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Abstract

The minimum singular value method for finding optimal controlled variables
is introduced. The method is applied to control structure design for a four-
product Kaibel distillation column, which is a mass and heat integrated sep-
aration column. The selection method is based on steady-state optimization.
It is shown how this can be done, using the commercial process simulator
Hysys v3.2.
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Preface

This report is the culmination of my project work, as part of the special-
ization in process systems engineering at the Department of Chemical Engi-
neering at the Norwegian University of Science and Technology (NTNU).

The aim of the project was to find a self-optimizing control structure for
the Kaibel distillation column, which is a column with a dividing wall, which
makes it possible to separate up to four components in one column shell.
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Chapter 1

Background

1.1 The Kaibel Distillation Column

The Kaibel distillation column was introduced by Gerd Kaibel at BASF in
1987. The Kaibel column is a heat and mass integrated separation process,
with potential for large savings in capital cost, energy requirement and plot
space compared to the conventional sequential distillation for multicom-
ponent separations. In sequential distillation one needs three columns to
separate four components. Up to 40% savings in plot space has been re-
ported, and up to 25% and 35% respectively for investment and operating
cost [Wenzel and Röhm, 2003].

Heat and mass integration can be achieved both in a dividing-wall imple-
mentation and when the prefractionator and main tower are built in separate
shells. A laboratory column has been built at the Department of Chemical
Engineering, NTNU, to do pilot plant experiments, and this column has been
built with two shells. This would not be the best solution in an industrial
application, when investment costs are important, but the energy savings
will be the same, assuming adiabatic operation.

A conceptual model of the Kaibel column is shown in figure 1.1. On the
left hand side, the prefractionator is shown, where the 4-component mixture
is split into two fractions; one light and one heavy. On the right hand side,
the main separation tower is shown, where the two fractions are split into
their respective components. There is only one reboiler and one condenser
for such a column.

BASF has implemented several dividing-wall columns in production scale.
A simulation structure for design of such columns is given by Kaibel [Kaibel et al., 2004].
Kaibel also mentions the control of such columns at BASF, and the control
objective is most often to maintain the product balance (steady-state op-
eration) and the given quality constraints. The control loops at BASF are
designed and implemented without dynamic simulations.

For the control of the column, there are 6 steady-state degrees of free-
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Figure 1.1: Schematic of a Kaibel distillation column

dom: reflux and boil-up, splits of internal streams and two product streams.
In the analysis to follow, two of these (boil-up and vapor split) are kept con-
stant, and the remaining 4 degrees of freedom are available to the control
system. The simulation is based on molar flows, but the real system will be
controlled based on volume flow. Assuming a nearly constant composition
profile (molar mass profile), these are one-to-one related variables.

1.2 The Physics of Distillation

The separating agent in distillation is energy, supplied to the distillation col-
umn in the reboiler. Continuous distillation is a staged separation process,
and vapor and liquid phases are contacted at each stage, where equimolar
diffusion occurs. The driving forces for the diffusion are entropic in nature,
and with sufficient contact time and interface between the phases will even-
tually reach equilibrium at each stage. In real distillations the process is not
at equilibrium, but the equilibrium model serves as a good conceptual model
for understanding the behavior of the distillation process. The underlying
assumption is that two un-equilibrated streams entering a typical stage, have
a residence time at the stage which is much larger than the necessary contact
time for equilibrium to be reached through diffusion.

For control purposes it is interesting to know how different manipulable
variables affect the process. First of all, the measurements normally ac-
cessible to control are temperature measurements. The temperature profile
of a distillation column is coupled to the concentration profile through the
thermodynamics. Concentrations are hard to measure directly, and the mea-
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surement is slow. The link between the temperature measurements and the
product concentrations is established as an empirical model.

The pressure in a distillation column is set such that the condenser and
reboiler can work with the utilities available. In most cases the pressure is
kept constant (often atmospheric), but it can also be a controllable prop-
erty. This can be practical for example when operating close to the utility
constraints, because of changes in ambient temperature. Increasing the pres-
sure increases the condenser temperature, but at the same time the reboiler
temperature increases.

1.2.1 The Effect Changing the Flow Inputs

Often in distillation, the internal flows, reflux and boil-up, are used as control
degrees of freedom. In a two-product multicomponent distillation column,
the effect of changing an internal flow on the concentration profile is to move
the whole profile; one product tends to get purer, whereas the other gets less
pure [Skogestad, 1997]. However, the effect of changing the external flows
is much larger, if one draws a lot more in the top stream as there is light
component in the feed, it is obvious that the product purity will be lower.
The use of external streams as controlled variables is limited, because they
are often needed in order to stabilize levels in the reboiler and reflux drum.

1.3 Self-Optimizing Control

When operating a chemical process, there is usually some optimal operating
point, and it is economically imperative to stay close to this operating point.
This point is however dependent on process conditions, and may move in
the state-space due to disturbances on the process. The primary control
objective is related to profits, and thus the selection of controlled variables
should reflect this. In other words; the selection of the best control structure
is a question of optimization; a structure should be selected so that the loss,
L = J(u, d)−J∗(d) is minimized, where J is an objective function describing
the operational objective, and J ∗(d) is the optimum for a given disturbance
d.

Skogestad and Postlethwaite [Skogestad and Postlethwaite, 2005] define
the concept of self-optimizing control the following way:

Definition 1 (Self-Optimizing Control) Self-optimizing control is when
an acceptable loss can be achieved with constant set-points, without the need
for reoptimization when disturbances occur.

1.3.1 Selection of controlled outputs

The method used for selecting optimal controlled variables is a local opti-
mization method. The loss is defined as above. Make the following assump-
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tions:

• the cost function J is smooth.

• the optimization problem is unconstrained, i.e., active constraints are
already controlled at their optimal values.

• the dynamics of the process can be neglected when evaluating the cost.

• the control problem is square (the number of controlled outputs equals
the number of manipulated variables).

Then, a second order approximation to the objective function is made by
a Taylor expansion around the optimal operating point (where ∆u = u−u∗,
etc.):

J(u, d) = J∗(d) + (∇uJ∗)T ∆u +
1

2
(∆u)T (∇2

uJ∗)∆u (1.1)

Then, the loss can be written the following way:

L = J(u, d) − J∗(d) =
1

2
(∆u)T (∇2

uJ∗)∆u (1.2)

To analyze how the loss inflict on the objective function by the nonop-
timal inputs ∆u affects the output selection, assume a steady-state linear
model is available,

z = Gu + Gdd (1.3)

where G and Gd are steady-state gain matrices for the inputs and distur-
bances respectively. Assuming that G is non-singular and focusing on the
input-output behavior:

∆u = G−1∆z (1.4)

Equation (1.4) together with (1.2) yields

L =
1

2
(G−1∆z)T (∇2

uJ)(G−1∆z) =
1

2
(∆z)T G−T Juu(G−1∆z) (1.5)

Now, defining a mapping of z through the loss model;

z̃ := J1/2
uu G−1∆z (1.6)

The loss minimization can be expressed as a norm minimization problem;

L =
1

2
‖z̃‖2

2 (1.7)

The control error can be separated in two terms; the implementation
error and the optimization error due to the non-optimal operating point. The
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optimization error can be estimated as the worst-case variation in solutions to
the optimization problem with varying disturbances. Let r be the reference
point for the controlled variable z. Then the error can be expressed:

e = z − z∗ = z − r
︸ ︷︷ ︸

I

+ r − z∗
︸ ︷︷ ︸

eopt

(1.8)

where I is the implementation error and eopt the optimization error. With
integral action in the controller, there is no setpoint tracking error, and the
implementation error is basically the measurement error.

From (1.5), it is easily seen that, to obtain good control, one should seek
controlled variables such that:

• G−1 is small, that is, the gain should be high.

• eopt should be small; zopt should be insensible to disturbances.

• G should be well conditioned.

MIMO Systems: Minimum Singular Value

Assume that the optimal variation in the outputs is uncorrelated, that is, the
worst-case deviation ‖z − z∗‖ = 1 can occur. Assume also that the inputs
are scaled such that a given deviation ∆ui has a similar effect on the cost
function J for all inputs, that is, the Hessian is a constant α times a unitary
matrix, where α = σ̄(Juu). Then the norm of the augmented error, z̃, is

‖z̃‖ = σ̄(J
1/2
uu G−1), and the worst-case loss is;

max
‖z−z∗‖≤1

L =
1

2
σ̄2(α2G−1) =

α

2

1

σ2(G)
(1.9)

From equation (1.9) it is apparent that controlled variables should be chosen
to maximize the minimum singular value.

1.4 Mathematical Background

1.4.1 Convexity

Convexity is a very important property of an optimization problem. A scalar-
valued function is convex in a point if its second derivative in the point
is positive. If this holds for all points in the domain of the function, the
function is itself called convex. A minimizer for a convex function is a global
minimizer, because there exists a unique minimum. An example of a convex
function is shown in figure 1.2. A non-convex function is shown in figure 1.3,
such a function may have several minima, and the global one is therefore
hard to find.
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Figure 1.2: A convex function
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Figure 1.3: A non-convex function

1.4.2 A Formal Definition of Convexity

Definition 2 (Convex Set) A set S ∈ R
n is called convex if a straight line

segment connecting any two points in S lies entirely within S. Formally, for
any two points (x, y) ∈ S: αx + (1 − α)y ∈ S,∀α ∈ [0, 1].

Definition 3 (Convex Function) A function f is called convex if its do-
main is a convex set as defined in definition 2, and if for any two points
(x,y) in the domain of f, the graph of f lies below the straight line connecting
(x,f(x)) to (y,f(y)) in the (n+1)-dimensional space R

n+1. That is, we have
∀α ∈ [0, 1]:

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)

Convex Programming

Convex programming is a term used for the solution of a special class of
constrained optimization problems, where the objective function is convex,
the equality constraints are linear and the inequality constraints are concave.
This is usually not the case in process optimization, because the thermody-
namic equilibrium is mostly described by nonlinear functions, and these are
then equality constraints for the optimization problem.

9



1.4.3 Numerical Optimization Algorithms

The optimization methods utilized in this work are local. The most popular
class of local optimization methods is the quasi-Newton approach. Assume
we have an unconstrained nonlinear problem. For the quasi-Newton ap-
proach, this objective function J(p) is approximated by a quadratic function
mk(p), where p is the vector of free variables. J is assumed to be a real-valued
scalar function. The quadratic approximation is given by;

mk(p) = Jk + ∇JT
k p +

1

2
pT Bkp (1.10)

where B is some positive definite matrix, which is updated on every iteration.
This model is convex and quadratic, and its minimizer, pk can be given
explicitly as;

pk = −B−1

k ∇Jk (1.11)

The minimizer given in (1.11) is used as the search direction, and the new
iterate is then

xk+1 = xk + αkpk (1.12)

where the step length must satisfy the Wolfe conditions. The Wolfe condi-
tions guarantee a step length that yields sufficient decrease of the objective
function, assuming convexity The following must be fulfilled:

J(xk + αkpk) ≤ J(xk) + c1αk∇
T
k pk

∇J(xk + αkpk)
T ≥ c2∇JT

k pk

where 0 < c1 < c2 < 1. The difference between this method and an exact
Newton method, is that an approximation of the Hessian is used instead of
the true one.

The update formula for the Hessian approximation should satisfy some
important criteria: it must be positive definite and symmetric. One of the
most popular update formulas, is the BFGS formula, here simply stated for
reference.1 For details about the BFGS update, see [Nocedal and Wright, 1999]
For convenience of notation the following vectors are defined:

sk := xk+1 − xk (1.13)

yk := ∇Jk+1 −∇Jk (1.14)

Then the BFGS formula can be written as:

Hk+1 = (I − ρksky
T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k (1.15)

1BFGS is an abbreviation for Broyden, Fletcher, Goldfarb and Shanno, the discoverers

of the formula
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where ρ = 1

yT
k

sk
and Hk is the inverse of the Hessian approximation:

Hk = B−1

k

The quasi-Newton BFGS method applies directly only to unconstrained
problems. In process optimization, the process model poses a large set of
equality constraints on the problem, whereby many equations are nonlinear.
The equality constraints of the process model must be taken into the ob-
jective function, because they limit the allowable domain of the problem to
a subset of the natural domain of the objective function, called the feasible
set, Ω. The constraints are brought into the objective function by forming
the Lagrangian, and then for solving the problem a search routine as for
unconstrained optimization can be used. If there are inequality constraints,
the active set method is used. Inequality constraints in process optimization
are often constraints on quality and availability.

For general nonlinear constrained optimization, the Karush-Kuhn-Tucker
conditions are necessary for characterization of a local minimizer. Assuming
the linear independence constraint qualification (LICQ) is fulfilled:

Definition 4 (Linear Independence Constraint Qualification) Given
the point x∗ and the active set A(x∗), which is the set defined by the equal-
ity constraints and the active inequality constraints, the linear independence
constraint qualification holds if the set of active constraint gradients is lin-
early independent. This set is then:

{∇ci(x
∗), i ∈ A(x∗)}

If the linear independence constraint qualification holds, then the KKT
conditions can be stated as necessary conditions for a local optimum:

Definition 5 (KKT conditions) Suppose x∗ is a solution to the optimiza-
tion problem. Then there is a Lagrange multiplier vector λ∗ with components
λ∗

i with i ∈ I = Iin
⋃

Ieq, such that the following conditions are satisfied at
p = (x∗, λ∗):

∇xL(p) = 0 (1.16)

ci(x
∗) = 0∀i ∈ Ieq (1.17)

ci(x
∗) ≥ 0,∀i ∈ Iin (1.18)

λ∗
i ≥ 0,∀i ∈ Iin (1.19)

λ∗
i ci(x

∗) = 0∀i ∈ I (1.20)
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In order to test for optimality, a routine also needs information about
the curvature of the objective function around the stationary point. It is
sufficient that the second derivative is strictly positive and that the KKT
first-order conditions are satisfied.

For the mulitivariable case, the second-derivative condition is that the
Hessian must be positive definite. For details, see [Nocedal and Wright, 1999].

1.5 Computational Issues

The process model is implemented in Hysys v3.2., which is a process simula-
tor from AspenTech, and the optimizer in this program is also used for the
optimization tasks. The selection of the best candidates for control variables
is done using a branch and bound method implemented in MATLAB 7.1.
Therefore, it is of interest to export the simulation results from Hysys to
MATLAB. This is however not too easily done, and it is also of interest to
have a simple visual data storage format. The solution was to export all
results from Hysys to Excel, which can be easily done, using Hysys reports,
which can be exported as comma separated ASCII files, which Excel again
can convert to a spreadsheet workbook. MATLAB has functions for extract-
ing parts of a spreadsheet, and storing them as matrices in the workspace.
MATLAB can also write to specified portions of Excel spreadsheets, so this
seemed the most appropriate storage tool in this case. Excel was also used
for calculating the gain matrix and scaling factors. For details on software
connectivity and the versions used, see appendix B

It is also interesting to visualize solutions to the optimization problems.
This requires a lot of calculations in Hysys, which would be a tedious task
without automation. Hysys has a good application programming interface
for integration with Visual Basic, which is the macro language in MS Office.
This means, that Hysys can be used as an automated calculation engine for
Excel, and Excel can then be used to calculate data points for sensitivity
plots.

1.5.1 Distillation Models

Distillation models can be divided into two main classes:

• Equilibrium stage models

• Mass transfer models

The most common models for distillation design and simulation are of the
first class, where the process is assumed to consist of equilibrium stages,
and empirical correction factors are used to account for the fact that true
equilibrium is usually not reached.
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The model used by Hysys is of the equilibrium kind. Plate efficiencies
can be used in the simulation to account for the difference between ideal
equilibrium stages and real plates in a plate tower. The steady-state model
consists of the component mass balances, the energy balance, summation
equations and a model for the phase equilibrium. For one stage j, the model
can be written as follows:

Lj−1 − Lj + Vj+1 − Vj + Fj − Rj = 0 (1.21)

xi,j−1Lj−1 − xi,jLj + yi,j+1Vj+1 − yi,jVj + zi,jFj − xi,jRj = 0 (1.22)
∑

i

xi,j = 1 (1.23)

∑

i

yi,j = 1 (1.24)

hL
j−1Lj−1 − hL

j Lj + hV
j+1Vj+1 − hV

j Vj + hFj
F − hL

j Rj = 0 (1.25)

yi,j = Ki,jxi,j (1.26)

where xi,j is the mole fraction of component i in the liquid phase on stage
j. It is assumed that only liquid will be withdrawn from the stage, product
streams are denoted Rj. Fj is the feed and zi,j is the mole fraction of

component i in the feed to stage j. hφ
j is the molar enthalpy of phase φ

on stage j. The equilibrium is described through the equilibrium constant
Ki,j, which is calculated using some model for the non-ideal behavior of the
system. The K-value is what introduces the strongest non-linear terms in a
steady-state distillation model. Note that the terms Fj and Rj are zero for
most stages.

In addition to the equilibrium stages, the Kaibel column is modeled with
two internal splitters. These are described by simple material balances. In
addition there are also a reboiler and a condenser, which are modeled using
the same equations as for equilibrium stages, but with an extra energy term
Q, which is positive for the reboiler and negative for the condenser (heat
removed).

1.5.2 Thermodynamic Models

The thermodynamic relationship to use for the K-value calculation must be
chosen such that the model is able to model the non-ideal behavior of the
system well. Alcohols are polar substances, and thus some activity model
should be used. For low molecular weight alcohols like methanol and ethanol ,
the Wilson local composition theory has been shown to have good properties.

Assuming ideal gas behavior of the vapor phase, which is reasonable at
low pressures, and an activity model for the liquid phase, the equilibrium can
be expressed as in (1.27). There the approximation fi ≈ P sat

i is included, fi
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being the pure component liquid fugacit, fi being the pure component liquid
fugacity.

yiP = xiγiP
sat
i (1.27)

Here, γi is the activity coefficient and P sat
i is the vapor pressure of pure com-

ponent i. Then the K-value can be introduced as Ki = yi/xi = γiP
sat
i /P .

The vapor pressure can be calculated using the Antoine equation. The ac-
tivity coefficient must be calculated using some activity model. In Wilson’s
model, the expression for the activity coefficient is given by [Elliot and Lira, 1999]:

ln γk = 1 − ln

(
∑

i

xiΛki

)

−
∑

j

(
xjΛjk
∑

i xiΛji

)

(1.28)

Here, Λjk is a binary interaction parameter depending on molecular volumes
and temperature.
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Chapter 2

Control Structure Selection

The selection of controlled variables is done using the minimum singular
value rule, as described in 1.3.1 and a steady-state model in Hysys.

2.1 Model of the Kaibel Column

A model of the column was implemented in Hysys for steady-state simulation
and optimization. The model structure is shown in figure 2.1.

Figure 2.1: Structure of the internal Kaibel model in Hysys

This is built using the column subflowsheet in Hysys, and stored as a
unit operation template which can be used as any other unit operation in
Hysys simulations. To have splitters and other non-standard internals in the
column model, a special algorithm called Modified HYSIM Inside-Out must
be used to solve the steady-state problem.
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2.2 Nominal Operating Point

To find the nominal operating point, sensible start values must be given.
These are chosen from [Strandberg and Skogestad, 2005]. The start values
for finding the optimal nominal operating point are as given in Table 2.1.

Variable Magnitude Unit

RL, RV 0.3 –
S1, S2 0.25 kmol/h
V,L 3 kmol/h

Table 2.1: Start values for optimization

The objective is to produce the purest products possible. Let i be the
index of product stream (i=1: D, i = 2: S1,...) and j be the index of a
component (j=1: C-1, j=2: C-2, ...). Then this objective can be described
by the following cost function:

J =

4∑

i=1

4∑

j=1|j 6=i

xij (2.1)

The start values from Table 2.1 yield a cost function value of J = 0.77,
which is not very high degree of purity. An optimization with six degrees of
freedom yields J = 0.1299. The nominal case is summarized in Table 2.2.

Variable Magnitude Unit

RL 0.2668 –
RV 0.4561 –
L 2.982 kmol/h
V 3.052 kmol/h
S1 0.2517 kmol/h
S2 0.2488 kmol/h
J 0.1299 –

Table 2.2: Optimal values for nominal situation

2.2.1 Characterization of the Optimization Problem

Visualization of the optimum gives a qualitative insight into the problem at
hand. A sensitivity study was performed for characterizing the optimum.
The process variables affect the purity, and this comes into the optimization
problem as equality constraints. There are 64 stages in the model, plus
two splitters, and a reboiler and a condenser. For each stage the material
balance, energy balance and equilibrium relations must be satisfied. This
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gives some hundred equality constraints on the optimization problem, and
many of these are non-linear. These equaility constraints are taken into
consideration through the lagrangian. Using a quasi-Newton method, this
multivariable non-linear cost function is approximated by a second-order
polynomial function.

Visualization of the Cost Function

The sensitivity study shows that the cost function resembles a quadratic
dependency on the side draws S1 and S2, see figures 2.2 and 2.3.

Figure 2.2: Cost function J resembles a quadratic dependency on S1 and S2.

The liquid flow sensitivity is also considered. Here it is no longer so clear
if the cost function is really quadratic, it looks like the function J = J(L) is
not convex, see figure 2.4.

Next, disturbances in feed flow, concentration, boil-up and vapor split
will be considered.

2.3 Calculation of Span

To calculate the span, an estimate of the implementation error is needed.
For the temperature measurements, an accuracy of ±0.5oC is assumed.
Flow measurements are supposed to have an accuracy of ±5%. This is
the typical precision of commercially available flow meters of the rotameter
type [Aalborg, 2005]. Relative measurement errors are for division addi-
tive [Førland, 2001]. For flow ratios, the expected implementation error is
then ±10%.
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Figure 2.3: Cost function J resembles a quadratic dependency on S1 and S2.

To caculate the span, an estimate of the optimization error is needed.
This is calculated as the optimal variation:

∆eopt =
max zi − min zi

2
(2.2)

2.3.1 Problems in the calculation

The effect of the disturbances on J were of similar magnitude, except for
the boil-up, which had a much stronger effect on the cost function. A per-
turbation of 1% in the other disturbances {F, ziF , RV } gave changes in the
objective function of 1 to 12 %, whereas a perturbation in the boil-up gave
a change of 70%. An optimization gave solution at J = 0.1631. This is still
quite far from 0.1299, so a bracketing calculation was performed to enclose
the optimum. However, bracketing with 4 degrees of freedom is a tedious
task, and at last the solution was kept at J = 0.1365. For full description of
the bracketing procedure, see appendix A.

2.4 The Scaled Gain Matrix and Optimal Selection

The model was slightly perturbed in the inputs to find the steady-state gain.
The gain matrix was then scaled by the span for each variable (each row is
divided by the span of the variable). The scaled gain calculation was done
using Excel. This scaled gain matrix was then exported to MATLAB, using
the built-in Excel link.
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Figure 2.4: The cost function shows a non-quadratic dependence on liquid
flow.

A branch and bound algorithm by Cao [Cao and Rossiter, 1997] was used
to find the 3 best solutions (the 3 combinations that yield the maximum
minimum singular value). This was done once with all considered variables,
and once with only temperature measurements allowed. The results were
as shown in Tables 2.3 and 2.4. The difference in singular values is not
that big, so it might be that a selection of just temperature measurements
in practice is just as good as one including internal flow ratios.

Rank z1 z2 z3 z4 Singular Value

1 T5 − TS4 V/B T3 − TS2 T8 − TS1 407.9
2 T5 − TS4 L/D T3 − TS2 T8 − TS1 407.8
3 T5 − TS4 V/B T3 − TS2 T7 − TS1 407.7

Table 2.3: Best selections - full variable set. TS refers to figure 2.1 on
page 15.

Rank z1 z2 z3 z4 Singular Value

1 T5 − TS4 TReboiler T5 − TS2 T6 − TS1 312.8
2 T5 − TS4 TReboiler T5 − TS2 T5 − TS1 312.5
3 T5 − TS4 T8 − TS2 T5 − TS2 T6 − TS1 311.7

Table 2.4: Best selections - temperatures.Also here, TS refers to figure 2.1
on page 15.
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2.4.1 Loss Calculations

Loss calculations are performed to see if the preliminary results are promis-
ing. Some indicated measurement combinations may be infeasible, which
can only be detected through a brute force calculation.

Full Set of Candidate Variables

A loss calculation was performed using the Hysys model. Rank 1 in 2.3
was infeasible, rank 2 was feasible but gave a negative loss for the vapor
flow (boil-up, V ) disturbance (L = -0.006). This shows that the bracketing
operation had not located the real optimum. This problem may have several
reasons:

• Non-convex optimization problem

• Numerical Precision problems in Hysys

It seems that the first possible reason is the one causing problems (due
to non-convexity). This affects the scaling of the gain matrix, because the
calculated scaling is based on an erroneous estimate of the optimal variation.
However, the selection of the optimal set is probably not too sensitive to the
scaling. In order to find a better estimate of the optimal variation, and a
better scaling, a method for correcting the start condition of the gradient
based optimization in Hysys is suggested, see section 2.5.

This method was used to recalculate the scaling for the gain matrix, and
the selection was calculated again using the branch and bound method of
Cao. The results are given in Table 2.5

Rank z1 z2 z3 z4 Singular Value

1 T5 − TS4 L/D T3 − TS2 T8 − TS1 406.9
2 T5 − TS4 L/D T8 − TS3 T9 − TS1 406.8
3 T5 − TS4 V/B T3 − TS2 T7 − TS1 406.6

Table 2.5: Best selections after scaling update - full variable set. TS refers
to figure 2.1 on page 15.

The loss calculation yields that the combination with rank 3 is infeasible,
and the two first combinations are both very good candidates, see Table 2.6

SVD Rank Loss

1 0.0005
2 0.0005
3 INFEASIBLE

Table 2.6: Loss calculation - full variable set
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Temperature Subset Selection

After the discrepancy in the reoptimization at the boil-up disturbance, the
temperature selection was also recalculated, but the optimal selection did not
change. Hence, the selection shown in Table 2.4 is used in the calculations.
However, the singular values changed slightly. The new singular values are:

• Rank 1: 312.5

• Rank 2: 312.2

• Rank 3: 311.5

These are still very similar. That is, the losses should not differ very much.
However, what happens, is that no solution is found when the temperatures
given in Table 2.4 are used as specifications in Hysys. This is because, these
cannot be kept at constant values when other process variables are changed.
The situation is probably caused because there are two temperature specifi-
cations in section TS2, which causes the system to be overdetermined 1.

It seems that the loss is not very dependent on the choice of the con-
trolled variables, as long as the selection is feasible. This is a very attractive
situation. Based on intuition, the following temperatures were selected:

• T5 − TS1: To stabilize the temperature profile in the prefractionator.

• T7 − TS2: Close to the reboiler, to control the purity of the bottom
product.

• T4 − TS3: Lower part of main tower: Temperature profile control.

• T4 − TS5: Upper part of main tower: Temperature profile control

A brute force calculation with these temperatures kept at their nominal
values, shows that the loss is practically zero. It seems that the important
question in this case is ”at what setpoints should we control the plant”, and
not ”what should be controlled”.

2.5 Startvalue Correction for Optimization

As explained in section 2.4.1, problems with non-convexity are often encoun-
tered. An outline of an algorithm to overcome this, is given in figure 2.5.

The fix is simply to use the best feasible solution indicated by the sin-
gular value method, using the initial scaling. Then the indicated variables
are used as specifications in Hysys, and a new starting point for the reop-
timization is calculated. Then the process is optimized again, and this is

1Where Hysys gives the somewhat cryptical error message: "Singular Column Matrix:

Possibly no physical solution at given conditions"
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Figure 2.5: A method to overcome convexity problems

done iteratively untill the loss (L) is positive. Mostly, only one iteration is
required. An illustration of what the start value correction does, is given in
figure 2.6. A disturbance moves the state as shown, and a gradient based
optimization method wil then converge to a local minimum. A correction
using the solution indicated by the singular value analysis, moves the state
to a point closer to the global minimum, and the optimization then has a
possibility of converging to the best solution.
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Figure 2.6: Effect of correcting the start values
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Chapter 3

Control Configuration

An analysis of which variables to be controlled has been done. The analysis
indicated that the selection of controlled variables is not critical for this
application.

3.1 Control with Four Temperature Measurements

For the following analysis, the four temperatures indicated on page 21 are
chosen as controlled variables, as shown in figure 3.1.

Figure 3.1: Temperature measurements in the control analysis
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A dynamic simulation in Hysys was attempted to assist controller design
and tuning, but the model was to unstable to be of any use. A step in any
of the inputs gave large oscillations or convergence toward some solution
outside the physical variable domain (negative pressures and mole fractions,
for instance).

The pairing is done with regard to short loops. The prefractionator
measurement T5 − TS1 is then to be controlled using the liquid split (RL).
T4 −TS5 is controlled with the liquid flow (reflux, L), T4 −TS3 with S1 and
T7−TS2 with S2. The control could probably be done using PID controllers,
because the measurements are not too close, such that heavy interactions are
not expected. However, to determine this, dynamic simulations are neces-
sary.

3.2 Sensitivity Analysis

In order to analyse the potential of the chosen outputs as good controlled
variables, a sensitivity study was performed.

In the prefractionator, y1 = T5 − TS1 was chosen as controlled variable.
Keeping all other controlled variables constant, the column purity (the cost
function, J) showed to be not very dependent on the value of y1, which is
an attractive situation. The result is given in fig 3.2 on page 27.

The top measurement in the main tower showed a much narrower min-
imum. This is not so attractive, and here the position of the measurement
may be more important. The sensitivity analysis result is given in 3.3.

The lower measurement in the main tower is problematic. The sensitivity
analysis gives a picture of the non-convexity of the optimization problem used
in the first part of this work, see figure 3.4. The minimum is very narrow,
hence y3 = T4 − TS3 is a bad choice for a controlled variable.

Regarding y, see 3.5, the minimum is even narrower. The allowable range
of y4 narrower than the precision in a temperature measurement, hence the
use of this variable will probably lead to controllability problems.

It seems that it is not a good idea, to try to control the lower temperatures
in the column. The prefractionator temperature is ok.

The singular value method indicated that 3 temperatures and a flow ratio
should be controlled. This might be a better solution.
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3.3 Results from the Singular Value Rule

The singular value rule gave the following suggestion for the controlled vari-
ables:

• z1 = T5 − TS4

• z2 = V/B

• z3 = T3 − TS2

• z4 = T8 − TS1

These outputs may be better to use for control, than using just temperatures,
because one avoids measurements very close to the reboiler. That is, one
avoids temperature measurement, where the allowable variation is smaller
than the measurement accuracy. The pairing would be done such that short
loops are achieved. Some interaction between the controlled variables is
to be expected. To see if self-optimizing control can be achieved, dynamic
simulations must be done. If self-optimizing control can not be achieved, it
might be worth considering multivariable control from the layer above, using
the set-points in the regulatory layer as degrees of freedom.
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Figure 3.2: Purity, J , as a function of prefractionator temperature specifica-
toin, y1 = T5 − TS1

Figure 3.3: Purity, J , as a function of temperature specification, y2 = T4 −
TS5
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Figure 3.4: Purity, J , as a function of temperature specification, y3 = T4 −
TS3. A very narrow minimum.

Figure 3.5: Purity, J , as a function of temperature specification, y4 = T7 −
TS2. A very narrow minimum.
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Chapter 4

Concluding Remarks

In this report, it is shown that Hysys can be used for steady-state analysis
of custom processes. It is, however, also found that Hysys is not good for
dynamic simulation, at least, the model used for steady-state analysis can
not be used.

The singular value rule is applied to the Kaibel column control structure
problem, and from a steady-state point of view a good solution has been
found. The indicated best solution, surprisingly, includes other measure-
ments than just stage temperatures.

Some measures to handle non-convexity and problems with convergence
are also introduced, using the singular value rule to correct the star values
for optimization, using a reduced gradient method in the optimizer. The
success of this method, requires that the steady-state gain of the process
model is obtained close to the optimum also of the disturbed process. This
requires that the global optimum does not move very much when the process
is disturbed.
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Appendix A

Bracketing Calculations

For the calculation of the optimal inputs when a disturbance in the boil-up
occurs, a bracketing procedure was used. This is simply varying the inputs to
locate where the optimum might be. For a non-convex multivariable problem
this is a very tedious task, and hence it is mostly used in 1-dimensional opti-
mization, as pre-optimization for gradient based methods. The calculations
for the boil-up are summarized in Table A.1.

Test No. S1 S2 L RL J

1 0.22 0.22 NC NC 0.3340
2 0.24 0.24 NC NC 0.1794
3 0.26 0.26 NC NC 0.3157
.. ... ... ... ... ...

.. 0.2442 0.2490 3.07 0.2699 0.1365

Table A.1: Bracketing Calculations

The bracketing is meant to close in the optimum, so that the optimizer
can be given limits on the search region.
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Appendix B

Software Descriptions

In the calculations, software from different vendors has been used. A short
description of each program will be given, and a description of connecting
calculations will follow.

Excel

Microsoft Excel 2003 is used to calculate the gain matrix, the span and for
visualizing sensitivity calculations.

Hysys

Hysys v3.2. is a process flowsheet simulator, which is used to simulate the
Kaibel distillation process at steady-state. The program includes an opti-
mization tool, which is used to perform local optimization.

MATLAB

MATLAB version 7.1 from MathWorks was used for branch and bound se-
lection calculations and plotting of sensitivity graphics.

Automation and Software Connectivity

The sensitivity studies were automated using macros written in Visual Basic
for Applications (VBA) in Excel. The Hysys object library is available to
Visual Basic through an extensive application programming interface (API)
and can be imported into the VBA object library.

Data exchange between MATLAB and Excel is also easy to implement,
thanks to the Excel link package in MATLAB 7.1. Data can be read from
and written to Excel Worksheets using simple MATLAB functions.
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