve opening plot. In all
three cases both of the valves starts to open form the beginning (Figure 7.2c - 7.4c). As
the limit on the maximum gas flow increases the production increases from both of the
wells simultaneously.

The profile for the optimal oil production is even for the three GOR models, and does
not show the same shift in the production rate as the physical model does. The shift
between the two different regions,marked with a blue line, appears in the pressure profile
plot (Figure 7.2b-7.4b). In the region with the non-trivial solution the pressure profiles
are decreasing together in a certain ratio. Once wella reach maximum production the
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Figure 7.5: The optimal oil flow for all the four well models. The plot shows how the
different oil flow patters varies depending on the model used to describe the system.

pressure profile flattens. After this point the pressure profile for wellb is near linear,
similar to the pressure profiles for the well based on first principles (Figure 7.1b).

Comparing the optimal oil flow profile for the three manifolds, the oil production rate
from the wells are very different. The total oil production is highest from the manifold
based on the GOR increasing with the quadratic difference in pressure (GOE3). The wells
in this manifold are increasing the production simultaneously much longer compared
to the other manifold models. The effect is that the maximum oil production profile
increases more rapidly for GOR3 and is consistently higher than for the three other oil
profiles. This result becomes very clear when the optimal oil flows are plot together
(Figure 7.5). The effect diminishes as the limit on the gas production increases to the
point where the problem becomes unconstrained. In this case the total oil production
from the four different manifold models are the same.

This is however, not the same as saying that the GOR3 model is better than the three
others. A direct comparison between the well models is not possible, since they are based
on different GOR expressions. We assume that the oil flow follow Darcy’s law regardless
of the GOR expression used as a basis, thus only the gas flow rate pattern is affected.
This might explain why the oil flow out of the system are higher for GOR3. The curves
does however give a nice picture on how the different well models behave in terms of oil
production as a function of different gas constraints (Figure 7.5).
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7.3 Disturbing the system

The optimization of the four different models were run with disturbances in the GOR
for wella. The GOR was increased with 15%, and then decreased with 15%. A decrease
in the GOR leads to less gas produced per oil, which is a desired effect. The total
oil production out of the manifold increases when the GOR decrease, compared to the
situation with no disturbance. An increase in the GOR corresponds to more gas per
amount of oil produced, in other words an undesired disturbance, and the total oil
production decrease.

The effect of the disturbances on the different GOR models are shown in Figure 7.6 and
7.7. Where the solid line is the optimal solution without disturbances, the dashed line
is for an increase in the GOR, while the dotted line is for the decrease.

The difference in the optimal oil production for the different disturbances are largest
when the constraint is around 60-80 t/d. When the problem becomes unconstrained,
the effect of the disturbances are relatively small on the total oil production. The effect
is also relatively small for very strict constraints on the gas flow. When comparing the
oil flow profiles for the different well-models, we see that the well model based on the
GOR3-expression is least effected by the disturbances.

Examining the pressure profile for the GOR3 model (Figure 7.7d), we see that the effect
of a disturbance in wella is hardly visible on wellb before the gas constraint is raised over
100 t/d. For the three other well models the disturbance in wella is noticeable in wellb
almost straight away.

The pressure profiles indicates how much the pressure before the valve should change
(up or down) to still be at optimal operation despite a disturbance. While the optimal
oil flow indicated how much more or less oil is produced when a disturbance occur and
the system is optimized. This simulation plots gives a nice illustration on how sensitive
the optimal solution is to disturbances. Both in terms of profit and control action needed
in order to deal with the disturbances.
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Figure 7.6: The optimal oil flow for all the four models with disturbances in the GOR.
The dashed line is for an increase of 15% in the GOR, while the dotted line is for a 15%
decrease in the GOR.
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Figure 7.7: The optimal pressure before the valves in wella and wellb, with disturbances
in the GOR. The dashed line is for an increase of 15% in the GOR, while the dotted line
is for a 15% decrease in the GOR.
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7.4 Optimization Criterion

7.4.1 Optimization of well rates when the gas constraint is active

When the manifold is operated under active constrain conditions the optimal solution
is already known. It is derived and explained in Urbanczyk and Wattenbargers article
Optimization of well Rates under Gas Coning Conditions [3].

An active gas constraint means that there is a certain amount of gas that can be produced
from the manifold. This also limits the oil production, which is at maximum when the
gas constraint is active. If the amount of gas (or oil) produced form one well increases,
the equivalent amount of gas must decrease from the other wells in the manifold. If
not, the total production from the manifold will violate the gas constraint. Similar, if
the amount gas produced from one well decreases, the equivalent amount of gas must
increase from the other wells. Otherwise the manifold is producing under the constraint
limit, and therefore less oil than optimal.

To ensure optimal operation of the wells when the gas constraint is active, the change
in the gas rate with respect to an infinite small change in the oil rate should be equal
for all the wells in the manifold. The condition can be expressed as:(

∂qg
∂qo

)
i

=
(
∂qg
∂qo

)
j

(7.6)

This condition holds for any number of wells in a manifold.

7.4.2 Deriving the optimization criteria for the models

In our case the optimization problem is defined such that the gas constraint is always
active. Thus, the change in gas flow with respect to the oil rate in wella should be
equal the change in wellb for all gas constraints, as long as the two wells are increasing
production simultaneously. Which is when the optimal solution is non-trivial. Since the
well models used here are all expressed on mass basis, the optimization condition will
be expressed in terms of mass as well.

(
dmg

dmo

)
a

=
(
dmg

dmo

)
b

(7.7)

When wella saturates at maximum production, the solution is trivial and only wellb
can increase the production further. Therefore, in this region only the GOR for wellb
changes. When this region is reached, the optimization criteria (Equation 7.7) is not
valid anymore.
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In order to test if the optimal solutions found by fmincon meet the optimization criteria,
the derivatives (Equation 7.7) for each of the well models were derived.

GORD = kg
ko

(Pwf + PR) :
(
δmg

δmo

)
GORD

= kg
ko

(Pwf − PR) +GORD

GOR1 = kg
ko

(P 2
wf − P 2

R) :
(
δmg

δmo

)
GOR1

= 2kg
ko
Pwf (Pwf − PR) +GOR1

GOR2 = kg
ko

(Pwf − PR) :
(
δmg

δmo

)
GOR2

= kg
ko

(Pwf − PR) +GOR2 = 2GOR2

GOR3 = kg
ko

(Pwf − PR)2 :
(
δmg

δmo

)
GOR3

= 2kg
ko

(Pwf − PR)2 +GOR3 = 3GOR3

The derivation of the derivative expressions for each of the well models are presented in
Appendix B.

The expressions for the derivatives shows a quite interesting result. For the well models
studied here, the optimal operation of the wells are to keep the GOR for the two wells
equal or close to equal.

Now that the optimization criteria is derived, the optimal solutions are tested to see if
they fit. All the optimal values are tested, both the case with no disturbance (Figure
7.8), and the cases where a disturbance was afflicted on the system (Figure 7.9 and 7.10).



56 CHAPTER 7. OPTIMIZING THE MANIFOLD

0 50 100 150 2000

0.1

0.2

0.3

(
δmg
δmo

)
GORD

= kg
ko

(Pwf − PR) + GORD

wella

wellb

Maximum gas flow [t/d]

δ
m
g

δ
m
o

a) dmg
dmo

for well model GORD

0 50 100 150 2000

0.1

0.2

0.3

(
δmg
δmo

)
GOR1

= 2 kg
ko
Pwf (Pwf − PR) + GOR1

wella

wellb

Maximum gas flow [t/d]

δ
m
g

δ
m
o

b) dmg
dmo

for well model GOR1

0 50 100 150 2000

0.1

0.2

0.3

0.4

(
δmg
δmo

)
GOR2

= 2GOR2

wella

wellb

Maximum gas flow [t/d]

δ
m
g

δ
m
o

c) dmg
dmo

for well model GOR2

0 50 100 150 2000

5 · 10−2

0.1

0.15

0.2

(
δmg
δmo

)
GOR3

= 3GOR3

wella

wellb

Maximum gas flow [t/d]

δ
m
g

δ
m
o

d) dmg
dmo

for well model GOR3

Figure 7.8: The optimization criteria for wella and wellb for the four well models. Where
only one slope is visible the expressions are equal and the solution is optimal. The
point where they split and one on the profiles flattens is when wella has reached optimal
solution.
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Figure 7.9: The optimization criteria for wella and wellb for the four well models, for a
+15% disturbance in the GOR in wella. Where only one slope is visible the expressions
are equal and the solution is optimal. The point where they split and one on the profiles
flattens is when wella has reached optimal solution.
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Figure 7.10: The optimization criteria for wella and wellb for the four well models, for a
-15% disturbance in the GOR in wella. Where only one slope is visible the expressions
are equal and the solution is optimal. The point where they split and one on the profiles
flattens is when wella has reached optimal solution.
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7.4.3 Discussion

The optimal solution found for GOR2 and GOR3 meet the optimization criteria precisely.
For these two models the derivatives for wella and wellb are equal as long as the optimal
solution is non-trivial (Figure 7.8c and d). This gives reason to believe that the solution
found for these well models are the correct optimal solution. If one were able to control
the GOR, controlling them equal for the wells would ensure optimal operation of the
manifold.

As explained earlier, the well based on first principles (GORD) has only a trivial so-
lution; first let wella reach maximum production and then produce from wellb. Since
the production is never increased simultaneously, the derivatives for wella and wellb are
never equal (Figure 7.8a).

For the model based on the GOR1 expression, the derivatives are equal for strict gas
constraints, however the values differ for higher gas constraints. The difference is minor
and can be caused by numerical errors in the optimization. However due to the difference,
it might be that the solution found is not truly the optimal solution.

The optimal solutions found with a disturbance in the GOR was tested against the
criteria as well. The result should have been the same as for the non-disturbed process.
However, for the well model based on GOR2, we see that the GORs for wella and wellb
are not equal. The difference is minor, and we believe it is caused by a numerical mistake.
Nevertheless, this difference can indicate that the solution found is not truly the optimal.

For all cases, the differences between the derivatives is made even clearer by plotting
the derivative of wella minus the derivative for wellb. The magnitude of the difference is
shown more clearly in these plots. These plots are shown in appendix B.
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Chapter 8

Summary of Results

The gas-oil-ratio (GOR) for the model based of first principles was found to decrease
with increasing production. This was not the behavior we were interested in, therefore
three other models based on a GOR that increases with increasing production were also
studied. The GOR for the models are presented below

GORD = kg
ko

(Pwf + PR)

GOR1 = kg
ko

(P 2
wf − P 2

R)

GOR2 = kg
ko

(Pwf − PR)

GOR3 = kg
ko

(Pwf − PR)2

The models were used to construct a two-well manifold which was optimized. The system
was optimized for both a linear valve and a logarithmic valve. The pressure drop profiles
proved to be equal for both a linear and a logarithmic valve. The pressure before the
valve is therefore independent of the valve characteristic for these two valve types.

We also found that the optimal solution for the two-well manifold is divided into two
regions. In one of regions the optimal solution is non-trivial, this is where the well
production is increased in both of the wells simultaneously. This is the region of interest.
In the other region one of the wells reaches maximum production, and the solution is
then trivial. As the limit on the gas flow increases, the optimal operation in this region
is simply to increase the production from the second well.

The optimal solutions found for the manifold was compared to the known optimal solu-
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tion. Which is to keep the following ratios equal between the wells in the manifold,(
δmg

δmo

)
a

=
(
δmg

δmo

)
b

The optimization criteria was determined for all four well models by differentiation, and
is presented below. (

δmg

δmo

)
GORD

= GORD + kg
ko

(Pwf − PR)(
δmg

δmo

)
GOR1

= GOR1 + 2kg
ko
Pwf (Pwf − PR)(

δmg

δmo

)
GOR2

= 2GOR2(
δmg

δmo

)
GOR3

= 3GOR3

In the region with the non-trivial solution the optimal operation for well model GOR2
and GOR3 is to keep the GOR for the two wells in the manifold equal. For the model
based on GOR1 it is close to optimal to keep the GOR pluss a small correction term
equal between the two wells. It is hard to say why the optimal solution for the manifold
with wells based on GOR1 is deviating from the optimization criteria.

The model based on physical equations has only a trivial solution; maximize the pro-
duction from the well with the lowest GOR, and then start producing from the one with
the higher GOR.



Chapter 9

Conclusion

The results found in this project can be used as a first step in finding a control structure
to maximize the oil production form a petroleum manifold. The next step will be to
identify variables which can be used to control the manifold, in order to keep it at optimal
operation despite of disturbances in the production. Even though the models here most
likely do not correspond to a real petroleum well, they give a nice picture on the behavior
for types of wells studied here. By optimization it was found that the optimal way to
operate the manifold was to keep the GOR between the wells in a manifold equal or close
to equal. Further work with the models developed here can be to find ways to measure
the GOR for each of the wells in a manifold to be able to control them.
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Appendix A

Derivation of the relative mass
flow rates

For this part it is assume that the well only produces oil and gas, so the presence of water
is ignored. The total mass flow is therefore the oil flow plus the gas flow. Depending
on the well model, these expression will change. We assume that the oil flow will follow
Darcy’s law, while the gas flow can be expressed as the GOR times the oil rate.

mg = GOR×mo (A.1)

The GOR expressions used are

GORD = kg
ko

(Pwf + PR) (A.2a)

GOR1 = kg
ko

(P 2
wf − P 2

R) (A.2b)

GOR2 = kg
ko

(Pwf − PR) (A.2c)

GOR3 = kg
ko

(Pwf − PR)2 (A.2d)

The relative mass flow is expressed as

mtot

mmax
tot

(A.3)

The maximum flow rate can be expressed as

mmax
tot = k′g + k′o (A.4)
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Where kg’ and ko’ are the maximum flow rates of gas and oil, respectively. They are
found from the expression for the total maximum mass flow, which occur when the well
hole pressure is at minimum (Pwf=0).

mmax
tot = mmax

o +mmax
g (A.5a)

GORD: mmax
totD

= koPR + kgP
2
R (A.5b)

GOR1: mmax
tot1 = koPR + kgP

3
R (A.5c)

GOR2: mmax
tot2 = koPR + kgP

2
R (A.5d)

GOR3: mmax
tot3 = koPR + kgP

3
R (A.5e)

If the well only produced oil kg is zero, and likewise if the well only produced gasko
is zero. This can be used to graph the boundary-curves for the wells in the plot, one
refrence curve for only liquid flow and one for only gas flow. The graph for the two-phase
wells we are investigating will be somewhere in between these two reference curves, and
the well behavior can be indicated form these plots.

For the further derivation the following definitions are used:

k′o
k′g + k′o

= a and
k′g

k′g + k′o
= (1-a) (A.6)

The relative mass flow for the four well models are derived under. The pressure in the
reservoir is denoted PR and the pressure at the well head is denoted Pwf .

The relative mass flow for the model based on GORD

mtot = mg +mo (A.7a)
= ko(PR − Pwf) + kg(P 2

R − Pwf2)

= k′o(1−
Pwf
PR

) + k′g(1−
(
Pwf
PR

)2
) where k′o = koPR and k′g = kgP

2
R

= k′o − k′o
Pwf
PR

) + k′g − k′g
(
Pwf
PR

)2

Using the definitions given in Equation A.6 the behavior of this well can be expressed
as:

mtotD

mmax
totD

= 1− a
(
Pwf
PR

)
+ (1-a)

(
Pwf
PR

)2
(A.7b)
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The relative mass flow for the model based on GOR1

mtot = mg +mo (A.8a)
= ko(PR − Pwf) + kg(P 2

R − Pwf2)(PR − Pwf)

= k′o(1−
Pwf
PR

) + (k′g − k′g
P 2
wf

P 2
R

)(1− Pwf
PR

) where k′o = koPR and k′g = kgP
3
R

= k′o − k′o
(
Pwf
PR

)
+ k′g + kg

((
Pwf
PR

)3
−
(
Pwf
PR

)2
−
(
Pwf
PR

))

Usign that mmax
tot = kg’ +kg’ gives the relative mass flow expression:

mtot

mmax
tot

= 1− k′o
k′g + k′o

(
Pwf
PR

)
+

k′g
k′g + k′o

((
Pwf
PR

)3
−
(
Pwf
PR

)2
−
(
Pwf
PR

))

Using the definitions given in Equation A.6 the behavior of this well can be expressed
as:

mtot1

mmax
tot1

= 1− a
(
Pwf
PR

)
+ (1-a)

((
Pwf
PR

)3
−
(
Pwf
PR

)2
−
(
Pwf
PR

))
(A.8b)

(A.8c)

The relative mass flow for the model based on GOR2

mtot = mg +mo (A.9a)
= ko(PR − Pwf) + kg(PR − Pwf)2

= k′o(1−
Pwf
PR

) + k′o(1−
Pwf
PR

)2 where k′o = koPR and k′g = kgP
2
R

= k′o − k′o
(
Pwf
PR

)
+ k′g + k′g

(
−
(2Pwf
PR

)
+
(
Pwf
PR

)2
)

Using the definitions given in Equation A.6 the behavior of this well can be expressed
as:

mtot2

mmax
tot2

= 1− a
(
Pwf
PR

)
+ (1-a)

((
Pwf
PR

)2
− 2Pwf

PR

)
(A.9b)
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The relative mass flow for the model based on GOR2

mtot = mg +mo (A.10a)
= ko(PR − Pwf) + kg(PR − Pwf)3

= k′o(1−
Pwf
PR

) + k′o(1−
Pwf
PR

)3 where k′o = koPR and k′g = kgP
3
R

= k′o − k′o
(
Pwf
PR

)
+ k′g + k′g

((3Pwf
PR

)2
+
(
Pwf
PR

)3
−
(3Pwf
PR

))

Using the definitions given in Equation A.6 the behavior of this well can be expressed
as:

mtot3

mmax
tot3

= 1− a
(
Pwf
PR

)
+ (1-a)

((3Pwf
PR

)2
+
(
Pwf
PR

)3
−
(3Pwf
PR

))
(A.10b)
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Derivation of the derivatives

To ensure optimal operation of our manifold model, the change in gas flow with respect
to the oil rate in well a should be equal the change in well b. The optimization problem
is defined such that the gas constraint is always active. Thus, the rates should be equal
for all the gas constraints as long as the wells are operated together in the region with
the non-trivial solution. Mathematically the problem can be stated:

(
δmg

δmo

)
a

=
(
δmg

δmo

)
b

(B.1)

In the derivation the well head and the reservoir pressure are denoted Pwf and PR,
respectively.

Since mg is a function of Pwf , which is itself a function of mo, the mass flow derivative
can be expanded by applying the chain rule.

(
δmg

δmo

)
=
(
δmg

δPwf

)
×
(
δPwf
δmo

)
(B.2a)

The oil rate (mo) is for all cases following Darcy’s law:

mo = ko(Pwf − PR)

And the gas rate can be expressed in terms of oil rate and the GOR as:

mg = GOR×mo
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The partial derivatives in Eqution B.2a are then:(
δmg

δPwf

)
= mo

(
δGOR

δPwf

)
+GOR

(
δmo

δPwf

)
(
δPwf
δmo

)
= 1
ko

The partial derivative of the GOR with respect to Pwf varies for each of the models, and
must be derivative for all the four GOR expressions. The GOR expressions and their
derivatives are given next:

GORD:

GORD = kg
ko

(Pwf + PR)(
δGORD
δPwf

)
= kg
ko

GOR1:

GOR1 = kg
ko

(P 2
wf − P 2

R)(
δGOR1
δPwf

)
= 2kg

ko
Pwf

GOR2:

GOR2 = kg
ko

(Pwf − PR)(
δGOR2
δPwf

)
= kg
ko

GOR3:

GOR3 = kg
ko

(Pwf − PR)2(
δGOR

δPwf

)
= 2kg

ko
(Pwf − PR)

(B.4a)
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The change in gas flow rate with respect to oil rate for each of the well models are found
to be:

In general: (
δmg

δmo

)
=
(
mo

(
δGOR

δPwf

)
+GOR

(
δmo

δPwf

))(
δPwf
δmo

)
(
δmg

δmo

)
=
(
mo

(
δGOR

δPwf

)
+GORko

)( 1
ko

)

Inserting the espression for mo = ko(Pwf − PR):
(
δmg

δmo

)
=
(
ko(Pwf − PR)

(
δGOR

δPwf

)
+GORko

)( 1
ko

)
For each spesific well model the expression becomes:

GORD: (
δmg

δmo

)
GORD

= kg
ko

(Pwf − PR) +GORD

GOR1: (
δmg

δmo

)
GOR1

= 2kg
ko
Pwf (Pwf − PR) +GOR1

GOR2: (
δmg

δmo

)
GOR2

= kg
ko

(Pwf − PR) +GOR2 = 2GOR2

GOR3: (
δmg

δmo

)
GOR3

= 2kg
ko

(Pwf − PR)2 +GOR3 = 3GOR3

B.1 The difference between the GOR for the wells

The difference between the optimal GOR values are for well a and well b at optimal
solution is shown in this section.
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Figure B.1: The difference between the derivative of the gas rate with respect to the oil
rate for well a and well b. Where the difference is zero the derivatives are equal, the the
solution found is truly optimal.
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Figure B.2: The difference between the derivative of the gas rate with respect to the oil
rate for well a and well b for a disturbance +15% in the GOR. Where the difference is
zero the derivatives are equal, the the solution found is truly optimal.
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Figure B.3: The difference between the derivative of the gas rate with respect to the oil
rate for well a and well b for a disturbance +15% in the GOR. Where the difference is
zero the derivatives are equal, the the solution found is truly optimal.



Appendix C

MATLAB codes

In this appendix the most important Matlab-codes are given together with a short de-
scription of what they are used for. They are only given for the model derived by first
principles and only for wella. They look the same for the three other models and for
the two wells in the manifold. The only parameters that are changed are the k-values,
the expression for mg, and the valve characteristic in cases where both a linear and
logarithmic valve are tested.

C.1 Finding the Constants in Darcy’s law

In this file the k-values applied in Darcy’s law are calculated. The data for the base-wells
are used in the calculations. In order to use the script you need a base well with known
flow rates of oil, gas and water at a certain well reservoir pressure and well head pressure.

1 %% well_1
2

3 Pwf=150;
4 Pr=300;
5

6 mo=461997;
7 mg=56429;
8 mw=144599;
9

10 %GOR D
11 disp('Darcy')
12 kg=mg/(Pwf^2−Pr^2)
13 ko=mo/(Pwf−Pr)
14 kw=mw/(Pwf−Pr)
15

16 %GOR 1
17 disp('GOR 1')
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18 kg=mg/((Pwf−Pr)*(Pwf^2−Pr^2))
19

20 %GOR 2
21 disp('GOR 2')
22 kg=mg/(Pwf−Pr)^2
23

24 %GOR 3
25 disp('GOR 3')
26 kg=mg/(Pwf−Pr)^3

C.2 The change in the gas-oil-ratio as a function of pro-
duction

This generates the plot which shows the change in the gas-oil-ratio when the production
is increased (Pwf → 0). Both the GOR on volumetric and mass basis can be generated.

1 %Estimaton the slope by using a well model where the massflows are assumed
2 %known, when the pressure in 135 bar, and 0 at reservoir pressure
3 %Dencity at stp
4 rhoo=0.8; %ton/m3
5 rhow=1; %ton/m3
6 rhog=0.656e−3; %ton/m3
7

8 %Pressure in bar:
9 Presb=300; %bar

10 Pknownb=150; %bar
11

12 kob=−3080; %slope oil
13 kwb=−964; %slope water
14 kgb=−1.551; %ton/bar3 slope gas
15

16 Pb=Pknownb:1:Presb;
17 mob=kob*(Pb−Presb); %ton/day
18 mwb=kwb*(Pb−Presb); %ton/day ton/bar
19 mgb=kgb*(Pb.^2−Presb^2); %ton/day ton/bar2
20 figure(1)
21 hold on
22 plot(Pb,mob,'b',Pb,mwb,'r',Pb,mgb,'y')
23 xlabel('well hole pressure bar')
24 ylabel('mass flow ton/day')
25

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27 %% Gas − Oil − Ratio
28

29 %mass flow basis
30 GORm = mgb./mob;
31 %GORm = kgb/kob*(Pb.^2−Presb^2)./(Pb−Presb);
32 %flowrate basis
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33 qob=mob./rhoo;
34 qgb=mgb./rhog;
35 GORq = qgb./qob;
36

37 figure(2)
38 hold on
39 plot(Pb,GORm)
40 xlabel('well hole pressure bar')
41 ylabel('GOR (mg/mo)')
42

43 % figure(4)
44 % plot(Pb,GORq)
45 % xlabel('well hole pressure bar')
46 % ylabel('GOR (qg/qo)')
47

48 %

C.3 Identifying well types

This code is used to generate the well-type plots, with the boundaries for a pure oil or
pure gas phase well. The k-values can be changed, and the expression for mg.

1 %% Flow equations %%
2 ko =−3080; % Slope found from darcy's law ton/bar
3 kw =−964; % Slope found from darcy's law
4 kg =−0.836;
5 Pr=300;
6 Pwf=0:10:300;
7 Prel=Pwf/Pr;
8

9

10

11 mo=ko*(Pr−Pwf);
12 momax=ko*Pr;
13 mg=kg*(Pr^(2)−Pwf.^(2));
14 mgmax=kg*Pr^2;
15 mw=kw*(Pr−Pwf);
16 mwmax=kw*Pr;
17

18 morel=1−(Pwf/Pr);
19 mwrel=1−(Pwf/Pr);
20 mgrel=1−(Pwf.^2/Pr^2);
21

22 %Oil and gas only
23 a=mgmax/(mgmax+momax);
24 mtotrel=a*mgrel+(1−a)*morel;
25

26 figure(1)
27 plot(mgrel,Prel,'r',morel,Prel,'b',mtotrel,Prel,'g')
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28 xlabel('m/m_{max}')
29 ylabel('Pwf/Pr')
30

31 %Oil, water and gas
32 mtotm=momax+mgmax+mwmax;
33 mtrel=((momax/mtotm)*morel)+((mgmax/mtotm)*mgrel)+((mwmax/mtotm)*mwrel);
34 %Mixed liquid phase water + oil
35 mlmax=momax+mwmax;
36 mlrel=((momax/mlmax)*morel)+((mwmax/mlmax)*mwrel);
37

38 % figure(2)
39 % plot(mgrel,Prel,'r',mlrel,Prel,'b', mtrel,Prel,'g')
40 % xlabel('m/m_{max}')
41 % ylabel('Pwf/Pr')

C.4 The Model

These two codes are the well model. The first one is the equations used to model the
system. The other takes in specified parameters (like the k-values), in this file the valve
characteristic and the expression for mg is specified.

1 function [ error ] = newmodel(P2,param)
2 z=param.z;
3 P1=param.P1;
4 P4=param.P4;
5 ko=param.ko;
6 kw=param.kw;
7 kg=param.kg;
8 g=param.g;
9 Cd=param.Cd;

10 A=param.A;
11 R=param.R;
12 T=param.T;
13 Mg=param.Mg;
14 rhoo=param.rhoo;
15 rhow=param.rhow;
16 z_valve = param.z_valve;
17 fz=param.fz;
18 mg=param.mg(P2);
19

20 %System equations:
21 mo=ko*(P2−P1);
22 mw=kw*(P2−P1);
23 %mg=kg*(P2−P1)*(P2^(2)−P1^(2));
24 mtot=mo+mw+mg;
25 D=(mg*R*T)/Mg;
26 B=(mo/rhoo)+(mw/rhow);
27

28
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29 if z_valve <= 1e−20;
30 P3=P4;
31 mtot_vl = 0;
32 else
33 P3=P2−((mtot*g*P2*z)/(D+B*P2));
34 rho_mix3=(mtot)/((D/P3)+B);
35 rho_mix4=(mtot)/((D/P4)+B);
36

37 if (P3−P4)>=0
38 mtot_vl=fz(z_valve)*Cd*A*sqrt(((rho_mix3+rho_mix4)/2)*(P3−P4));
39 elseif (P3−P4)<0
40 mtot_vl=−fz(z_valve)*Cd*A*sqrt(((rho_mix3+rho_mix4)/2)*(−P3+P4));
41 end
42 end
43

44

45

46

47 error=mtot−mtot_vl;
48 %MODEL Summary of this function goes here
49 % Detailed explanation goes here
50

51

52 end

1 function output = newwell_1(z_valve)
2

3 param.z_valve = z_valve;
4

5 %%%%Giving the parameters vaules:
6 param.z =1000; % Lenght of pipeline m
7 param.P1 =300e5; % Pressure in reservoir Pa
8 param.P4 =100e5; % Sressure in reservoir Pa
9 param.ko =−3.08e3/1e5; % Slope found from darcy's law

10 param.kw =−964/1e5; % Slope found from darcy's law
11 param.kg =−0.836*0.85/(1e5)^2; % Slope found from darcy's law
12 param.g =9.8; % Gravity constant m/s2
13 param.Cd =1*84600; % Valve coeffficient scaled to ...

give m in /d
14 param.A = 5.56*10^(−4); % Valve cross section area m2
15 param.R =8.314; % Gas constant J/Kmol
16 param.T =373; % Temerature assumed constant K
17 param.Mg =16.04*10^(−3); % Molar mass gas kg/mol
18 param.rhoo=800; % Density of oil kg/m3
19 param.rhow=1000; % Density of water kg/m3
20 param.fz = @(z) z;
21 %param.fz = @(z) log10(9*z+1);
22 param.mg = @(P2) param.kg*(P2^2−param.P1^2);
23

24 if z_valve <= 1e−10
25 P2=param.P1;
26 output=[0,0,0,param.P1*1e−5,P2*1e−5,NaN,param.P4*1e−5];
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27 else
28 P20=250e5;
29 P2 = fzero(@(P2) newmodel(P2,param), P20);
30

31

32 z=param.z;
33 P1=param.P1;
34 P4=param.P4;
35 ko=param.ko;
36 kw=param.kw;
37 kg=param.kg;
38 g=param.g;
39 Cd=param.Cd;
40 A=param.A;
41 R=param.R;
42 T=param.T;
43 Mg=param.Mg;
44 rhoo=param.rhoo;
45 rhow=param.rhow;
46 z_valve = param.z_valve;
47 fz=param.fz;
48

49 %System equations:
50 mo=ko*(P2−P1);
51 mw=kw*(P2−P1);
52 mg=param.mg(P2);
53 mtot=mo+mw+mg;
54 D=(mg*R*T)/Mg;
55 B=(mo/rhoo)+(mw/rhow);
56 P3=P2−((mtot*g*P2*z)/(D+B*P2));
57 rho_mix3=(mtot)/((D/P3)+B);
58 rho_mix4=(mtot)/((D/P4)+B);
59 mtot_vl=fz(z_valve)*Cd*A*sqrt(((rho_mix3+rho_mix4)/2)*(P3−P4));
60 error=mtot−mtot_vl;
61

62

63 % fprintf('param.z_valve: %.2f\n',param.z_valve)
64 % fprintf('mo: %.2f, mg: %.2f, mw: %.2f, mtot: %.2f\n',mo,mg,mw,mtot)
65 % fprintf('P1: %.2f, P2: %.2f, P3: %.2f, P4: ...

%.2f\n',P1*1e−5,P2*1e−5,P3*1e−5,P4*1e−5)
66

67

68 output=[mo,mg,mw,P1*1e−5,P2*1e−5,P3*1e−5,P4*1e−5];
69 end
70 end

C.5 Optimizing the manifold

This is the code where fmincon is run.
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1

2 %initial guess
3 z0=[1, 1]';
4

5 %constraints
6 lb=[0,0]';
7 ub=[1,1]';
8 opt_well_1=[];
9 opt_well_2=[];

10

11 mgmax_space= linspace(200e3,0,250);
12 z1=[];
13 z2=[];
14 opt_mo=[];
15 opt=optimset('algorithm','active−set','display','off');
16 for i = 1:length(mgmax_space)
17 mgmax = mgmax_space(i);
18 [zopt,fval,exitflag]=fmincon(@newcost,z0,[],[],[],[],lb,ub,@(z)newnonlincon(z,mgmax),opt);
19

20 z0=zopt;
21

22

23

24 z1(i)=zopt(1);
25 z2(i)=zopt(2);
26 opt_well_1(i,:)=newwell_1(zopt(1));
27 opt_well_2(i,:)=newwell_2(zopt(2));
28 fprintf('%.2f %.2f\n', zopt)
29 opt_mo(i)=fval;
30 end
31 % hold on
32 % figure(1)
33 % plot(mgmax_space/10^3,z1,'b',mgmax_space/10^3,z2,'r')
34 % xlabel('Maximim gas flow allowed through the system')
35 % ylabel('valve opening')
36 %
37 % figure(2)
38 % hold on
39 % plot(mgmax_space/10^3,opt_well_1(:,6),'b', ...

mgmax_space/10^3,opt_well_2(:,6), 'r')
40 % xlabel('Maximim gas flow allowed through the system')
41 % ylabel('P3')
42 %
43 % figure(3)
44 % hold on
45 % plot(mgmax_space/10^3,opt_well_1(:,5),'b', ...

mgmax_space/10^3,opt_well_2(:,5), 'r')
46 % xlabel('Maximim gas flow allowed through the system')
47 % ylabel('P2')
48 %
49 % figure(4)
50 % %hold on
51 % plot(mgmax_space/10^3,−opt_mo/10^3)
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52 % xlabel('Maximim gas flow allowed through the system')
53 % ylabel('Opt oil flow')
54 %
55 % figure(5)
56 % plot(mgmax_space/10^3,opt_well_1(:,5)/opt_well_2(:,5))
57 % xlabel('Maximim gas flow allowed through the system')
58 % ylabel('P3a/P3b')

C.6 Comparing the optimal solution to the optimization
criteria

After finding the different derivative expressions for the models to be tested as the
optimization criteria this code can be used to generate the plots that visualize the change
in the derivatives for the two wells.

1 %output=[mo,mg,mw,P1*1e−5,P2*1e−5,P3*1e−5,P4*1e−5];
2

3 GOR_a = opt_well_1(:,2)./opt_well_1(:,1); %mg/mo
4 kg_a =−0.836;
5 ko_a =−3080;
6 mo_a = opt_well_1(:,1);
7 p2_a = opt_well_1(:,5);
8

9 GOR_b = opt_well_2(:,2)./opt_well_2(:,1);
10 kg_b =−1.551;
11 ko_b =−3854;
12 mo_b = opt_well_2(:,1);
13 p2_b = opt_well_2(:,5);
14

15 p1=300;
16

17 dmg_dmo_a= ((kg_a/ko_a)*(p2_a−p1))+GOR_a;
18 dmg_dmo_b= ((kg_b/ko_b)*(p2_b−p1))+GOR_b;
19

20 figure(5)
21 hold on
22 plot(mgmax_space*10^(−3),dmg_dmo_a,mgmax_space*10^(−3),dmg_dmo_b )
23 xlabel('Maximim gas flow allowed through the system')
24 ylabel('GOR for well a and b')
25 %ylim([0 1000])
26

27

28 figure(6)
29 hold on
30 plot(mgmax_space*10^(−3),dmg_dmo_a−dmg_dmo_b )
31 xlabel('Maximim gas flow allowed through the system')
32 ylabel('GOR for well a and b')
33 %ylim([0 1000])




