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Abstract

Self-optimizing control is when acceptable performance can be achieved using
pre-computed references and with no need to re-optimize when disturbances
occur. For linear steady state processes, several methods to identify self-
optimizing control structures have been developed recently.

For many industries, however, unsteady state processes become more and
more important. A typical example is batch distillation. This thesis extends
the idea of self-optimizing control to such tracking problems.

The main di�erence is that the optimal input trajectories in batch processes
often contain a �nite number of jump discontinuities. These divide the batch
into several intervals and for each interval exists one self-optimizing con-
troller. It is now very important to activate the next controller at the right
time as failure to do so may lead to infeasibility. Hence, good feedback-based
switching laws are desirable.

A promising candidate is the so-called nullspace method which is examined
�rst. It is found, that a linear combination of states does not lead to accept-
able results. Therefore, an alternative switching strategy that uses indirect
information about the disturbance is presented. In combination with sim-
ple PI-type continuous controllers, self-optimizing control for this particular
nonlinear batch process becomes possible and leads to good results.
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Chapter 1

Introduction

1.1 Background and Motivation
Distillation is one of the oldest and the most commonly used separation
method in the chemical process industries (Bausa and Tsatsaronis, 2001).
Its importance is easily illustrated: more than 90% of all separations for
product recovery and puri�cations in the United States are done by distilla-
tion columns, following capital investments of at least 8 billion U.S. dollars
(Humphrey, 1995).

From simple apparatuses for spirit and perfume production to today's mod-
ern industrial distillation plants, distillation processes have been studied and
improved extensively. While early apparatuses were operated batch-wise,
continuous operation of distillation processes has become predominant in
most large-scale industries today. However, with increasing demands for
special, high-purity products in the pharmaceutical and �ne chemical indus-
tries, the advantages of batch distillation have been rediscovered in recent
decades (Sørensen, 1994).

The main advantage of batch distillation plants is their �exibility. The same
plant can handle wide ranges of product amounts, feed compositions or even
totally di�erent production recipes. Moreover, and contrary to continuous
distillation, only a single batch distillation column is needed to recover mul-
tiple components from a feed charge.

From a control point of view, the main di�erence between continuous and
batch distillation is their di�erent modes of operation. Continuous distilla-
tion plants are mostly operated at steady state, whereas batch processes are
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1. Introduction 2

at unsteady state (Diwekar, 1995). Although the latter is desirable to main-
tain �exibility of the plant, it makes control and optimization more complex.

As with most chemical processes, control strategies for batch distillation pro-
cesses often try to achieve optimal operation of the plant. Possible scenarios
for this dynamic optimization task are shown in �gure 1.1.

Figure 1.1: Dynamic optimization scenarios
adopted from Srinivasan et al. (2003)

This approach suggests three levels of classi�cation. To classify a certain sce-
nario, it must be considered whether the optimization is carried out under
uncertainty, whether measurements are included and whether a model of the
process is used for implementation purposes.

Each branch of the illustrated classi�cation tree has advantages and draw-
backs. On the �rst level, including uncertainty assures feasibility even in case
of disturbances or changes in operating parameters but might require solving
more complex equations than for nominal optimization. Level two distin-
guishes robust optimization from measurement-based optimization. Robust
optimization is used when no measurements are available. Possible distur-
bances must thus be taken into account explicitly, leading to a more con-
servative solution (Skogestad and Postlethwaite, 1996). This is caused by
the large back-o� from the constraints, leading to a noticeable loss in perfor-
mance. Improvements in measurement technology and equipment during the
last years have enabled engineers to include measurements in process opti-
mization (Srinivasan et al., 2003). This allows for less conservative solutions
than with robust optimization. Furthermore, measurements can be used not
only within the batch, but also in a batch-to-batch manner to help improve
overall performance. Although this is a valuable feature of measurement-
based optimization, it will not be considered further in this thesis.

When a process model is used in the �nal control implementation as shown
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on level three in �gure 1.1, explicit optimizations can be carried out repeat-
edly with each new measurement. This is similar to model predictive control
(MPC), a control strategy widely used in industry today (Qin and Badgewell,
1997). As commonly acknowledged, the huge computational burden caused
by repeated online optimization, especially for models of large and very nonli-
near systems, is the main drawback of model-based optimization (Srinivasan
et al., 2003). In contrast, model-free control implementations do not su�er
from these disadvantages. To obtain optimal operation, measurements need
then be utilized directly.

Generally speaking, the idea behind this thesis is to develop a model-free
control implementation for a batch distillation plant model. To achieve this,
the so-called method of self-optimizing control seems to be both appropriate
and promising. Self-optimizing control has emerged from the work of Morari
et al. (1980) and Skogestad and Postlethwaite (1996). The original de�nition
of self-optimizing control as given by Skogestad (2000) is

Self-optimizing control is when acceptable operation can be
achieved using constant setpoints for the controlled variables, with-
out the need to re-optimize when disturbances occur.

However, this de�nition is intended for steady state processes. Thus, for
non-steady state batch processes a slightly modi�ed de�nition seems more
appropriate and will be used throughout this thesis (Dahl-Olsen et al., 2007):

Self-optimizing control is when acceptable performance can be
achieved using pre-computed references, without the need to re-
optimize when disturbances occur.

Several methods for �nding a self-optimizing control structure for linear
steady state processes have been found in recent years. These include the
so-called direct loss evaluation method (Skogestad, 2004), the local method /
maximum gain rule (Halvorsen et al., 2003) and the nullspace method (Al-
stad, 2005).

In contrast to steady state processes, batch processes usually contain a �nite
number of input jump discontinuities. For each interval in-between these
discontinuities, one self-optimizing controller is sought. However, a robust
strategy is needed to switch between the distinct controllers.
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The aim of this thesis is to �nd a model-free control structure for a batch
distillation process that delivers near-optimal performance even when dis-
turbances are present. For switching from one controller to the next, ro-
bust feedback-based switching rules are studied. It is examined whether the
nullspace method is suitable for this purpose.

1.2 Thesis Outline
This thesis consists of 6 chapters and is structured as follows:

Chapter 2 describes the batch distillation process that has been studied.
Assumptions about the plant con�guration as well as about the process
itself are stated. The system's equations and numerical parameters are
given to reproduce the results. Furthermore, di�erent control objectives
are discussed.

Chapter 3 deals with the open-loop solution of the optimization problem.
Software that has been used for this thesis is introduced and brie�y
compared. Both optimal open-loop trajectories and minimal batch
times have been computed.

Chapter 4 is dedicated to the closed-loop system. The nullspace method is
introduced mathematically and applied to the process. An alternative
approach to handle the discrete switching decisions is presented. The
chapter concludes with simulation results of the feedback-controlled
system.

Chapter 5 discusses both various methodical aspects as well as results from
the previous chapters. Open-loop and closed-loop solutions are com-
pared.

Chapter 6 sums up and concludes the thesis. It also proposes some direc-
tions for further work.



Chapter 2

Process Description

2.1 Batch Distillation
Distillation in general is a thermal process to separate di�erent substances
from a liquid mixture. It makes use of the di�erent boiling points of the
chemicals present in the mixture.

A typical setup of a batch distillation column is shown in �gure 2.1. It nor-
mally consists of a reboiler at the bottom, a cylindrical tower with multiple
trays and a condenser with re�ux drum on top. Although most industrial
batch columns are packed, theoretical tray models can nevertheless be used.
The number of theoretical trays is then related to the packing height.

Before operation, the reboiler is usually fed with the liquid mixture that is
to be separated. During operation, the liquid inside the reboiler is heated
and the resulting vapor rises through small holes in the bottom of the trays
to the top of the column. There, the rising vapor is condensed and �ows
either to a tank or is fed back to the uppermost tray of the column. The
descending liquid �ows across weirs on each tray to the next tray below.

On each tray, descending liquid and rising vapor streams meet and are well
mixed. While the vapor is enriched with the more volatile components
through this process, the concentrations of the same components decrease
in the liquid stream.

The enriched top products are then drained continuously from the re�ux
drum into the product tank, as can be seen in �gure 2.1. This, together
with the depletion of the reboiler contents, makes the operation of batch
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2. Process Description 6

Figure 2.1: Setup of a batch distillation column
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distillation plants an unsteady process.

2.2 Con�guration and Assumptions
A simple model of a batch distillation column has been used for optimization,
analysis and control. The following assumptions were made:

1. Binary mixture. The mixture consists of only two components.

2. Constant molar holdup. The liquid holdup on each tray is assumed
constant during operation, dynamic e�ects are neglected.

3. Negligible vapor holdup.

4. Perfect mixing. This assumes that all physical properties do not have
any spacial gradients on each tray, reboiler, re�ux drum and tank.

5. Constant relative volatility. This is assumed to represent the vapor-
liquid equilibrium.

6. Thermodynamic equilibrium on each tray.

7. Total condenser with no sub-cooling. All rising vapor is immediately
condensed at its boiling point.

8. Constant vapor boil-up rate. Usually, a constant heat duty is supplied
to the reboiler. This would lead to changes in the vapor boil-up rate
as the reboiler contents deplete. This change is usually small and a
constant boil-up rate is assumed.

For this work, both the re�ux stream L and the product stream D as shown
in �gure 2.1 are considered as manipulated variables. Although the vapor
boil-up stream is constant during the batch process, its deviation from the
nominal value is regarded as the main disturbance to the system.

2.3 Model Equations
Using the assumptions above, material balances are su�cient to describe
the batch distillation plant mathematically. In case of the re�ux drum, the
di�erential equations for the mole fraction of the more volatile component as
well as for the holdup are as follows:
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dxRD

dt
=

V

NRD

(y1 − xRD) (2.1)

dNRD

dt
= V − (L + D) (2.2)

Here, xRD and NRD denote the mole fraction of the more volatile component
and the holdup in the re�ux drum, respectively. V is the vapor boil-up rate,
L and D are the liquid re�ux and distillate streams as shown in �gure 2.1.
y1 refers to the molar fraction of the more volatile component in the vapor
phase on the uppermost tray.

Using the concept of a constant relative volatility α, the equilibrium relation-
ship between vapor composition y and liquid composition x on each tray and
in the reboiler can be approximated as follows (Stichlmair and Fair, 1998):

y =
αx

(α− 1)x + 1
(2.3)

This equation derives directly from the de�nition of the relative volatility.
For a binary mixture of two components A and B, αAB is de�ned as follows:

αAB :=
yA/xA

yB/xB

. (2.4)

Finally, substituting xB = 1− xA and yB = 1− yA in equation 2.4 results in
equation 2.3 above.

Similar to equations 2.1 and 2.2, material balances for the reboiler (index
RB) and tank (index T ) yield the following equations:

dxRB

dt
=

L

NRB

(xn − xRB) +
V

NRB

(xRB − yRB) (2.5)

dNRB

dt
= L− V (2.6)

dxT

dt
=

D

NT

(xRD − xT ) (2.7)

dNT

dt
= D (2.8)
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where n denotes the lowest tray in the column.

In addition, equations for the mole fraction in the liquid phase of each tray
are required. The index k = 2, 3, . . . , (n − 1) indicates the position of the
tray within the column, where 1 refers to the uppermost and n to the lowest
tray as shown in �gure 2.1.

dx1

dt
=

L

H
(xRD − x1) +

V

H
(y2 − y1) (2.9)

dxk

dt
=

L

H
(xk−1 − xk) +

V

H
(yk+1 − yk) (2.10)

dxn

dt
=

L

H
(xn−1 − xn) +

V

H
(yRB − yn) (2.11)

2.4 Parameters, Initial Conditions
and Constraints

Parameters and initial conditions are shown in table 2.1.

Description Symbol Value Unit
Holdup of each tray H 1 mol
Initial holdup of reboiler NRB,0 50 mol
Initial holdup of tank NT,0 0.001 mol
Initial liquid mole fraction on
all trays, in re�ux drum, re-
boiler and tank x0 0.5 -
Nominal value of vapor boil-up
rate V nom 1 mol / min

Table 2.1: Parameters and initial conditions

The initial holdup of the tank has been set to 0.001 mol instead of setting it
to 0 to avoid division by zero in equation 2.7.

The number of trays n as well as the relative volatility α were set to distinct
values in each of the two scenarios that have been examined.
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For optimization and implementation, the inputs L and D have been con-
strained. Furthermore, natural constraints on the states apply. All con-
straints are shown in table 2.2.

Description Symbol(s)
Lower
Bound

Upper
Bound Unit

Re�ux stream L 0.1 5 mol / min
Product stream D 0 5 mol / min
Holdups NRD, NRB, NT 0 - mol
Mole fractions x, y 0 1 -

Table 2.2: Constraints on states and inputs

The re�ux stream has been assigned a lower bound of 0.1 mol / min to avoid
�ooding of the column. Although this e�ect is not modeled here, it can be-
come a serious problem in industrial plants. Constraining the re�ux �ow rate
ensures that the column contents are not blown out prematurely and that
the constant molar holdup assumption remains valid.

Note that some additional parameter and initial conditions, as for example
the number of trays, have been chosen according to the speci�c operating
strategy and are provided later in section 2.6.

2.5 Choice of Control Objective
One of the steps involved in process optimization is the choice of a proper
objective function. For batch distillation processes, several objective func-
tions have been studied in the literature. Some of the most common choices
include:

1. Maximization of the sharpness of separation, e.g. Houtman and Husain
(1956),

2. Maximizing the pro�t when the re�ux ratio can be varied, e.g. Diwekar
et al. (1989),

3. Maximizing the amount of distillate in a �xed duration of time, e.g.
Farhat et al. (1990) or
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4. Minimizing the �nal batch time tf such that composition and amount of
distillate meet the speci�ed requirements, e.g. Mujtaba and Macchietto
(1991).

This work adopts the 4th approach of minimizing the batch time. Thus, the
problem is mathematically described as follows:

min tf s.t. xT ≥ xspec
T

NT ≥ N spec
T

(2.12)

The numerical values for xspec
T and N spec

T are given in section 2.6. In addition,
the di�erential equations of section 2.3 and the contraints given in section
2.4 apply.

The motivation for this minimum time problem is manifold. First of all,
pro�t is important in industrial context. While this calls for objective 2, ad-
ditional economical parameters would be required that are usually di�cult
to obtain. On the other hand, minimizing the time for each batch allows
producing the maximum number of batches per time unit. Normally, this
will also result in a maximized pro�t.

It should be noted here that minimum time problems might be harder to
optimize numerically than problems with a �xed �nal time. To some extend,
this also depends on the software and optimization algorithm used.

2.6 Operating Strategy
Prior to optimization, a operating strategy must be chosen. In this work, two
di�erent scenarios have been considered and are described in this section.
The corresponding parameters can be found in table 2.3.

2.6.1 Scenario 1
In a �rst scenario, the plant is operated under total re�ux until steady state is
reached. During this phase, the vapor stream is assumed to be at its nominal
value and the re�ux stream at its upper bound. Since the constant relative
volatility α has been set to 5, separation is relatively easy considering that
α is around 1.1 to 2.5 in many real industrial processes (McCabe, 2005).
Therefore, the time to reach steady state is much smaller than the actual
production phase and can safely be neglected (Sørensen, 1994).
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2.6.2 Scenario 2
In the second scenario, separation was made more di�cult by setting α to 2.
For such processes, the duration of the initial phase in which the column is
operated under total re�ux may contribute greatly to the total batch time
(Sørensen, 1994). In contrast to the �rst scenario, switching from the total
re�ux to the normal operation phase has been considered important. Further-
more, the re�ux drum holdup has been assumed to be constant, thus reducing
the ordinary di�erential equation 2.2 to the following algebraic equation:

0 = V − (L + D) (2.13)

Description Symbol Scenario 1 Scenario 2 Unit
Constant relative volatility α 5 2 -
Number of trays n 5 10 -
Re�ux drum holdup NRD variable constant mol
Initial re�ux drum holdup NRD,0 10 5 mol
Minimum required termi-
nal product composition in
tank xspec

T 0.9 0.8 -
Minimum required termi-
nal amount of substance in
tank N spec

T 32.5 32.5 mol

Table 2.3: Additional Parameters for the di�erent scenarios



Chapter 3

Optimal Open-Loop Operation

3.1 Motivation
One of the advantages of self-optimizing control is to avoid computation-
ally expensive online optimization. However, to �nd the self-optimizing con-
trol structure itself, o�ine open-loop optimization is required. The optimal
solution is also needed to evaluate the performance of the applied process
controller.

3.2 Software
Two proprietary software packages have been used to obtain the optimal
open-loop solutions to the problems described in chapter 2: MATLAB1 and
gPROMS2. While the internal MATLAB optimizer fmincon was used to op-
timize the �rst scenario, gPROMS turned out to be the better choice for
optimizing scenario two. Table 3.1 shows a rough comparison of the two
programs based on personal experiences while working on this thesis.

Additionally, a commercial toolbox for MATLAB, called TOMLAB3, has
been used without any success for trying out various approaches (see section
3.3) to obtain an optimal solution for scenario 2.

1vendor: The MathWorks, http://www.mathworks.com/
2vendor: Process Systems Enterprise Limited, http://www.psenterprise.com/
3vendor: Tomlab Optimization, http://tomopt.com/tomlab/

13



3. Optimal Open-Loop Operation 14

Program Advantages Disadvantages
MATLAB

• �exible programming

• detailed graphical �g-
ures

• many opportunities for
result analysis

• useful debugging infor-
mation

• laborious imple-
mentation of ODE-
integrations with
varying duration

• poor convergence and
strange behavior of
built-in optimizer
fmincon

gPROMS
• easy implementation of

model equations, con-
straints etc.

• optimization uses sym-
bolic calculations and
is much faster

• handles varying time
durations naturally

• unfriendly user inter-
face with buggy dialogs

• external programs are
needed to process and
analyze results

• incomprehensible error
messages

Table 3.1: Comparison of MATLAB and gPROMS

3.3 Optimal Open-Loop Solution
3.3.1 Scenario 1
As mentioned before in section 2.6, the plant is operated in total re�ux mode
prior to optimization. After steady state is reached, both inputs L and D are
assumed to be piecewise constant until the objective composition and tank
holdup terminal constraints are met.

In a �rst step, the time domain is split into 4 intervals. The lengths of the
intervals as well as the values of L and D are then determined by the op-
timizer. This is not only done for the nominal value of the vapor boil-up
rate V but also for disturbed values V = (1 ± 0.1)V nom. The resulting op-
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timal trajectories as calculated with MATLAB are shown in �gure 3.1 and
3.2. For both mole fractions and holdup plots, only the nominal case is pre-
sented here. The trajectories of the disturbed cases look qualitatively very
similar and are not of further interest. The second column of table 3.2 shows
the value of the objective function, that is, the total batch time for each case.
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(a) Disturbed case: V = 0.9
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(b) Nominal case: V = 1.0
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(c) Disturbed case: V = 1.1

Figure 3.1: Optimal open-loop input trajectories for 4 intervals

It can be seen from �gure 3.1 that the optimal input trajectories for each
value of V are quite similar. However, there are two major di�erences be-
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nominal case with 4 intervals
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tween them. First, the set of active constraints changes with the disturbance.
For example, for V = 0.9, D hits its lower bound in the �rst interval unlike
in the disturbed cases. Second, for V = 1 and V = 1.1, the last interval has
a duration of nearly zero in contrast to the case where V = 0.9.

While these issues might be related to numerics, it is important for the veri-
�cation of the nullspace method that the qualitative behavior is as similar as
possible and that the set of active constraints does not change with possible
disturbances. This will be discussed in more detail in section 4.2 together
with an introduction to the nullspace method itself.

For those reasons, the operating policy has been modi�ed in a second step:
Instead of 4 intervals, the batch time is now only divided in 3 intervals with
variable length. Furthermore, the inputs of the �rst and the last phase have
been �xed: L has been set to its lower bounds in both intervals while D has
been set to zero in the �rst and to D = L− V in the �nal phase, so that the
holdup of the re�ux drum remains constant at the end of the batch process.
Again, the optimal input trajectories were calculated by fmincon. They are
plotted in �gure 3.3 and the total batch time is shown in the third column
of table 3.2.

Vapor boil-up rate
V in mol / min

Original operating policy
(4 phases)

Modi�ed operating policy
(3 phases)

0.9 31.35 min 31.36 min
1.0 28.12 min 28.16 min
1.1 25.55 min 25.55 min

Table 3.2: Final batch time tf for di�erent disturbances and operating policies

It becomes clear from table 3.2 that the total batch time obtained with the
modi�ed operating policy is nearly the same as for the optimized original
operating policy, even though the latter has more degrees of freedom.
Finally, the same set of constraints is active in each phase for all disturbances.
This can be seen in �gure 3.3 and �gure 3.4. The same qualitative behavior of
all cases has been achieved and the gathered data can now be used to analyze
whether the nullspace method can be applied to unsteady state processes.
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3.3.2 Scenario 2
In the second scenario, the initial phase in which the column is operated
under total re�ux is not neglected anymore. This is because the constant
relative volatility α is now set to 2, making the separation much harder. The
following strategies were tried to obtain an optimal open-loop solution to this
problem:

• Using the same approach as for scenario 1. That is, the total batch
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(a) Disturbed case: V = 0.9
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(b) Nominal case: V = 1.0
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(c) Disturbed case: V = 1.1

Figure 3.3: Optimal open-loop input trajectories for 3 intervals
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(b) Optimal holdup pro�les

Figure 3.4: Optimal open-loop mole fraction and holdup trajectories for the
nominal case with 3 intervals
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time was �rst split in several intervals. Afterwards, fmincon was used
to optimize both the lengths of the intervals and the optimal value for
L which has been considered to be piecewise constant. Remember that
due to equation 2.13 D depends on L as only one manipulated variable
is left. However, fmincon did not converge to any result.

• For the second approach, concentration thresholds were introduced to
act as optimization parameters. The ideas was that if a certain concen-
tration exceeds the speci�ed threshold, integration is stopped for the
current interval and the next interval is calculated. Direct optimization
of the very sensitive time duration can thus be avoided. This strategy
did also not converge. Moreover, not all events have been detected by
the Event Location Property functionality provided by the MATLAB
ODE-solvers, especially if the threshold is approached too slowly.

• Next, a di�erent objective function was chosen. Instead of minimizing
the total batch time, the derivation between the �nal states xf and
their required values was minimized. Again, convergence could not be
achieved.

• Finally, a simple proportional controller for L has been implemented
before the optimization was carried out. This way, not L but a set
point for the mole fraction x2 on the second tray was optimized. The
control law is given below in equation 3.1.

L = 5(x2,sp − x2) (3.1)

where x2,sp denotes the set point for the mole fraction on tray 2. Al-
though this approach did not work with MATLAB, convergence could
be achieved in gPROMS.

Vapor boil-up rate V Total batch time tf

0.9 mol / min 100.48 min
1.0 mol / min 86.75 min
1.1 mol / min 78.82 min

Table 3.3: Final batch time tf for di�erent disturbances in scenario 2

The last approach has been successfully optimized with gPROMS. The time
following the initial, total re�ux phase has been divided into two intervals.
Equivalently to scenario 1, the length of both intervals as well as the value of
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x2,sp were determined by the optimizer, in this case, by the multiple shoot-
ing algorithm CVP_MS inherent in gPROMS. The optimal trajectories look
similar for all considered disturbances. The resulting trajectories for the
nominal case are shown in �gures 3.5 and 3.6. Table 3.3 contains the �nal
batch time for di�erent disturbances.

An interesting question remains, though. Why is optimizing and controlling
a mole fraction in the column more promising than directly optimizing the
re�ux stream L? This question will be discussed in section 5.2.
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Figure 3.5: Optimal open-loop mole fraction and holdup trajectories for
scenario 2
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(b) Resulting optimal trajectories for L and D

Figure 3.6: Controlling L by tracking the optimal reference for x2 in scenario 2



Chapter 4

Closed-Loop Control

4.1 Motivation
In the previous chapter, optimal open-loop or feedforward control laws for
batch distillation processes have been calculated. If the value of the distur-
bance V is known, the appropriate control can be directly applied to the
plant. However, measurements of disturbances are often not available. A
robust feedback control structure is therefore desirable.

In this chapter, such a feedback structure is derived. The perfect control
structure would for all expected disturbances deliver near-optimal perfor-
mance compared to the feedforward solution without using a plant model
for implementation. Having these objectives in mind, several approaches
were examined. The nullspace method, originally developed for steady state
processes, looks promising and serves as a starting point.

4.2 Discrete Switching Decisions
As shown in the previous chapter, discrete decisions are required that de-
termine when to switch between the di�erent continuous controllers. These
decisions should be based on feedback. To �nd such an applicable switching
strategy is the focus of this work.

4.2.1 The Nullspace Method
The nullspace method has been developed to select optimal measurement
combinations as controlled variables in steady state processes (Alstad, 2005).
Since this idea might also work for batch processes, it is brie�y introduced

24
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here in its traditional form for continuous processes.

Consider a dynamic system with a vector y0 that contains all measureable
variables of the system. Linear combinations c of a subset y of those mea-
surements are described as follows:

c = Hy (4.1)

where H is a constant coe�cient matrix.

In steady state, the optimal value of y, yopt, depends on the disturbance d.
The idea is to �nd a matrix H such that the optimal value of c is however
independent of d:

dcopt(d) = 0 (4.2)

When equation 4.2 holds, c can be controlled at a constant set point to
achieve optimal performance despite disturbances.

Next, consider a constant sensitivity matrix F for small disturbances d, eval-
uated at the nominal optimal point:

F =

(
dyopt

dd

)T

(4.3)

This gradient can be calculated numerically by repeated optimization of the
process for small perturbations of the disturbances. Note that the set of
active constraints must not change with the perturbed disturbances. Other-
wise, F is not well de�ned.

Using equation 4.3 to substitute y in equation 4.1 and inserting the result in
equation 4.2 �nally leads to

HF = 0 (4.4)

This equation can be verbalized as �H must lie in the left nullspace of F�,
which is the reason why this method is called nullspace method.

Now how can this method be used for determining the switching instants ts
in batch distillation control? Analogous to the continuous case, the optimal
switching instants depend on the disturbances:

ts,opt = f(d) (4.5)
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Switching at nominal time might not only lead to non-optimal results as in
the continuous case but even to infeasibility. The idea is to �nd a combination
of measurements that results in a scalar and steady function c which is either
monotonously in- or decreasing. For example, consider a constant coe�cient
matrix H, such that

c = Hy (4.6)

If then at the optimal switching instant ts,opt the value of c, denoted copt =
c (t = ts,opt), was independent of the disturbances d, it could be used to trig-
ger switching to the next continuous controller. Thus, equation 4.2 should
hold again, leading in turn to equation 4.4 that could be used to determine
H. Using the data from scenario 1, section 3.3, this idea is examined for the
�rst switching instant (occurring at ts,opt = 18.36 min in the nominal case).
For several disturbances, the optimal switching time ts,opt is shown in table
4.1.

Vapor boil-up rate V Switching time ts,opt

0.90 mol / min 19.373 min
0.99 mol / min 18.310 min
1.00 mol / min 18.364 min
1.01 mol / min 18.080 min
1.10 mol / min 16.265 min

Table 4.1: First optimal switching instants for scenario 1

Since all states are assumed to be measurable, table 4.2 shows the states in
scenario 1 at the optimal switching time for several values of V .

In this scenario V is the only disturbance, so d = V is scalar. Thus, both F
and H are vectors, not matrices, and will be written f and hT respectively.
In a �rst step, f has been calculated numerically using a �nite di�erence
approximation:

f =
1

V + − V −
(
y+ − y−

)
(4.7)

where V + = 1.01, V + = 0.99 and y+ and y− correspond to the states at
the optimal switching time ts,opt for each value of V. The elements of the
sensitivity vector f can also be found in table 4.2.
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State Vapor boil-up rate V in mol / min Sensitivity
yi 0.90 0.99 1.00 1.01 1.10 fi

NRD 25.499 26.296 26.528 26.453 26.265 7.865
NRB 34.501 33.704 33.472 33.547 33.735 -7.865
NT 0.001 0.001 0.001 0.001 0.001 0.000
xRD 0.952 0.942 0.939 0.940 0.940 -0.100
xRB 0.202 0.195 0.192 0.193 0.196 -0.075
xT 0.500 0.500 0.500 0.500 0.500 0.000
x1 0.340 0.310 0.303 0.304 0.303 -0.260
x2 0.249 0.235 0.231 0.233 0.236 -0.120
x3 0.229 0.219 0.216 0.217 0.221 -0.090
x4 0.219 0.210 0.207 0.208 0.212 -0.085
x5 0.210 0.202 0.199 0.200 0.204 -0.075

Table 4.2: Further data from scenario 1 to examine whether the nullspace
method is applicable for the �rst switching instant

In a second step, all coe�cients in hT have been set to 1 with the exception
of the �rst component h1 which was calculated such that equation 4.4 is
satis�ed. Although there are an in�nite number of solutions vectors h, the
above solution was chosen for simplicity. In general, other solutions might be
more appropriate to reduce the e�ect of measurement errors or to achieve a
certain control structure (Alstad, 2005). However, these issues are not within
the scope of this thesis.

It should also be noted here that with this choice of hT , scaling down the
much larger holdups to the dimension of the mole fractions would not quali-
tatively change the result. Instead, by weighting both holdups with the same
coe�cient, and because NT = 0 in the �rst phase, they cancel each other out
when calculating h1. This can also be seen in the last column of table 4.2.

For the nullspace method to work, copt = hTy must be constant for all pos-
sible disturbances. Indeed, table 4.3 shows that copt does not vary too much
for the di�erent values of V . However, c cannot be used for triggering the
switching: Although c is steady and decreases monotonously, switching at a
value of c that di�ers only slightly from the optimal value copt means switch-
ing up to 2 minutes too early or too late. This is demonstrated in �gure 4.1
for the case V = 1.1. According to table 4.1, the optimal switching time is
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16.26 minutes. If switching was triggered by c reaching the optimal value for
the nominal case (V = 1.0) then it would take place at time t = 18.3 min �
more than 2 minutes later than optimal.

Vapor boil-up rate V Optimal c-value copt

0.90 mol / min 55.2383
0.95 mol / min 55.2235
0.99 mol / min 55.2308
1.00 mol / min 55.2284
1.01 mol / min 55.2308
1.05 mol / min 55.2352
1.10 mol / min 55.2428

Table 4.3: Optimal values of c for di�erent disturbances

4.2.2 Indirect Information about Disturbances
In order to �nd an applicable, model-free switching strategy, another ap-
proach to control the system is needed. The key idea of the following method
is to get some indirect information about the disturbance as it was assumed
earlier that it is not directly measureable.

Scenario 1
Consider again the optimal open-loop solution for scenario 1 as shown in
section 3.3. With L and D �xed at their lower limits during the �rst phase,
the re�ux drum holdup now only depends on the value of V . Equation 2.2
shows this mathematically. Therefore, the re�ux drum holdup NRD can be
used to indirectly gain information about the disturbance.

As stated in the context of the nullspace method, the variable that is used
for switching must in- or decrease monotonously in each controller interval.
The re�ux drum holdup NRD satis�es this requirement. Together with a set
of continuous controllers which is described in the following section 4.3, a
control structure has been implemented where NRD is used to determine the
switching to the next controller.
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Figure 4.1: c over time for V = 1.1. Switching at optimal nominal value of c
would be 2 minutes too late

The �rst continuous controller is used until NRD exceeds a value of 26. Then,
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the second controller is activated until NRD falls below 0.2. Until the terminal
constraints are met, the third and �nal controller takes over the system.

Scenario 2
In the second scenario, the re�ux drum holdup has been �xed by setting
equation 2.2 equal to zero and thus cannot be used as a decision variable.
However, in the �rst phase the plant is operated in total re�ux mode. Equa-
tion 2.1 shows that in this case xRD gives a good variable that ful�lls all
requirements as stated above. Thus, it will be used to activate the controller
of phase 2 when a threshold of 0.7 is exceeded.

In the intermediate phase 2, the tank holdup NT has been chosen as the
variable to decide about controller switching. Contrary to scenario 1, none
of the model equations depends exclusively on V . However, V has great
in�uence on the reboiler holdup NRB as can be seen in equation 2.6. With
equation 2.13, V also e�ects NT as NT + NRB = const. Therefore, using NT

is equivalent to using NRB. Thus, when NT exceeds a threshold value of 20.4,
the last phase is started.

4.3 Continuous Controllers
In addition to discrete switching decisions, continuous controllers must be
present to operate the closed-loop system. While the basic idea behind the
controlled variables and controller types was to mimic the open-loop behav-
ior, it should be noted that the �nal controller tuning, including the thresh-
olds for the switching variables in the previous section, was mostly done
empirically as this was not the focus of this thesis.

4.3.1 Scenario 1
Table 4.4 summarizes the controller con�guration for each phase. In phase 1
the re�ux drum is �lled. This is simply achieved by keeping L and D at their
lower bounds like in the open-loop solution. In the second phase, a PI-type
controller manipulates L using a set point for the mole fraction on the second
tray, x2. D is at its maximum to �ll the tank as fast as possible. Finally,
in the third phase, L is controlled at its lower bound while D is controlled
by a P-type controller. Again, a set point for x2 is used until the terminal
constraints are satis�ed.
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Phase Continuous controller Switching condition
initial
phase

D = 0
L = 1

Steady state is reached

1 D = 0
L = 0.1

NRD > 26

2 D = 5
L = 5 e +

∫
e dt

e = 0.45− x2

NRD < 0.2

3 D = −20 e
e = (0.1− x2)
L = 0.1

Terminal constraints are satis�ed

Table 4.4: Summary of the control structure for scenario 1

4.3.2 Scenario 2
Because of equation 2.13, only one degree of freedom is available in scenario
2. In the initial phase the column is operated at total re�ux. Therefore,
L has been �xed at its maximum, that is at the value of V . This can be
achieved by keeping the tank valve closed. D is then zero and because of
the constant re�ux drum holdup, L = V . Afterwards in phase 2, a PI-type
controller is used to control L depending on the mole fraction x2. Until the
terminal requirements are satis�ed, L is set to its lower bound in the �nal
phase. The complete control con�guration can be found in table 4.5. Note
that phase 1 is not strictly necessary. If the controller of phase 2 is used from
the beginning, L will become saturated at its upper bound automatically.
Thus, an even simpler control structure consisting only of phase 2 and 3
leads to the same results.

Phase Continuous controller Switching condition
1 L = V xT > 0.7

2 L = 20 e + 0.5
∫

e dt
e = 0.7− x2

NT > 10.4

3 L = 0.1 Terminal constraints are satis�ed

Table 4.5: Summary of the control structure for scenario 2
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4.4 Simulation Results
The closed-loop control structure and controller parameters mentioned in the
previous sections have been implemented in MATLAB. Simulations were run
and the results are shown here.

Tables 4.6 and 4.7 contain the total batch times for scenario 1 and 2 re-
spectively. Figures 4.2 - 4.5 illustrate the system's behavior in closed-loop
operation, again for both scenarios. Only the nominal pro�les are shown as
the qualitative behavior is the same for all considered disturbances.

Vapor boil-up rate V Total batch time tf

0.9 mol / min 31.56 min
1.0 mol / min 28.34 min
1.1 mol / min 25.75 min

Table 4.6: Final batch time tf for scenario 1, closed-loop

Vapor boil-up rate V Total batch time tf

0.9 mol / min 97.90 min
1.0 mol / min 87.40 min
1.1 mol / min 78.83 min

Table 4.7: Final batch time tf for scenario 2, closed-loop
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Figure 4.2: Nominal closed-loop mole fraction and holdup pro�les for scenario 1
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Figure 4.3: Nominal closed-loop input pro�les for scenario 1
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Figure 4.4: Nominal closed-loop input pro�les for scenario 2
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Figure 4.5: Nominal closed-loop mole fraction and holdup pro�les for scenario 2



Chapter 5

Discussion

5.1 Classi�cation of the Optimal Control Task
It has already been denoted in chapter 3 that dynamic optimization of this
batch distillation process is very di�cult. Various software packages have
been used to deal with this problem with varying success.

Reasons for these di�culties are manifold. The model contains strong nonlin-
earities as in equation 2.3 and the structure of the column leads to internally
coupled states, as can be seen in equation 2.10. Some optimization algo-
rithms might have additional problems with the minimum time objective.
Even in a simple model with a very limited number of trays these e�ects
prevent analytical solutions and complicate numerical optimization.

One of the most often used numerical solution strategies is the so-called
control vector parameterization which is, for example, implemented in the
gPROMS software. However, this strategy requires laborious and time-
consuming manual adjustments of initial guesses and other parameters to
make the algorithm converge. Moreover, the resulting solution is usually not
easy to analyse as a meaningful physical interpretation of the solution can
rarely be given.

Another optimization issue encountered in this thesis were multiple solu-
tions that had close-to-optimal values of their objective function although
their qualitative behavior was totally di�erent. In cases like this, it is very
hard to distinguish whether qualitative changes in the optimal solution for
small disturbances are caused by the numerical optimization algorithm or if
they are an inherent feature of the system itself. To avoid these qualitative

36
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changes, some parameters have been �xed to allow only a certain solution
structure in section 3.3.

In control strategies like MPC that require repeated optimization, the afore-
mentioned problems would not only be encountered once before the batch
but at every time step during the process. This once again emphasizes the
need for a model-free, robust feedback control structure without the need for
online optimization as has been developed in this thesis.

Another note should be made at this point: While a �at optimum implies a
more di�cult optimization as described above, it also means easier controller
tuning since many control con�gurations lead to acceptable, near-optimal
results.

5.2 Why Control x, not L?
In section 3.3 the question was raised why controlling a mole fraction like x2

inside the column leads to a better convergence of the dynamic optimization
than optimizing the input L directly.

Traditionally, two strategies are used in control of batch distillation columns:
operation with constant re�ux and operation where a constant distillate com-
position is maintained (Diwekar, 1995). The �rst strategy is relatively easy
to calculate and implement. For this reason, it is the most often used strat-
egy in industry. However, the batch process can take a very long time when
it is operated using this policy.

The second strategy tries to keep the re�ux drum composition constant. This
leads to a much faster solution but also to rapid changes in the re�ux ratio
that are hard to control.

The optimal re�ux ratio is situated somewhere between those two strategies;
changes in the re�ux ratio are not as rapid as with the constant distillate com-
position policy. Thus, instead of controlling L directly, a controlled variable
that changes more slowly than the mole fraction of the re�ux drum is sought.
The mole fractions of the trays inside the column ful�ll this requirement and
have therefore been used successfully for optimization and control.
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5.3 Remarks about the Nullspace Method
As has been examined in section 4.2, the nullspace method cannot simply
be generalized to dynamic models as in batch distillation control. Although
this method looked very promising in the beginning, this is not so much
of a surprise since it was originally developed for linear processes that are
operated in steady state and was now applied to a nonlinear dynamic system.

However, these results do not mean that the nullspace method is not able to
handle nonlinear dynamic problems in general. If more variables are included
in the available measurements, like state derivatives or the switching time
itself, it might work. Nonlinear combinations of measurements could be
another promising approach to account for nonlinearities present in many
systems.

5.4 Remarks about the Implemented Control
Structure

Instead of the nullspace method, an alternative method has been used to �nd
an appropriate control structure. The key point with this method is to �nd
variables that are preferably only a�ected by the present disturbance directly
and not coupled with other states. Identi�cation of those variables is easier
if the system is rather small and physically explainable.

In this thesis, the variables have been found in a two-step procedure: First,
some candidate variables have been identi�ed that are more in�uenced by
the disturbances than others. Both physical insight into the process and
simulations can be used for this decision. Second, the corresponding model
equations have been examined. Variables, whose di�erential equations then
depended to the highest degree only on the disturbance were chosen.

After deciding for the switching variables, switching thresholds and continu-
ous controllers still need to be found. Again, simulations were run to decide
for the controller type and to check constraint satisfaction. Simple continu-
ous controllers were preferred to make implementation and tuning as easy as
possible. Especially for tuning, the optimal open-loop pro�les were of great
help. Optimizing the closed-loop system with respect to controller parame-
ters might be another option. However, this was not done in this thesis.
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5.5 Comparison of Open-Loop and Closed-Loop
Performance

Besides examining whether the nullspace method provides an appropriate
mechanism to switch between di�erent continuous controllers, �nding a model-
free control structure was the main focus of this thesis. It was also required
that the closed-loop control ensures near-optimal performance even in case
of disturbances. In chapter 3, the minimal batch times have been calculated
for di�erent disturbances. They are shown in tables 3.2 and 3.3.

In chapter 4, a controller has been designed for each scenario. It ful�lls all
requirements stated in the introduction: It is model-free and thus does not
need online-optimization, it consists of continuous sub-controllers and dis-
crete switching decisions are made. For all considered disturbances, both
path and terminal constraints are satis�ed. The resulting batch times are
found in tables 4.6 and 4.7, respectively.

These values indicate near-optimal performance of the closed-loop systems.
The di�erence between open- and closed-loop performance is less than 12
seconds in scenario 1, corresponding to 0.6% of the optimal time. In scenario
2, the di�erence is less than 40 seconds or approximately 0.7%. For the scope
of this work, this result is satisfactory.

As can also be seen in the tables mentioned above, the open-loop system per-
forms a little better than the closed-loop system in most cases. However, this
is not true for V = 0.9 mol / min in scenario 2. Here, the closed-loop system
outperforms the open-loop one. The explanation for this is that in contrast
to the open-loop optimization, the inputs are not piecewise constant when
the process is feedback-controlled. This gives additional degrees of freedom
which may either lead to better results than in the open-loop case or, if not
properly designed, to infeasibility. Thorough simulations should be run to
ensure feasibility.

Finally, only standard PI-type controllers are needed. Relatively easy im-
plementation and tuning are the main reasons why those controllers are still
predominant in many industries. Therefore, the small loss in performance
compared to optimal open-loop behavior is acceptable and does not compro-
mise the overall bene�ts of the control structure presented in this thesis.



Chapter 6

Conclusion

The overall aim of this thesis was to �nd a model-free feedback control struc-
ture for a batch distillation process that leads to near-optimal performance
for a certain range of disturbances. Such a control structure has been de-
veloped in this thesis. Negligibly longer batch durations as compared to
open-loop simulations are more than compensated by the simple feedback
structure. At the same time, the necessary manual process interventions are
reduced to a minimum.

In addition, it was found that the optimal open-loop input trajectories con-
tain a �nite number of jump discontinuities that are typical for dynamic
control problems. The nullspace method which was originally developed for
linear steady state processes looked promising to handle these discontinu-
ities. Unfortunately, this method failed if only a linear combination of states
was used. Future investigations might address this by including more process
information, for example derivatives of the states, in the measurements or
combining measurements in a nonlinear way.

As an alternative approach, physical insight into the process can be used to
identify variables that provide indirect information about the disturbance.
While it is unclear if this strategy would work for more complex process
models as well, it has been successfully used in this thesis. It would also be
interesting to see if this approach can be generalized to cases with more than
one disturbance.

Finally, this thesis shows that application of self-optimizing control is not
limited to continuous processes. Instead, with robust switching laws, batch
processes are equally receptive for its bene�ts.
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