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Summary

The aim of this report has been to investigate the self optimizing variables for control of steady
state parallel heat exchange systems derived by Jaschke (Jaeschke 2012). The objective of the
operation is to maximize the final outlet temperature subject to minimization of heat exchanger
operating costs.

For three cases of different heat exchanger networks optimal operation by use of the Jéschke Tem-
perature control variable was tested against the results from optimal design.

The optimal operation resulted in a difference in outlet temperature of less than 0.1 % from the
optimal design, and thereby confirmed that the Jéschke Temperature is a good control variable
for the three steady state cases studied in this report.

The heat exchanger operating costs’ impacts on optimal design of the three cases was also inves-
tigated. Among expected trends of decreasing outlet temperature and heat exchanger size, the
results showed that it is more economically favorable to exploit the capacity of hot heat exchangers
and rather exclude colder heat exchangers to form a bypass.

All simulations were done using MATLAB and the build-in function fmincon.
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1 Introduction

In a modern industrial and technological world where energy serves as one of the most essential pa-
rameters, there are greater and greater requirements for all production processes to be sustainable
to future generations of our planet. In the chemical industry, especially including today’s great oil
and gas production, an overall goal of using the available energy sources in the most efficient way
can be satisfied by optimal heat recovery from different parts of the given process. In terms of
process control, this can be implemented using self-optimizing control. The idea of self-optimizing
control is to achieve near-optimal control by keeping certain variables or variable combinations
constant. Jaschke (Jaeschke 2012) has proposed a self-optimizing control variable for parallel heat
exchange systems. The basic idea is to achieve good and tight control by keeping one certain
constraint active, the Jischke Temperature. Applied on different heat exchanger networks with
parallel branches, the overall goal is to gain as high downstream temperature as possible, that is,
to maximize the outlet temperature from the heat exchanger network.

The issue of saving energy strongly relates to the issue of saving money. For any industrial process
the supervisory control tears down to the simple, but from time to time so complicated require-
ment of keeping the costs low. Great heat integration and heat exchanger utility costs money.
With a trade off between outlet temperature and heat exchanger size, both requirements are met
to whatever objective of any process.

The work done in this report takes on to these issues. First it is investigated whether the Jéschke
Temperature controlled variable meet the criteria of keeping different parallel systems close to
optimum. This is done by comparing the outlet temperature from optimal design to the opti-
mal operation given by the Jaschke Temperature controlled variable. Secondly, a comprehensive
analysis on the impacts of increased heat exchanger costs on the optimal design was done.



2 Principles of Heat Transfer

With heat exchange the overall goal is to transfer heat from a hot source to a cold source (Skogestad
2003). The heat transfer process can be carried out by three different mechanisms (Geankoplis
2003):

e Conduction heat transfer
e Convection heat transfer
e Radiation heat transfer

For most industrial processes where heat is transfered from one fluid to another through a solid
wall, conduction is the main mechanism for heat transfer. This heat transfer is conducted in a
heat exchanger, where a stream of hot fluid meets a stream of cold fluid, which is to be heated
by the hot fluid. The most effective way of heat transfer is done through a counter current heat
exchanger, shown in Figure Here, Q [kW] represents the transfered heat and T}, and T, [°C]
are the hot and cold streams, respectively.

HOT SIDE Th,out

c,out

COLD SIDE

Figure 2.1: The counter current heat exchanger

2.1 Model and Energy Equations

From Figure and for the ideal case with constant inlet temperatures (I}, ;,, and Tt ;y,), the heat
@ transfered form hot to cold side can be expressed by the heat exchanger model (Skogestad 2003):

Q=UAATLym (2.1)

Where U is the over all heat coefficient [kW/°Cm?| and A is the total area of the heat exchanger
[m?]. The overall heat coefficient U is the reciprocal of the overall resistance to heat transfer, which
is the sum of several individual resistances, given by Sinnot & Towler (Sinnott & Towler 2009)

1 di1
el 2.2
+ T (2.2)

1 1 1 din(¥)

d
T h ™ 2k, 4 hd

U
S

where

h = outside heat transfer coefficient [kW/°Cm?|

h; = inside heat transfer coefficient [kW/°Cm?|

hg = outside dirt coefficient (fouling factor) [kW/°Cm?|



hid = inside dirt coefficient (fouling factor) [kW/°Cm?|

kw = Thermal conductivity of the tube wall material [kTV/°Cm]
d; = Tube inside diameter [m]

d = Tube outside diameter [m)]

However, for most ideal cases the fouling factors and tube wall thermal conductivity is neglected.
The overall heat coefficient can thereby be written as (Incorpera & DeWitt 2007):

_ hohy,
N he + hy

U (2.3)

Here, h. and hj, represents the heat transfer coefficients for cold and hot side, respectively.

The ATy therm is the logarithmic mean temperature difference (LMTD). For a counter current
heat exchanger it is given by (Skogestad 2003)

(Th,in - Tc,out) - (Th,out - Tcﬂn) o 91 - 62

In( et In(g:)

ATy =

(2.4)

where 6 is the temperature difference on the hot side, and 6 the difference on the cold side for
ideal counter current streams.

The energy balance for the ideal counter current heat exchanger in Figure is (Skogestad 2003)
Q = mccpc(Tc,out - Tc,in) (25)
Q = mpCpr(Th,in — Thout) (2.6)
Cp., Cpp, and m,., mj, represents the heat capacities [kW/kgK]| and the mass flows [kg/sec| for
the cold and hot fluid, respectively. The heat capacities are assumed to be constant. From now

on, the product Cp.m. and Cppmj, will be written as w. and wy,, respectively.

From the principle of energy- and mass conservation the correlation between Equation
and are

Q = UAATLM = wc(Tc,out - Tc,in) = wh(Th,in - Th,out) (27)



2.2 Approximations

Skogestad (Skogestad 2003) states that the logarithmic mean temperature difference (LMTD)
(Equation can be approximated to an arithmetic mean temperature difference (AMTD). If
ﬁ < g—;<1.4, i.e the temperature difference between the cold and hot side are fairly constant, the
error of using AMTD instead of LMTD is less than 1%.

The arithmetic mean temperature difference, AMTD is given as

0,46
ATapy = % (2.8)

Underwood (Underwood 1933) approximates the LMTD with the Underwood approximation:

(2.9)

1 1y 3
0} + 63
2

ATyn = <

In addition, this study is carried out assuming steady state. The following assumptions will
then also be used:

Constant heat capacities, that is wg for the cold stream and wy,, for the hot stream in heat
exchanger i are assumed to be constant

Constant inlet temperature T

Constant hot stream temperatures Tj; in heat exchanger i

Single-phase flow, no phase transfers during heating transfer



3 Optimal Operation of Heat Exchanger Networks

For any process, the overall goal is to maximize the future income of the plant (Jensen & Skogestad
2008). For all heat exchanger networks, the usefulness comes down to the heat integration and
energy recovery as well as the costs of the heat exchangers. Obtaining the highest possible outlet
temperature while at the same time operating with reasonable heat exchangers duties are the
two contradictory factors for cost-effective heat transfer. Therefore, the objective function J for
systems like this includes the total heat exchanger duty and the outlet temperature.

3.1 Self-optimizing Control

Self-optimizing control is when near-optimal operation is achieved with constant setpoints for the
controlled variables. Self-optimized control has the advantage that it don’t need re-optimization
when disturbances are present.

From Skogestad (Skogestad 2004) the goal of an optimization problem is to minimize an objective
function subject to its given constraints:

minimize J(x,us, d) (3.1)

subject to equality constraints: g(z,u:,d) =0
subject to inequality constrains: h(z,us,d) >0
(3.2)

where J is the objective function, = the state variables, u; is the manipulated variables and d the
disturbances. The manipulated variables also denotes the systems degrees of freedom (DOFs).
The equality constraints ¢ includes the model equations, whereas the inequality constrains covers
the physics of the system.

The task is to decide what to control with the degrees of freedom, u. If the states x are eliminated
by use of the model equations g the remaining unconstrained problem is

ming, J(u,d) = J(topt, d) = Jopt(d) (3.3)
Here, uop; is to be found and J,p,(d) is the optimal value of the objective function J.

The aim for self-optimizing control is to find a subset of the measured variables named ¢ to
keep constant at the optimal values c,p:. The ideal case would give a disturbance-insensitive cop¢
to obtain optimal operation. However, in the real world there is a loss associated with keeping the
controlled variable constant. Therefore, the goal is an operation as close to optimum as possible.
The loss can be expressed as:

L(u,d) = J(u,d) — Jop(d) (3.4)
Skogestad (Skogestad 2000) presents the following guidelines for selecting controlled variables:
® c,pt should be insensitive to disturbances

e ¢ should be easy to measure and control accurately

e c should be sensitive to change in the manipulated variables (degrees of freedom)



e For cases with more than one unconstrained degree of freedom, the selected controlled vari-
ables should be independent

Proposed by Halvorsen and Skogestad (Halvorsen & Skogestad 1997), an ideal self-optimizing
variable is the gradient of the objective function J:

oJ

Cideal = % (35)

To ensure optimal operation for all disturbances, this gradient should be zero, but measurements
of the gradient is usually not available. Therefore, computing it requires values of the unmea-
sured disturbances. To find the best suitable variables for approximations of the gradient, several
mehtods can be used, including:

e Exact local method
e Direct evaluation of loss for all disturbances ("brute force")

e Maximum (scaled) gain method

The null space methid



3.2 Self-optimizing Control Applied to Heat Exchanger Networks

Optimization problems on heat exchange networks are subject to a number of equality constraints.
These are the heat exchange energy balances presented in Equation Section [2:1} in addition
to the total mass and energy balances of the network.

For optimal operation the Jischke Temperature (Jaeschke 2012) also serves as an equality con-
straint. More detailed equality constraints for each case are given in Section [4on case studies.

Inequality constraints includes the AT,,;,. For the case of heat exchangers, a common and simple
approach to this challenge is to specify the minimum temperature approach (AT,,;,) in each heat
exchanger. The AT,,;, constraint and its relationship with the hot and cold streams are given in
Equation [3.6] and 3.7 below. A small value of AT,,;, means that a lot of energy is recovered, but
it requires a large heat exchanger (Jensen & Skogestad 2008). If this inequality constraint is fully
satisfied on both sides of the heat exchanger, the heat exchanger is said to be maximized under its
constraints. From Equation 2.1} as the AT decreases against the constraint AT}, the UA value
of the heat exchanger needs to increase. In practice, this means that a perfect heat exchanger has
an infinite area A. The definitions of AT, is:

Thﬂ'n - quut = Airrm"n,hot (36)

Thi,out - Tc,in = ACZ-‘WLin,cold (37)
From Figure [2:I]the hot and cold side of a heat exchanger are better illustrated, here in Figure

IaTmin.I'\ot IaTmirw,chld
Th,in HOT SIDE Th.out
Q
TEEE
Tc,out i . i i Tc,in

€ COLD SIDE

Figure 3.1: Hot and cold sides of a heat exchanger

To prevent from simulation errors due to infinite heat exchanger area or temperature cross, a
AT i of 0.5 was used for all cases studied in this report. The general inequality constraint
matrix can then be written

Thi,in - L - ATmin,hotﬂ'
Thi,out - Ti—l - AT’Wbin,cold,i

h = : >0 (3.8)
Thn,in - Tn - AT"rrLi'rL,hot,n
Thn,out - Tn—l - Airrm"n,coloi,n

Where the heat exchangers are numbered from i to n, and 7;_; and T; are the cold streams en-
tering and leaving heat exchanger i, respectively.



The main idea is that this specification should give a reasonable balance between minimizing oper-
ation costs (which is favored by a small AT,,;,,) and minimizing the capital costs (which is favored
by a large AT,,in)-

However, this method does not work as a complete optimization approach. A major part of start
up- and maintenance costs are determined by the size of the heat exchanger. The minimum tem-
perature approach does not take into account the area of each heat exchanger. A small value of
AT,,;» means that a lot of energy is recovered, and is therefore favorable considering the energy
demand, but this will also require a very large heat exchanger.

Jensen and Skogestad (Jensen & Skogestad 2008) states that the total annualized costs are divided
into operation costs and capital costs. The challenge of cost estimations at an early design stage
is that detailed equipment- and cost data are not available.

The detailed optimal design based on minimizing total annualized costs are (Jensen & Skogestad
2008):
minu(Joperation + Jcapital) (39)

Where u is the degrees of freedom and includes all the equipment data and operating variables.
For a simplified case with heat exchangers the capital costs Jeapitar can be expressed as a function
of each heat exchangers area:

Jcapital = Co Z A:L (310)
i
Here, ¢y and n is cost factors. A; is the area of the heat exchanger 3.

co is defined as cost of heat exchanger duty relative to the costs of supplied heat. For exam-
ple, if cg = 2, it means that the sizing costs of the heat exchanger is 2 times as expensive as the
costs of heat supply, i.e. the costs of increasing the outlet temperature.

The operation variables has the general cost term and consists of several factors:

Joperation = ZpFiFi - ZijPj + ZkaQk + prs,lws,l (311)
i 7 &

s,l

where F; are feeds, P; are products, Qi are utilities (energy), W, ; are the mechanical work and
the p’s are the respective prices. However, for a heat exchanger problem Equation [3.11] can be
simplified to only include the supplied heat, that is

Jopeation = ZleQz (312)

which states that the operating costs are mostly determined by the heat supply in each heat
exchanger. The transfered heat resembles the outlet temperature of the heat exchanger network,
and for the optimization problem Equation [3.12] can be written in terms of the final outlet
temperature T, q4:

Joperation - _Tend (313)

This states that the aim of the operation is to maximize T, 4, and thereby minimize the negative
value —T,,q4 in equation The objective function (the total cost function) to be minimized
then becomes

J= Joperation + Jcapital = —Teng + CVO Z Af (314)



4 Case Studies

The aim of this analysis has been to investigate how different cost factors (cp) and inlet stream
heat capacity (wp) affect the steady state self-optimizing control. The resulting optimized design
will be used for further investigation and applied to obtain the optimal operation of the system.
This was done by use of the Jéschke Temperatures from Jédschkes work on parallel heat exchanger
systems (Jaeschke 2012). Jdschkes work was subjected to patent application as this report was
carried out. The idea of Jaschke is to implement a much more easy controlled variable. With the
Jaschke Temperature the stream split wy (or ws) serves as the systems only manipulated variable,
which will determine the optimal operation of the system.

For each case optimal operation based on the optimal design were determined for four different
scenarios with different cost factors and inlet heat capacities (wp).

In addition, a series of investigations were done on the cost factors impacts on optimal design.
The resulting optimizes process variables were plotted against the cost function.



4.1 Case 1: Two heat exchangers in parallel

The following Figure and Table shows the network of two heat exchangers in parallel and
the respective initial parameters.

Tatout Tar R ik
myCpg =y HX1
Ty

UA;

mgCpp = Wy

To Tena

7]

mzCpg= s H X2
Thzau U, Tyz | MCP2= k2

Figure 4.1: Case 1: Two heat exchangers in parallel

Table 4.1: Initial parameters Case 1 (two heat exchangers in parallel)

Inlet cold stream temperature, Ty 130°C
Heat capacity cold stream, wyg 95 kW/°C

Hot stream temperature HX1, T}, 203°C
Heat capacity hot stream HX1, wy; | 60 kW/°C

Hot stream temperature HX2, Tjo 248 °C
Heat capacity hot stream HX2, wpo | 65 kW/°C

For this case the Underwood approximation (Underwood 1933) given in Section was used.
Thus, the heat exchanger model given in Equation 2.1 is now:

Q =UAAT,y (4.1)

The total mass balance of the system is

W = Wy + Wy (4.2)
From this the overall energy balance becomes:

Woleng = w1y + woTs (43)

10



Including the three model equations given in Equation [2.7] in Section [2] the equality constraints
for optimal design of case 1 is:

Ql - (w1(T1 - To))
Q1 + (why (Thi,out — Thy))
Q1+ (UAIATyN )

_ Q2 — (w2(Tz — Tp))
I =N Qo + (why (Tha,pur — Tha))
Q2+ (UA2ATy N 2)

w1 + w2 — Wy
wiT1 + w1y — woTena

When writing all the temperatures with reference to the inlet temperature Tj:

ATy =0
AT, =T, — Ty
ATy =Ty — Ty

AThy = Thy — Ty
AThy = Thy — Tp
(4.5)

After some algebra we end up with the self-optimizing variable from Jéschkes work (Jaeschke 2012)
for a two heat exchangers in parallel system:

2 2
c = ATl o AT2 (4.6)
ATp1  ATppe

Or, more simplified by abuse of the delta-notation:

T T
c= — — —/— 4.7
Tha The (47)

From Jéschke (Jaeschke 2012) this constraint should be an equality constraint and take the value
0 for optimal operation. For determination of optimal operation this control variable is the last
constraint to be included in g; as the last satisfied equality constraint.

11



4.2 Case 2: Two heat exchangers in series parallel with one heat ex-
changer

The following Figure [£:2] and Table [£:2] shows the network of two heat exchangers in series parallel
with one heat exchanger and the respective initial parameters.

uay UA;

mgCpg =g

To Tens

T3

m;Cpp =ws HX3

Figure 4.2: Cae 2: Two heat exchangers in series parallel with one heat exchanger

Table 4.2: Initial parameters Case 2 (one heat exchangers in parallel with two in series)

Inlet cold stream temperature, T 130°C
Heat capacity cold stream, wy 95 kW/°C

Hot stream temperature HX1 T}, 203°C
Heat capacity hot stream HX1, wy; | 60 kW/°C

Hot stream temperature HX2 Tjo 255°C
Heat capacity hot stream HX2, wpo | 27 kW/°C

Hot stream temperature HX3 T}3 248°C
Heat capacity hot stream HX2, wy3 | 65 kW/°C

12



Also for this case, the Underwood approximation was used (Underwood 1933). That means that
Equation [I.1] and [£:2) applies for this case as well. The energy balance for this case is:

WoTeng = w1l + w13 (4.8)

Again including the three model equations given in Equation in Section [2] the equality con-
straints for optimal design of case 2 is:

Q1 — (wi(Th — Tp))
Q1 + (wh, (Thi,out — Thy))
Q1+ (UAATyN 1)

Q2 — (wi(Ty —T1))
Q2 + (why (Tha,our — The))
Q2+ (UAATyn 2)

g2

Q3 — (wao(T3 — Tp))
Q3 + (whg (Th3,out - Th3))
Qs+ (UAsATyn 3)

w1 + w2 — Wo
w1y + w13 — wolend

Again, by writing all the temperatures with reference to the inlet temperature Tj:

ATy =0
AT, =T, - T,
AT, =T, — Ty
ATy =Ts — Ty

AThy = Thy — T,
AThy = Thy — Ty
AThs = Ths — Ty
(4.10)

Also here the delta-notation is omitted for the case of readability.
With some algebraic steps the self-optimized variable from Jéschkes work is (Jaeschke 2012):

(Th,z -T ) T? i T3 T3
C = —_ _ =
Tho—To Tho—T1 Tp3

(4.11)

For optimal operation this is to be included in the equality constraint g, and take the value 0.
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4.3 Case 3: Three heat exchanger in series parallel with two heat ex-
changers in series

The following Figure [I.3]and Table [£:3]shows the network of three heat exchanger in series parallel
with two heat exchangers in series and the respective initial parameters.

mzCpg = W

d

Figure 4.3: Case 3: Three heat exchanger in series parallel with two heat exchangers in series

Table 4.3: Initial parameters Case 3 (three heat exchanger in series parallel with two heat ex-

changers in series)

Inlet cold stream temperature, Ty
Heat capacity cold stream, wy

Hot stream temperature HX1, Tp
Heat capacity hot stream HX1, wpy

Hot stream temperature HX2, T}o
Heat capacity hot stream HX2, w2

Hot stream temperature HX3, Th3
Heat capacity hot stream HX3, w3

Hot stream temperature HX4, Thy
Heat capacity hot stream HX4, w4

Hot stream temperature HX5, Th5
Heat capacity hot stream HX5, wys

130°C
150 kW/°C

190°C
50 kW/°C

203°C
30 kW/°C

220°C
15 kW/°C

220°C
70 kW/°C

248°C
20 kW/°C
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The Underwood approximation was used (Underwood 1933). That means that Equation and
[4:2] also applies to this case. The topology gives the energy balance:

WoTeng = wiT3 + waTs

(4.12)

Including the three model equations given in Equation in Section [2|the equality constraints

for optimal design of case 3 is:

g3 =

Q1 — (wi(Th — Tp))
Q1 + (wh, (Thi,out — Thy))
Q1+ (UAATyN 1)

Q2 — (wi(Tr —T1))
Q2 + (why (Tha,out — The))
Q2+ (UAATyn 2)

Q3 — (w1(T3 — T2))
Q3 + (whg (Th3,out - Th3))
Qs+ (UAsATy N 3)

Qa — (we(Ty — Tp))
Q1 + (why (Tha,out — Tha))
Qs+ (UALATyN 1)

Q5 — (wo(Ts — Ty))
Q5 + (wh5 (Th5,out - Th5))
Qs + (UA;ATyn 5)

w1 + wo — Wy
w111 + waT5 — woTend

=0 (4.13)

By writing all the temperatures with reference to the inlet temperature Tj:

ATy =0
AT, =T, — Ty
ATy =Ty — Ty
ATy =Ts — Ty
ATy =Ty — Ty
ATy =Ts — Ty

AThy = Thy — Tp
AThy = Thy — T
AThs = Ths — Ty
AThy = Thy — Ty
AThs = Ths — Ty

15
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Also here the delta-notation is omitted for the case of readability.

The self-optimized variable from Jéschkes work for this case is (Jaeschke 2012):

TAHTeThs — ThiThs — ThoThs + T3Tha — ThaTs) + ToTh1(Ts — Ty — Ths + Tha) + TTh1(Th — Tho)

Tha(=Th1Ths —ThTo + ThTh 3 + Th2T5)

- <T’“5 — T _ 1) LS 1 (4.15)
Thoa Ths —Ty Ths—1Ts

For optimal operation this is to be included in the equality constraint g3 and take the value 0.
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4.4 Test Descriptions

Each systems design was optimized and optimal operation was determined for 4 different case
scenarios.

4.4.1 Case 1 Scenarios

The following 4 scenarios applies to case 1 with two heat exchangers in parallel:
1. Scenario: wy = 130 kW/°C and ¢y = 2
2. Scenario: wg = 130 kW/°C and ¢y = 4
3. Scenario: wg = 95 kW/°C and ¢g = 2
4. Scenario: wy = 95 kW/°C and ¢y = 4

In addition, a series of plots showing the impacts on optimal design and process variables were
made for the case with wp = 95 and 130 kW/°C and ¢y varying from 1 to 5.

4.4.2 Case 2 Scenarios
The following 4 scenarios applies to case 2 with two heat exchangers in series parallel with one
heat exchanger:

1. Scenario: wy = 160 kW/°C and ¢y = 2

2. Scenario: wy = 160 kW/°C and ¢y = 4

3. Scenario: wy = 95 kW/°C and ¢y = 2

4. Scenario: wg = 95 kW/°C and ¢g = 4

A series of plots showing the impacts on optimal design and process variables were made for the
case with wg = 95 and 160 kW/°C and ¢y varying from 1 to 5.

4.4.3 Case 3 Scenarios
The following 4 scenarios applies to case 3 with three heat exchangers in series parallel with two
heat exchangers in series:

1. Scenario: wy = 180 kW /°C and ¢y = 2

2. Scenario: wy = 180 kW/°C and ¢y = 4

3. Scenario: wg = 150 kW/°C and ¢q = 2

4. Scenario: wy = 150 kW /°C and ¢g = 4

A series of plots showing the impacts on optimal design and process variables were made for the
case with wg = 150 and 180 kW/°C and ¢y varying from 1 to 5.
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For case 3 an additional investigation was done with optimal operation. By use of the Jaschke
Temperature control variable with the optimized UA values from the four scenarios in case 3
the optimal operation was determined for a case with a different set of hot stream temperatures.
The aim was to investigate the systems behavior with a hot exchanger followed by a cooler heat
exchanger.

With the same heat capacities as originally given in Table [I.3] the new hot stream temperatures
for this last investigation only was:

o Thy = 205°C
o Thy = 203°C
o Ths — 220°C
o Thy — 220°C
o Ths — 248°C
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5 Results

5.1 Case 1: Two heat exchangers in parallel

A selection of the results from optimized design and the corresponding results from optimal opera-
tion obtained from the Jischke Temperature constraint (Jaeschke 2012) are given in the following
Tables [5.1| and For the sake of the reports readability the optimized U A values used to obtain
optimal operation are given in Appendix [A]

Complete simulation results are given Appendix [A]l
Table 5.1: A selection of design and operating results for case study 1, scenario 1

Optimal design  Optimal operation

Tena 1°C] 199.08 199.04
wy %] 30.3 28.3
wsy %] 69.6 71.7

Table 5.2: A selection of design and operating results for case study 1, scenario 4

Optimal design  Optimal operation

Tend |°C] 205.97 205.68
wy %] 24.8 22.1
wy %] 75.2 77.9

From these results the Jaschke Temperature controlled variable gives almost the same outlet
temperatures (T.,q) as the optimized values. Only a slight difference is seen in the stream split
(wy and wsy). The heat exchangers was observed to vary in size from UA = 1 - 10 kWm?/°c where
heat exchanger 2 on the lower path was significant larger than the 15* heat exchanger on the upper
path.

For complete results for all scenarios, including several other optimized and operation variables
please see Appendix [Al
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For the cost factor ¢y spanning from 1 - 5 a series of plots were made showing the impacts on
optimal design. Two of them are given here, displaying the outlet temperature T,,4 and the split
(w1 and w9) as a function of ¢y. These are given in Figure and respectively.

Several other plots are given in Appendix [A]

Tend [ €l

202 1 1 1 1 1 1 1

cO cost factor

Figure 5.1: T,q as a function of cost factor ¢g for case 1 with inlet heat capacity wo = 95 kW/°C

80 T T T T T T T

i,
?D/ H

a0 B

w = miC

30F q

2D 1 1 1 1 1 1 1
1 1.5 2 25 3 35 4 4.5 g

cO cost factor

Figure 5.2: w; and wy [kW/°C] as a function of cost factor ¢y for case 1 with inlet heat capacity
wo = 95 kW/°C

The results shows good correlation with expected behavior. As the cost factor increase, i.e.
the costs of operating the heat exchangers increase relative to the costs of increasing the outlet
temperature, T,,q is seen to decrease and the stream split favors ws through the hottest heat
exchanger (HX2). Results with the same trend was observed for several other process variables
including UA; and U Ajy. Refer to Appendix [A]
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5.2 Case 2: Two heat exchangers in series parallel with one heat ex-
changer

A selection of the results from optimized design and the corresponding results from optimal op-
eration obtained from the Jéaschke Temperature constraint are given in the following Tables
and For the sake of the reports readability the optimized U A values used to obtain optimal
operation are given in Appendix [B]

Complete simulation results are given Appendix [B]

Table 5.3: A selection of design and operating results for case study 2, scenario 1

Optimal design  Optimal operation

Tena [°C] 201.43 201.40
wy %] 471 45.2
wy [%] 52.9 54.8

Table 5.4: A selection of design and operating results for case study 2, scenario 4

Optimal design  Optimal operation

Tena 1°C] 217.28 217.11
wi [%] 42.0 37.8
wy %] 58.0 62.2

As for the first case, the optimal operation given by the Jdschke Temperature controlled variable
gives a T,,q very close to the value from optimal design. For both optimal design and operation
the inlet stream are divided such that the major part follows ws through heat exchanger 3. How-
ever, optimal operation results in an even more unevenly distribution in wss favor.

The analysis of the dependency on cost factor for case study 2 shows the same trend for a number
of process variables as showed in Figure [5.I]and [5.2]in case study 1.

Worth noticing is some results from the case with initial heat capacity wy of 160 kW/°C (as

in scenario 1 and 2). The results for stream split (w; and ws) and the size of heat exchanger 2
(UAsz) are shown in Figure and below, respectively.
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Figure 5.3: wy and wy [kW/°C| as a function of cost factor ¢y for case study 2 with inlet heat
capacity wyg = 160 kW/°C
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Figure 5.4: UAs [kW/°C] as a function of cost factor ¢y for case study 2 with inlet heat capacity
wo = 160 kW/°C

These results shows that at with an inlet heat capacity of 160 kW /°C, the system experiences a
shift around ¢y = 1.7. The stream fraction for the upper path (w;) increase up to a cost factor
of approximately 1.7, before it tips and start decreasing. From this point the system follows the
same pattern that was discovered in the previous case.

Along with this increment of wi, the size of the second heat exchanger (UAj3) experiences a
much slighter decrease than the other heat exchangers (See Appendix [B| complete results). This
strengthens the observation seen with the stream split. In addition, from Figure in Appendix
[Blit is seen that the outlet temperature from heat exchanger 2, Th2,,; is decreasing for the same
cost factor interval from 1 - 1.7. This means that more heat is transfered in heat exchanger 2 on
the upper path w; during this interval, which also supports the first observations.
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5.3 Case 3: Three heat exchangers in series parallel with two heat ex-
changers in series

Selected results from optimized design and the corresponding results from optimal operation ob-
tained from the Jischke Temperature constraint (Jaeschke 2012) are given in the following Ta-
bles and For the sake of the reports readability the optimized U A values used to obtain
optimal operation are given in Appendix [C]

More comprehensive simulation results are also given Appendix [C}

Table 5.5: A selection of design and operating results for case study 3, scenario 1

Optimal design  Optimal operation

Tend °C] 182.01 181.93
wy %] 34.7 30.6
wy %] 65.3 69.4

Table 5.6: A selection of design and operating results for case study 3, scenario 4

Optimal design  Optimal operation

Tena I°C] 180.20 180.12
wy %] 25.5 22.0
wy |%] 74.5 78.0

For the case of three heat exchanger in series parallel with two heat exchangers in series the
implementation of the Jéschke Temperature controlled variable also gave good results.

The same general trends were also observed for a number of process variables for this case as for
the first and second case (Section and for increasing cost factor c¢y. More interesting
behavior was seen for certain units and variables, including especially heat exchanger size and
stream split. Figure and shows the trends of UA; and U Ay, the first heat exchangers on
upper and lower path, respectively.
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Figure 5.5: UA; [kW/°C] as a function of cost factor ¢y for case study 3 with inlet heat capacity
wo = 180 kW /°C

UA [k C])

cO cost factor

Figure 5.6: UA4 [kW/°C] as a function of cost factor ¢y for case study 3 with inlet heat capacity
wo = 180 kW/°C

Heat exchanger 1 (Figure [5.5) is the coolest operating heat exchanger in the whole network, with
an inlet hot stream temperature of 190 °C. In the case of expensive heat exchangers (i.e. high
¢p), heat exchanger 1 is removed completely from the network as its U A value approaches zero as
the cost factor exceeds 4.5. This is also supported by the resulting U A; outlet temperature T} as
it approaches the inlet temperature T, for the same ¢q. See Appendix [C}

On the other hand, heat exchanger 4 is the hottest in the network with highest heat capacity and
second warmest hot stream. U A4 shows the same trend as the other heat exchangers but has a
significantly larger size.

A correlating observation is found in the stream split at the same inlet conditions. Figure
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shows the stream split (w; and wsy) as a function of cost function cp.

140 T T T T T T ——
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Figure 5.7: wy and wy [kW/°C| as a function of cost factor ¢y for case study 3 with inlet heat
capacity wyg = 180 kW/°C

At the same point as UA; goes to zero and Ty = Tp, i.e the point of no heat transfer in heat
exchanger 1, a constant stream split is seen, with wy = 140 and w; = 40 kW/°C.
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The additional investigation of the systems behavior with the other set of hot stream temperatures
given in Section [£.4.3] gave the following results, where only a selection of process variables are
listed and the rest are given in Appendix [C]

Table 5.7: A selection of design and operating results for case study 3, scenario 1, with the
additional set of hot stream temperatures

Optimal design  Optimal operation

Tena °C] 183.39 183.27
wy (%] 38.2 33.6
wy %] 61.8 66.4

Table 5.8: A selection of design and operating results for case study 3, scenario 4, with the
additional set of hot stream temperatures

Optimal design  Optimal operation

Tena [°C] 180.63 180.54
wy %] 27.3 23.4
wy [%] 72.7 76.6

Again, the Jdschke Temperature control variable shows good results.

Compared with the results from Table [5.5] and [5.6] with the original hot stream temperatures,
the case with a hot heat exchanger followed by a slightly cooler heat exchanger (205 vs 203 °C,
respectively) doesn’t seem to have that much of an effect on the outlet temperature Tt 4.
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6 Discussion and Further Work

The analysis has showed good results for the concept of using the Jaschke Temperature as a con-
trolled variable for different heat exchanger networks. For all studied cases the optimal operation
was within a 0.1% difference from the optimal design. The reason for why the Jaschke Temper-
ature constraint always gave a little lower outlet temperature T.,4 than the optimal value has
to do with the fundamental basement of the arithmetic mean temperature difference (AMTD)
approximation (Equation used in the derivation of the Jaschke Temperature. Even though
the Jaschke Temperature gave good results on the outlet temperature, it showed different internal
system behavior. The stream split differed by splitting the streams such that more of the cold
fluid was sent in the direction of hottest heat exchangers, which in all cases was the lower path
wsy. Therefore, the heat exchangers were used in a different way that gave various cold stream
temperatures in the outlet of each heat exchanger (7;).

Some interesting results appeared in the simulations. The results from case 2 presented in Sec-
tion [5.2] gave "unexpected" trends considering both the expectations and the general results from
the first case. With inlet heat capacity of 160 kKW /°C, for cost factors ranging from 1 to about 1.6
(low heat exchanger operating and maintenance costs) the stream split trend showed increment
of wy from 74 to 78 and decrement of wy from 86 to 84 kW /°C. However, the overall split is still
in the favor of the lower path wy. The topology in case 2 includes a second heat exchanger in the
upper path. This heat exchanger (HX2) operates at a the highest temperature in the network (255
°C) but compared to the other heating fluids, the heating fluid in HX2 has a low heat capacity
of only 27 kW/°C (Table . When it’s cheap to run heat exchangers, i.e. at low ¢, it will,
according to the results, be optimal to use this heat exchanger due to its high temperature. As
the costs increase (above ¢y = 1.6) the low heat capacity will be a limiting factor for the heat
integration in heat exchanger 2. As a result of this, the trend in Th2,,;, w1 and wsy are reversed.

Considering the objective function the results indicated that, especially at high cost factors, the
most profitable region of operation was when the heat capacity of the cold stream was close to
the heat capacity of the hot streams in the heat exchangers. It is not shown to be optimal with
exact match of heat capacities, but rather a trade of including both the topology setup and the
economic effect of contribution from each heat exchanger. This can be related back to the results
presented for case 3 in Section 5.3} From Figure [5.7 on optimal stream split at inlet heat capacity
wq of 180 kW /°C it was seen that the two different paths obtained a constant stream split at a
¢p value of about 4.5. From this point w; and ws took the value 40 and 140 kW/°C, respectively
(Table . Also, at this point the optimal design showed total exclusion of heat exchanger 1.
Remaining on the upper path are heat exchanger 2 and 3, with hot stream heat capacities of 30
and 15 kW/°C, respectively. On the lower path (ws) heat exchanger 4 and 5 are still present
with their respective hot stream heat capacities of 70 and 20 kW /°C. The lower path has the
hottest heat exchangers, so obviously the major part of wg is sent through heat exchanger 4 and
5. This results in a significantly greater heat exchanger size (UA) for HX4 and 5, compared to
HX2 and 3. This is the main reason for the shut down of heat exchanger 1, as it is the coldest
and by then are the poorest contributing unit of the network. Due to the implementation costs of
a heat exchanger, the bottom line is that it is more economically to shut a heat exchanger down
and rather use the capacity of hotter heat exchangers, than running a small heat exchanger with
a small size and duty.

Continuing with the heat capacities and stream split in case 3, the optimized design gave ws
constant at 140 kW /°C at high cost factors. This is obviously the right thing to do since this
is the path with best heat exchangers. However, at high costs the size of the heat exchangers
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matters a lot to the objective function. Sending too much of the cold fluid through the lower
path would result in two very big heat exchangers, which would be very expensive. Therefore, it
is more economically to let a fraction big enough to match the heat capacity of heat exchanger
2 and 3 go though the upper path. wy is constant at 40 kW/°C and the heat capacities of HX2
and 3 are 30 and 15 kW/°C, respectively. The total available heat capacity on the upper path is
hence 45 kW/°C, and letting wo as 40 kW /°C approach the total heat capacity of 45 kW /°C is
economically favorable since the best heat exchange occurs when the heat capacities of the cold
and hot stream equals each other. The same results also apply for the first case and the second
case. However, observations like these are mainly seen in scenarios where the inlet heat capacity
is low enough to allow for splits like this as they often results in a great load on one specific heat
exchanger or one of the paths.

For every case the heat integration was far from perfect, in the sense of no active constraints on the
AT, constraint (Section . Good heat integration requires big heat exchangers, which again
leads to high heat exchanger costs. However, the heat integration is better at low cost factors, but
still far from good in an environmental aspect.

These results gave good a indication for the use of Jdschke Temperature as a control variable on
the steady state optimal operation of different heat exchanger networks. In order for this con-
trol method to get further acceptance in different industries dynamic simulations will be needed.
A dynamic investigation of the method will indicate whether the control configuration gives an
acceptable process control for different and changing process conditions with unexpected and ran-
dom disturbances.
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7 Conclusions

Three cases with different heat exchanger networks were optimized for 4 different process scenarios
at steady state with the given objective function. By use of The Jdschke Temperature control
variable (Jaeschke 2012) the optimal operation was tested against an optimal design.

The resulting optimal operation showed very good correlation with the optimal design, with an
error of less than 0.1 %.

The investigation of cost factor’s impacts on optimal design showed in general expected trends for
all process variables. In cases with expensive heat exchanger operation lower outlet temperatures
and smaller heat exchangers were observed.

The results also showed that it is more economically to use more of the capacity of the hot heat
exchangers and rather shut down colder heat exchangers.

For further investigation on whether the Jaschke Temperature can work as a good control variable
for parallel systems dynamic simulations will be needed.
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A Complete Simulation Results Case 1

Optimized values for the 4 different scenarios are given in Table below:

Table A.1: Optimized process variables and optimal design the 4 different scenarios for case 1

(a) Scenario 1 (b) Scenario 2
w0:1307 00:2 w0:130, 00:4
Tena | 199.08 °C Tena | 192.30 °C
Ty 185.88 °C Ty 179.27 °C
15 204.84 °C Ty 197.25 °C
wi | 39.47 kW/°C wi | 35.84 kW/°C
W2 90.52 kW/°C wWa 94.11 kW/°C
UA; | 313 kWm?2/°C UA; | 1.23 kWm?/°C
UAs | 7.92 kWm?/°C UAs | 3.76 kWm?2/°C
(c) Scenario 3 (d) Scenario 4
U)():95,C(]:2 w0:95,00:4
Teng | 213.20 °C Tena | 205.97 °C
Ty 196.98 °C T 189.80 °C
15 2194 °C Ty 211.29 °C
w | 26.32 kW/°C wi | 23.52 kW/°C
W2 68.68 kW /°C Wa 71.48 kW/°C
UA, | 3.11 kJWmQ/OC UA; | 1.23 kaQ/OC
UAy | 9.39 kWm?2/°C UAy | 451 kWm?2/°C

Optimal operation results using the Jdschke temperature are given below in Table

Table A.2: Optimal operation for the 4 different conditions for case 1, using the Jischke Temper-
ature equality constraint

(a) Scenario 1: UA; = (b) Scenario 2: UA; =
3.13, UAs = 7.92 1.225, UAs = 3.76
w0:130, 0022 ’LUO=130, 0024
Teng | 199.04 °C Teng | 192.25 °C
T 187.8 °C T 181.7 °C
Ts 203.5 °C Ts 195.8 °C
wi | 36.8 kW/°C wr | 32.75 kW/°C
W2 93.2 kW/°C W2 94.11 kW/°C
(c) Scenario 3: UA; = 3.11, (d) Scenario 4: UA; = 1.23,
UAz = 9.39 UAy = 4.51
’LUO=95,0():2 wo=95,00=4
Teng | 213.16 °C Teng | 205.68 °C
Ty 199.18 °C Ty 192.68 °C
T 217.96 °C T, 209.7 °C
w1 24.25 kW/°C w1 21.01 kW/°C
ws | 70.70 kW/°C ws | 73.99 kW/°C

For wy = 95 and 130 kW/°C and ¢y varying from 1 - 5 several plots were made. The results are

given in the following figures -
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Figure A.1: Cost factor ¢y impacts on outlet temperature 7,4 for case 1 at wg = 95 kW/°C
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Figure A.2: Cost factor ¢y impacts on outlet temperature T,,q for case 1 at wg = 130 kW/°C
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Figure A.3: Cost factor ¢y impacts on temperatures Ty and T3 for case 1 at wg = 95 kW/°C
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Figure A.4: Cost factor ¢g impacts on temperatures Ty and Ts for case 1 at wg = 130 kW/°C
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Figure A.5: Cost factor ¢y impacts on temperatures Thl,,;
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Figure A.6: Cost factor cg impacts on temperatures Thl,,: and Th2,,; for case 1 at wy = 130
kW/°C
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Figure A.7: Cost factor ¢y impacts on stream splits w; and wq for case 1 at wg = 95 kW/°C
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Figure A.8: Cost factor ¢y impacts on stream splits w; and wsy for case 1 at wy = 130 kW/°C
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Figure A.9: Cost factor ¢y impacts on heat exchanger size U A for case 1 at wg = 95 kW/°C
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Figure A.10: Cost factor ¢y impacts on heat exchanger size U A for case 1 at wg = 130 kW/°C

39



B Complete Simulation Results Case 2

Optimized values for the 4 different scenarios are given in Table below:

Table B.1: Optimized process variables and optimal design from the 4 different scenarios for case
2

(a) Scenario 1 (b) Scenario 2
wop = 1607 C() =2 woy = 160, C() =4
Tena | 201.43 °C Tena | 194.11 °C
T 165.17 °C Ty 158.53 °C
15 196.37 °C Ty 189.86 °C
T3 205.93 °C T3 197.56 °C
wi | 75.34 kW/°C wi | TL6T kW/°C
ws | 84.65 kW/°C ws | 88.33 kKW/°C
UAs | 1.93 kWm?2/°C UA; | 0.76 kWm?2/°C
UAs | 2.19 kWm?/°C UAs | 1.01 kWm?/°C
UA; | 6.07 kWm?/°C UAs | 2.86 kWm?/°C
(¢) Scenario 3 (d) Scenario 4
w0:95,00:2 ’LUO:95,C():4
Tena | 225.01 °C Tena | 217.28 °C
A 175.21 °C T 165.65 °C
T 217.24 °C T 210.95 °C
T; 231.30 °C T3 221.86 °C
w1 42.53 kW/°C w1 39.92 kW/°C
wWa 52.47 kW/°C Wo 55.08 kW/°C
UA; | 1.28 kWm?/°C UA; | 047 kWm?/°C
UAs | 2.85 kWm?/°C UAs | 1.33 kWm?/°C
UAs | 774 kWm?2/°C UAs | 3.75 kWm?2/°C
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Table B.2: Optimal operation for the 4 different scenarios for case 2, using the Jaschke temperature
equality constraint

(a) Scenario 1: UA; = 1.93, (b) Scenario 2: UA; = 0.76,
UAs = 2.19, UAs — 6.07 UAs = 1.01, UA3 — 2.86
w0:1607 Co=2 w0:160, 00:4
Teng | 201.40 °C Teng | 194.10 °C
Ty 166.10°C Ty 159.20 °C
15 197.84 °C Ty 191.12 °C
T 204.34 °C T; 196.37 °C
w1 72.36 kW/°C w1 69.20 kW/°C
ws | 87.64 kW/°C ws | 90.80 kW/°C
(¢) Scenario 3 UA; = 1.28, (d) Scenario 4 UA; = 0.47,
UAy =285, UA3 =T7.74 UAy = 1.33, UA3 = 3.75
w0:95,C0:2 w0:95,00=4
Tenag | 225.01 °C Teng | 217.11 °C
T 175.21 °C Ty 167.82 °C
Ts 217.24 °C T, 214.75 °C
T3 231.30 °C T3 218.54 °C
wr | 42.53 kW/°C wi | 35.95 kW/°C
ws | 52.47 kW/°C ws | 59.04 kW/°C

For wg = 95 and 160 kW/°C and ¢ varying from 1 - 5 several plots were made. The results are

given in the following figures -
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Figure B.1: Cost factor ¢g impacts on outlet temperature T,,q for case 2 at wy = 95 kW/°C
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Figure B.2: Cost factor ¢y impacts on outlet temperature Te,q for case 2 at wy = 160 kW/°C
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Figure B.3: Cost factor ¢y impacts on temperatures 77 and T for case 2 at wy = 95 kW/°C
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Figure B.4: Cost factor ¢g impacts on temperatures 77 and T for case 2 at wy = 160 kW/°C
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Figure B.5: Cost factor ¢y impacts on temperatures Thl,,;

kW/°C
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Figure B.6: Cost factor ¢y impacts on temperatures Thl,,; and Th2,,; for case 2 at wy = 160
kW /°C
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C Complete Simulation Results Case 3

Optimized values for the 4 different scenarios are given in Table below:

Table C.1: Optimized process variables and optimal design from the 4 different scenarios for case
3

(a) Scenario 1 (b) Scenario 2
w0:180, 00:2 w0:180, 00:4
Teng | 182.01 °C Teng | 174.61 °C
Ty 150.30 °C Ty 142.12 °C
Ty 164.46 °C Ty 156.94 °C
T3 174.42 °C T3 167.84 °C
Ty 173.45 °C Ty 165.88 °C
Ts 186.05 °C T5 177.35 °C
wy 62.43 kW/°C wy 51.90 kW/°C
W2 117.57 kW /°C Wa 128.10 kW/°C
UA | 0.67 kWm?2/°C UA; | 0.16 kWm?/°C
UAs | 0.81 kWm?2/°C UAs | 0.31 kWm?/°C
UAs | 0.63 kWm?2/°C UAs | 0.26 kWm?2/°C
UAy | 4.30 kWm?2/°C UAy | 2.06 kWm?2/°C
UAs | 1.31 kWm?2/°C UAs | 0.64 kWm?2/°C
(¢) Scenario 3 (d) Scenario 4
w0:150, 00:2 w0:150, 00:2
Tena | 187.89 °C Tena | 180.20 °C
Ty 151.98 °C Ty 138.63 °C
T 167.97 °C T, 159.16 °C
T3 179.31 °C T3 172.86 °C
Ty 178.62 °C Ty 170.36 °C
Ts 192.06 °C Ts 182.72 °C
wi | 49.00 kW/°C wi | 38.29 kW/°C
W2 101.00 kW/°C Wa 111.71 kW/°C
UAs | 0.52 kWm?2/°C UA; | 0.06 kWm?/°C
UAs | 0.79 kWm?2/°C UAs | 0.31 kWm?2/°C
UAs | 0.70 EWm?2/°C UAs | 0.29 kWm?2/°C
UA, | 4.62 kaQ/OC UA, | 2.29 kaz/OC
UAs | 1.54 kWm?/°C UAs | 0.74 kWm?2/°C
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Table C.2: Optimal operation for the 4 different scenarios for case 3, using the Jaschke temperature

equality constraint

(b) Scenario 2: UA; = 0.16,
UAs = 031, UAs = 0.26,
UAs = 2.06, UA5; = 0.64

(a) Scenario 1: UA; = 0.67,
UAs = 0.81, UAs = 0.63,
UAy = 4.30, UA5 = 1.31
wo = 180, OO =2

Teng | 181.93 °C

T 152.19 °C

T, 166.86 °C

T; 177.19 °C

Ty 171.69 °C

T5 184.02 °C

w1 55.14 kEW/°C

Wa 124.86 kW/°C

wo = 180, CO =4
Tena | 174.57 °C
Ty 143.57 °C
Ty 159.30 °C
T3 170.69 °C
Ty 164.64 °C
T5 175.88 °C
wy | 45.46 kW/°C
wy | 134.54 kW/°C

(¢) Scenario 3 UA; = 0.52,
UAs = 0.79, UAs = 0.70,
UAs = 4.62, UA5 — 1.54

(d) Scenario 4 UA; = 0.06,
UAs = 031, UA; = 0.29,
UAy =229, UAs = 0.74

wo = 150, Co = 2
Tona | 187.77 °C

T, | 154.20 °C

T, | 170.73 °C

Ty | 182.48 °C

T, | 176.64 °C

Ts | 189.86 °C

wy | 42.42 kW/°C
wy | 107.58 kW/°C

Wo = 150, Co =4
Tona | 180.12 °C
T 139.52 °C
T, 161.85 °C
15 176.15 °C
Ty 169.09 °C
Ts 181.24 °C
wy | 33.00 kW/°C
wy | 107.00 kW/°C
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For the additional investigation with new hot stream temperatures, the results from optimization
ans optimal operation with optimized design from the original case with the default hot stream

temperatures are given in the following Table [C.4] To get a better overview the new hot stream
temperatures are cited here as well:

e Thl = 205°C
e Th2 = 203°C
e Th3 = 220°C
e Th4 = 220°C
o Thb = 248°C

Table C.3: Optimized process variables for the 4 different scenarios for case 3 with the new hot
stream temperatures, with optimized design from the original case

(a) Scenario 1: UA; = 0.67, (b) Scenario 2: UA; = 0.16,
UAs = 081, UAs — 0.63, UAz — 031, UAy — 0.26,
UAy = 4.30, UAs — 1.31 UAs = 2.06, UAs — 0.64
wo = 180, C() =2 wo = 1807 C() =4

Tena | 183.39 °C Tena | 175.52 °C

Ty 157.48 °C Ty 147.89 °C

15 167.74 °C 15 159.29 °C

Ts 176.06 °C Ts 168.61 °C

Ty 175.11 °C Ty 167.05 °C

Ts 187.91 °C Ts 178.75 °C

wy 68.70 kW /°C wy 57.47 kW/°C

W2 111.30 kW/°C Wa 122.53 kW/°C
(¢) Scenario 3 UA; = 0.52, (d) Scenario 4 UA; = 0.06,
UAs = 0.79, UA3 = 0.70, UAs = 0.31, UA3 = 0.29,
UAy = 4.62, UAs = 1.54 UAy =229, UAs = 0.74

w0:150, 00:2 w0:150, 00:4

Tena | 189.07 °C Tena | 180.63 °C

Ty 159.98 °C Ty 143.42 °C

Ty 171.13 °C Ty 160.52 °C

T3 180.62 °C T3 172.98 °C

Ty 180.25 °C Ty 171.05 °C

Ts 193.83 °C Ts 183.51 °C

wy 54.03 kEW/°C wy 40.96 kW /°C

Wy 95.97 kW/°C Wa 109.04 kW/°C
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Table C.4: Optimal operation of the 4 different scenarios for case 3 with the new hot stream
temperatures, with optimized design from the original case

(a) Scenario 1: UA; = 0.67, (b) Scenario 2: UA; = 0.16,
UAs — 081, UAs = 0.63, UAs = 031, UAs = 0.26,
UAy = 4.30, UA5 = 1.31 UAs = 2.06, UA5 = 0.64
’UJ()=180, 0022 wo:180, 0024

Teng | 183.27 °C Tena | 17543 °C

Ty 160.05 °C Ty 149.90 °C

Ty 170.33 °C T 161.80 °C

Ts 178.91 °C 15 171.60 °C

Ty 172.96 °C Ty 165.50 °C

Ts 185.47 °C T5 176.90 °C

wr | 60.42 kW/°C w | 49.89 kW/°C

W2 119.58 kW/°C Wa 130.11 kW/°C
(¢) Scenario 3 UA; = 0.52, (d) Scenario 4 UA; = 0.06,
UAs — 0.79, UAs — 0.70, UAs — 031, UAs — 0.29,
UAy = 4.62, UAs = 1.54 UAy =229, UAs = 0.74

’LU():150, 0022 w0:150, 00:4

Teng | 188.89 °C Teng | 180.54 °C

T 163.21 °C Ty 145.17 °C

Ty 174.16 °C Ty 163.32 °C

T3 183.92 °C 15 176.36 °C

Ty 177.77 °C Ty 169.59 °C

Ts 191.11 °C Ts 181.82 °C

w1 46.24 kW/°C w1 35.08 kW/°C

Wy 103.76 kW/°C Wy 114.92 kW/°C

For wy = 150 and 180 kW/°C and ¢ varying from 1 - 5 several plots were made. The results are

given in the following figures -
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Figure C.1: Cost factor ¢g impacts on outlet temperature Te,q for case 3 at wy = 150 kW /°C
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Figure C.2: Cost factor ¢y impacts on outlet temperature Te,q4 for case 3 at wy = 180 kW/°C
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Figure C.4: Cost factor ¢y impacts on temperatures 77 and T3 for case 3 at wy = 180 kW/°C
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Figure C.7: Cost factor ¢g impacts on stream splits wy and we for case 3 at wy = 150 kW/°C
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Figure C.8: Cost factor ¢y impacts on stream splits w; and wy for case 3 at wy = 180 kW/°C

99



g 2 T T T T T T T
i — A1
=
g 1\ |
=,
% D 1 1 1 1 1 — I\
1 14 2 25 3 35 4 45 5
c0 cost factor
E 2 T T T T T T
% — A2
Z 1t -
=,
% D 1 1 1 1 1 1 1
1 14 2 25 3 35 4 45 5
c0 cost factor
2 T T T T T T

UAS [KWWim2/<]
l
&

¥
o A4
£
= 4
=
% D | 1 1 | 1 1 |
1 1.5 2 25 3 35 4 4.5 5
cO cost factor
g ‘q- T T T T T T T
el — UAS
=
g 2 x .
=
g D | 1 1 | 1 1 |
1 1.5 2 25 3 35 4 4.5 5

c0 cost factor

Figure C.9: Cost factor ¢y impacts on heat exchanger size U A for case 3 at wy = 150 kW/°C
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Figure C.10: Cost factor ¢ impacts on heat exchanger size U A for case 3 at wg = 180 kW/°C
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D Matlab Scripts

D.1 Casel

RunHEN_11_HXD.m

%% Model to simulate a steady state HEN
% Optimal Design

% Topology to be investigated:

TWITISTISTTSSTTISTISTISSTTTSTIST TSI o

% 1 %
% 0 %
% o ——] |———— %o
% 0 %
% 2 %

WITTITTTTITISTITISTITISTSTITIST IS

close all;
clear all;
cle;

%% Parameters
par.w0 = 130;  %[J/K] w= miCpi

par.whl = 60; %[J /K]
par.wh2 = 65; %[J /K]

par.Thl = 203; %]|degC]
par.Th2 = 248; %]|degC]
par.T0 = 130; %[degC

par.DeltaTmin = 0.5; %|degC |
par.n = 0.65; % Cost exponent
% par.c0 = 2.5; %[$ /m2|

par.sc.x = [200*ones(5,1);45;45;5000«ones (2,1);400%o0nes (2,1)];
par.sc.j = 200;

%% Optimization

%x0 = [Tend T1 T2 Thlout Th2out wl w2 Q1 Q2 UA1l
x0 = [207 186 227 144 146 60.5 60.5 3532 3592 27
x0 = x0./par.sc.x;

A= []; b= []; Aeq = []; Beq = [];

LB = 0.01%ones(11,1); UB = infxones(11,1);

options = optimset (’Algorithm’, ’interior —point ’,’display ’, " iter ’

,”MaxFunEvals’,9000);

%% RESULTS

UA2|
27.6]7;

[x,J,exitflag] = fmincon (@Q(x)Object 11 HXD(x,par),x0,A,b,Aeq,Beq,LB,UB,...
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@Q(x)HEN Constraints 11 HXD(x,par),options);
exitflag
x=x.xpar.sc.x; % Unscale variables

Tend = x(1); Tl = x(2); T2 = x(3); Thlout = x(4); Th2out = x(5);
wl = x(6); w2 = x(7); Ql = x(8); Q2 = x(9); UAl = x(10); UA2 = x(11);
TO = par.T0; Thl = par.Thl; Th2 = par.Th2;

display ([’ T1 T2 Thlout Th2out [degC] ’])
disp ([T1 T2 Thlout Th2out])

display ([> Tend [degC] = ’])

disp (Tend)

wl ratio = wl/par.w0;

w2 ratio = w2/par.wO0;

display ([’wl ratio w2 ratio [J/K]’])
disp ([wl_ratio w2 _ratio])

display ([’ wl w2'])

disp ([wl w2])

display ([’ UA1 UA2 [Wm2/K]| *])

disp ([UA1 UA2]|)

display ([ ’DeltaTmin ’])

display ([’ Hotl Cold1 Hot2 Cold27])
Thotl = Th1-T1;

Tcoldl = Thlout—TO;

Thot2 — Th2—T2:

Tcold2 = Th2out—T0;

disp ([ Thotl Tcoldl Thot2 Tcold2])

display (| Q1 Q')

disp (]Q1 Q2])

%% RESULTS WITH VARIATION OF CO0

% Defining the initial points and steps
c0 = 1;

co_end = 5;

DeltaC0 = 0.1;

n = (co_end—c0)/DeltaCo;

c0_vec = [];

% Utilizing the resulting variables

T1 vec = [];

T2 vec = [];
Tend vec = [];
wl_vec = [];

w2 vec = [];
UAl vec = [];
UA2 vec = |[];
Thlout_vec = [];
Th2out_vec = [];
Ql_vec = [];
Q2_vec = [];

DeltaTHX1 vec = []
DeltaTHX2 vec = []
exitflag vec = [];
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for i=1:n;

[x,J,exitflag] = fmincon (@Q(x)Object 11 HXD(x,par,c0),x0,A,b,Aeq,Beq,. ..

LB,UB,@(x)HEN_Constraints 11 HXD (x,par),options);
x=x.xpar.sc.x; % Unscale variables
exitflag

Tend = x(1); Tl = x(2); T2 = x(3); Thlout = x(4); Th2out = x(5);
wl =x(6); w2 =x(7); Ql = x(8); Q2 =x(9); UAl = x(10); UA2 = x(11);

Thl = par.Thl; Th2 = par.Th2; TO = par.TO;

Thotl = Th1-T1;
Tcoldl = Thlout—TO;
DeltaTHX1 = Thotl/Tcoldl;

Thot2 — Th2-T2;
Tcold2 = Th2out—T0;
DeltaTHX2 = Thot2/Tcold2;

T1 vec(i)= T1;
T2 vec(i) = T2;
Tend vec(i) = Tend;
wl vec(i) = wl;
w2 vec(i) = w2;

UA1l vec(i) = UAIL;

UA2 vec(i) = UA2;

exitflag vec (i) exitflag;
Thlout vec(i) = Thlout;
Th2out _vec(i) = Th2out;

Ql vec(i) = Q1;

Q2 vec(i) = Q2;

DeltaTHX1 vec(i) = DeltaTHX1;
DeltaTHX2 vec(i) = DeltaTHX2;
c0 vec(i) = c0;

c0 = c0+DeltaCoO;
end

% Plotting the results

figure (1)

plot (¢0_vec,Tend vec,’LineWidth’,2)
xlabel (’c0 cost factor )

ylabel ('T {end}’)

legend ('T {end}’)

figure (2)

plot (c0_vec,exitflag vec ,’ LineWidth’,2)
xlabel (7¢0")

ylabel ("exitflag 7)

figure (3)

plot (¢0_vec,wl vec,’b’,’LineWidth’,2)
hold on
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plot (cO0_vec,w2 vec,’r’,’LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel ("w_{i} = mC {p}’)

legend ('w_{1}’,’w_{2}’)

figure (4)

subplot (2,1,1)

plot (cO0_vec,T1 vec,’LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (’T1 [~{\ circ}C]")

legend ("T17)

subplot (2,1,2)

plot (cO0_vec,T2 vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel (T2 [~{\ circ}C]’)
legend (' T27)

figure (5)

subplot (2,1,1)

plot (¢0_vec,Thlout vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel (’Thlout [~{\circ}C]’)

legend (’Thlout’)

subplot (2,1,2)

plot (cO0_vec,Th2out vec,’LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (’Th2out [~{\circ}C]’)

legend (’Th2out ’)

figure (6)

subplot (2,1,1)

plot (c¢0_vec,DeltaTHX1 vec)
xlabel ("c0 cost factor ’)
ylabel (’DeltaT HX1’)
legend (’DeltaT HX1’)

subplot (2,1,1)

plot (¢0_vec,DeltaTHX2 vec)
xlabel ("c0 cost factor ’)
ylabel ("DeltaT HX2’)
legend (’DeltaT HX2’)

figure (7)

subplot (2,1,1)

plot (c0_vec,UAl vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel ('UA1l [kWm2/K]’)

legend ("UAL")

subplot (2,1,2)

plot (c0_vec,UA2 vec,’LineWidth’,2)
xlabel (’c0 cost factor )
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ylabel ('UA2 [kWm2/K] )
legend ('UA2’)

RunHEN_11_HXD_DJT.m

%% Model to simulate a steady state HEN with the Jaesckhe Temperatures
% Optimal Operation

% Topology to be investigated:

WITTISTSTISISTISTSTTST IS TSI TSI I

%o
%o

% -]

%
%

1 %
0 %

|———— %
0 %
2 %

WITISTISTISTIISTISTISTISSTISTIST o

close all;
clear

clc;

all;

%% Parameters

par.w0 =
par.whl =
par.wh2 =

par.Thl =
par.Th2 =
par.TO = 130;

par .UAl =
par . UA2 =

par.

95;
60;
65;

203;
248;

%[J /K| w= miCpi
%|J /K]
%|J /K]

%|degC |
%|degC |
%|degC |

1.23; % GIVEN FROM OPTIMAL DESIGN
4.51; % GIVEN FROM OPTIMAL DESIGN

DeltaTmin = 0.5; %[degC]|

par.cO0 = 4; %[$/m2|
par.n = 0.65;

par.
par.

%% Optimization

SC.X
sc . j

[200*ones (5,1);45;45;5000%ones (2 ,1)];

200;

% x0 = [ Tend T1 T2 Thlout Th2out wl w2 Q1 Q2]

x0 = [227.92 203.55 248.55 149.6 154.2 43.5 51.4 3203
x0 = x0./par.sc.x;

A= []; b= []; Aeq = [|; Beq = [];

LB = 0.01xones(9,1); UB = infxones(9,1);
optimset (’display ’,’iter >, ’MaxFunEvals’ ,9000,...

options =

"TolCon’,1e—10,"TolX’,1e—10);
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[x,J,exitflag] = fmincon(@(x)Object 11 _HXD DJT(x,par),x0,A,b,Aeq,Beq...
,LB,UB,@(x)HEN Constraints 11 HXD fixedA (x,par),options);

exitflag

x=x.*par.sc.x; % Unscale variables

%% RESULTS

Tend = x(1); Tl = x(2); T2 = x(3); Thlout = x(4); Th2out = x(5); wl = x(6);
w2 = x(7); Ql = x(8); Q2 = x(9);

TO = par.TO; Thl = par.Thl; Th2 = par.Th2;

UAl = par.UAl; UA2 = par.UA2;

display ([’ T1 T2 Thlout Th2out [degC]| ’])
disp (|[T1 T2 Thlout Th2out])
display ([> Tend [degC] = ’])

disp (Tend)
wl ratio = wl/par.w0;
w2 ratio = w2/par.w0;

display (| ’wl ratio w2 ratio [J/K]’])
disp ([wl_ratio w2 ratio])

display ([’ wl w2'])

disp ([wl w2])

display ([’ UA1 UA2 [Wm2/K] *])

disp (|UAL UA2|)

display ([’ DeltaTmin ’|)

display ([’ Hotl Cold1 Hot2 Cold2 7))
Thotl = Th1-T1;

Tcoldl = Thlout—TO;

Thot2 — Th2-T2:

Tcold2 = Th2out—T0;

disp ([ Thotl Tcoldl Thot2 Tcold2])

display (|° Q1 Q')

disp ([Q1 Q2])

%% RESULTS JAESCHKE TEMPERATURE

% x0 = [Tend T1 T2 Thlout Th2out wl w2 Ql Q2]

x0 = [222.967 208.31 229.56 164.53 147.64 29.48 65.52 2308 6523]’;
x0 = x0./par.sc.x;
A= 1]; B=[]; Aeq = []; Beq = []; LB = Oxones(9,1); UB = infxones(9,1);

options = optimset (’display ’, iter >, MaxFunEvals’ ,9000...
,’TolCon’,1e—10,"TolX’ ,1e—10);

[xDJT, fval , exitflag] = fmincon (@(x)Object 11 HXD DJT(x,par)...

,x0,A,B, Aeq,Beq,LB,UB,@Q(x)HEN Constraints 11 HXD DJT2(x,par),options);
exitflag
xDJT = xDJT.*par.sc.x;

TendDJT = xDJT(1); TIDJT = xDJT(2); T2DJT = xDJT(3);
ThloutDJT= xDJT(4); Th2outDJT = xDJT (5);

wlDJT = xDJT(6); w2DJT = xDJT(7);

QIDJT — xDJT(8); Q2DJT — xDJT(9):
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TODJT = par.T0; ThlDJT = par.Thl; Th2DJT = par.Th2;
UAIDJT = par.UAl; UA2DJT = par.UA2;

display (|’ TL DJT T2 DJT Thlout DJT
disp ([TIDJT T2DJT ThloutDJT Th2outDJT])
display ([’ Tend DJT [degC|] = '])

disp (TendDJT)
wl ratio = wl/par.w0;
w2 _ratio = w2/par.w0;

% display (| ’wl ratio w2 ratio [J/K]])

% disp ([wl_ratio w2 _ratio])

display ([’ wl DJT w2 DJT’])

disp ([wlDJT w2DJT|)

display ([’ UA1 DJT UA2_DJT [Wi2/K]| '] )

disp ([UAIDJT UA2DJT])

display ([ ’DeltaTmin_ DJT ’])

display ([’ Hotl Cold1 Hot2 Cold27])
Thot1DJT = Th1DJT-T1DJT;

Tcold1DJT = ThloutDJT-TODJT;

Thot2DJT = Th2DJT-T2DJT';

Tcold2DJT = Th2outDJT-TODJT;

disp ([Thot1DJT Tcold1DJT Thot2DJT Tcold2DJT])
display ([’ Q1 _DJT Q2 DIT’])

disp ([QIDJT Q2DJT|)

HEN_Constraints_11_HXD.m

% HEN _ Constraints function
% Nonlinear constraints for optimizing a HEN
% Includes mass, energy and steady state balances

function [Cineq, Res] = HEN_Constraints 11 HXD (x, par)
x=x.*par.sc.x; % Unscale variables

% States

Th2out DJT

Tend = x(1); Tl = x(2); T2 = x(3); Thlout = x(4); Th2out = x(5);

wl =x(6); w2 =x(7); Ql = x(8); Q2 =x(9); UAl = x(10); UA2 = x(11);

% Parameters

w0 = par.wO; whl = par.whl; wh2 = par.wh2;
Thl = par.Thl; Th2 = par.Th2; TO = par.TO;
DeltaTmin = par.DeltaTmin;

%% INEQUALITY CONSTRAINTS

%HX 1
Cineql = —(Thl-T1-DeltaTmin); % HOT SIDE HX1
Cineq2 = —(Thlout—T0-DeltaTmin); % COLD SIDE HX1
T/HX 2
Cineq3 = —(Th2-T2—DeltaTmin ); % HOT SIDE HX2

Cineq4 = —(Th2out—T0-DeltaTmin); % COLD SIDE HX2

Cineq = [Cineql;Cineq2;Cineq3; Cineq4 |;
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%% MODEL EQUATIONS

YAMID Approximation
% DeltaTl = 0.5%((Thlout—T0)+(Thl-T1));
% DeltaT2 = 0.5%((Th20ut—T0)+(Th2-T2));

%Underwood Approximation
DeltaTl = ((((Thlout—T0)~1/3)+((Thl1-T1)~1/3))/2)"3;
DeltaT2 = ((((Th2out—T0)"1/3)+((Th2-T2)~1/3))/2)"3

Res = | % Upper path, 1st HX
Ql—(wlx(T1-T0)); % Cold Stream, wl
Ql+(par.whlx(Thlout—Thl)); % Hot Stream, whl
Q1—(UA1*DeltaT1 ); % HX Design Equation
% Lower path, 2nd HX
Q2— (w2 (T2-T0)); % Cold Stream, w2
Q2+(par . wh2*(Th2out—Th2)); % Hot Stream, wh2
Q2—(UA2xDeltaT2 ) ; % HX Design Equation

% Mass balance
wl+w2—w0;

% Energy balance
(wO*Tend) — (wlxT1)—(w2xT2)];

end
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HEN_Constraints_11_HXD_DJT2.m

% HEN _Constraints function for the Jaeschke Temperature
% Nonlinear constraints for optimizing a HEN
% Includes mass, energy, steady state balances and the Jaeschke Temp

function [Cineq, Res| = HEN Constraints 11 HXD DJT2(x, par)
x=x.xpar.sc.x; % Unscale variables

% States
Tend = x(1); Tl = x(2); T2 = x(3); Thlout = x(4); Th2out = x(5);
wl = x(6); w2 = x(7); QL = x(8); Q2 = x(9);

% Parameters

w0 = par.w0; whl = par.whl; wh2 = par.wh2;
Thl = par.Thl; Th2 = par.Th2; TO = par.TO;
UAl = par.UAl; UA2 = par.UA2;

DeltaTmin = par.DeltaTmin;

% INEQUALITY CONSTRAINTS

T7HX 1
Cineql = —(Thl-T1-DeltaTmin ); % HOT SIDE HX1
Cineq2 = —(Thlout—T0O-DeltaTmin); % COLD SIDE HX1
%7HX 2
Cineq3 = —(Th2-T2—DeltaTmin ); % HOT SIDE HX2
Cineq4 = —(Th2out—T0-DeltaTmin); % COLD SIDE HX2

Cineq = |[Cineql;Cineq2; Cineq3; Cineq4 |;

% MODEL EQUAITONS

YAMID Approximation

% DeltaTl = 0.5%((Thlout—T0)+(Thl-T1));
% DeltaT2 = 0.5%((Th20ut—T0)+(Th2-T2));

%Underwood Approximation
DeltaTl = ((((Thlout—T0)"~1/3)+((Th1-T1)"~1/3))/2)"3;
DeltaT2 = ((((Th20ut—T0)~1/3)+((Th2-T2)"~1/3))/2)"3;

%Jaeschke Temperatures
DJT1 = (T1-T0)~2/(Th1-T0);
DJT2 = (T2-T0)~2/(Th2-T0);

Res = | % Upper path, 1st HX
Ql—(wlx(T1-T0)); % Cold Stream, wl
Ql+(par.whl*(Thlout—Thl)); % Hot Stream, whl
Q1—(UAlxDeltaT1); % HX Design Equation
% Lower path, 2nd HX
Q2— (w2 (T2-T0)); % Cold Stream, w2
Q2+ (par . wh2%(Th2out—Th2)); % Hot Stream, wh2
Q2—(UA2xDeltaT2 ) ; % HX Design Equation
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% Mass balance
wl4w2—w0;

% Energy balance
(wO*Tend) —(wl*T1)—(w2«T2);

% Jaeschke constraint
DJT1 — DJT2|;

end

Object_11_HXD.m

% Object function for optimal operation
function [J] = Object 11 HXD(x,par,c0)
X=X.*par.sc.x;

UAl=x(10);

UA2=x(11);
Tend = x(1)

% Cost function to be minimizes
J = (—Tend+c0+(UAl"par.ntUA2 par.n);

end
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D.2 Case 2

RunHEN_21_HXD.m

%% Model to simulate a steady state HEN
% Optimal Design

% Topology to be investigated:

% 1 2 %
% 0 0 %
% ———] |———— %
% 0 %
% 3 %

TWISTISTSTISISTITTSTTST TS TSI TSI I

close all;
clear all;
clc;

%% Parameters

par.w0 = 160; %KkW/K] w= miCpi
par.whl = 60; %kW/K]|
par.wh2 = 27; %[kW/K]|
par.wh3 = 65; % [kW/K]|

par.Thl = 203; %][degC]
par.Th2 = 255; %][degC]
par.Th3 = 248; %]|degC]
par.T0 = 130; %[degC|

par.DeltaTmin = 0.5; %|degC|
par.n = 0.65;
% par.c0 = 1.4; %[$/m2|

par.sc.x = [200%ones(7,1);45;45;5000%«ones (3,1);200%omnes (3,1)];

par.sc.j = 200;

%% Optimization

% x0 = [ Tend T1 T2 T3 Thlout Th2out Th3out

Ql Q2 Q3 UA1 UA2 UA3]

x0 = [ 204 168 199 208 154 190 145
2896 2323 6808 3 2

x0 = x0./par.sc.x;

A= []; b= []; Aeq = []; Beq = [];

LB = 0.00xones (15,1); UB = infxones(15,1);

options = optimset (’Algorithm’, ’interior —point ’,’
,’MaxFunEvals’,9000,  TolCon’,1
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% [x,J,exitflag] = fmincon (@Q(x)Object 21 HXD(x,par),x0,A,b...
%,Aeq,Beq,LB,UB,@(x)HEN Constraints 21 HXD(x,par),options);
% exitflag

% x=x.kxpar.sc.x; % Unscale variables

% %% FIXED INLET TEMEPRATURE

% Tend = x(1); Tl = x(2); T2 = x(3); T3 = x(4); Thlout = x(5);
%Th2out = x(6); Th3out = x(7); wl = x(8);

% w2 = x(9); Ql = x(10); Q2 =x(11); Q3 = x(12); UAL = x(13);
YUA2 = x(14); UA3 = x(15); % TO = par.T0; Thl = par.Thl;

% Th2 = par.Th2; Th3 = par.Th3;

%

% display ([’ T1 T2 T3 Thlout Th2out
[degC] ’])

% disp ([T1 T2 T3  Thlout Th2out Th3out|)

% display (|> Tend [degC| = ’])

% disp (Tend)
% wl ratio = wl/par.wO0;
% w2 _ratio = w2/par.w0;

% display ([’wl ratio w2 ratio [J/K] )

% disp (|wl_ratio w2_ratio])

% display ([’ wl w2'])

% disp ([wl w2])

% display ([’ UA1 UA2 UA3 [Wm2/K] ")

% disp (|[UA1 UA2 UA3])

% display (| ’DeltaTmin ’])

% display ([’ Hotl Cold1 Hot2 Cold2 Hot3
% Thotl — Th1-T1;

% Tcoldl = Thlout—TO;

% Thot2 — Th2—T2;

% Tcold2 = Th2out—T1;

% Thot3 = Th3-T3;

% Tcold3 = Th3out—T0;

% disp ([ Thotl Tcoldl Thot2 Tcold2 Thot3 Tcold3])
% display (|7 Ql Q2 Q3'])

% disp ([Q1 Q2 Q3])

%% RESULTS WITH VARIATION OF CO0

% Defining the initial points and step
c0 = 1;

co_end = 5;

DeltaC0O = 0.1;

n = (co_end—c0)/DeltaCo;

c0_vec = [];

% Utilizing the resulting variables
Tl vec = |
T2 vec = |
T3 vec = |
[
[

E
E
].

7[];

I
|

Tend vec
wl vec =
w2 _vec = ;

UAl vec = [];
UA2 vec = [];
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UA3 _vec = [];
Thlout vec = |
Th2out_vec = |
Th3out_vec = |
Ql_vec = [];
Q2_vec = [];
Q3_vec = [];
exitflag vec = [];
DeltaTHX1 vec = |
DeltaTHX2 vec = |
DeltaTHX3 vec = |

’

7

R —

’

B

K

I

for i=1:n;
[x,J,exitflag| = fmincon (@(x)Object 21 HXD (x,par,c0),x0,A,Db,

Aeq,Beq,LB,UB,Q(x)HEN Constraints 21 HXD(x,par),options);
x=x.*par.sc.x; % Unscale variables

exitflag
Tend = x(1); Tl = x(2); T2 = x(3); T3 = x(4); Thlout = x(5);
Th2out = x(6); Th3out = x(7); wl = x(8);
w2 = x(9); QL = x(10); Q2 = x(11); Q3 = x(12);
UAl = x(13); UA2 = x(14); UA3 = x(15);

w0 = par.w0;
whl = par.whl; wh2 = par.wh2; wh3 = par.wh3;
Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3;
TO0 = par.TO;

Thotl = Thl-T1;
Tcoldl = Thlout—TO0;
DeltaTHX1 = Thotl/Tcoldl;

Thot2 = Th2-T2;
Tcold2 = Th2out—T1;
DeltaTHX2 = Thot2/Tcold2;

Thot3 = Th3-T3;
Tcold3 = Th3out—T0;
DeltaTHX3 = Thot3/Tcold3;

T1 vec(i)= T1;

T2 vec(i) = T2;

T3 vec(i) = T3 ;
Tend vec(i) = Tend,
wl vec(i) = wl;

w2 vec(i) = w2;
UAl vec(i) = UA1
UA2 vec(i) = UA2;
UA3 vec(i) = UA3;

exitflag vec(i) = exitflag;
Thlout vec(i) = Thlout;
Th2out_vec(i) = Th2out;
Th3out _vec(i) = Th3out;
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Q1 vec(i) = QI;
Q2 vec(i) = Q2;
Q3 _vec(i) = Q3;
DeltaTHX1 vec(i) = DeltaTHX1;
DeltaTHX2 vec(i) = DeltaTHX2;
DeltaTHX3 vec(1i) DeltaTHX3;
c0 vec(i) = c0;

c0 = c0+DeltaCo0;
end

figure (1)

plot (c0_vec,Tend vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel ('T {end}”’)

legend ('T {end}’)

figure (2)

plot (cO0_vec,exitflag vec)
xlabel (7c07)

ylabel ("exitflag )

figure (3)

plot (¢0_vec,wl vec,’b’,’LineWidth’,2)
hold on

plot (cO0_vec,w2 vec,’r’,’LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel ('w_{i} =mC {p}’)

legend ('w_{1}’,’w_{2}’)

figure (4)

subplot (3,1,1)

plot (¢0_vec,T1 vec,’LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (’T1 [~{\ circ}C]’)

legend ("T17)

subplot (3,1,2)

plot (cO0_vec,T2 vec,’LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (T2 [~{\ circ}C]")

legend (’T27)

subplot (3,1,3)

plot (c¢0_vec,T3 vec,’LineWidth’,2)
xlabel (’c0 cost factor 7)

ylabel (T3 [~{\circ}C]’)

legend (’T3")

figure (5)

subplot (3,1,1)

plot (¢0_vec,Thlout vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)
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ylabel (’Thlout [~{\circ}C]’)
legend (’Thlout’)

subplot (3,1,2)

plot (¢0_vec,Th2out vec,’LineWidth’,2)
xlabel (7¢O cost factor ’)

ylabel (’Th2out [~{\ circ}C]’)

legend (’Th2out ”)

subplot (3,1,3)

plot (c0_vec,Th3out vec,’LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (’Th3out [~{\circ}C]’)

legend (' Th3out’)

figure (6)

subplot (3,1,1)

plot (c¢0_vec,DeltaTHX1 vec,’ LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (’DeltaT HX1’)

legend (’DeltaT HX1’)

subplot (3,1,1)

plot (cO0_vec,DeltaTHX2 vec,’LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (’DeltaT HX2’)

legend (’DeltaT HX2’)

figure (7)

subplot (3,1,1)

plot (¢0_vec,UAl vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel ('UA1l [kWm2/K] )

legend ("UAL")

subplot (3,1,2)

plot (c0_vec,UA2 vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel ('UA2 [kWm2/K] )

legend ('UA2’)

subplot (3,1,3)

plot (c0_vec,UA3 vec,’ LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (*UA3 [kWm2/K]’)

legend ('UA3’)

RunHEN_21_HXD_DJT2.m

%% Model to simulate a steady state HEN with the Jaeschke Temperature
% Optimal Operation

% Topology to be investigated:
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WITISTISTISTIISTISTISTISSTISTIS T

%o 1 2 %o
% 0 0 %
% ] |———— %
% 0 %
% 3 %

WITISTISTTSTIISTISTISTISSTISTISTo

close all;
clear all;
cle;

%% Parameters

par.w0 = 100; %kW/K] w= miCpi
par.whl = 60; %[kW/K]|
par.wh2 = 27, %kW/K]
par.wh3 = 65; % kW/K]

par.Thl = 203; %]|degC]
par.Th2 = 255; %]|degC]
par.Th3 = 248; %[degC]
par.T0 = 130; %[degC

par .UAl = 1.28; % GIVEN FROM OPTIMAL DESIGN
par .UA2 2.85; % GIVEN FROM OPTIMAL DESIGN
par.UA3 = 7.74; % GIVEN FROM OPTIMAL DESIGN

par.DeltaTmin = 0.5; %|degC]

par.c0 = 2; % Cost Factor

par.n = 0.65; % Cost Exponent

par.sc.x = [200%ones(7,1);45;45;5000«o0nes (3,1)]; %Scaling
par.sc.j = 200; % Scaling

%% Optimization

% x0 = [Tend T1 T2 T3 Thlout Th2out Th3out wl w2 Ql Q2 Q3]

x0 = [223 182 227 222 175 202 159 42.5 42.5 1679 1432 5804]’;
x0 = x0./par.sc.x;
A= []; b= []; Aeq = [|; Beq = [];

LB = 0.00%ones(12,1); UB = infxones(12,1);
options = optimset (’Algorithm’, interior —point ’, ’display ’ ,...
"iter 7, ’MaxFunEvals’,9000);

[x,J,exitflag] = fmincon (@Q(x)Object 21 HXD DJT(x,par)...

,x0,A b, Aeq,Beq,LB,UB,@Q(x)HEN _Constraints 21 HXD DJT(x,par),options );
exitflag
x=x.*par.sc.x; % Unscale variables

%% RESULTS
Tend = x(1); Tl = x(2); T2 = x(3); T3 = x(4); Thlout = x(5);
Th2out = x(6); Th3out = x(7); wl = x(8);



w2 =x(9); Ql = x(10); Q2 = x(11); Q3 = x(12);
TO = par.T0; Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3;
UAl = par.UAl; UA2 = par.UA2; UA3 = par.UAS;

display ([’ T1 T2 T3 Thlout Th2out Th3out
[degC]|’])

disp ([T1 T2 T3 Thlout Th2out Th3out])

display ([* Tend [degC| = ’])

disp (Tend)
wl ratio = wl/par.w0;
w2 _ ratio = w2/par.w0;

display ([ ’wl ratio w2 ratio [J/K]’])

disp ([wl_ratio w2 _ ratio])

display ([’ wl w2'])

disp ([wl w2])

display ([’ UA1 UA2 UA3 [Wm2/K] ’])

disp (|[UAL UA2 UA3])

display ([ ’DeltaTmin ’])

display ([’ Hotl Cold1 Hot2 Cold2 Hot3 Cold3’])
Thotl — Th1-T1;

Tcoldl = Thlout—T0;

Thot2 — Th2-T2;

Tcold2 = Th2out—T1;

Thot3 = Th3-T3;

Tcold3 = Th3out—T0;

disp ([Thotl Tcoldl Thot2 Tcold2 Thot3 Tcold3])
display (| Q1 Q2 3°])
disp ([QL Q2 Q3])

%% RESULTS JAESCHKE TEMPERATURE

% x0 = [Tend T1 T2 T3 Thlout Th2out Th3out wl w2 Ql Q2]
x0 [217 165 210 221 180 192 167 36 5 1360 1687 5228]’;

x0 = x0./par.sc.x;

A= 1]; B=1]]; Aeq = []; Beq = []; LB = Oxones(12,1); UB = infxones(12,1);
options = optimset (’Algorithm ’, ’ interior —point ’, " display ’ ,...
“iter 7, ’MaxFunEvals’ ,9000);

[xDJT, fval , exitflag] = fmincon (@(x)Object 21 HXD DJT(x,par)...

,x0,A B, Aeq,Beq,LB,UB,@Q(x)HEN _Constraints 21 HXD DJT(x,par),options );
exitflag
xDJT = xDJT.*par.sc.x;

TendDJT = xDJT(1); TIDJT = xDJT(2); T2DJT = xDJT(3); T3DJT = xDJT(4);
ThloutDJT= xDJT(5); Th2outDJT = xDJT(6); Th3outDJT = xDJT(7);
wlDJT = xDJT(8); w2DJT = xDJT(9);

QIDJT = xDJT(10); Q2DJT = xDJT(11); Q3DJT = xDJT(12);

TODJT = par.T0; ThlDJT = par.Thl; Th2DJT = par.Th2; Th3DJT = par.Th3;
UAIDJT = par.UAl; UA2DJT = par.UA2; UA3DJT = par.UAS;

display ([° TL DJT T2 DJT T3 DJT Thlout DJT Th2out DJT
Th3out_ DJT [degC]’])

78



disp ([TIDJT T2DJT T3DJT ThloutDJT Th2outDJT Th3outDJT])
display ([’ Tend DJT [degC| = ’])

disp (TendDJT)

wl ratio = wl/par.wO0;

w2 ratio = w2/par.w0;

display ([’ wl DJT w2 _DJT’])

disp ([wlDJT w2DJT])

display (| UAL_DJT UA2 DJT  UA3 DJT  [Wn2/K]’])

disp ([UAIDJT UA2DJT UA3DJT])

display ([ ’DeltaTmin_DJT ’])

display ([’ Hotl Cold1 Hot2 Cold2 Hot3
Thot1DJT = Th1DJT-T1DJT;

Tcold1DJT = ThloutDJT-TODJT;

Thot2DJT = Th2DJT-T2DJT;

Tcold2DJT = Th20utDJT-TODJT;

Thot3DJT = Th3DJT-T3DJT;

Tcold3DJT = Th3outDJT-TO;

Cold3 ')

disp ([ Thot1DJT Tcold1DJT Thot2DJT Tcold2DJT Thot3DJT Tcold3DJT])

display ([ Q1 _DJT Q2 DJT Q37DJT’] )
disp ([QlDJT Q2DJT Q3DJT])
HEN_Constraints_21_HXD.m

% HEN Counstraints function
% Nonlinear constraints for optimizing a HEN
% Includes mass, energy and steady state balances

function [Cineq, Res| = HEN_ Constraints 21 HXD (x, par)
x=x.*par.sc.x; % Unscale variables

% States

Tend = x(1); Tl = x(2); T2 = x(3); T3 = x(4); Thlout = x(5);

Th2out = x(6); Th3out = x(7); wl = x(8);
w2 =x(9); Ql = x(10); Q2 = x(11); Q3 = x(12); UAl = x(13);
UA2 = x(14); UA3 = x(15);

% Parameters

w0 = par.w0O; whl = par.whl; wh2 = par.wh2; wh3 = par.wh3;
Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; TO = par.TO;
DeltaTmin = par.DeltaTmin;

%% INEQUALITY CONSTRAINTS

%7HX 1
Cineql = —(Thl-T1-DeltaTmin); % HOT SIDE HX1
Cineq2 = —(Thlout—T0-DeltaTmin); % COLD SIDE HX1
T/HX 2
Cineq3 = —(Th2-T2—DeltaTmin); % HOT SIDE HX2
Cineq4 = —(Th2out—T1-DeltaTmin ); % COLD SIDE HX2
%THX 3
Cineq5 = —(Th3-T3-DeltaTmin); % HOT SIDE HX3
Cineq6 = —(Th3out—T0-DeltaTmin); % COLD SIDE HX3
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Cineq = [Cineql;Cineq2;Cineq3;Cineq4; Cineq5; Cineqb |;
%% MODEL EQUATIONS

YAMID Approximation
% DeltaTl = 0.5%((Thlout—T0)+(Thl-T1));
% DeltaT2 = 0.5%((Th20ut—T0)+(Th2-T2));

%Underwood Approximation
DeltaT1 = ((((Thlout—T0)"~1/3)+((Th1-T1)"~1/3))/2)"3;
DeltaT2 = ((((Th2out—T1)~1/3)+((Th2-T2)"1/3))/2)"3:
DeltaT3 = ((((Th3out—T0)~1/3)+((Th3-T3)"1/3))/2)"3;

%% (DESIGN EQUATIONS) EQUALITY CONSTRAINTS
Res = | % Upper path, 1st HX

Ql—(wlx(T1-T0)); % Cold Stream, wl
Ql+(par.whl*(Thlout—Thl)); % Hot Stream, whl
Q1—(UA1xDeltaT1 ); % HX Design Equation

% Upper path, 2nd HX

Q2—(wlx(T2-T1)); % Cold Stream, w2
Q2+(par . wh2x(Th20out—Th2)); % Hot Stream, wh2
Q2—(UA2xDeltaT2 ) ; % HX Design Equation

% Lower path, 3rd HX

Q3—(w2x(T3-T0)); % Cold Stream, w3
Q3+(par . wh3x(Th3out—Th3)); % Hot Stream, wh2
Q3—(UA3%DeltaT3); % HX Design equation

% Mass balance
wl4w2—w0;

% Energy balance
(w0xTend) — (wlxT2)—(w2+T3)];

end

HEN_Constraints_21_HXD_DJT.m

% HEN _Constraints function for the Jaeschke Temperature
% Nounlinear constraints for optimal operation of a (2,1) HEN
% Includes mass, energy and steady state balances and the Jaeschke Temp

function [Cineq, Res|] = HEN_Constraints 21 HXD DJT(x, par)
x=x.*par.sc.x; % Unscale variables

% States

Tend = x(1); Tl = x(2); T2 = x(3); T3 = x(4); Thlout = x(5);
Th2out = x(6); Th3out = x(7); wl = x(8);

w2 = x(9); Ql = x(10); Q2 = x(11); Q3 = x(12);



% Parameters

w0 = par.wO; whl = par.whl; wh2 = par.wh2; wh3 = par.wh3;
Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; TO = par.TO;
UAl = par.UAl; UA2 = par.UA2; UA3 = par.UA3;

DeltaTmin = par.DeltaTmin;

%% INEQUALITY CONSTRAINTS

T7HX 1
Cineql = —(Thl-T1-DeltaTmin); % HOT SIDE HX1
Cineq2 = —(Thlout—T0-DeltaTmin ); % COLD SIDE HX1
%THX 2
Cineq3 = —(Th2-T2—DeltaTmin); % HOT SIDE HX2
Cineq4 = —(Th2out—T1-DeltaTmin); % COLD SIDE HX2
%THX 3
Cineqd = —(Th3—T3-DeltaTmin); % HOT SIDE HX3
Cineq6 = —(Th3out—T0-DeltaTmin); % COLD SIDE HX3
Cineq = [Cineql;Cineq2; Cineq3; Cineq4; Cineq5; Cineq6 |;

%% MODEL EQUATIONS
YAMID Approximation
% DeltaTl = 0.5%((Thlout—T0)+(Thl-T1));
% DeltaT2 = 0.5%((Th20ut—T0)+(Th2-T2));
% DeltaT3 = 0.5%((Th3out—T2)+(Th3-T3));

%Underwood Approximation

DeltaTl = ((((Thlout—T0)~1/3)+((Th1-T1)~1/3))/2
DeltaT2 = ((((Th2out—T1)~1/3)+((Th2-T2)"1/3))/2
DeltaT3 = ((((Th3out—T0)~1/3)+((Th3-T3)~1/3))/2

)" 35
)" 3;
)3

)
)

%Jaeschke Temperatures
DJT1 = (((Th2-T2)/(Th1-T0))—1)*((T1-T0)"~2/(Th2-T2))+ ((T2-T0)"2)/(Th2-T1);
DJT2 = ((T3-T0)~2)/(Th3-T0);

%% DESIGN EQUATION (EQUALITY CONSTRAINTS)

Res = | % Upper path, 1st HX
Ql—(wlx(T1-T0)); % Cold Stream, wl
Ql+(par.whlx(Thlout—Thl)); % Hot Stream, whl
Q1—(UAlxDeltaT1); % HX Design Equation

% Upper path, 2nd HX

Q2—(wlx(T2-T1)); % Cold Stream, w2
Q2+(par . wh2*(Th2out—Th2)); % Hot Stream , wh2
Q2—(UA2«DeltaT2); % HX Design Equation

% Lower path, 3rd HX
Q3—(w2x(T3-T0)); % Cold Stream, w3
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Q3+ (par . wh3*(Th3out—Th3)); % Hot Stream , wh2
Q3—(UA3«DeltaT3); % HX Design equation

% Mass balance
wl+w2—wO0 ;

% Energy balance
(w0xTend) — (wl*T2) —(w2+T3);

% Jaeschke
DJT1 — DJTZ];
end

Object_21_HXD.m
% Object function for the (2,1) HEN

function [J] = Object_ 21 HXD(x,par,c0)

X = X.#par.sc.X;
UAl = x(13);
UA2 = x(14);
UA3 = x(15);
Tend = x(1);

J = (—Tend+c0*(UAl"par.ntUA2 par .n+UA3"par.n)); % Cost function

end
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D.3 Case 3

RunHEN_32_HXD.m

%% Model to simulate a steady state HEN
% Optimal Design

% Topology to be investigated:

% 1 2 3 %
% 0 0 0 %
% ———] |——— %
% 0 0 %
% 4 5 %

close all;
clear all;
clc;

%% Parameters

par.w0 = 180; %kW/degC|] w= miCpi

par.whl = 50; %kW/degC |
par.wh2 = 30; %[kW/degC |
par.wh3 = 15; %[kW/degC |
par.whd = 70; %kW/degC |

par.whb = 20;

par.Thl = 190; %]|degC]
par.Th2 = 203; %]|degC]
par.Th3 = 220; %[degC]
par.Thd = 220; %[degC]
par.Th5 = 248; %][degC|
par.T0 = 130; %|degC|

par.DeltaTmin = 0.00001; %[degC]

par.n = 0.65;

% par.cO0 = 4; %[$/m2]

par.sc.x = [200xones(11,1);100;100;1000%ones(5,1);5*%ones(5,1)];
par.sc.j = 200;

%% Optimization

% x0 = [Tend T1 T2 T3 T4 T5 Thlout Th2out Th3out Thdout Thbout wl w2...
% [Ql Q2 Q3 Q4 Q5 UA1l UA2 UA3 UA4 UA5|
x0 = [188 158 173 184 185 198 158 174 180 144 186 56 94...

1564 854 590 5268 1233 1.52 1.90 1.59 9.72 2.18]’;

x0 = x0./par.sc.x;

A= []; b= []; Aeq = [|; Beq = [];
LB = 0.00%ones(23,1); UB = infxones(23,1);
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)

options = optimset (’Algorithm’, ’interior —point ’, ' display ’, "iter ' ,...

"MaxFunEvals’,9000, TolCon’,1e—8,’TolX’ ,1e—8);

% [x,J,exitflag] = fmincon (@Q(x)Object 32 HXD(x,par),x0,A,b,Aeq,Beq,...
% LB,UB,Q@Q(x)HEN _Constraints 32 HXD (x,par),options);

% exitflag
% x=x.xpar.sc.x; % Unscale variables

% %% RESULTS

% Tend = x(1); Tl = x(2); T2 = x(3); T3 = x(
% T5 = x(6); Thlout = x(7); Th2out = x( T
% Thdout = x(10); Thbout = x(11); wl 2);
% w2 = x(13); Ql = x(14); Q2 = x(15); Q3 = x(16); Q4 = x(17);
% Q5 = x(18); UAl = x(19); UA2 = x(20); UA3 = x(21);

% UA4 = x(22); UA5 = x(23); % TO = par.T0; Thl = par.Thl;

% Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4; Th5 = par.Thb;
%

% display (|2 T1 T2 T3 T4 T5
Th2out Th3out Th4out Thbout [degC]|’])

% disp ([T1 T2 T3 T4 T5  Thlout Th2out Th3out Th4out Thbout|)
% display (|> Tend [degC| = ’])

% disp (Tend)

% wl_ratio = wl/par.w0;

% w2 _ratio = w2/par.w0;

); T4 = x

4 (5);
h3out = x(9);

% display (| ’wl ratio w2 ratio [J/K]])

% disp ([wl_ratio w2 _ratio])

% display (|’ wl w2’])

% disp ([wl w2])

% display ([’ UA1 UA2 UA3 UA4 UA5

% disp (|[UA1 UA2 UA3 UA4 UA5|)

% display (|’ DeltaTmin ’|)

% display ([’ Hotl Cold1 Hot2 Cold2 Hot3
% Thotl — Th1-T1;

% Tcoldl = Thlout—TO;

% Thot2 — Th2—T2;

% Tcold2 = Th2out—T1;

% Thot3 — Th3-T3;

% Tcold3 = Th3out—TO0;

% disp ([ Thotl Tcoldl Thot2 Tcold2 Thot3 Tcold3])

% display ([’ Hot4 Cold4 Hot5 Cold5 ’])

% Thot4 = Th4-T4;

% Tcold4 = Th4out—TO0;

% Thotd5 = Th5-T5;

% Tcold5 = Thbout—T4;

% disp (| Thot4 Tcold4 Thots Tcold5])

% display ([7 QI Q2 Q3 Q4 Q5°])
% disp ([Ql Q2 Q3 Q4 Q5])

%% VARIATION AND TRENDS

% Defining the initial point and step
c0 = 1;

co_end = b;

DeltaCO = 0.1;
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n = (co_end—c0)/DeltaCo;
c0_vec = [];

% Utilizing the resulting variables
Tl vec =
T2 vec =
T3 vec =
T4 vec
T5 vec =
Tend vec
wl_ vec =
w2 _ vec =
UAl vec =
UA2 vec =
UA3_vec =
UA4_ vec
UA5 vec =
Thlout vec [
Th2out_vec = |[];
Th3out_vec = [];

[

[

[];
[];
[1;
[];
[

[
[

7[];
E
5

b

E
]
E
]
|

— — — — —

)
)

)

Thdout vec
Thbout vec =
Q1_vec = [];
Q2 vec = [];
Q3_vec = [];
Q4 vec K
Q5 _vec = [];
exitflag vec = [];
DeltaTHX1 vec = |
DeltaTHX2 vec = |
DeltaTHX3 vec = [];

[

[

9

7

— e

)

DeltaTHX4 vec =
DeltaTHX5 vec =

)
for i=1:n;

[x,J,exitflag] = fmincon (@(x)Object 32 HXD (x,par,c0),
x0,A,b,Aeq,Beq,LB,UB,@(x)HEN Constraints 32 HXD(x,par),options);
x=x.*par.sc.x; % Unscale variables

exitflag

% States

Tend = x(1); Tl = x(2); T2 = x(3); T3 = x(4); T4 = x(5); T5 = x(6);
Thlout = x(7); Th2out = x(8); Th3out = x(9); Thdout = x(10);
Thbout = x(11); wl = x(12); w2 = x(13); Ql = x(14); Q2 = x(15);

Q3 =x(16); Q4 =x(17); Q5 = x(18); UAl = x(19); UA2 = x(20);

UA3 = x(21); UA4 = x(22); UA5 = x(23); TO = par.T0;

Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4; Th5 = par.Thb;
% Parameters
w0 = par.w0;

whl = par.whl; wh2 = par.wh2; wh3 = par.wh3;

% Calculating the DeltaT’s for each HX
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Thotl = Th1-T1;
Tcoldl = Thlout-TO;
DeltaTHX1 = Thotl/Tcoldl;

Thot2 = Th2-T2;
Tcold2 = Th2out-T1;
DeltaTHX2 = Thot2/Tcold2;

Thot3 = Th3-T3;
Tcold3 = Th3out—T0;
DeltaTHX3 = Thot3/Tcold3;

Thot4 = Th4-T4;
Tcold4 = Th4out—TO0;
DeltaTHX4 = Thot4/Tcold4;

Thot5 = Th5-T5;
Tcold5 = Thbout—T4;
DeltaTHX5 = Thot5/Tcold5;

% Inserting the calulcated value in the solution matrices
T1 vec(i)= T1;

T2 vec(i) = T2;

T3 vec(i) = T3;

T4 vec(i) = T4;

T5 vec(i) = T5;

Tend vec(i) = Tend;

wl vec(i) = wl;

w2 vec(i) = w2;

UA1l vec(i) = UAl;

UA2 vec(i) = UA2;

UA3 vec(i) = UA3;

UA4 vec(i) = UA4;

UA5 vec(i) = UA5,

exitflag vec(i) = exitflag;
Thlout vec(i) = Thlout;
Th2out_vec(i) = Th2out;
Th3out _vec(i) = Th3out;
Thdout _vec(i) = Thdout;
Thbout vec(i) = Thbout;

Q1 _vec(i) = QI;

Q2 vec(i) = Q2;

Q3 vec(i) = Q3;

Q4 vec(i) = Q4;

Q5 _vec(i) = Qb;

DeltaTHX1 vec(i) = DeltaTHX1;
DeltaTHX2 vec(i) = DeltaTHX2;
DeltaTHX3 vec(i) = DeltaTHX3;
DeltaTHX4 vec(i) = DeltaTHX4;
DeltaTHX5 vec(i) = DeltaTHX5;
c0 _vec(i) = c0;

b

c0 = c0+DeltaCoO;
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end

% Plotting the results

figure (1)

plot (¢0_vec,Tend vec,’LineWidth’,2)
xlabel (’c0 cost factor )

ylabel ('T {end}’)

legend (’T {end}’)

figure (2)

plot (c0_vec,exitflag vec)
xlabel (’c07)

ylabel ("exitflag 7)

figure (3)

plot (¢0_vec,wl vec,’b’,’LineWidth’,2)
hold on

plot (cO0_vec,w2 vec,’r’,’LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel ('w_{i} = mC {p}’)

legend ('w_{1}’,’w_{2})

figure (4)

subplot (5,1,1)

plot (cO0_vec,T1 vec,’LineWidth’,2)
xlabel (’c0 cost factor 7)

ylabel ('"T1 [~{\ circ}C]’)

legend ('T1")

subplot (5,1,2)

plot (¢0_vec,T2 vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel (T2 [~{\ circ}C]’)

legend ('T2")

subplot (5,1,3)

plot (¢0_vec,T3 vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel (T3 [~{\ circ}C]’)

legend ('T3")

subplot (5,1 ,4)

plot (cO0_vec,T4 vec,’ LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (T4 [~{\circ}C]’)

legend ('T4")

subplot (5,1,5)

plot (c0_vec,T5 vec,’ LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel (’T5 [~{\ circ}C]|")

legend ('T5")

figure (5)
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subplot (5,1,1)

plot (¢0_vec,Thlout vec,’LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (’Thlout [~{\circ}C]’)

legend (’Thlout )

subplot (5,1,2)

plot (cO0_vec,Th2out vec,’LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (’Th2out [~{\circ}C]’)

legend (’Th2out ”)

subplot (5,1,3)

plot (cO0_vec,Th3out vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel (’Th3out [~{\ circ}C]’)

legend (’Th3out ’)

subplot (5,1 ,4)

plot (c¢0_vec,Th4out vec,’LineWidth’,2)
xlabel (’c0 cost factor )

ylabel (’Thdout [~{\circ}C]’)

legend (’Th4out ’)

subplot (5,1,5)

plot (¢0_vec,Thbout vec,’LineWidth’,2)
xlabel (’c0 cost factor )

ylabel (’Th5out [~{\ circ}C]’)

legend (' Th5out ’)

figure (6)

subplot (5,1,1)

plot (c¢0_vec,DeltaTHX1 vec)
xlabel ('c0 cost factor ’)
ylabel (’DeltaT HX1’)
legend (’DeltaT HX1’)

subplot (5,1,1)

plot (c0_vec,DeltaTHX2 vec)
xlabel ("c0 cost factor ’)
ylabel (’DeltaT HX2’)
legend (’DeltaT HX2’)

figure (7)

subplot (5,1,1)

plot (cO0_vec,UAl vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel ('UA1l [kWm2/K] )

legend ("UAL")

subplot (5,1,2)

plot (cO0_vec,UA2 vec,’LineWidth’,2)
xlabel (’c0 cost factor )

ylabel ('UA2 [kWm2/K] )
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legend ('UA2’)

subplot (5,1,3)

plot (c0_vec,UA3 vec,’LineWidth’,2)
xlabel (’c0 cost factor )

ylabel ('UA3 [kWm2/K] )

legend ("UA3")

subplot (5,1,4)

plot (c0_vec,UA4 vec,’LineWidth’,2)
xlabel (’c0 cost factor ’)

ylabel ('UA4 [kWm2/K] )

legend ("UA4")

subplot (5,1,5)

plot (cO0_vec,UA5 vec,’ LineWidth’,2)
xlabel ("c0 cost factor ’)

ylabel (*UA5 [kWm2/K]’)

legend ("UA5")

RunHEN_32_HXD_DJT.m

%% Model to simulate a steady state HEN with the Jaeschke Temperature
% Optimal Operation

% Topology to be investigated:

WITISTISTISTIISTISTISTISSIISTISTITSTSo

% 1 2 3 %
% 0 0 0 %
— ——— %
% 0 0 %
% 4 5 %

TTTTTTTTTTTTTSSSTSIIITTTTTTTTTTTTTTTIT o
close all;

clear all;

cle;

%% Parameters

par.w0 = 150; %kW/degC] w= miCpi

par.whl = 50; %[kW/degC |
par.wh2 = 30; %kW/degC ]
par.wh3 = 15; %kW/degC |
par.whd = 70; %kW/degC |
par.whb = 20; %kW/degC |

par.Thl = 205; %]|degC]
par.Th2 = 203; %][degC]|
par.Th3 220;  %[degC]
par.Thd = 220; %[degC]
par.Ths = 248; %]|degC]
par.T0 = 130; %[degC|
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par.UAL = 0.06; % GIVEN FROM OPTIMAL DESIGN [kWm2/degC ]
par.UA2 = 0.31; % GIVEN FROM OPTIMAL DESIGN [kWm2/degC |
par.UA3 = 0.29; % GIVEN FROM OPTIMAL DESIGN [kWm2/degC |
par.UA4 = 2.29; % GIVEN FROM OPTIMAL DESIGN [kWm2/degC |
par.UA5 — 0.74; % GIVEN FROM OPTIMAL DESIGN [kWm2/degC ]

par.DeltaTmin = 0.2; %|degC|

par.n = 0.65; % Cost exponent

par.c0 = 4; % Cost factor

par.sc.x = [200%ones(11,1);100;100;1000%o0mnes (5,1)];

%% Optimization

% x0 = [Tend T1 T2 T3 T4 T5 Thlout Th2out Th3out Th4out Thbout...
% [wl w2 Q1 Q2 Q3 Q4 Q5]

% Scenario 180/4

% x0 = 175 153 168 178 172 185 165

177 182 144 173 80 80 1550 790 518
5102 1519];

% Scenario 150/4

% x0 = [ 180 139 161 176 169 181 183

178 188 154 176 33 117 314 737 472
4574 1422];

% Scenario 150/2
x0 = [187 151 167 179 178 192 168 176 182 149 180...
75 75 1077 783 556 4911 1357]7;

x0 = x0./par.sc.x;

A= []; b= []; Aeq = [|]; Beq = []
; LB = 0.00%ones(18,1); UB = infxones(18,1);

options = optimset (’Algorithm’, ’interior —point ’, ' display ’ ,...
“iter ', MaxFunEvals’,9000, TolCon’,1e—12,’TolX’ ,1e—12);

[x,J,exitflag] = fmincon (@Q(x)Object 32 HXD DJT(x,par),...
x0,A,b,Aeq,Beq,LB,UB,@(x)HEN _Constraints 32 HXD DJT(x,par),options);

exitflag

x=x.*par.sc.x; % Unscale variables

%% RESULTS
% States

Tend = x(1); Tl = x(2); T2 = x(3); T3 = x(4); T4 = x(5);
T5 = x(6); Thlout = x(7); Th2out = x(8); Th3out = x(9);
Th4out = x(10); Thbout = x(11); wl = x(12); w2 = x(13);
QU= x(14); Q2 = x(15); Q3 = x(16); Q4 — x(17); Q5 — x(18);

% Parameters
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TO = par.T0; Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3;
Th4 = par.Th4; Th5 = par.Thb; UAl = par.UAIl;
UA2 = par.UA2; UA3 = par.UA3; UA4 = par.UA4; UA5 = par.UA5;

display ([’ T1 T2 T3 T4 T5 Thlout
Th2out Th3out Th4out Thbout [degC]’])

disp ([T1 T2 T3 T4 T5 Thlout Th2out Th3out Thdout Thbout]|)
display ([’ Tend [degC]| = ’])

disp (Tend)

wl ratio = wl/par.w0;

w2 _ ratio = w2/par.w0;

display ([ ’wl ratio w2 ratio [J/K]’])

disp ([wl_ratio w2 _ ratio])

display ([’ wl w2'])

disp ([wl w2])

display ([’ UA1 UA2 UA3 UA4 UA5 [Wm2/K] ’])

disp (|UAL UA2 UA3 UA4 UA5])

display ([ ’DeltaTmin ’])

display ([’ Hotl Cold1 Hot2 Cold2 Hot3 Cold3’])
Thotl — Th1—T1:

Tcoldl = Thlout—T0;

Thot2 — Th2-T2;

Tcold2 = Th2out—T1;

Thot3 = Th3-T3;

Tcold3 = Th3out—T0;

disp ([Thotl Tcoldl Thot2 Tcold2 Thot3 Tcold3])

display ([’ Hot4 Cold4 Hot5 Cold5 ’])

Thot4 — Th4—T4;

Tcold4 = Th4out—TO;

Thotb = Th5-T5;

Tcoldb = Thbout—T4;

disp ([ Thot4 Tcold4 Thot5 Tcold5])

display (| Q1 Q2 Q3 Q1 Q5'])
disp ([Q1 Q2 Q3 Q1 Q5])

%% RESULTS JAESCHKE TEMPERATURE
% x0 = [Tend T1 T2 T3 Thlout Th2out Th3out wl w2 Ql Q2]
x0 = [182 150 164 174 173 186 165 176 182 145 170...
53 124 1321 828 562 5190 1534]|;
x0 = x0./par.sc.x;
A= ]; B=]]; Aeq = []; Beq = []; LB = Oxones(18,1); UB = infxones(18,1);
options = optimset (’Algorithm’, ’interior —point ’,’display ’,...
“iter 7 ,’MaxFunEvals’,9000);
[xDJT, fval , exitflag] = fmincon (@(x)Object 32 HXD DJT(x,par) ,...
x0,A,B,Aeq,Beq,LB,UB,@(x)HEN _Constraints 32 HXD DJT(x,par),options);
exitflag
xDJT = xDJT.*par.sc.x;

TendDJT = xDJT (1); TIDJT = xDJT(2); T2DJT = xDJT(3); T3DJT = xDJT(4);
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T4DJT = xDJT(5); T5DJT = xDJT (6);

ThloutDJT= xDJT(7); Th2outDJT = xDJT(8); Th3outDJT = xDJT (9);
ThdoutDJT = xDJT(10); ThsoutDJT = xDJT(11);

wiDJT = xDJT(12); w2DJT = xDJT(13);
QIDJT = xDJT(14); Q2DJT = xDJT(15); Q3DJT = xDJT(16);
QIDJT = xDJT(17); Q5DJT = xDJT(18);

TODJT = par.T0; ThlDJT = par.Thl; Th2DJT = par.Th2; Th3DJT = par.Th3;
Th4dDJT = par.Th4; Th5DJT = par.Th5;

UAIDJT = par.UAl; UA2DJT = par.UA2; UA3DJT = par.UA3;

UA4DJT = par.UA4; UA5DJT = par.UAS5;

% Displaying the results

display ([ T1_DJT T2 DJT T3 _DJT T4_DJT T5_DJT
Thlout DJT Th2out_DJT  Th3out DJT Thdout DJT Thbout _DJT
[degC] ’])

disp ([TIDJT T2DJT T3DJT T4DJT T5DJT ThloutDJT Th20utDJT Th3outDJT Th4outDJT ThboutDJ]
display ([> Tend DJT [degC| = ’])

disp (TendDJT)

wl ratio = wl/par.w0;

w2 ratio = w2/par.w0;

display ([’ wl_DJT w2 _DJT’|)

disp ([wlDJT w2DJT])

display ([’ UAL_DJT UA2 DJT  UA3 DJT  UA4 DJT  UA5 DJT
[Wm2/K] ")

disp ([UAIDJT UA2DJT UA3DJT UA4DJT UASDJT])

display (| ’DeltaTmin DJT’|)

display ([’ Hot1 Cold1 Hot2 Cold2 Hot3 Cold3’])
Thot1DJT = Th1DJT-T1DJT;

Tcold1DJT = ThloutDJT-TODJT;

Thot2DJT = Th2DJT-T2DJT;

Tcold2DJT = Th20utDJT-TODJT;

Thot3DJT = Th3DJT-T3DJT;

Tcold3DJT = Th3outDJT-TO;

disp ([ Thot1DJT Tcold1DJT Thot2DJT Tcold2DJT Thot3DJT Tcold3DJT])
display ([ QL_DJT Q2_DJT Q3_DJT’])

disp ([QIDJT Q2DJT Q3DJT])

HEN_Constraints_32_HXD.m

% HEN Constraints function
% Nounlinear constraints for optimizing a (3,2) HEN
% Includes mass, energy and steady state balances

function [Cineq, Res] = HEN_Constraints 32 HXD (x,par)
x=x.*par.sc.x; % Unscale variables

% States

Tend = x(1); Tl = x(2); T2 = x(3); T3 =x(4); T4 = x(5);
T5 = x(6); Thlout = x(7); Th2out = x(8); Th3out = x(9);
Th4out = x(10); Thbout = x(11); wl = x(12);



x(13); 1:X(14); Q2 = x(15); Q3 =x(16); Q4 = x(17);
Q5: (18); =
x(23

; UAL = x(19); UA2 = x(20); UA3 = x(21); UA4
UA5 = );

% Parameters

w0 = par.w0;

whl = par.whl; wh2 = par.wh2; wh3 = par.wh3; wh4 = par.wh4; whb = par.wh5;
Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4; Th5 = par.Th5;
TO0 = par.TO;

DeltaTmin = par.DeltaTmin;

%% INEQUALITY CONSTRAINTS

T/HX 1
Cineql = —(Thl-T1-DeltaTmin); % HOT SIDE HX1
Cineq2 = —(Thlout—T0-DeltaTmin); % COLD SIDE HX1
%THX 2
Cineq3 = —(Th2-T2-DeltaTmin ); % HOT SIDE HX2
Cineq4 = —(Th2out—T1-DeltaTmin); % COLD SIDE HX2
%yHX 3
Cineqb = —(Th3-T3-DeltaTmin); % HOT SIDE HX3
Cineq6 = —(Th3out—T2-DeltaTmin); % COLD SIDE HX3
Y6/HX4
Cineq7 = —(Th4-T4—DeltaTmin); % HOT SIDE HX4
Cineq8 = —(Th4out—T0-DeltaTmin); % COLD SIDE HX4
Je7HX5
Cineq9 = —(Th5—T5—DeltaTmin); % HOT SIDE HX5
Cineql0 = —(Thbout—T4-DeltaTmin); % COLD SIDE HX5

Cineq = [Cineql;Cineq2; Cineq3; Cineq4; Cineq5; Cineq6; CineqT7; Cineq8 ;
Cineq9; Cineql0 |;

%% MODEL EQUATIONS

%Underwood Approximation

DeltaTl = ((((Thlout—T0)~1/3)+((Thl-T1)"~1/3))/2)"3;

DeltaT2 = ((((Th20ut—T1)"1/3)+((Th2-T2)"~1/3))/2)"3;

DeltaT3 = ((((Th3out—T2)"1/3)+((Th3-T3)"~1/3))/2)"3;

DeltaT4 = ((((Th4out—T0)~1/3)+((Th4d-T4)~1/3))/2)"3;

DeltaT5 = ((((Th5out—T4)~1/3)+((Th5-T5)~1/3))/2)"3;

%% DESIGN EQUATIONS (EQUALITY CONSTRAINTS)

Res = | % Upper path, 1st HX
Ql—(wlx(T1-T0)); % Cold Stream, wl
Ql+(par.whl*(Thlout—Thl)); % Hot Stream, whl
Q1—(UAlxDeltaT1); % HX Design Equation

% Upper path, 2nd HX
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Q2—(wlx(T2-T1)); % Cold Stream, wl
Q2+(par . wh2*(Th2out—Th2)); % Hot Stream, wh2
Q2—(UA2xDeltaT2 ) ; % HX Design Equation

% Upper path, 3rd HX

Q3—(wlx(T3-T2)); % Cold Stream, wl

Q3+(par . wh3x(Th3out—Th3)); % Hot Stream, wh3

Q3—(UA3*DeltaT3 ) ; % HX Design equation
% Lower path, 4th HX

Q4—(w2x(T4-T0)); % Cold stream , w2

Q4+ (par .whdx(Thdout—Th4)); % Hot stream , wh4

Q4—(UA4xDeltaT4 ) ; % HX design equation
% Lower path, 5th HX

Q5— (w2 (T5-T4)); % Cold stream , w2

Q5+ (par . wh5x(Th50out—Th5 ) ) ; % Hot stream , whb

Q5—(UA5+DeltaT5 ) ; % HX design equation

% Mass balance
wl+w2—w0;

% Energy balance
(wO*Tend) — (wl1xT3)—(w2xT5)];

end

HEN_Constraints_32_HXD_DJT.m

% HEN _Constraints function for the Jaeschke Temperature
% Nonlinear constraints for optimizing a HEN
% Includes mass, energy and steady state balances and the Jaeschke temp

function [Cineq, Res| = HEN_ Constraints 32 HXD DJT(x, par)
x=x.xpar.sc.x; % Unscale variables

% States

Tend = x(1); Tl = x(2); T2 = x(3); T3 =x(4); T4 = x(5);

T5 = x(6); Thlout = x(7); Th2out = x(8); Th3out = x(9);
Th4out = x(10); Thbout = x(11); wl = x(12); w2 = x(13);

Ql = x(14); Q2 = x(15); Q3 = x(16); Q4 = x(17); Q5 = x(18);

% Parameters
w0 = par.w0;
whl = par.whl; wh2 = par.wh2; wh3 = par.wh3; wh4 = par.wh4; whb = par.whb;
Thil par.Thl; Th2 par.Th2; Th3 = par.Th3; Th4d = Thb = par.Thb;
TO = par.TO;
UAl = par.UAl; UA2 = par.UA2; UA3 = par.UA3; UA4 = par.UA4; UA5 = par.UAS5;

\
ol
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=
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DeltaTmin = par.DeltaTmin;

%% INEQUALITY CONSTRAINTS
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%HX 1
Cineql = —(Thl-T1-DeltaTmin); % HOT SIDE HX1
Cineq2 = —(Thlout—T0-DeltaTmin); % COLD SIDE HX1

JHX 2
Cineq3 = —(Th2-T2—DeltaTmin ); % HOT SIDE HX2
Cineq4 = —(Th2out—T1-DeltaTmin); % COLD SIDE HX2
%HX 3
Cineq5 = —(Th3-T3-DeltaTmin); % HOT SIDE HX3
Cineq6 = —(Th3out—T2-DeltaTmin ); % COLD SIDE HX3
Ty X4
Cineq7 = —(Th4-T4—DeltaTmin); % HOT SIDE HX4
Cineq8 = —(Th4out—T0-DeltaTmin); % COLD SIDE HX4
T7HX5
Cineq9 = —(Th5—T5-DeltaTmin); % HOT SIDE HX5
Cineql0 = —(Thb5out—T4—DeltaTmin); % COLD SIDE HX5
Cineq = [Cineql;Cineq2; Cineq3; Cineq4; Cineq5; Cineq6 ; CineqT7; Cineq8 ;

Cineq9; Cineql0 |;
%% MODEL EQUATIONS

%Underwood Approximation

DeltaT1 = ((((Thlout—T0)~1/3)+((Th1-T1)"1/3))/2)"3;
DeltaT2 = ((((Th2out—T1)"~1/3)-+((Th2-T2)"1/3))/2)"3;
DeltaT3 = ((((Th3out—T2)"~1/3)+((Th3-T3)"1/3))/2)"3;
DeltaT4 = ((((Th4out—T0)"1/3)+((Th4—T4)"1/3))/2)"3;
DeltaT5 = ((((Th5out—T4)~1/3)+((Th5-T5)"1/3))/2)"3;

%Jaesckhe Temperatures
DJT1 = ((T1-T0)" 2% ((T2-T0)*(Th3-T0)—(T3-T0)* (T2-T0)+(Th1-T0 ) *
(Th3-T0) — (Th2—T0)  (Th3—T0)+ (T3-T0) * (Th2—T0) — (Th1-T0) * (T3—T0) ) -+
(((T2-T0) " 2)*(Th1-T0) * ((T3-T0) — (T1-T0) — (Th3-T0) + (Th2-T0)) ) +
((T3-T0) "~ 2)*(Th1l-T0)* ((T1-T0)—(Th2-T0))) / ( (Th1-T0 ) *
(( = (Th2-T0) % (Th3-T0)) — (T1-T0) * (T2-T0) + (T1-T0 )
(Th3-T0)+ (Th2—T0) % (T2-T0)) ) ;
DJT2 = (((Th5-T4)/(Th4—T0)) —1)*((T4-T0)~2/(Th5-~T4)) -+ ((T5~T0)~2)/(Th5-T4);

%% DESIGN EQUATIONS (EQUALITY CONSTRAINTS)

Res = | % Upper path, 1st HX
Ql—(wlx(T1-T0)); % Cold Stream, wl
Ql+(par.whl*(Thlout—Thl)); % Hot Stream, whl
Q1—(UA1*DeltaT1 ); % HX Design Equation

% Upper path, 2nd HX

Q2—(wlx(T2-T1)); % Cold Stream, wl
Q2+ (par . wh2x(Th2out—Th2)); % Hot Stream, wh2
Q2—(UA2xDeltaT2 ) ; % HX Design Equation

95



% Upper path, 3rd HX

Q3—(wlx(T3-T2)); % Cold Stream, wl

Q3+ (par . wh3*(Th3out—Th3)); % Hot Stream, wh3

Q3—(UA3*DeltaT3 ) ; % HX Design equation
% Lower path, 4th HX

Q4—(w2x(T4-T0)); % Cold stream , w2

Q4+(par . whdx(Thdout—Th4)); % Hot stream , wh4

Q4—(UA4xDeltaT4 ) ; % HX design equation
% Lower path, 5th HX

Q5—(w2x(T5-T4)); % Cold stream , w2

Q5+ (par . wh5x( Th5out—Th5 ) ) ; % Hot stream , whb

Q5—(UA5+DeltaT5 ) ; % HX design equation

% Mass balance
(wltw2—w0 ) ;

% Energy balance
(w0xTend) — (wl*T3) —(w2+T5 ) ;

% Jaeschke temperatures
(DJT2 — DJT1)];
end

Object_32_HXD.m
% Object function for the (3,2) HEN

function [J] = Object 32 HXD(x,par,c0)

X = X.#par.sc.X;
UAl = x(19);
UA2 = x(20);
UA3 = x(21);
UA4 = x(22);
UA5 = x(23);
Tend = x(1);

% Cost function
J = (—Tend+c0*(UAl"par.n+UA2" par .n+UA3" par .n+UA4" par .n+UA5 par.n) ) ;

end
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