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Abstract

The scope of this thesis is to develop and analyze a distributed optimizer based on Hybrid
Real Time Optimization (HRTO). The traditional Static RTO (SRTO) and dynamic RTO
(DRTO) are widespread in modern industry, however both the approaches have limiting
factors concerning respectively the necessity of waiting for stationary conditions and the
high computational effort required. HRTO consists in a static optimization coupled with a
dynamic estimator, in order to use transient measurements to perform the model adaptation
step. This framework is able to achieve performances similar to DRTO in terms of convergence
rate to the optimal point, at computational times similar to SRTO. HRTO’s advantages
have already been outlined, however it has never been applied to a distributed optimizer. In
large and complex plants, system decomposition allows to reduce the effort in modelling,
control and to decrease the computational time required to solve the optimization problem.
Moreover, in particular system in which the sharing of informations between subsystems
must be limited due to privacy issues, a distributed optimizer can be the only feasible
option. In this work, system decomposition have been performed on a six gas-lifted oil wells
network. The main feature of this network is the presence of two wells clusters, connected
to the same processing facility but managed by two different operators. In such a scenario,
sensitive data must not be shared between the clusters. However, the presence of global
constraints requires a distributed RTO to optimize and coordinate the production. Two
decomposition techniques have been applied and tested: primal decomposition, which is
based on an iterative reallocation of the available resources, and dual decomposition, which
formulates the subproblems by means of Lagrangian Relaxation. At first, a Nonlinear
Model Predictive Controller (NMPC) has been implemented and its advantages respect to
traditional controllers have been outlined. Then, a distributed optimizer has been compared
to a centralized optimizer used as reference. Despite both the optimizers converge to the
same optimal solution, the distributed framework needs to introduce local constraints that
can lead to suboptimal choices whenever significant disturbances occur. Lastly, the two
decomposition techniques have been compared. Primal decomposition is able to find the
global optimum with a lower average computational time, even though dual decomposition
requires a lower number of iterations. Primal decomposition can also assure a higher level
of privacy, requiring the sharing of only non-sensitive informations, as the gradients of
subproblems’ solutions.

Keywords Distributed optimization; RTO; Gas Lift; NMPC; Oil production.
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Estratto

Lo scopo di questa tesi è lo sviluppo e analisi di un ottimizzatore distribuito basato su Otti-
mizzazione Real-Time ibrida (HRTO). Le tradizionali RTO statica (SRTO) e RTO dinamica
(DRTO) sono diffuse nell’industria moderna, tuttavia entrambi gli approcci presentano dei
fattori limitanti relativi rispettivamente alla necessità di attendere condizioni stazionarie e
all’elevato tempo di calcolo necessario. HRTO consiste in un’ottimizzazione statica accoppia-
ta ad un estimatore dinamico, in modo da poter effettuare lo step di adattazione del modello
anche durante il transitorio. Questo approccio è in grado di ottenere performances simili a
DRTO per quanto riguarda i profitti, con tempi di calcolo paragonabili a SRTO. I vantaggi
di HRTO sono già stati evidenziati, tuttavia non è stata mai applicata ad un ottimizzatore
distribuito. In impianti complessi e di grandi dimensioni, decomporre il sistema può ridurre le
difficoltà legate alla modellazione e controllo, oltre a diminuire il tempo di calcolo richiesto per
risolvere il problema di ottimizzazione. Inoltre, in sistemi dove la condivisione di informazioni
deve essere limitata per questioni di riservatezza, un ottimizzatore distribuito può essere
l’unica opzione disponibile. In questo lavoro, la decomposizione è stata applicata ad una rete
di sei pozzi petroliferi gas lift. La principale caratteristica di questo network è la presenza
di due raggruppamenti di pozzi, collegati allo stesso stabilimento a valle, ma controllati da
due diversi operatori. In questo scenario le informazioni sensibili relative alla produttività
non devono essere condivise. Tuttavia, la presenza di vincoli globali richiede di introdurre
un ottimizzatore distribuito per massimizzare e coordinare la produzione. Due tecniche di
decomposizione sono state testate: decomposizione primaria, basata sulla ripartizione delle
risorse disponibili, e decomposizione duale, che formula i sottoproblemi attraverso rilassa-
mento Lagrangiano. Inizialmente un NMPC è stato sviluppato e i suoi vantaggi rispetto a
controllori tradizionali sono stati evidenziati. In seguito l’ottimizzatore distribuito è stato
confrontato con uno centralizzato, usato come riferimento. Benchè entrambi gli ottimizzatori
convergano alla stessa soluzione, la necessità, da parte dell’ottimizzatore distribuito, di
introdurre vincoli locali nel sistema può condurre a scelte sub-ottimali. In seguito, le due
tecniche di decomposizione sono state confrontate. La decomposizione primaria è in grado di
trovare un ottimo globale con un tempo di calcolo inferiore, benchè la decomposizione duale
richieda un minor numero di iterazioni. Inoltre, la decomposizione primaria può garantire un
maggior livello di privacy, richiedendo la condivisione solamente di informazioni non sensibili,
quali i gradienti delle soluzioni dei rispettivi sottoproblemi.

Parole Chiave Ottimizzazione distribuita; RTO; Gas Lift; NMPC; Estrazione di petrolio.
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Introduction

The offshore extraction of oil and gas is a complex process, in which many decisions must be
taken in order to maximize the production, satisfying process and environmental constraints,
and taking in account disturbances or uncertainities. A continuous improvement and
innovation of the existing technologies permits the producers to be competitive in the
fast-moving market. In the recent years, subsea technology has emerged as an interesting
field development tool, able to make oil’s extraction safe and efficient without the necessity
of building platforms. The reduction of investment costs opens more possibilities in the
profitable exploitation of smaller and difficulty located fields. The full automation of the
production requires a deep knowledge of subsea equipment: being operation failures and
rehabilitation significantly more expensive in this kind of operations, methods to prevent and
deal with unexpected maintenance must be considered even in the design phase. Likewise, a
good control strategy of the system can help avoid costly unplanned down-time (Moreno
and Markeset, 2002). Together with process and equipment innovations, research and
improvements in the optimal control field are required, due to the large volume of production
that characterizes oil production systems, the possibility of guaranteeing a continuous optimal
control of the process is a great advantage, able to remarkably increase profits.

The optimal operation of an oil and gas production system is a challenging task, because
of the necessity of meeting goals and objectives ranging from planning and scheduling to
fast corrective actions. This complex decision making process is usually decomposed in a
hierarchical way, depending on the time-horizon of the decisions and goals to be achieved, as
described in (B. A. Foss and Jensen, 2011). This framework is widely accepted as industrial
standard, and it is also well studied in academic literature, see for example (Skogestad,
1999), (Skogestad, 2004), (Larsson and Skogestad, 2000), (Rangaiah and Kariwala, 2012). A
common decision-making hierarchy adopted in the oil and gas production is shown in picture
0.1. Long-term decision-making involves asset management and investment strategies, while
medium-term decisions refer to plant wide scheduling, as reservoir management, drilling and
production planning. Below that is the control and automation layer, that continuously
handles disturbances and regulations of process’s operating conditions.

Within this lower level, the first stage consists in a continuous optimization of the proces,
called Real Time Optimization (RTO). RTO provides an optimal set point to the lower
control layers, that can be broadly divided in supervisory and regulatory control. The
supervisory controller computes the optimal trajectory to approach RTO’s set point, dealing

1



2 INTRODUCTION

Figure 0.1: Decision making hierarchy in process control. Figure taken from (Krishnamoorthy,
B. A. Foss, et al., 2018).

with interactions with other variables and constraints. In the lowest level, fast controllers
actually regulate the production system.

This work deals with the lower layers of the decision-making hierarchy, specifically with the
development of a Real Time Optimizer. Traditional static RTO (SRTO) is a well estabilished
tool and is widely adopted in the modern industry. However, the necessity of waiting for
steady state measurements to update the model’s parameters, reduces significantly the
profits (Darby et al., 2011) whenever disturbances, uncertainities and slow dynamics makes
difficult to rapidly achieve stable, stationary conditions. Moreover, SRTO is not able to
account for dynamic violations of the constraints, due to the adoption of static models in
the optimization step.

In order to prevent these problems, Dynamic RTO (DRTO) and the closely related
Economic MPC (EMPC) have been studied and developed. The use of a dynamic model
during optimization and model adaptation allows to continuosly evaluate the optimal process
conditions, even during transients. The disadvantages of this approach are a higher modelling
and compution effort, due to the difficulties in formulating and solving a dynamic nonlinear
optimization problem for large-scale systems.

Recently, a new RTO technique called Hybrid RTO (HRTO) has been presented in the
paper “Steady-state real-time optimization using transient measurements’ ’ (Krishnamoorthy,
B. A. Foss, et al., 2018), in which a static optimizer has been coupled with a dynamic
estimator. Thus it is possible to continuosly and efficiently perform a static optimization,
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without waiting for stationary conditions. HRTO is able to provide similar performances to
dynamic optimization, with a computational time similar to static RTO.

The aim of this thesis is to expand and continue the aforementioned study (Krishnamoorthy,
B. A. Foss, et al., 2018), developing a distributed optimizer using HRTO’s framework.
Optimization problems within oil and gas are large and complex, with hundred decision
variables and strongly coupled constraints, as explained in (Hauge and Horn, 2005). System
decomposition is a powerful tool, that allows to reduce the efforts in model identification,
debugging and numerical solving. In this work, a six gas-lifted oil wells network has
been considered and decomposed in two subsystems, composed by three wells each. The
two clusters are controlled by two different operators, but the connection to a common
downstream processing facility introduces global constraints that couple the two subsystems.
The presence of privacy issues regarding well’s properties, production’s parameters and
process conditions of the two subsystems is the main reason for performing a distributed
optimization.

With the development and spreading of subsea technology, the networks of wells, platforms
and processing facilities will increase in dimension and complexity, deeply modifying the
interactions between different companies within the same geographical area. Therefore,
distributed optimization is an interesting aspect of optimal control in oil production, that
could lead to practical applications in the future.

This study is the author’s final thesis and represents the conclusion of a M.Sc. in Chemical
Engineering at Politecnico di Milano. This work has been carried out during an exchange
period within the Process System Engineering research group of the Norwegian University
of Science and Technology (NTNU), under the supervision of Sigurd Skogestad and Dinesh
Krishnamoorthy. The work is part of SUBPRO (Subsea Production and Processing), a
project sponsored by the Norwegian Center for Research Based Innovation (SFI).

This thesis is organized as follows: in chapters 1 and 2 the theory of Real Time Optimiza-
tion and Distributed Optimization is explained, in chapter 3 the case study is presented,
while in chapter 4 the system’s optimization’s procedure is described. In chapter 5 the
results are presented, before concluding the work in chapter 6.
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Chapter 1

Real time optimization

1.1 Introduction

Real time optimization (RTO) refers to all the techniques that allow the continuous evaluation
of the optimal process conditions, in order to maximize the profits of the plant taking in
account its constraints. RTO characterizes all the decisions that have to be made in
a timescale of hours, to fulfill objectives decided during plant wide scheduling. Process
optimization has been long considered an appealing tool applicable only to academic problems.
In the last decades great improvements have been made in the process systems research
field, permitting to make Real Time Optimization viable for current processes and, in some
cases, mandatory to achieve competitive productivities. One of the main difficulties of
process optimization is to find an effective mathematical formulation of the problem to be
solved. Even when process models are available, the presence of plant-model mismatches
and disturbances make the direct use of model-based optimal inputs hazardous. RTO is a
valid technique to overcome these problems, relying not only on a mathematical model, but
also on measurements and online process informations. Indeed, RTO is usualy carried out
in two steps: a model adapation step and a model-based optimization step. In this way, the
informations from the plant are implemented in the model during the first step, in order to
compute the optimal solution in the second step.

Many RTO techniques exist and they can be roughly divided in two main groups: static
RTO and dynamic RTO. Static RTO relies on a static model to perform the optimization.
It is quite spread due to the presence of a simple model, and because the main interest of the
optimization is the steady state response of a system, being the transients periods usually
shorter than the steady state’s ones. In order to solve a static optimization problem, steady
state measurements are necessary.

If the optimization of transients is required, dynamic RTO is a possible answer. This kind
of optimization technique relies on more complex dynamic models, in which the modelling
and computational effort is compensated by the possibility of optimizing the system even in
non-stationary conditions. For the model adaptation step a dynamic estimator is required.

In the last years a newly born RTO technique have been developed: hybrid RTO. It
consists in a static optimizer that is able to use transient measurements to perform the

5
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optimization. The advantage of this technique is the possibilities of obtaining performances
comparable to DRTO with the computational time of a static optimization.

1.2 Static RTO

1.2.1 Description

Many chemical processes operate at steady state. Steady state operation is attractive from an
implementation point of view, because the decision variables need to be simply kept constant
over long time periods. A mathematical model of the steady state operation is usually
available, permitting the usage of Static Real Time Optimization. The lower modelling
and computational effort required is the main reason for which SRTO is the most common
technique adopted to continuously optimize a chemical process.

Traditional SRTO is based on a two-steps approach:

• Static parameter estimation - In this step the model’s parameters are adjusted to
match the current data. Before this step a Steady State Detection system is necessary,
that is able to individuate if the plant is operating close enough to steady state. After
this, the model is adapted to match the current data, by means of techniques like data
reconciliation.

• Static Optimization - In this step the optimization is carried out. The model is coupled
to an objective function that must be maximized or minimized. The optimization is
mathematically formulated as an NLP problem and then solved.

A representation of a SRTO optimization routine is shown in figure 1.1

Figure 1.1: Static Real Time Optimization, from (Krishnamoorthy, B. A. Foss, et al., 2018).
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1.2.2 Model adaptation step

Before starting the real computation of the optimal process conditions, measurements from
the plant are required. In this way, it is possible to continuously adapt the model to match
the real parameters that characterize the system. SRTO needs steady state measurements,
thus, at first, a steady state detector is required.

Many possibilities are available in order to individuate the end of a transient and the
presence of a steady state, usually statistical or heuristic methods are adopted. A description
of the most common steady state detection routines can be found in (Camara et al., 2016)

Once the system has reached steady state, the model adaptation can be carried out. The
model adaptation is based on data reconciliation, in which a real model optimization is
carried out. It can be expressed as follow:

Θi = arg min
Θi

|ymeas − ycalc(uk, Θi)|2; (1.2.1)

Where Θi are the unknown parameters that must be estimated, ymeas the real plant
measurements, ycalc the plant variables as computed from the model, uk the input parameters,
or manipulated variables of the plant. It can be noted that data reconciliation is not a
regression, but it is a real constrained optimization, with a number of degrees of freedom
equal to the number of unknowns parameters and the model itself as constraint.

Once the parameter estimation step is completed, the model is updated and the opti-
mization problem can be formulated and solved.

1.2.3 Optimization step

With the newly updated model, a mathematical formulation of the optimization problem
can be generated. An objective function and the process constraints must be defined, then a
Non Linear Programming (NLP) problem as the following can be formulated:

uopt = arg min
u
{J(y, u)}; (1.2.2)

s.t. y = f(u, Θi); (1.2.3)
g(y, u) ≤ 0. (1.2.4)

Where J is the objective function, y the process variables, u the input variables, uopt the
optimal input variables, or the solution of the optimization problem. Θi are the parameters
estimated in the previous step, f the model’s equation and g the process’s constraints.
Please note that the objective function is often the plant’s profit, defined as the difference
between incomes and expenses. Many NLP solvers, as the one adopted in this work, are
able to solve only minimization problems. Of course the aim of economic optimization is to
maximize the profits, it is anyway possible to use the same NLP solvers by simply defining
the objective function as the opposite of the profits, and then minimizing it.



8 CHAPTER 1. REAL TIME OPTIMIZATION

1.2.4 Problems related to SRTO

As stated before, static RTO is the most used tool for continuous optimization in industrial
processes, due to the lower modelling effort required. Moreover, the utilization of a static
model reduce greatly the computational time of the optimization. However, there are some
problems, mostly related to the model adaptation step, that may make other RTO techniques
preferable.

The main problem related to SRTO is the necessity to wait for steady state conditions.
SRTO is not able to optimize the system during non stationary conditions due to the
presence of a static model, thus it will not compute any optimal solution during tranisents.
In real plants, the presence of disturbances and uncertainities make really difficult to achieve
stable steady state conditions. It is also quite common to deal with process with slow
responses, which means that even a small disturbance can perturb the system for a long
time. The necessity of waiting for steady state is a huge problem, that can make SRTO not
advisable for most process, due to the presence of long transients in which the system will
work sub-optimally. For example, in the case study considered in this work, the system is
able to work in steady state for 62% of all the simulation time. If we decide to implement a
SRTO in this system, it will work in a sub optimal way for almost 40% of the time, that
will imply a consistent loss of profits.

Moreover, the presence of statistical or heuristic methods during the steady state detection
require the introduction of tolerances by the user to decide if the system is “close enough”
to steady state. If this tolerances are specified without enough attention, the system can be
erranousely considered at steady state, leading to the propagation of error to the optimization
step.

In order to deal with transient optimization, it is possible to adopt more complex models,
able to describe also system’s beahaviour during transients. This is the concept at the basis
of Dynamic Real Time Optimization.

1.3 Dynamic RTO

1.3.1 Description

In the recent years, there have been many developments in DRTO and the closely related
Economic Model Predictive Control (EMPC), that are able to provide an optimal input
trajectory even during transients. In DRTO, dynamic models are implemented in the
optimization routine: the greater modelling effort is compensated by the possibility of
continuously optimizing the system at each sample time, without the necessity of waiting
for stationary conditions. Again, the optimization is based on a two step approach:

• Dynamic State Estimation - The optimizer’s model is updatd by means of a dynamic
estimator, that usually consists in a filter able to remove the noise from the plant’s
measurements.
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• Dynamic Optimization - The optimization itself is carried out in this second step, after
the update of model’s parameters. A dynamic model is used.

A rappresentation of a DRTO optimization routine is shown in figure 1.2

Figure 1.2: Dynamic Real Time Optimization, from (Krishnamoorthy, B. A. Foss, et al., 2018).

1.3.2 Dynamic estimator

The first step is a model adaptation step, in which some model’s parameters are updated to
match the plant’s measurements. A dynamic estimator is adopted, which is able to update
those parameters at every sample time, independently from stationary or not conditions.
These estimators are usually filters, which aim is to remove the noise from a series of
measurements in order to give an estimation of the desired parameters. A dynamic model is
implemented in the filter, and by means of a covariance matrix it is possible to modify how
much the filter should trust the model or the measurements. In this work, the estimator
adopted is an Extended Kalman Filter (EKF). EKF is the non linear version of the Kalman
Filter and it is considered the standard in nonlinear state estimation, as stated in (Julier
and Uhlmann, 2004) and (Wan, 2016). The equations that make up the EKF are presented
in chapter 4.

1.3.3 Optimization step

The optimization problem is similar to the static one, with the only difference that the
model is now a dynamic and it considers the time as a variable:

uopt = arg min
u
{J(y, u)}; (1.3.1)

s.t. y = f(u, Θi); (1.3.2)
g(y, u) ≤ 0. (1.3.3)
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Where J is the objective function, y the process variables, u the input variables, uopt

the optimal input variables. Θi are the parameters estimated in the previous step, f the
model’s equation and g the process’s constraints.

The main difference between the SRTO’s and DRTO’s optimization step is that while in
SRTO the optimization is carried out once per sample time, in DRTO, at each sample time,
the system is simulated and optimized for a longer time. This period is called Prediction
Horizon (PH) and it must be sufficiently long to ensure stability (Maciejowsky, 2002).

To continuously solve the dynamic optimization problem, it is possible to approximate
the function as a sum of Lagrangian Polinomial. This is the idea on which the method
adopted in this work(Direct collocation) is based. This method is explained in chapter 4,
regarding the implementation of the Model Predictive Controller (MPC).

1.3.4 Problems related to DRTO

Although the use of dynamic models for model adaptation and optimization is interesting,
due to the possibility of eliminating the necessity of steady state detection, solving a dynamic
nonlinear optimization problem for large system may be challeging. If compared to the solving
of a static optimization, the computational effort is larger, as stated in (Krishnamoorthy,
B. A. Foss, et al., 2018) it can increase even 100 times. The reason of this increase is in the
greater number of variables that must be optimized. For example in the case study described
in the same article, while SRTO must solve a system composed by 22 optimization variables,
DRTO has 3056 variables to be optimized at each sample time. The variables’s number is
so larger because of the necessity for DRTO of optimizing the whole process for not only
one time step, but for the whole prediction horizon.

The higher computational time and modelling effort make DRTO difficult to implement
in industrial applications. Even if it seems very appealing, this technology is not enough
developed to spread widely in the modern industry. A very interesting solution can be found
in hybrid RTO, which could be able to take the place of static RTO during this transient
period towards Dynamic RTO.

1.4 Hybrid RTO

1.4.1 Description

Hybrid Real Time Optimization (HRTO) has been developed in the recent period. SRTO
uses the same static model in both the model adaptation and in the optimization step
and, similarly, DRTO uses the same dynamic model in both the steps. As described in the
paper “Steady-state real-time optimization using transient measurements” (Krishnamoorthy,
B. A. Foss, et al., 2018), if the main problem of SRTO lays in the model adaptation step,
while in DRTO the optimization step is troublesome from a computational point of view,
one possibility could be to try to consider a hybrid structure, in which the model adaptation
is performed using a dynamic estimator, while static models are used in the optimization
step, as shown in figure 1.3.
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Figure 1.3: Dynamic Real Time Optimization, from (Krishnamoorthy, B. A. Foss, et al., 2018).

This is the idea of Hybrid Real Time Optimization, which consists in a static optimization
using transient measurements. In this way, it is possible to continuously carry out a static
optimization, without the need of waiting for steady state conditions. HRTO can be a very
powerful tool due its capacity of obtaining performances similar to DRTO with computational
times comparable to SRTO (see (Krishnamoorthy, B. A. Foss, et al., 2018)) .

This technique is composed by the two aforementioned steps:

• Dynamic State Estimation - The optimizer’s model is updated by means of a dynamic
estimator, that usually consists in a filter able to remove the noise from the plant’s
measurements.

• Static Optimization - In this step the optimization is carried out. The model is coupled
to an objective function that must be maximized or minimized. The optimization is
mathematically formulated as an NLP problem and then solved.

1.4.2 Dynamic estimator

The first step is a model adaptation step, in which the model’s parameters are updated
to match the plant’s measurements. This step is exactly the same used in Dynamic RTO.
The reason for opting for a dynamic estimator instead of a static one is the possibility of
updating continuously the model, without the necessity of waiting for steady state. As
described before, non linear estimation is a well known and estabilished study field and
many estimators have been developed. In this work an Extended Kalman Filter has been
considered, its framework can be found in chapter 4.

1.4.3 Optimization step

The optimization is performed using a static model. The optimization problem is the same as
the system 1.2.2, that can be found in SRTO’s description. A static model is chosen because
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the primary objective is to optimize the steady state performance of the process, while the
transients can be dealt through the use of a set point control layer. In this framework, the
control layer is split in two: an upper control layer and a lower one. In the upper layer, an
advanced controller, as a Model Predictive Controller (MPC) receives a set point from the
RTO’s layer. The MPC computes an optimal set point trajectory that is sent to the lower
control layer, where standard controllers, as a Proportional Integral controller (PI controller)
deals with the effective control on the regulation devices. The use of the set point tracking
layer permits to deal with dynamic violations of constraints.

1.4.4 Comparison with SRTO and DRTO

SRTO requires a low computational time, but it needs to wait for stationary conditions to
start the optimization. DRTO is able to optimize continuously the system, even during
transients, but the great number of optimization variables that compose the NLP increases
the computational time, wich can be prohibitive for online application. As discussed in
(Krishnamoorthy, B. A. Foss, et al., 2018), HRTO requires a low computational effort due to
the static optimization step, similar to SRTO. On the other hand, the model adaptation
step is dynamic, which means that the model can be corrected at each time step, without
waiting for steady state.

HRTO shows very interesting performances whenever coupled with an advanced control
layer, as a Model Predictive Controller (MPC). In this way, even if HRTO optimizes the
stationary conditions (being the model static), the MPC deals with the transients, controlling
the system in order to not dynamically violate the constraints. In this framework, the HRTO
generates a steady state set point, that is sent to the upper control layer. The MPC acts as
a set point tracker, generating a new set point for the lower control layer (as a Proportional
Integral controller), in order to approach HRTO’s set point without violating the constraints,
even during transients. This framework is able to behave in a similar way to DRTO, where
the optimization layer computes directly the best set point trajectory. Taking as example
the case study discussed in (Krishnamoorthy, B. A. Foss, et al., 2018), HRTO’s profit
loss is equal to 2% if compared with DRTO, while SRTO’s loss is around 34%. For what
concerns computational time, HRTO has a lightly higher computational time respect to
SRTO, however it is almost 100 times lower than DRTO’s computational time, as shown in
table 1.1.

It is evident that the loss of HRTO respect to DRTO is low, while the gain in terms

Table 1.1: SRTO, DRTO and HRTO performances’ comparison. The table is taken from (Krish-
namoorthy, B. A. Foss, et al., 2018), the case study deals with a gas lift oil production system.

avg. time [s] max time [s] Integrated Profit [ x 106$]

SRTO 0.0184 0.0223 1.8256
HRTO 0.0199 0.0282 2.7019
DRTO 0.9025 3.3631 2.7509
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of computational effort is huge. It has been proved that HRTO is a valid technique, that
can replace SRTO with considerable benefits, even in more complex systems where DRTO’s
computational effort would be too large for online applications. Therefore in this thesis, we
will consider the Hybrid RTO approach in detail.
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Chapter 2

Distributed optimization

In this chapter the reasons and the methodologies to perform a distributed optimization are
presented and discussed.

2.1 Introduction and reasons

In the classical formulation of an optimization problem, the system is modelled and optimized
as a whole. This approach is conceptually obvious, but whenever the system considered is
large, it can be advisable to opt for a distributed approach. In distributed optimization, the
system is decomposed in more subsystems, that are modelled and optimized individually. A
central coordinator is required, in order to allocate effectively the avialable resources and
achieve global optimal conditions, as shown in figure 2.1.

Figure 2.1: Distributed optimization block diagram.

This kind of aproach may seems not very effective, due to the necessity of solving many
optimization problem iteratively, but there are many reasons that can lead the choice from
a centralized optimizer to a distributed one:

• First of all, complications can arise since the beginning, in the modelling step. Large
systems can be difficult to be modelled, due to the great number of unknown parameters

15
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that must be estimated. An empirical model is not always available or feasible. As
stated in (Krishnamoorthy, Aguiar, et al., 2018), modelling effort is often complimented
with system identification or plant experimentation. It is without any doubt easier to
evaluate, identify and update fewer models for smaller subsystems, instead of one large
model.

• In complex chemical plants, each unit can act as a consumer or producer of resources
(heat, steam, electricity, water,. . . ). In this case, it is preferable to optimize each unit
individually and manage the usage of these resources with a global coordinator, in
order to fullfill the overall domand-supply balance constraints.

• Sub-problems can be solved in parallel, decreasing the computation time required for the
optimization. Moreover, a network between the subsystems and a central coordinator
can be created, in order to let all the subsystems solve their own subproblems. This is
very important when we have privacy concerns, as described in the next point.

• One of the main advantages of using a distributed optimizer is the possibility to carry
out a global optimization without requiring the subsystems to exchange informations
between them. In the modern off-shore oil and gas industry several wells can be coupled
to the same production manifold or to the same processing facility. If the wells are
owned by different companies, it is possible that each operator refuse to share the
details of their operational constraints, costs and profits. In such a situation, individual
optimizers should be responsible for the optimization of the individual units, while
an overall coordinator deals with modifying the cost function or the constraints of
the individual optimization problems, possessing only limited information. This is
the main reason for which a distributed optimization may be not only suggested, but
mandatory in order to find a solution to these privacy issues.

Due to its importance and the possibility to reduce the optimization effort, decomposition
has been deeply studied. It is a well known and utilized technique, and multiple methods of
decomposition are described in literature.

2.2 Decomposition methods

The first step to perform a distirbuted optimization is the system’s decomposition. While in
the introduction a time-scale based approach has been presented to vertically decompose
the management of a plant, this kind of decomposition can be considered “horizontal”,
being based on the division of the system according to its geography or its process flow.
The decomposition of a system should be performed intiuitively, creating subsystems that
can be close from a geographical point of view or a functional point of view. In the case
study considered in chapter 3, a large oil wells network, has been divided in two subsystems,
according to the owners of those clusters of wells. Another example can be the decomposition
of a very large chemical plants, in which many components are producted and sold. An
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intuitively way to decompose and optimize the production and the profits could be to
consider every production line as a stand-alone subsystem, that can be optimize individually
with the help of a master coordinator, whose task is to optimally allocate reactants, steam,
pressurized air, electricity and so on.

In this work two decomposition techniques have been considered and compared. They
are Primal Decomposition and Dual Decomposition. Although the solution of a distributed
optimization is invariant from the choice of the decomposition technique, this two techniques
adopt different approaches to decouple the problem in subproblems, that requires different
informations and can have a higher o lower convergence speed. That is why it is interesting
to consider both the approaches and compare them.

2.2.1 Primal decomposition

Primal decomposition is an auction-based approach that iteratively reallocates the shared
resources among the subsystems. This approach represents well the task of the global
coordinator: to allocate the available resources to the subsystems and let them optimize
their processes by themselves. Once the optimization of the subsystems is performed, the
subsystems must share some informations with the central coordinator, according to which,
resources’ allocation is updated. This loop continues until achieving convergence, meaning
the finding of a global optimum. The idea of “available resources” is intuitive whenever we
consider a input to the system that is limited, for example reactants, heat power, water,
steam, . . . . In this approach the idea of “available resources” is extended to every variable
that has a limit, thus, to every process constraint. A processing capacity of a downstream
equipment can be considered as a resource, and the productivities of all the upstreams
equipment can be managed as an allocation of this particular resource.

In order to make an example of how primal decomposition works, let’s consider a chemical
plant that can be decomposed in two subsystems A and B. A simplified optimization problem
can be the following:

max
u

J tot = (xtot − utot); (2.2.1)

s.t. x = Fc(u, Θ); (2.2.2)
utot ≤ umax; (2.2.3)

(2.2.4)

where J is an objective function that represents the revenues of the plant, x is a variable
that represent the income (the plant’s main product), while u is the input of the plant, that
is the optimization variable and it has an associated cost. Fc is the system’s mathematical
or empirical model, while Θ are some parameters that characterize the system. x, u, Θ are
vectors, and they are so defined:
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x =
[︁
xA, xB

]︁
; (2.2.5)

u =
[︁
uA, uB

]︁
(2.2.6)

Θ =
[︁
ΘA, ΘB

]︁
(2.2.7)
(2.2.8)

Where the subscripts A and B stay for the variable’s values relative to one on the two
subsistem A or B. xtot and utot are the sum of the elements of each vector, namely the
values of those variables for the global system. Only one constraint is present: the total
value of the input utot has an upper bound equal to umax. The system is decomposed in two
subsystems, thus, two subproblems are generated.

Subproblems

In the formulation of the two subproblems, the two subsystems are considered separately. A
model of each subsystem is required, that can be completely different between them if we
consider subsystems in series, or very similar if the subsystems are just the same equipments
working in parallel. Similarly, two objective functions are required. For the decomposition to
be succesfull it is important that the global objective function is the sum of the subsystems’
objective function.

Lastly, the constraints must be managed. In primal decomposition the constraints
are considered as resources, and are allocated between the two subsystems. While the
first-try allocation for the first subsystem can be arbitrary, for the second subsystems it is
necessary to choose a complementary value to not exceed the global constraint. Thus, the
two subproblems are the following:

max
uA

JA = (xA − uA) (2.2.9)

s.t. xA = F A
c (uA, ΘA); (2.2.10)

uA ≤ tA; (2.2.11)
(2.2.12)

max
uB

JB = (xB − uB) (2.2.13)

s.t. xB = F B
c (uB, ΘB); (2.2.14)

uB ≤ tB; (2.2.15)
with tB = umax − tA; (2.2.16)

(2.2.17)

As stated before, we can find in the two subproblems the two objective functions JA, JB

and the two models F A
c , F B

c . uA and uB are the inputs of each subsystem, xA and xB the
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variable of interest of each subsystem. ΘA, ΘB are parameters characteristic of the two
subsystems. For what concerns the constrains, two new variables have been introduced:
tA, tB that represent the allocated resources to the two subsystems, or the maximum value
of input variable that the two subsystem can use. These quantities are chosen so that
tA + tB = umax, in order to not violate the global constraint. It can be noted that, the sum
of the two subproblems is exactly equal to the original optimization problem.

Master problem

The optimization of the two subproblems is performed individually. In this way it is possible
to obtain a local optimum, depending on the allocation of resources. In order to achieve a
global optimum a central coordinator, which must be able to allocate those resources in an
effective way. The problem that the central coordinator must solve is called master problem.

In primal decomposition, a common method to formulate the master problem is a
subgradient method. Subgradient methods require the subsystems to compute a subgradient
of their solution, which is then used to update the allocated resources. This update can be
carried out as follow:

tA
k+1 = tA

k − α(ΛB − ΛA); (2.2.18)
tB = umax − tA; (2.2.19)

Where the subscripts represent the current iteration k and the next iterations k +1, while
α is a tuning parameter of the central coordinator that control the update of the allocation
of resources. ΛA and ΛB are the subgradients of the solutions of the two subsystems. They
must be computed by the two subsystems and they are the only information that they are
required to share. A block diagram of the optimization loop is presented in figure 2.2.

With this simple master problem, the central coordinator can update the allocation of
resources, the two subproblems are updated and solved and the master problem is called
again. This loop continues until achieving convergence or after reaching a certain number of
iterations. Three parameters must be chosen for the tuning of the central coordinator: α,
the tolerance and the maximum number of iterations.

• α define the velocity of the updating. High values of α can lead to a lower number of
iterations, but problems related to robustness can arise. A compromise must be found,
but it is advisable to prefer slower but more robust coordinators, in order to be sure to
find a global optimum.

• Tolerance is the value which convergence can be considered to be achieved. The master
loop continues until the difference between the newly calculated allocation of resources
and the previous one is lower than tolerance:

tol ≥ tA
k+1 − tA

k = α(ΛB − ΛA) (2.2.20)
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Figure 2.2: Primal decomposition block diagram.

It is interesting to observe that convergence is achieved according to the value of
α(ΛB − ΛA). Higher values of α makes convergence more difficult to be reached.
Moreover, the term (ΛB − ΛA) shows that the only way to obtain a convergence and,
thus, a global optimum is to have very similar gradients. Observing this term three
cases are possible:

– ΛA ̸= ΛB ̸= 0: The two gradients are different. Their difference is not close to zero
and convergence is not achieved. This is the case in which the subproblems have
been solved, but both the solutions lay on the constraints and a global optimum
is not found. The master loop must update the allocation of resources.

– ΛA = ΛB = 0: The two gradients are equal to zero. Both the problems have been
solved and global optimum has been achieved. In particular, the solution does not
lay on the constraint, the problem is unconstrained.

– ΛA = ΛB ≠ 0: The two gradients are equal and convergence is achieved. The
gradients are equal but not null, this means that the two constraints are active.
The master coordinator weight the two subsystems in the same way, thus, global
optimum is achieved when they gradients are equal.

Tolerance must be a low number, to assure that the solution found will not change
significately and there is no need to perform another iteration. However, a higher
number can be acceptable whenever the increase of precision of the solution does not
appreciably change the value of the objective function. A lower value of tolerance leads
to a greater precision and to a larger number of iterations.

• The maximum number of iterations is the maximum number of calls of the master
problem, after which, even if convergence is not achieved, the solution is accepted. This
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value depends on the process and on the values of α and tolerance. The maiximum
number of iterations must be large enough to permit to reach convergence anytime
it is feasible. Anyway it must have an upper bound, because of the risk of entering
in an infinite loop whenever the problem is not feasible. Its value should be chosen
regarding to the time available to perform the optimization.

2.2.2 Dual decomposition

While Primal Decomposition is an auction-based approach, based on the allocation of
resources, Dual Decomposition is a price-based approach, in which the aim is to seek for the
resources’ prices that allows a market clearing, a situation in which the maximum profit for
each subsystem is achieved, as described in (Wenzel et al., 2018).

Dual decomposition is also called Lagrangian Decomposition, because it adopts La-
grangian relaxation to perform the system’s decomposition. Lagrangian relaxation converts
a constrained optimization problem in an unconstrained one, integrating the constraints in
the objective function by means of the so called Lagrangian Multipliers. Considering the
same system briefly presented in the primal decomposition discussion, applying Lagrangian
Relaxation the global problem can be expressed as follow:

max
u

L = (xtot − utot) + λ(umax − utot); (2.2.21)

s.t. x = Fc(u, Θ); (2.2.22)
(2.2.23)

where L is the Lagrangian of the objective function and λ the respective lagrangian
multiplier. x is a variable that represent the income, while u is the input and optimization
variable of the plant. Fc is the system’s model, while Θ is a vector containing some
parameters that characterize the system.

We can easily observe that this problem is unconstrained, being the constraint introduced
inside the objective function. However the solution of this problem is the same as the original
constrained problem. The violation of the constraints is dealt as a penalty in the objective
function.

Again, the system is decomposed in two subsystems and a master problem is introduced
to find the global optimum.

Subproblems

The decomposition is performed allocating between the two systems a fixed quantity of
resources and varying the lagrangian multiplier of the related local constraints. We have:
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max
uA

LA = (xA − uA) + λ(umax

2 − uA); (2.2.24)

s.t. xA = F A
c (uA, Θ); (2.2.25)

(2.2.26)

max
uB

LB = (xB − uB) + λ(umax

2 − uB); (2.2.27)

s.t. xB = F B
c (uB, Θ); (2.2.28)

(2.2.29)

Where λ is the Lagrangian multipliers characteristic of the given constraint. We can
find again the objective functions JA, JB and the two models F A

c , F B
c . uA, uB , xA and

xB are respectively the inputs and the variables of interest of each subsystem. ΘA, ΘB are
parameters characteristic of the two subsystems.

It is possible to observe that the total available input variable umax is allocated equally
between the two subsystems. Any allocation could have been chosen, as long as the sum
between the two would give umax. We suppose that the two subsystems are similar so
it is accettable to allocate the resources equally. It is important to notice that, in dual
decomposition, this is not the real allocation of resources, but just a mathematical expedient
to formulate the constraints.

Master problem

As stated before, dual decomposition is a price-based approach. The lagrangian multiplier
can be seen as the price of the used resource and the task of the global coordinator is to
update it in order to maximize the global profit.

The master problem is formulated as follow:

λk+1 = λk + α(uA
k + uB

k − umax) (2.2.30)
s.t. λk+1 ≥ 0 (2.2.31)

(2.2.32)

Where uA
k , uB

k are the optimal input variable computed at the actual k step. α is a
parameter that control λ’s updating velocity. The global coordinator updates the lagrangian
multiplier proportionally to the difference between the optimal usage of resources and the
their total availability. This means that the information it requires from the two subsystems
is the solution itself of the respective subproblem.

Another important point is the presence of a second condition on the lagrangian multiplier:
it can not be negative. The lagrangian multiplier’s final value depends on the properties of
problem considered. It is easy to note that convergence is achieved whenever α(uA

k + uB
k −

umax)→ 0. We have two possibilites:
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Figure 2.3: Dual decomposition block diagram.

• (uA
k + uB

k − umax) = 0. The optimal value of input is equal to the maximum allowed
value. The constraint is active and λ ̸= 0.

• (uA
k + uB

k − umax) ̸= 0. The optimal value of input is lower than the maximum allowed
value. The constraint is not active and λ must be null to reach convergence.

Thus, it is easy to understand that λ’s value can give us important informations about
the constraint. λ is equal to zero whenever the problem is unconstrained or the constraint is
not active, while it assumes a positive value if the constraint is active.

For what concerns the tuning of the global coordinator, again, three parameters must be
chosen: α, the tolerance and the maximum number of iterations. Same considerations can
be made as in the case of primal decomposition.
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Chapter 3

Case study: Gas Lift Oil Wells Network

3.1 Introduction and overview of the system

In order to study and analize the performances of a HRTO-based distributed optimizer, a
gas lifted oil wells network has been considered. Offshore oil production is usually performed
using large and complex networks of wells and processing facilities. All the elements of
the network have many and complex connections and interactions between each other.
Performing a decomposition on such a sistem can make analysis, control and optimization
simpler, more efficient and more transparent.

3.1.1 Gas lifted well

Whenever the reservoir pressure is not sufficient to lift economically liquids to the surface,
artificial lift methods are employed. One of the most common artificial lift technique is gas
lift, which is often used for offshore oil production. In a gas lifted well, part of the produced
gas is compressed and reinjected at the bottom of the well. The gas mixes with the oil
coming from the reservoir, reducing its density and, consequently, reducing the hydrostatic
pressure of the fluid column inside the tube. In this way, it is possible to increase the liquid
flow from the reservoir. An example of a gas lift oil well is shown in picture 3.1.

The well is composed by an inside tubing surrounded by the annulus, an outer pipeline
through which gas lift can flow downwards. At the injection point, far below the surface,
gas lift flows through a valve and mixes with the oil from the reservoir. Then the mixture
of oil and gas flows upwards through the tubing until reaching the production choke. The
production choke is connected to a common production manifold, that collects all the flows
coming from the network’s wells. Lastly, the mixture is sent from the manifold to the
processing facility, where the two phases are separated and finally processed. In order to
deal with a possible excess of gas in the equipment, that can lead to an uncontrolled increase
of pressure, a flare is always present, through which the gas in excess can be burnt.

In the case considered, the gas lift injection rate for each well is the manipulated variable
(MV) on which the optimization is performed. Gas lift is a complex MV: increasing the
gas injected in the well favours oil’s production, but a too high flowrate can decrease oil’s

25
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Figure 3.1: A gas lift oil well. The picture is taken from (Eikrem et al., 2004).

flowrate. The reason of this behaviour is due to the higher bottom hole pressure and the
increase in frictions in the well associated to a higher gas lift flowrate, as described in (Wang,
2003) and (Abdalsadig et al., 2016). Thus, the choice of the optimal gas lift injection rate is
complex and must be dealt with numerical optimization.

3.1.2 Network and decomposition

The network considered in this work is composed by six gas lifted wells. The wells have
similar geometry, their main differences regard the oil’s properties. Amall differences are
important too and can change significantly the process conditions that maximize the well’s
productivity. The parameters that characterize the network’s wells are presented in table
3.1

The main feature of this network is the presence of two “clusters” of wells, with two
different owners and operators. The whole system is thus split in two smaller subsystems,
composed by three wells each. The two clusters are operated separately and maintain a high
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Table 3.1: Oil wells network’s parameters.

Parameter Unit of measure Well 1 Well 2 Well 3 Well 4 Well 5 Well 6

Lw [m] 1500 1500 1500 1500 1500 1500
Hw [m] 1000 1000 1000 1000 1000 1000
Dw [m] 0.121 0.121 0.121 0.121 0.121 0.121
Lbh [m] 500 500 500 500 500 500
Hbh [m] 500 500 500 500 500 500
La [m] 1500 1500 1500 1500 1500 1500
Ha [m] 1000 1000 1000 1000 1000 1000
Da [m] 0.189 0.189 0.189 0.189 0.189 0.189
ρo [kg/m3] 800 800 790 800 820 805
Civ [m2] 10−3 10−3 10−3 10−3 10−3 10−3

Cpc [m2] 2 · 10−3 2 · 10−3 2 · 10−3 2 · 10−3 2 · 10−3 2 · 10−3

GOR [kg/kg] 0.100 0.120 0.090 0.108 0.115 0.102
σgor [kg/kg] 0.02 0.02 0.02 0.02 0.02 0.02
Pm [bar] 20 20 20 20 20 20
Pres [bar] 150 155 155 160 155 155
PI [kg/(bar s)] 3.5 3.5 3.5 3.5 3.5 3.5
Ta [°C] 28 28 28 28 28 28
Tw [°C] 28 28 28 28 28 28

level of autonomy. However, they are strictly interacting, because of the connection to the
same processing facility. The presence of common equipment downstream introduces global
constraints that the system, considered as a whole, must not violate. Thus, a supervisory
routine is necessary in order to coordinate the productions and satisfy the constraints
imposed.

Moreover, privacy issues can arise in this particular system. The two different owners are
also competitors, thus, it is important not to share sensible informations with the counterpart.
Data regarding production, well parameters and reservoir properties must be kept secret, in
order to avoid sharing informations from which higher strategies and plans can be deducted.
In such a scenario, the wells’ models and the objective functions of the respective clusters
are not shared, even with the global coordinator. The optimization of the subsystems must
be committed to the respective operators, while the global coordinator must be designed in
order to work granting a certain privacy level to the two companies. These privacy issues can
make the development of the centralized coordinator more difficult and complex. This is the
main reason for which a distributed optimizer must be chosen: a centralized optimizer would
require the knowledge of all the informations about the wells, reservoirs, process conditions
and production objectives, in order to optimize the global production. In a distributed
optimizer, the two operators can solve the optimization problems relative to their systems
by their own and then share only part of their data to the coordinator, to let it supervise
and manage the resources’ allocation.
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A simplified representation of the oil network is shown in figure 3.2. In the picture, the
flare and all the downstream equipment have been omitted.

Figure 3.2: Oil wells network considered in this work. The figure has been modified from (Krish-
namoorthy, B. A. Foss, et al., 2018).

In order to perform a numerical optimization, a mathematical model describing the
system is required.

3.2 Modelling

In this section a brief description of the gas lifted well model that is used in the optimzation
process is presented. The model adopted is based on the work (Krishnamoorthy, B. Foss,
et al., 2016).

The differential algebraic equation system (DAE) is built up of 3 differential equations
and 12 algebraic equations for each well. The reservoir model has not been considered, being
it not crucial for the network model. Similarly, the downstream equipment as the riser, the
separator and the flare are not considered in the model.

The wells that compose the network are all gas lifted and present similar geometry, thus
the model adopted is exactly the same for all the system’s elements. The focus of the work
is the development of the distributed optimizer, thus, some assumptions have been made in
order to reduce the modelling effort:

Reservoir
The reservoir properties are assumed to vary from well to well, and only the reservoir
inflow model is included in this model. The wells can be producing from different
sections of the reservoir, or even different reservoirs. The reservoir model is not crucial
for the network model.
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Gas lift injection
The gas lift injection is adjusted by a flow controller on the gas lift injection valve.
This variable is considered perfectly controlled to give the desired flowrate, delays and
dead time are considered to be negligible.

Manifold dynamics
The manifold to which all the wells are connected is considered to be small enough
to assume its dynamics negligible. The pressure in the manifold is supposed to be
constant.

Chokes
The wellhead choke valves are assmed to be kept at a fully open position, in order to
avoid energy losses that are then considered negligible. The downhole gas lift injection
valve is modeled without a choke opening, because it is usually a mandrel with fixed
opening.

3.2.1 Mass balance of different phases

It is necessary to write three different mass balances for each well, respectively for the gas in
the anulus, the gas in the tubing and the oil in the tubing:

ṁga = wgl − wiv, (3.2.1)

ṁgt = wiv − wpg + wrg, (3.2.2)

ṁot = wro − wpo, (3.2.3)

Here mga is the mass of gas in the anulus, mgt the mass of gas in the well tubing, mot

the mass of oil in the tubing; wgl the gas-lift injection rate, wiv the gas flow from the anulus
into the tubing, wpg and wpo the produced gas and oil flow rates, wrg and wro the gas and
oil flow rates from the reservoir.

3.2.2 Density models

The densities of gas in the anulus ρa and of the fluid mixture in the tubing ρm are given by:

ρa = Mwpa

TaR
, (3.2.4)

ρm = mgt + mot − ρoLrAr

LwAw

, (3.2.5)

Here Mw is the molecular weight of the gas, pa is the anulus pressure, Ta is the temperature
in the anulus, R is the gas constant, ρo is the oil density, Lr and Lw are the length of the
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well above and below the injection point and Ar and Aw the cross-sectional area of the well
above and below the injection point.

3.2.3 Pressure models

The anulus pressure pa, wellhead pressure pwh, well injection point pressure pwi and bottom
hole pressure pbh are given by:

pa = ( TaR

VaMw

+ gHa

LaAa

)mga, (3.2.6)

pwh = TwR

Mw

( mgt

LwAw + LaAa − mot

ρo

)mga, (3.2.7)

pwi = pwh + g

AwLw

(mot + mgt − ρoLrAr)Hw, (3.2.8)

pbh = pwi + ρwgHr, (3.2.9)

Here La and Aa are the length and the cross-sectional area of the anulus, Ha is the vertical
height of the annulus, Tw is the temperature in the well tubing,Hw and Hr the vertical height
of the well tubing below and above the injection point and g is the acceleration of gravity
constant. The cross-sectional area of the anulus and the tubing have been computed from
their diameters Da and Dw.

3.2.4 Flow models

The flow through the downhole gas lift injection valve, wiv, total flow through production
choke wpc, produced gas wpg and oil wpo flow rate and the reservoir gas wrg and oil flowrate
wro are given by:

wiv = Civ

√︁
ρamax(0, pai − pwi), (3.2.10)

wpc = Cpc

√︁
ρwmax(0, pwh − pm), (3.2.11)

wpg = mgt

mgt + mot

wpc, (3.2.12)

wpo = mot

mgt + mot

wpc, (3.2.13)

wro = PI(pr − pbh), (3.2.14)

wrg = GOR · wro, (3.2.15)
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Here Civ and Cpc are the valve flow coefficients for the downhole injection valve and the
production choke, PI is the reservoir productivity index, pr is the reservoir pressure, pm the
manifold pressure and GOR is the gas-oil ratio.

GOR is assumed as the only time-varying parameter, in particular its value is included
in the range:

GOR ∈ {GOR± 2σ}, (3.2.16)

Lastly, the cross sectional area for the annulus Aa and tubing Aw foreach well are
calculated by using the respective diameters Da and Dw:

Aa = πDa
2

4 − πDw
2

4 (3.2.17)

Aw = πDw
2

4 (3.2.18)

3.2.5 DAE formulation

The system is modeled as a semi-explicit DAE system that has the following form:

.
x = f(x, z, u) (3.2.19)
g(x, z, u) = 0 (3.2.20)

Here f(x, z, u) denotes the set of differential equations 3.2.1 - 3.2.3 and g(x, z, u) is the
set of algebraic equations 3.2.4 - 3.2.15. This gives a set of differential states x, algebraic
states z and decision variables u that are shown below:

x = [mga mgt mot]T (3.2.21)
z = [pbh pwi pwh pa pm wiv wpc wpg wpo wro wrg] (3.2.22)
u = wgl (3.2.23)

Where each element of x, z and u is a vector, containing all the values assumed by that
variable in the six wells.

3.3 Optimization

Up to now, the system have been described and all the equations needed to mathematically
model the network have been presented. In order to perform a mathematical optimization,
it is necessary to define the processes contraints and the objective function that must be
maximized.
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3.3.1 Constraints

As mentioned before, the two subsystems have high independence for what concerns strategies,
objectives and the control of the respective wells. However they are coupled by means of
global constraints. These global constraints are related to the common equipment, as the
gas lift pumps, the piping and the downstream equipment. A gas lift process can have many
kinds of constraint, concerning flows, pressures and temperatures. In this work, only the two
most common process constraints are considered: a limit in the injection rate of compressed
gas in the well and a limited capacity of the produced gas processing.

Gas Lift injection rate

In a gas lift well, part of the produced gas in reinjected in the well, to increase the oil
production. Before injecting the gas in the annulus, it is neccessary to compress it to higher
pressures. Thus, it is reasonable to assume that the potential maximum rate of gas lift has
an upper limit, because of limitations in the compressors’ power. Moreover, it is assumed
that this maximum allowed gas lift flowrate can vary in time. This is an hard constraint,
that can not be violated even during transients.

Gas produced capacity

Another important constraint in the oil and gas extraction process is the gas produced
capacity. This constraint must be taken in account when downstream equipments act as a
process bottleneck. The downstream equipment has the role of purifying and processing the
produced oil and gas. While the oil is the main product of the reservoir, in this case the gas
is considered as a by-product, from which no profit can be made. Moreover, while the oil
production can be reduced according to strategies and plans, the production of gas depends
entirely on the produced oil rate and on the properties of the reservoir. These properties
can be unknown and also vary in time, thus it is impossible to predict how much gas will be
produced in the future. It can happen that the production of gas is higher than expected
during the equipment sizing, thus, not all the produced gas can be processed. This limit of
the produced gas capacity can be considered a soft constraint: during stationary conditions
the total amount of produced gas can not overcome the limit, but during transients it is
considered acceptable to violate, locally, the constraint. In this case, the excess gas is flared,
however, the gas flaring is subject to a fine, that can be considered as a carbon tax. This
tax is not negligible during the computation of the profits.

3.3.2 Objective function

The objective of any kind of production system is the maximization of the profits, according
to process contraints and company’s strategies. In the oil production system considered, oil
is the main and only source of profits. No profits are associated with the gas production.
For what concerns the process costs, the only one considered in this model is related to the
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compression and injection of gas lift. The objective function adopted in the optimization
problem can be written as in equation 3.3.1:

J = ($oil

∑︂
i∈N

wpoi
− $gl

∑︂
i∈N

wgli); (3.3.1)

where J is the total income from the plant, $o and $gl represent the price and the cost
associated respectively to oil and gas lift compression, while wpoi

and wgli are the amount
of produced oil and injected gas for each well. The values of $o and $gl are supposed to
be equal and costant in the two subsystems, but their values can differ, because they are
decided in the higher layers of the decision-making gerarchy described in the introduction.
Being the two operators independent, it is possible for them to choose different strategies
and to associate a higher or lower value to the incomes or outcomes of the plant. Thus, the
aim of the global coordinator is not to maximize the plant’s profits in an absolute way, but
to permit to the two operators to equally maximize their own objective functions with the
available resources.

Lastly, it is important to observe that the optimizers developed are static, which means
that constraints’ violations are not considered in the objective function. Thus, the carbon
tax associated with the gas flaring is not mentioned in the plant’s objective function. In
order to deal with it, it is necessary to implement a more advanced controller (as MPC),
able to make choices during transients according to the profits and penalties associated to
an excessive gas production.
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Chapter 4

Case study optimization

4.1 Introduction

In chapter 3, the system considered as case study and its mathematical model are presented.
In this chapter, after a brief description of the softwares used, all the choices and the steps
related to the development and implementation of the optimization loop are illustrated. The
optimization loop implemented in this work is shown in picture 4.1.

Figure 4.1: Optimization and process loop in the case study.

35
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In this case study, the data describing the plant’s behaviour do not come from real
measurements. The plant have been simulated by means of a simulator built ad hoc. The
data measurements produced by the simulator (ymeas) are used as input by the dynamic
estimator, that consists in an Extended Kalman Filter (EKF). Its role is to estimate the
system’s states and the unknown parameters. The unknown parameter that EKF must
predict is the Gas to Oil Ratio (GOR) for each well. Once they have been evaluated, the
optimization can be carried out. Three different optimizers have been developed: one
centralized optimizer and two distributed optimizers, based respectively on primal and dual
decomposition. The optimizer computes the optimal gas lift injection rate for each well,
according to the constraints at the current time step and the estimated value of GOR for
each well. These optimal values are used as set point for the control layer. Two possibilities
have been tested: a classical Proportional-Integral controller, and a more complex Non
Linear Model Predictive Controller (NMPC). This advanced controller computes an optimal
set point trajectory that can be used by a lower control layer, as PI controllers. For the sake
of simplicity, during the simulations with the NMPC, the lower control layer has not been
considered: the optimal set point trajectory is directly implemented in the plant, assuming
the lower control layer’s dynamic negligible. This optimization loop is carried out once each
sample time, that has been chosen to be equal to five minutes. This means that, while the
simulator and EKF works continuously, the optimizers and the NMPC solve the respective
problem once every five minutes. The EKF must work constinuosly in parallel with the
plant simulator in order to keep the system’s model always updated.

4.2 Softwares

The case study considered in this work has been simulated and optimized in MATLAB
R2017b, a programming environment developed by Mathworks, which is widely used in the
academic world. All the documentation regarding this programming language can be found
in [https://it.mathworks.com/help/], see also (MathWorks, 2017), (MATLAB, 2017). The
mathematical model and the NLP problems have been formulated with CasADi framework
(CasADi v.3.4.5), an open source software tool for numerical optimization and optimal
control [https://web.casadi.org/docs/, see also (Andersson et al., 2018) (Andersson et al., In
Press, 2018)]. CasADi permits a symbolic formulation of the NLP problems, that are then
solved with IPOPT (Interior Point OPTimizer), an open source software package for large
scale nonlinear optimization. IPOPT implements an interior point line search filter method
to find a local solution of standard NLPs. The mathematical details of the algorithm can
be found in [https://www.coin-or.org/Ipopt/documentation/, see also (Watcher and Biegler,
2018), (Watcher and Biegler, 2006)]. Lastly, the DAE systems have been integrated and
solved using IDAS integrator (IDAS v3.1.0, Implicit Differential-Algebraic solver), a general
purpose solver from SUNDIALS (SUite of Nonlinear and DIfferenctial/ALgebraic equation
Solvers) for initial value problems (IVPs). More informations about the integrator can be
found in [https://computing.llnl.gov/projects/sundials/idas], see also (Hindmarsh et al., 2005a),
(Hindmarsh et al., 2005b). The optimization and simulations are carried out on a 3.0 GHz

https://it.mathworks.com/help/
https://web.casadi.org/docs/
https://www.coin-or.org/Ipopt/documentation/
https://computing.llnl.gov/projects/sundials/idas
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workstation with 12 GB memory.

4.3 Simulator

The simulator takes the place of the real plant in these tests. It is reasonable to assume
that not all the variables are measured in a real plant. Thus, the only measured variables
considered are the wellhead pressure (Pwh), the bottom hole pressure (Pbh), the produced
oil and gas flowrates (wpo, wpg) and the oil and gas flowrates from the reservoir (wro, wrg).
These measurements are used by the EKF to produce an estimation of states and parameters.
The final sistem obtained from this model is the following:

ẋi = fi(xi, zi, ui, pi), (4.3.1)
gi(xi, zi, ui, pi) = 0 ∀i ∈ N = {1, . . . , 6} (4.3.2)

where fi(xi, zi, ui, pi) is the set of differential equations (3.2.1) - (3.2.3), gi(xi, zi, ui, pi) is
the set of algebraic equations 3.2.4 - 3.2.15. xi,zi are the differential and algebraic states,
ui are the control inputs (wgli) and pi the time varying parameter (GOR) for the ith well.
Statistical noise can be introduced to make the measurements more realistic. However, this
noise is unnecessary for the optimizer’s analysis, thus, it has been chosen to remove it in
order to have simpler and clearer results and graphs.

The simulator runs continuously, and its initial conditions are obtained from past simula-
tions, through which a feasible set of data have been found.

For what concerns the simulator’s implementation in the code, the model’s equation
have been inserted in a CasADi’s function to create the Differential Algebraic Sistem (DAE)
(4.3.1). The function is called every second of simulation to continuously simulate the
system’s behaviour. Part of the code defining the simulator can be found in appendix A

4.4 Estimator

In the HRTO or DRTO framework, a dynamic estimator is necessary to provide an estimation
of the unmeasured or uncertain variables (in this case the GOR for each well) to the optimizer.
This estimator is dynamic, which means that it can work also with transient measurements
and produce reasonable estimations. The possibility to carry out the estimation and to solve
a static optimization problem even during transients is the real improvement from SRTO
to HRTO, as explained in chapter 1. In this work an Extended Kalmann Filter (EKF) has
been used as dynamic state estimator. Many estimation methods have been presented in
literature, see (Krishnamoorthy, B. A. Foss, et al., 2018) for a brief discussion about other
dynamic estimators that could be employed.
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4.4.1 Extended Kalman Filter

Extended Kalman Filter is the non-linear counterpart of the classical, linear Kalman Filter.
Its mathematical foundations were published between 1959 and 1961 in the papers (R. Kalman,
1960) , (R. E. Kalman and Bucy, 1961). EKF utilizes numerical techniques, as Taylor’s
expansion, to linearize a model about a working point. If the model is not well-known,
Monte Carlo methods are employed.

Unlike its linear counterpart, EKF is not always an optimal estimator. Moreover if the
initial estimate of states is wrong, convergence problems can arise. However, EKF needs
only simple arithmetic and matrix computation, which means that it is fast and does not
require too much computational effort. This is the reason why EKF has been chosen as
states dynamic estimator in this work.

Equations

In the EKF, the state transition and observations models must be differentiable functions,
while it is not necessary for them to be linear. The state vectors are given by:

xk = f(xk−1, uk) + wk; (4.4.1)
zk = h(xk) + vk (4.4.2)

The states xk, zk have process and observation noises wk, xk with zero mean and gaussian
distribution, with covariances Qk, Rk respectively. The discrete-time extended Kalman filter
is presented in the following equations, as stated in (Dan, 2006).

Predict Predict state estimate:

x̂k|k−1 = f(x̂k−1|k−1, uk); (4.4.3)
Where x̂k|k−1 is the a posteriori state estimate at time k given observations up to and

including at time k-1, while uk is the input vector.
Predict covariance estimate:

Pk|k−1 = FkPk−1|k1H
T
k + Qk; (4.4.4)

Where Pk|k−1 is the a posteriori error covariance matrix, that measure the estimated
accuracy of the state estimate. Hk is the observation model, Qk the process noise covariance.

Update Innovation or measurement residual

ỹk = zk − h(x̂k|k−1); (4.4.5)

Innovation (or residual) covariance:
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Sk = HkPk|k−1H
T
k + Rk; (4.4.6)

Near-Optimal Kalman gain:

Kk = Pk|k−1H
T
k S−1

k ; (4.4.7)

Update state estimate:

x̂k|k = x̂k|k−1 + Kkỹk; (4.4.8)

Update covariance estimate:

Pk|k = (I −KkHk)Pk|k−1; (4.4.9)

Where the state transition and observation matrices are defined as follows:

Fk = ∂f

∂x

⃓⃓⃓
x̂k−1|k−1,uk

; (4.4.10)

Hk = ∂h

∂x

⃓⃓⃓
x̂k|k−1

; (4.4.11)

Implementation and validation

For what concerns EKF’s implementation, a specific MATLAB function has been developed,
in which the model’s equation are used to generate the state transition matrix Fk and the
state observation matrix Hk. Every second the matrix calculations are carried out, and a
new value of GOR is estimated constinuously.

In order to perform the estimation, EKF requires some plant’s measurement. The data
coming from the simulator are the values of Pwh, Pbh, wpo, wpg, wro, wrg. In figures 4.2 - 4.5
the results of a simplified validation are shown. The simulation regards a single gas lifted
well, simulated for a total time of six hours. The unknown parameter is the GOR, which is
also the only source of disturbances in the system.

Figures 4.3 - 4.4 - 4.5 show the measurements used by EKF to carry out the estimation.
In figure 4.2 the continuous blue line is the real value of GOR, that varies in time. The
dashed red line is the estimated GOR value. As we can see, the estimated value is exactly
the same as the real value. Moreover, being EKF a dynamic estimator and running it with
the same frequency as the simulator itself, no delays are present. Thus, it is possible to state
that EKF produces valid estimation of the GOR. In appendix B all the plots regarding
measurements and GOR estimation during the extended simulation are reported, while the
EKF function implemented in the code can be found in appendix A.



40 CHAPTER 4. CASE STUDY OPTIMIZATION

GOR
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Figure 4.2: Comparison between real and estimated GOR.

Figure 4.3: Pressure measurements during EKF validation.
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Figure 4.4: Produced flows measurements during EKF validation.
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Figure 4.5: Reservoir flows measurements during EKF validation.
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4.5 Optimizer

The general framework of the optimizer used in this work is the Hybrid RTO (HRTO),
described in chapther 1. HRTO fundamental steps are a dynamic state estimator (EKF)
and a static optimizer (see figure 4.6), that computes the optimal value of the controlled
variables. In this work, three different optimizers have been developed: a classical centralized
RTO and two distributed optimizers, in which the problem has been decomposed by means
of primal and dual decomposition.

Figure 4.6: Hybrid Real Time Optimization, from (Krishnamoorthy, B. A. Foss, et al., 2018).

All the optimizer works with a sample time equal to 300 seconds. A low sample time
value would grant a high promptness and accuracy of the optimizer regarding the occurance
of disturbances. However, it is necessary to consider also the time required to perform
the optimization, thus it is necessary to discretize the simulation time in sample times
long enough to solve the optimization problem. 300 seconds has been chosen as a good
compromise between accuracy and computational efficiency, allowing to consider negligible
delays in the computation of new optimal condition and to finish in time the calculations
required.

The input of all the optimizers are the current constraints, that are supposed to vary in
time, and the estimated GOR values from the EKF. Their output are the optimal setpoints
for the controlled variables in each well.

4.5.1 Centralized optimizer

The centralized optimizer is the classical static optimizer used in SRTO or HRTO. The system
is considered as a whole, and only one large NLP is formulated. The static optimization
problem that must be solved is the following:
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min
wgli

−J = −($oil

∑︂
i∈N

wpoi
− $gl

∑︂
i∈N

wgli); (4.5.1)

s.t. x = Fc(x, z, u, θ); (4.5.2)
G(x, z, u, θ) = 0; (4.5.3)∑︂
i∈N

wpgi
≤ wmax

pg ; (4.5.4)∑︂
i∈N

wgli ≤ wmax
gl ; (4.5.5)

where: J is the objective function, that represent the total income from the plant, $o

and $gl are the incomes and costs associated to the produced oil and the gas lift injection,
respectively. Equations (4.5.2) - (4.5.3) represent the system’s model, respectively the set of
differential equations (3.2.1) - (3.2.3) and of algebraic equation (3.2.4) - (3.2.15). Equations
(4.5.4) - (4.5.5) are the constraints.

The NLP problem (4.5.1) - (4.5.5) is developed in CasADi v3.0.1 using the MATLAB
programming environment and solved using IPOPT. It is interesting to observe that this
is a minimization problem and the objective function (4.5.1) is defined as the opposite of
plant’s revenues. The reason of this choice is that IPOPT is able to solve only minimization
problems. In order to perform a maximization, it is necessary to simply change the sign of
the objective function and minimize it.

In the MATLAB code, a new NLP problem is formulated at each sample time, updating
the previous problem with the new constraints and the newly estimated GORs. To carry
out the optimization, a first guess value is necessary. At each sample time, the optimal value
computed in the previous sample is used as first guess. This is known as “warm start”, and it
allows to reduce the computational effort: if the GOR and the constraints have not changed
between the previous and the current samples, the optimization problem is unchanged, and
the solution is the same. Thus, if we suppose major disturbances to be not common, the
optimizer will need only one iteration for most of the time, focusing the computational effort
only in the samples in which disturbances arise.

This centralized optimizer was already developed in previous works (see ??). Although it
was applied for smaller networks composed by no more than two wells, its validation was
already performed. Thus, it is considered valid and it is used as a reference for the validation
of the distributed optimizers.

4.5.2 Distributed Optimizers

In the distributed optimizer, the two subsystems are optimized individually. A global
coordinator is required to solve the master problem, that iteratively updates the allocation
of resources (primal decomposition) or their price (dual decomposition), so that the whole
system satisfies the global constraints. The two optimizers are implemented in a similar
way: at each sample time two NLP subproblems are formulated, one for each cluster. The
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subproblems are solved individually and the value of the objective function’s subgradient
(primal decomposition) or of the optimal values for the CVs (dual decomposition) are used
as input for the master problem. The solution of the master problem permits to update
the subproblems for the next iteration. This inner coordination routine continues until
convergence is achieved.

As in the centralized optimizer, a warm start is introduced: the first guess values are
the optimal values computed at the previous iteration. In this way, it is possible to lower
significantly the average number of iterations required. However, the necessity of solving
the master problem in an iterative way increases the number of calls of IPOPT at each
sample time. The system considered is not large enough to have an appreciable reduction
of computational time by means of system’s decompostion. Thus, we suppose that the
distributed optimizers will require, on average, more time to find a solution respect to the
centralized one.

Primal decomposition

Figure 4.7: Primal decomposition block diagram, as described in algorithm 4.5.1.

Primal decomposition is an auction-based approach that iteratively reallocates the shared
resources among the subsystems. In the system considered, the “resources” are the constraints
themselves: the limited gas lift and gas produced flowrate. At each iteration the master
problems allocate part of the available resources to the subsystems, through which the local
constraints can be updated and the subproblems solved. The allocation of resources is
updated according to the gradient of the solution with respect to wgl or wpg. The following
two NLP subproblems are solved separately:
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min
wgli

−J1 = −($oil

∑︂
i∈N1

wpoi
− $gaslift

∑︂
i∈N1

wgli); (4.5.6)

s.t. x = Fc(x, z, u, θ); (4.5.7)
G(x, z, u, θ) = 0; (4.5.8)∑︂
i∈N1

wpgi
≤ tpg

1 ; (4.5.9)∑︂
i∈N1

wgli ≤ tgl
1 ; (4.5.10)

min
wgli

−J2 = −($oil

∑︂
i∈N2

wpoi
− $gaslift

∑︂
i∈N2

wgli); (4.5.11)

s.t. x = Fc(x, z, u, θ); (4.5.12)
G(x, z, u, θ) = 0; (4.5.13)∑︂

i∈N2

wpgi
≤ tpg

2 = wmax
pg − tpg

1 ; (4.5.14)∑︂
i∈N2

wgli ≤ tgl
2 = wmax

gl − tgl
1 ; (4.5.15)

Where N1, N2 are the wells in each cluster, tpg
1 and tgl

1 are the allocated resources for the
first cluster, tpg

2 and tgl
2 the allocated resources for the second cluster. In primal decomposition,

the system decomposition is performed on the coupling constraints, that are split between the
two subsystems. In order to make the two subproblems equivalent to the original problem,
t2 is defined as the difference between the total maximum value of the global constraint and
the local constraint t1.

The two optimization problems (4.5.6) - (4.5.11) can be solved independently by the two
cluster’s operators. A central coordinator is required to solve the master problem and to
update twgl and tpg at each k iteration:

twgl
1,k+1 = t

wgl
1,k − αwgl(λgl

2 − λgl
1 ) (4.5.16)

s.t. twgl
1,k+1 ≤ wmax

gl (4.5.17)

twpg
1,k+1 = t

wpg
1,k − αwpg(λpg

2 − λpg
1 ) (4.5.18)

s.t. twpg
1,k+1 ≤ wmax

pg (4.5.19)

Where αwgl and αwpg are parameters that governs the update rate, twgl
1,k+1 and twpg

1,k+1 are
the new values for the constraints of the first cluster, λgl

1,2 and λpg
1,2 are subgradients of the

two solutions respect to the constraints. The master problem is solved until the values of tgl
1
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and tpg
1 converge to a definitive value. The primal decomposition optimizer’s algorithm is

the following:

Algorithm 4.5.1: Master problem for primal decomposition.

Input : GORest, wmax
gl , wmax

pg

Output : Optimal solutions wopt
gl , wopt

pg ; Allocated resources tpg
1 , tgl

1 ,tpg
2 , tgl

2

Data : Convergence rates αwgl, αwpg, Tolerance ε, Maximum number of iterations
Nmax

it

◃ Initialization: set initial time and difference
k ← 1, ∆twg ← 1, ∆tgl ← 1
◃ Optimization cycle
while k < Nmax

it do
◃ Set optimization constraints
g1 = [tpg

1,k, tgl
1,k]; g2 = [tpg

2,k, tgl
2,k]

◃ Solve optimization subproblems
find maxwgli

J1 s.t
[︁∑︁

i∈N1
wopt

gl,1;
∑︁

i∈N1
wopt

pg,1
]︁
≤ g1

find maxwgli
J2 s.t

[︁∑︁
i∈N2

wopt
gl,2;

∑︁
i∈N2

wopt
pg,2

]︁
≤ g2

◃ Get optimal solutions wopt
gl , and subgradients Λgl

1,2, Λpg
1,2

◃ Master Problem: compute new allocation of resources and differences
tgl
1,k+1 = tgl

1,k − αwgl ∗ (Λgl
2 − Λgl

1 )
tpg
1,k+1 = tpg

1,k − αwpg ∗ (Λpg
2 − Λpg

1 )
tgl
1,k = min(twgl

1,k+1; t
wgl

1,k )
tpg
1,k = min(twpg

1,k+1; t
wpg

1,k )
tgl
2 = wmax

gl − twgl
1

tpg
2 = wmax

pg − tpg
1

∆tgl = tgl
1,k+1 − tgl

1,k

∆tpg = tpg
1,k+1 − tpg

1,k

if ∆gl ≤ ε ∧∆pg ≤ ε then
◃ Keep optimal values and constraints for subproblems
return

end
end

The algorithm 4.5.1 describes the procedure adopted during the implementation: as long
as the number of iterations is lower than Nmax

it , the two subproblems are solved, the optimal
solutions collected and the subgradients of the solutions Λpg and Λgl stored. After this, the
master problem is formulated and new values of tpg

1 and tgl
1 are computed. If convergence

is achieved, the values obtained are valid and an optimal solution is given as an output,
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otherwise the loop continues. A block diagram of algorithm 4.5.1 is presented in figure 4.7.

Dual decomposition

Figure 4.8: Dual decomposition block diagram, as described in algorithm 4.5.2.

In dual decomposition the constrained optimization problem is converted in an uncon-
strained one, by means of the Lagrangian of the objective function. Differently from primal
decomposition, in dual decomposition there is no allocation of resources: at each iteration
the price of the resources is updated proportionally to the difference between the resources
utilized and the constraints. These resources’ prices are represented by the Lagranian
multipliers associated to the constraints. As mentioned in chapter 2, it is important to
remember that the lagrangian multiplier will be null only when the constraint is active,
otherwise it will assume a positive value. The following NLP problems are solved for both
the clusters:

min
wgli

−L1 =− ($oil

∑︂
i∈N1

wpoi
− $gaslift

∑︂
i∈N1

wgli

+ λgl(
∑︂
i∈N1

wgli −
wmax

gl

2 ) + λpg(
∑︂
i∈N1

wpgi
−

wmax
pg

2 ));
(4.5.20)

s.t. x = Fc(x, z, u, θ); (4.5.21)
G(x, z, u, θ) = 0; (4.5.22)∑︂
i∈N1

wpgi
≤ tpg

1 ; (4.5.23)∑︂
i∈N1

wgli ≤ tgl
1 ; (4.5.24)
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min
wgli

−L2 =− ($oil

∑︂
i∈N2

wpoi
− $gaslift

∑︂
i∈N2

wgli

+ λgl(
∑︂
i∈N2

wgli −
wmax

gl

2 ) + λpg(
∑︂
i∈N2

wpgi
−

wmax
pg

2 ));
(4.5.25)

s.t. x = Fc(x, z, u, θ); (4.5.26)
G(x, z, u, θ) = 0; (4.5.27)∑︂
i∈N2

wpgi
≤ tpg

1 ; (4.5.28)∑︂
i∈N2

wgli ≤ tgl
1 ; (4.5.29)

Where L is the Lagrangian of the cost function, λgl and λpg are the lagrangian multipliers
associated to the two constraints. Similarly to the previous case, the decomposition is
performed on the coupling constraints. It is important that the sum of the local constraints
in the equations (4.5.20) - (4.5.25) is equal to the value of the global constraint. The two
optimization problems (4.5.20) - (4.5.25) can be solved independently by the two cluster’s
operators. A central coordinator is required to solve the master problem, that updates the
lagrangian multipliers at each iteration as follows:

λk+1
gl = λk

gl + αgl(
∑︂
i∈N

wopt
gli
− wmax

gl ) (4.5.30)

s.t λk+1
gl ≥ 0 (4.5.31)

λk+1
pg = λk

pg + αpg(
∑︂
i∈N

wopt
pgi
− wmax

pg ) (4.5.32)

s.t λk+1
pg ≥ 0 (4.5.33)

Where λk+1
gl and λk+1

pg are the Lagrangian multipliers of the constraints at the next
iteration, wopt

gli
and wopt

pgi
are the optimal values computed from the optimizations of the

two subsystems. αgl and αpg are, again, two parameters that govern the update rate. It
is important to impose the conditions (4.5.31) and (4.5.33), to avoid wrong results in the
optimization. The loop continues until convergence is achieved. The dual decomposition
optimizer’s algorithm is the following:
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Algorithm 4.5.2: Master problem for dual decomposition.

Input : GORest, wmax
gl , wmax

pg

Output : Optimal solutions wopt
gl , wopt

pg

Data : Convergence rates αwgl, αwpg, Tolerance ε, Maximum number of iterations
Nmax

it

◃ Initialization: set initial time and difference
k ← 1, ∆twg ← 1, ∆tgl ← 1
◃ Optimization cycle
while k < Nmax

it do
◃ Define Lagrangians of cost functions
L1 = $oil

∑︁
i∈N1

wpoi
− $gaslift

∑︁
i∈N1

wgli + λgl(
∑︁

i∈N1
wgli −

wmax
gl

2 ) +
λpg(

∑︁
i∈N1

wpgi
− wmax

pg

2 )
L2 = $oil

∑︁
i∈N2

wpoi
− $gaslift

∑︁
i∈N2

wgli + λgl(
∑︁

i∈N2
wgli −

wmax
gl

2 ) +
λpg(

∑︁
i∈N2

wpgi
− wmax

pg

2 )

◃ Solve optimization subproblems
for i = 1, 2 do

find maxwgl
Li;

end

◃ Get optimal solutions wopt
gl

◃ Master Problem: compute new cost of resources and differences
λk+1

pg = max (0; λk
pg + αpg(

∑︁
i∈N wopt

pgi
− wmax

pg ))
λk+1

gl = max (0; λk
gl + αgl(

∑︁
i∈N wopt

gli
− wmax

gl ))
∆λgl = λ

wgl
1,k+1 − λ

wgl
1,k

∆λpg = λ
wpg

1,k+1 − λ
wpg

1,k

if ∆gl ≤ ε ∧∆pg ≤ ε then
◃ Keep optimal values
return

end
end

At each iteration k, the Lagrangian of the cost function is formulated, and the two
unconstrained problems solved. Then, the values of the lagrangian multipliers are updated
according to the solutions obtained from the two subproblems and the current constraints.
In this way, if the constraint is not active, the Lagrangian multipliers are reduced, while
if the constraint is active, its lagrangian multiplier is constant and equal to zero. A block
diagram of algorithm 4.5.2 is presented in figure 4.8.
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4.6 Control layer

The optimizer computes the optimal values for each variable in the system. These values
are given as set points to the control layer, whose aim is to keep the variables aligned to
the respective optimal values. Two different control layers have been tested: a classical
Proportional-Integral controller (PI controller) and a Non-Linear Model Predictive Controller
(NMPC).

4.6.1 Proportional-Integral controller

Introduction

The Proportional-Integral controller is a common feedback control loop, widely used in
industrial control system and in a variety of other applications. Its main advantages are
the very easy implementation, that can be performed even in a mechanical way, and the
almost null computational effort required. As the name suggest, the PI controller is able
to control the system by means of an action composed by two terms: a proportional term
and an integral term. The proportional term implements in the system a control action
proportional to the error ε, defined as the difference between the actual value of the controlled
variable (CV) and its desired set point (SP). This kind of action is characteristic of the pure
Proportional controllers (P controllers). Its main limit is the impossibility in aligning the
CV exactly to SP: the presence of a steady state offset is an intrinsic characteristic of this
kind of controller. In order to fix this problem, that can make the P controller unsuitable
for applications in which a great accuracy is required, the PI controller have been developed.
The PI controller implements, parallely to the P action, a control term that depends on the
integral of ε in time. In this way, small errors extended in time acquire a greater importance
and can be removed, reducing the offset to zero. However, the implementation of a control
loop based on integral action increases the system dynamic’s order. Thus, even linear system
can become unstable because of the presence of a PI controller. A higher attention must be
put in the tuning of a PI controller, in order to control the closed loop dynamics and to
avoid undesired responses, as overshoots or fast oscillations.

Implementation

For what concerns the implementation of this controller, two different CVs have been tested:
the wellhead pressure (Pwh) and the produced gas flowrate (wpg). The most obvious way
to control this system would be to control the manipulate gas lift injection rate by means
of the compressors’ power or the opening of the Gas Lift choke. However, these elements
are not considered in our model, thus, we chose to use these two variables as CVs and to
compare the respective controller’s behaviour. For both the CVs, the optimal setpoint is
computed by the optimizer, then a simple law is implemented to manipulate the inlet gas
flowrate (manipulated variable, MV):
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ε = y − ysp ; (4.6.1)

y = y0 + Kc · (ε + 1/τI

∫︂ t

0
ε dt ); (4.6.2)

where ε is defined as error, y is the current value of the CV, ysp is CV’s setpoint, Kc is
the proportional gain and τI is the integral time.

As we can see, there are two parameters that characterize the controller action: Kc

and τI . Kc is defined as proportional gain, and it quantifies the proportional action of our
controller, while τI is a separate weight for the integral action.

The tuning of these parameters is of the primary importance, because it permits to decide
the properties of the closed loop response. High values of Kc/τI increases the controller
promptness and can make the response underdamped, while low values of Kc/τI make
the response smoother and overdamped. Tuning parameters have been found with SIMC
rules, following the steps described in [http://folk.ntnu.no/skoge/prosessregulering/lectures/
SiS6SIMC_tuning.pdf, see also (Skogestad, 2017)].

SIMC rules are an improvement of the Internal Model Control (IMC) tuning procedure
and they have been presented in 2003 in the paper “’Simple analytic rules for model reduction
and PID controller tuning” (Skogestad, 2003). The first step to perform the tuning according
to these rules, is to find a first order plus delay model of the system considered. Thus, an
open loop step response simulation have been carried out. This simulation is shown in figure
4.9.

The open loop step response is performed disconnecting the controller from the system
and introducing an unitary step change disturbation in the MV. The CV’s response is
monitored and from the graph obtained it is possible to obtain infromations about the
process reaction curve (PRC). The system is approximated by a first order model, whose
parameters are the gain of the sistem k′ and its carachteristic time τ1. The gain k′ is defined
in equation (4.6.3), it represents the ratio between the increase in CV’s response (∆y) and
the MV’s step change (∆u), while τ1 is the time needed to reach the 63% of the steady state
response value. k′ and τ1 for the system considered are presented in table 4.1.

After deciding the desired characteristic time (τC) for the closed loop response (in our
case equal to 10 min), it is possible to easily compute the tuning parameters for the PI
controller:

k′ = ∆y

∆u
; (4.6.3)

kp = 1
k′

τ1

τc

; (4.6.4)

τI = min{τ1, 4 τc}; (4.6.5)

The tuning parameters adopted in the work are presented in table 4.2

http://folk.ntnu.no/skoge/prosessregulering/lectures/SiS6SIMC_tuning.pdf
http://folk.ntnu.no/skoge/prosessregulering/lectures/SiS6SIMC_tuning.pdf
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Figure 4.9: Open loop step response.

Table 4.1: Parameters computed from open loop step response simulation.

Controlled variable Gain k′ Characteristic time τ1 [min]

wpg 1.04 11
Pwh 2.71 9

Table 4.2: Tuning parameters with SIMC rules.

Controlled variable Kp τI [min]

wpg 0.8750 11
Pwh 0.3321 9
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Once the two controllers have been tuned it is possible to implement them in the code.
The controller’s code lines are inserted just before the simulator. At each sample time, they
receive a set point value for their CV from the optimizer and they continuously compute the
respective manipulated variable wgl according to equation 4.6.2.

4.6.2 Non Linear Model Predictive Controller

A Model Predictive Controller (MPC) uses a dynamic model to predict the system behaviour
for a finite time-horizon and generate an optimal set point trajectory for the lower control
layer. The predicted input variable is optimized according to a defined objective function
implemented in the controller. For a detailed theory and examples of MPC design see “Model
Predictive Control: Theory and design” by Rawlings and Mayne (Rawlings and Mayne,
2009) and “Nonlinear Model Predictive Control: Theory and Algorithm” by Grune (Grune
and Pannek, 2011).

Traditionally, MPC consists of an optimization problem to achieve certain control
objectives, such as set poin control, state and input constraints, rate of change constraints
etc. The behaviour of the control variable is determined from an optimization starting at
the current position and predicted for a given time-horizon into the future. The measured
variables for the states of the system are given as new initial conditions for the next horizon
optimization. The receding horizon strategy that define MPC is illustrated in figure 4.10,
where the measured variables and the control variables are plotted both in the past and in
the predicted future. The measured and the predicted output is compared to a reference
trajectory.

The advantage of MPC method is that it can anticipate future changes and modify the
controlled variable accordingly, hence diminishing the impact of changes on the operating
conditions. For a plant with an implemented MPC, the benefits could be less down time,
better performance of control and improved flexibility.

NMPC is a MPC with a nonlinear cost function or constraints equations. In this thesis,
the control system is an NMPC with a cost function of eq. (4.6.6):

J =
∑︂

((wgli − wSP
gl )2 + $flare · s + γ(∆u)2) (4.6.6)

Where wgli is the control input, wSP
gl is the set point computed by the optimizer, s is a

slack variable, that represents the dinamic violation of the system for the wpg constraint.
The slack variable represents the gas flowrate sent to the flare and $flare is the penalty
associated to the flared gas, that can be a process cost or a tax related to the gas emissions,
as a carbon tax. Lastly, ∆u is the difference between the control action at the current time
step and the control action at the next time step, while γ is a penalty cost associated to this
difference. This penalty is introduced to reduce the difference between consecutive control
action, in order to have a smoother set point trajectory. Therefore, the MPC developed
generates an optimal set point trajectory according to:

• the current error ε = (wgli − wSP
gl ), as a proportional controller would do;
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Figure 4.10: Model predictive controller, from (Moradzadeh et al., 2014)

• the dynamic violation of constraint $flare · s;

• a smoother gas lift manipulation γ(∆u)2.

The prediction horizon (PH) has been chosen equal to two hours. This period must be
sufficiently long to ensure stablity [Maciejowski, 2001] but it must be also as low as possible
in order to reduce computational time: the adoption of a long PH will require a greater
computational effort for the NMPC, that must simulate the system for all the PH’s duration.

The NMPC computes the optimal set point trajectory for all the prediction horizon at
each sample time (300 seconds). However, only the first control input computed is actually
implemented in the real system, the input for the time step tk+2 will be computed again
at the next sample time, in order to deal with unexpected disturbances. This controller
has not any feedback from the plant during the sample time, but its model is updated with
the newly estimated GOR at the beginning of each sample, alongside with the optimizer’s
model.

In the NMPC, a dynamic model of the system is implemented. A higher order method is
required for solving the dynamic optimization problem. In this work, the dynamic model is
discretized using a thid order direct collocation scheme. Collocation method is a higher order
Runge-Kutta method, often used to solve Optimal Control Problems (OCP). Other direct
methods used to discretize and solve OCP problems are the Single Shooting and Multiple
Shooting, but Direct Collocation is considered as the default choice for DAE systems.

By means of direct collocation it is possible to approximate a function f(t) over an
interval [tk, tk+1] using Lagrange polynomials of order K (equal to three in this work). The
Lagrangian Polynomials are defined as follows:
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Pk,i(t) =
k∏︂

j=1,j ̸=i

t− tk,j

tk,i − tk,j

∈ R, (4.6.7)

of order K, with property:

Pk,i(tk,j) = 1 if i = j; (4.6.8)
Pk,i(tk,j) = 0 if i ≤ j; (4.6.9)

The interpolation is performed as follows, using the real parameters Θk,i

f(Θk,i, t) =
K∑︂

i=0

Θk,i Pk,i(t) (4.6.10)

with the property:

f(Θk,i, t) = Θk,i (4.6.11)

The collocation of the interpolation points depends on the order of the polynomial and
the method adopted. The two most common methods for direct collocation are the Radau
roots or Gauss-Legendre. For DAEs systems, Radau collocation points are suggested, while
Gauss-Legendre are better suited for ODEs. Radau method is less exposed to oscillations
and is stable for stiff differential system equations, due to the presence of a collocation point
at the beginning and at the end of the sample time that also allows an easy implementation
of constraints on the differential and algebraic states. The adoption of a direct collocation
method, allows to formulate the NLP problem as a large, structured and sparse matrix,
that makes the problem more efficient to solve. The position of the collocation points with
Gauss-Legendre scheme and Radau scheme are shown in table 4.3.

Table 4.3: Collocation points with Legendre method and Radau method.

Polynomial degree Legendre Roots Radau Roots

1 0.500000 1.000000

2 0.211325 0.333333
0.788675 1.000000

3 0.112702 0.155051
0.500000 0.644949
0.887298 1.000000

4 0.069432 0.088588
0.330009 0.409467
0.669991 0.787659
0.930568 1.000000
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An example of the polynomial integration over an interval [k, k + 1], using a third order
direct collocation with Radau collocation scheme is shown below in figure 4.11.

Figure 4.11: Schematic representation of third order direct collocation using Radau scheme, showing
the polynomial approximation of the differential (x) and algebraic (z) states and the control input
u for a sampling time [k, k + 1]. Note the presence of a collocation point at tk,0, which is used to
ensure continuity in the differential state by enforcing the shooting gap constraints. The picture is
taken from (Krishnamoorthy, B. Foss, et al., 2016).

During the simulations with the centralized optimizer, a centralized NMPC (c-NMPC) is
used. In order to solve the OCP problem, it is necessary to implement the process constraints.
For the centralized NMPC, they are simply the values of wmax

gl and wmax
pg .

The idea at the basis of the case study is the presence of two different operators, that
can control separately the two well clusters. Thus, it is reasonable to assume that also the
control layer is decomposed. Hence, during the simulations with the distributed optimizer,
a distributed NMPC (d-NMPC) is used (see also Farina et al., 2016 for a comparison
of d-NMPC schemes). Its framework and implementation are exactly the same as the
centralized NMPC, the main difference is in the process constraints. While in c-NMPC
the global process constraints are well determined, local constraints for d-NMPC are not
defined. While in a simple PI controller the only input required is the CV’s set point, for
a MPC also constraints are required. Hence, the optimizer must compute feasible and
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reasonable local constraints to make d-NMPC work. With primal decomposition the local
constraints formulation is straightforward: the assumption of primal decomposition is exactly
the allocation of resources, thus, the formulation of local constraints for the two subsystems.
The two local constraints will be exactly the solutions of the master problem tgl

1 , tpg
1 for the

first cluster and tgl
2 , tpg

2 for the second cluster.
In dual decomposition no allocation is performed, and no local constraints are formulated.

A possible solution to deal with local constraints is to normalize the optimal solutions
obtained rescpect to the global cosntraints themselves, as shown in equations (4.6.12) -
(4.6.15)

tgl
1 =

∑︁
i∈N1 wopt

gl∑︁
i∈N wopt

gl

; (4.6.12)

tgl
2 =

∑︁
i∈N2 wopt

gl∑︁
i∈N wopt

gl

; (4.6.13)

tpg
1 =

∑︁
i∈N1 wopt

pg∑︁
i∈N wopt

pg

; (4.6.14)

tpg
2 =

∑︁
i∈N2 wopt

pg∑︁
i∈N wopt

pg

; (4.6.15)

In this way, the local constraints will be equal to the respective variable’s optimal values
whenever the constraint is active, while if the constraint is not active, the allocation of
resources is proportional to the optimal solutions.

The formulation of local constraints is a delicate point, because they have not a real
meaning, but just an expedient to coordinate the oil production. As described in chapter 5,
the violation of local constraints does not mean necessarily the violation of global constraints,
with the possibility of leading to suboptimal choices.

Lastly, two other constraints must be implemented in the MPC: the slack variable’s
constraint and the shooting gap constraint. The slack variable represents the quantity of gas
flared during the wmax

pg constraint violation. The additional constraint is required in order
to define how much gas can be flared, or how much the global or local constraint can be
violated dynamically.

The shooting gap constraint force the continuity of the differential state, as shown in
figure 4.11, imposing that:

xk,K = xk+1,0 (4.6.16)

Which means that the value of the differential state x, at sample time k in the last
collocation point K (which is equal to three in our case) must be equal to the value of x at
the next sample time k + 1 at the first collocation point (0).

The MPC developed for this work is implemented in an external function that is called
by the main code at each sample time. This function is reported in appendix A
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Chapter 5

Results and discussion

The objective of this thesis is to investigate and analyze the performances of a distributed
optimizer based on HRTO framework. The case study is described in chapter 3 while the
development of the code and the optimization loop is presented in chapter 4. In this section,
the results of the simulations are outlined and commented. The discussion follows a logical
order, in which at first the disturbances characterizing the simulation are described, then the
discussion focuses on the choice of control layer, on the comparison between centralized and
ditributed optimizers and lastly on the comparison between the two decomposition methods:
primal and dual decomposition.

5.1 Design of experiment

The simulation regards the case study presented in chapter 3. The simulation covers a total
time of 24 hours, as to simulate a full day of production. Each second, the plant is simulated
and from the measurements new values of the estimated GOR for each well are computed.
The optimizers and the MPC works once each sample time, which is set equal to 300 seconds.
The only disturbances that affect the systems regard the values of GOR. The Gas to Oil
Ratio changes in time, as shown in figure 5.1.

The most common disturbance is a step change in GOR value, which is included in the
intervals reported in table 3.1 and defined as follow:

GOR = GOR± σGOR; (5.1.1)

where GOR is the average value of GOR, while σGOR is its standard deviation. However,
between 11 - 13 hours and 16 - 20 hours ramp disturbances occur, in which GORs slowly drift
to other values. In this way it is possible to test both the cases: a sudden disturbance that
significantly changes the optimal process conditions and a slower, less significant disturbance
that continuously affects the plant.

The constraints too vary in time. They are considered as inputs for the optimizers,
because they are not real unknown and unexpected disturbances, but they depends on

59
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Figure 5.1: GOR values for each well during the simulation.

planned maintenance, strategies, or decisions regarding the upper levels of the hierarchy
shown shown in figure 0.1.

The disturbances and variations in constraints have been chosen in order to test the
behaviour of the optimization routine while facing different situations. In particular, it
is important to verify if the optimizer is able to work both when one of the constraint is
active or when the problem can be considered unconstrained. In order to check whether the
constraints are active or not, it is possible to look at the values of the Lagrangian multipliers
used for the distributed optimizer based on dual decomposition: they assume a non-null
value whenever the respective constraint is active. Their values during all the simulation
time are shown in figure 5.3.

From this figure, it is possible to observe that all the scenarios are considered in this
simulation: in the intervals 0-3, 6-8, 16-21 hours the gas lift constraint is active, during the
intervals 12-16, 21-24 hours the produced gas constraint is active, while during the rest of
the simulation (3-6, 8-12 hours) the system is unconstrained. The different values of lambda
represent a different severity of the constraint itself. The lagrangian multiplier at the solution
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Figure 5.2: Variation of maximum gas lift injection rate and maximum gas produced capacity
during the simulation.

Figure 5.3: Lagrangian multipliers’ values during simulation.
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of the problem is equal to the rate of change in the maximal value of the objective function
as the constraint is relaxed. This means that the higher the value of lambda, the further the
system is from the uncinstrained optimal process conditions, thus the constraint itself can
be considered more “severe”.

It has been demostrated that the disturbances and the constraints introduced in the
system permit to analyze the optimization routine in a wide range of situations. It is now
possible to move to the next step, which is the choice of the control layer that must be
implemented along the optimizers.

5.2 Choice of control layer

One of the first decisions that must be taken is how to effectively carry out the regulation
and control of the system. In chapter 3 the development and tuning of two kind of controllers
is illustrated: a classical Proportional Integral controller (PI controller) and a more advanced
Model Predictive Controller (MPC). While the MPC directly control and manipulate the gas
lift rate, for the PI controller two different controlled variables have been tested (produced
gas and well head pressure), always manipulating the gas lift injection rate. The simulations
are carried out according to the disturbances illustrated at the beginning of this chapter.
Since the discussion is now focused on the control layer, the centralized optimizer’s optimal
set points are used. This is done in order to avoid any problems related to the use of
a distributed optimizer and to be able to analyze the controllers’ dynamics without any
influences from to the optimizer’s choice.

5.2.1 Controlled variable for the PI controller

In the PI controllers developed in this work, the controlled variable is not directly the gas
lift injection rate, but the produced gas (wpg) or the well head pressure (Pwh). This means
that in these cases, the optimal set points computed by the optimizers will concerns one of
this two variables and not wgl as in MPC’s case. The two CVs have been chosen in order to
see if important differences can be noted in the use of a pressure or a production flowrate for
what regards the controllers’ performances. The most interesting plots for the analysis are
the ones concerning the produced oil (figure 5.4, which is strictly connected to the profits of
the production), and the graphs of the variables on which a constraint exists: the gas lift
injection rate (figure 5.5) and the gas produced (figure 5.6).

It is possible to observe that both the controllers show a very similar behaviour. The
stationary conditions are obviously the same, being the optimal process conditions depending
on the same disturbances, while the transients are managed in a very similar way. Both the
controllers do not show unstabilities related to oscillations or overshoots. It is possible to
affirm that the two controllers are equivalent, their small differences depends exclusively on
the tuning, in particular on the estimation of the process gain and characteristic time during
the step change simulations, being the tuning rules adopted the same. The only reasons
that could lead the choice towards one of the two CVs would be related to the measurement
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Figure 5.4: Comparison between PI controllers: produced oil.

Figure 5.5: Comparison between PI controllers: gas lift injection rate.
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Figure 5.6: Comparison between PI controllers: produced gas.

devices or to the presence of dead times. While nothing can be said regarding the dynamics
of valves and the presence of dead times, because a model of the regulatory system has
not been implemented, from a measurement point of view using the well head pressure can
be a better option. While for the measurement of pressure a simple and cheap pressure
gauge can be adopted, having a precise and reliable measurement of the produced gas can
be more challenging. The outflow of the production choke is a biphasic mixture containing
both gas and liquid oil. A biphasic flow measurement device is complex and significantly
more expensive than a pressure sensor, moreover it requires a more difficult and frequent
maintenance. One possible solution would be to measure the gas flowrate after the liquid-gas
separator, but because of the scenario considered in this case study, the separator could be
very far from the common manifold, introducing in this way not negligible delays between
measurements and control actions. Thus, although the behaviour of the two PI controller is
almost the same, the well head pressure Pwh is chosen as CV for further comparisons.

5.2.2 PI controller and MPC

The MPC is a kind of advanced controller in which a system’s model is implemented, in
order to allow it to manage in a better way the manipulated variable. The PI controller’s
dynamics shown in figures 5.4 - 5.5 - 5.6 is pretty good, the controller is reactive but without
introducing oscillations or overshoots. Thus, a comparison between the two controllers, PI
and MPC, is now carried out, in order to see what kind of advantages an advanced controller



5.2. Choice of control layer 65

Figure 5.7: Comparison between PI and MPC controllers: produced oil.

can introduce. For both the controller, the set point is computed by a centralized optimizer.
The plots resulting from the simulation are shown in figures 5.7 - 5.8 - 5.9.

Both the controllers shows acceptable dynamics. Their steady state response is exactly
the same, as expected, but differences are present in the management of the transients (see
5.8 - 5.9). The most delicates points of the simulation are the ones in which the maximum
produced gas capacity decreases, namely at 12 and 21 hours of simulation. In these moments,
the sudden lowering of the constraints makes impossible to avoid the constraint violation.
In these cases, the MPC is able to bring wpg quickly below the maximum value, reducing
significantly the gas lift injection rate for a short amount of time. The PI controller is slower,
it is able to bring wpg below the constraint only after 60 minutes on average. Although the
PI controller shows a smoother behaviour and it is able to produce slightly more oil than
MPC, the constraint violation for a so long time introduces a non negligible penalty in the
plant’s profits, as shown in figure 5.10 and in table 5.1.

In particular from the table it is possible to evaluate quantitative the advantages of MPC:
while the total daily oil production is practically the same, the implementation of MPC

Table 5.1: Plant’s income with PI controller and MPC controller.

Controller Total oil produced [ton] Total gas flared [ton] Total income [107$]

PI 14122 5.7134 1.3654
MPC 14117 2.8325 1.3710
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Figure 5.8: Comparison between PI and MPC controllers: gas lift injection rate.

Figure 5.9: Comparison between PI and MPC controllers: produced gas.
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Figure 5.10: Comparison between PI and MPC controllers: plant’s profits.

permits to halve the amount of gas flared, with significant improvements from a profits point
of view, according to the process costs and carbon tax associated to the use of the flare. The
possibility to reduce the periods in which constraints are violated and the more flexibility
and promptness of the control actions, lead the choice of the control layer towards the MPC.

It is important to remind though, that the choice of the control layer must be taken by
the single cluster’s operator. Implementing a MPC can require a deeper analysis of the
system and a greater effort during its development, thus it is not necessarly the first choice
of both the operators. A scenario in which one of the operators opt for a MPC and the
other for a PI controller is not impossible, although the MPC can significantly improve the
productivity and the profitability of the production system.

5.3 Distributed optimizers’ validation

Once all the decisions related to the design of the simulation and to the choice of the
control layer have been presented, it is possible to move further and to deal with the
optimizers. Among the three optimizers developed (centralized, distributed based on primal
deocmposition, distributed based on dual decomposition), the centralized one is used as
reference for the validation of the distributed optimizers. The centralized optimizer has been
validated in the work (Krishnamoorthy, B. A. Foss, et al., 2018). In this paper it has been
compared with optimizers based on SRTO and DRTO, see the same article for a complete
discussion about HRTO advantages respect to traditional RTO techniques.
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Figure 5.11: Optimal gas lift injection rate as calculated by the centralized and distributed opti-
mizers.

The validation of the distributed optimizers is simply carried out comparing the optimal
gas lift injection rate computed by the various optimizers in relation to the same disturbances.
The results are presented in figure 5.11.

From this figure, it is evident that the distributed optimizers produce the same, exact
solution of the optimization problem as the centralized optimizer. Only wgl is considered
in the validation, being it the manipulated variable and, thus, being these the effective set
points used by the MPC. The same results would have been obtained if other variables were
considered. The validation of optimizers has a great importance, because it guarantees that
at every sample, the distributed optimizers converge to the real solution of the optimization
problem.

5.4 Comparison between centralized and distributed optimizers

The fact that both centralized and distributed optimizers give the same optimal solution,
means that if the two optimizers are coupled with the same control layer, the dynamic of
the system would be identical, because the same controller with the same set points would
actuate equal decisions. This would be the case if a PI controller was chosen to control
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Figure 5.12: Comparison between centralized and distributed (based on primal decomposition)
optimizers: produced oil.

and regulate the plant. However, the implementation of MPC is more complex and some
discrepancies between the systems based on centralized or distributed optimizer can arise.
The comparison between centralized optimizer and the distributed optimizer based on primal
decomposition is illustrated in figures 5.12 - 5.13 - 5.14. In order to make the plots simpler and
easier to understand, only the case based on primal decomposition is considered. However,
as discusses in section 5.5, the differences between the dynamics of the primal decomposition
based optimizer and dual decomposition based optimizer are almost negligible in this case
study, thus, the comparison with the centralized optimizer can be carried out considering
just one case.

Some interesting considerations can be made from these figures. The oil productivity is
similar, some minor differences are present regarding mostly the istants in which a significant
disturbance arises, as at 9 hours, while the steady state productivity is equal. Figures 5.13 -
5.14, that shows the trend of the two constrained variables wgl and wpg, are more interesting.
The two systems deals in a very similar way both steady states and transients, but the
centralized optimizer shows a better behaviour. In particular, the decomposed system have
a strange response at the times 9 and 20 hours, where an unexpected reduction of wgl occurs.
Despite the fact that the constraint associated to wpg is not violated, the distributed MPC
choose, in both the cases, to cut the gas lift injection. This is a wrong behaviour, because it
means producing less oil than the maximum allowed, which means a sub-optimal working
conditions. This behaviour is very peculiar and can not be explained looking at the global
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Figure 5.13: Comparison between centralized and distributed (based on primal decomposition)
optimizers: gas lift injection rate.

Figure 5.14: Comparison between centralized and distributed (based on primal decomposition)
optimizers: produced gas.
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Figure 5.15: Total gas lift injection rate in the two clusters, optimizer based on primal decomposition.

productivities, it is thus necessary to focus on the single clusters. In figures 5.15 - 5.16, the
values of wgl and wpg for the two clusters are plotted.

Figure 5.16: Total produced gas in the two clusters, optimizer based on primal decomposition.

If we focus our attention on the istant t = 9 hr, it is possible to observe in figure 5.16
that in cluster 2 there is a peak in the production of gas, which is higher than the local
constraint for that subsystem. The MPC reacts to this peak cutting the gas lift injection, as
shown in the right picture of figure 5.15. However, the sudden increase in gas productivity
in the second cluster is balanced by a reduction in gas production in the first cluster. In
this way, although the local constraint imposed by the optimizer has been overcome in the
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second cluster, the global constraint associated to wmax
pg is respected. This is the reason why,

although the global constraint is respected, a sub optimal decision is taken by the distributed
MPC. At 20 hours the same problem occurs, however the peak production occurs in the
first cluster and the local constraint’s violation is less pronounced.

These productivity peaks introduce an important problem in the usage of distributed
optimizers: whenever a MPC, or a controller able to deal with constraints’ violations, is
implemented in the system, the optimizer must be able to compute, along with the optimal
set points, local constraints. These local constraints are needed in order to allow the MPC
or the advanced controller to take an action whenever one of the subsystems is, for example,
consuming too much resources. However these local constraints are not real constraints,
they have not a concrete and effective meaning. They are just an expedient to coordinate
the global production. The computation and decision of local constraints is a delicate topic,
because they should be defined in such a way that the global constraints are always satisfied,
but without letting a local violation compromise the optimal process conditions.

In primal decomposition, it is the master coordinator itself that generates local constraints
(the allocated resources) for the subsystems. For what concerns dual decomposition, no
allocation or local constraints exist. In this work, the local constraints have been formulated
normalizing the optimal value for the constrained variable respect to the global constraint
itself. See chapter 4 for a deeper discussion about how local constraints are dealt by primal
and dual decomposition in this work.

The problem related with the formulation of local constraints could be easily avoided
adopting simpler control system, as the PI controlled described before. However, as shown
in table 5.2, while a lower production of oil is almost negligible from a profits point of view,
a longer dynamic constraint’s violation is significant. Thus, the advantages of a decomposed
MPC (d-MPC) are still consistent respect to a PI controller.

Table 5.2: Plant’s income with PI controller and MPC controller.

Controller Total oil produced [ton] Total gas flared [ton] Total income [107$]

PI 14122 5.7134 1.3654
c-MPC 14117 2.8325 1.3710
d-MPC 14117 2.9615 1.3709

The differences in the behaviour of a centralized optimal control system and a distributed
one are evident in the figures 5.13 - 5.14, however, the profits reported in table 5.2 are slightly
affected. In this case study the suboptimal working periods introduced by the distributed
optimizer is negligible, but the problem still exists, and it could acquire more importance in
other kind of systems.
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Figure 5.17: Comparison between distributed optimizers: produced oil.

5.5 Comparison between primal and dual decomposition

The last comparison that is carried out regards the two decomposed optimizer: the one
based on primal decomposition (PD) and the one based on dual decomposition (DD). The
respective trends of produced oil, gas lift injection rate and produced gas are shown in figures
5.17 - 5.18 - 5.19.

It is evident that the behaviour of the distributed optimizers is similar, very small
differences occurs that can be considered negligible. In order to have an overview of the
system dynamics inside the subsystems, it is possible to focus on the variables of the single
clusters. This is shown in figures 5.20 - 5.21, in which the dashed lines are local constraints,
the blue lines refer to the simulation with primal decomposition (PD) and the red lines to
simulation with dual decomposition (DD).

Again, the variables’ trends are practically identical. Two small differences between
PD and DD are present in the first cluster at 10 hours and 20 hours. In particular some
considerations can be made about the mismatch at 20 hours. In figure 5.20, in the first
cluster at 20 hours, the primal decomposition based optimizer reduces wgl more respect
to the dual decomposition based optimizer. The reason of this small, different choice can
be easily understood looking at the same point in figure 5.21. In both the cases, due to
disturbances related to GOR, a sudden increase in gas production occurs. However, the two
local constraints for PD (red dashed line) and DD (blue dashed line) are not exactly the
same. Thus, the two MPC react differently to this constraint violation, in particular, in
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Figure 5.18: Comparison between distributed optimizers: gas lift injection rate.

Figure 5.19: Comparison between distributed optimizers: produced gas.
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Figure 5.20: Total gas lift injection rate in the two clusters, distributed optimizers.

Figure 5.21: Total porduced gas in the two clusters, distributed optimizers.
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Figure 5.22: Particulars of figures 5.20 - 5.21, first cluster, t = 20 h.

the primal decomposition case the local constraint is lower, making the constraint violation
more significant and requiring a more decise action from the controller. A particular of this
event is shown in figure 5.22.

This mismatch is almost insignificant in the case study considered, but it could become
relevant in other kind of applications. The problem of an optimal choice of local constraints
persist. From the simulations carried out in this work it is impossible to define which
one of the two local constraints, the PD-based or the DD-based is better. One possibility
could have been to apply the same approach used in dual decomposition for the definition
of local constraints to primal decomposition. Instead of using the allocated resources, it
could have been possible to formulate the local constraints as the optimal variables’ values,
normalized respect to the global constraints. However, to perform this kind of local constraint
formulation, as shown in equations 4.6.12 - 4.6.15, it is necessary to collect informations about
the optimal solutions from both the clusters. While these informations must be shared in dual
decomposition to solve the master problem, in primal decomposition they are not required.
Indeed, in order to solve the master problem, dual decomposition requires the solutions of
all the optimization subproblems, while primal decomposition needs only a subgradient of
those solutions. In a scenario as the one considered in this case study, the sharing of the
clusters’ optimal conditions could allow the two operators to have many informations about
the other’s productivity, profits and even strategies. Sharing only some subgradients would
make impossible for the other operator to estimate precisely the conditions and profits of the
other cluster’s production. Primal decomposition is able to ensure a higher level of privacy
between the two subsystems, thus, it is preferable to maintain this level of privacy and use,
as local constraints, the resources allocated by the master coordinator.
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Figure 5.23: Iterations for master problem.

5.5.1 Convergence rate

One important aspect of the distributed optimizers is the solving of the master problem.
Primal and dual decomposition follows two different approaches to achieve global convergence,
thus, it is expected to find different convergence rates. The convergence rate depends deeply
on the choice of the update parameter α. In this work, the value of α able to minimize the
total number of iterations have been adopted, however this method can be used only if the
disturbances are predictable or well known. When unknown disturbances or uncertainities
are present, it is preferable to use a lower value of α, in order to ensure stability, which must
be the first priority in the tuning of the optimizers.

In figure 5.23 the number of iterations required by the master problem in the two cases
is represented.

For most of the samples, the master problems in both the decomposition methods requires
just one iteration to achieve convergence. This is due to the “warm start” described in
chapter 4: the solution of the optimization problem at the k time step is used as first guess
for the next time step k + 1. In this way, whenever no new disturbances occur, the optimal
solution is equal to the one computed at the previous step, which is exactly the first guess
inserted in the optimizer. However, when a step change disturbance occurs, the central
coordinator require more than one iteration to solve the master problem, this is the reason
for the presence of spikes in graph 5.23. In this cases, primal decomposition requires more
iterations to solve the master problem. Moreover, between t = 16 hr and t = 20 hr, when
the ramp disturbance occurs, primal decomposition needs always 2 iterations to solve the
master problem, while for dual decomposition one is sufficient. In table 5.3 the average and
maximum number of iterations for both the decomposition methods are reported.
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Table 5.3: Iterations for master problem.

Decomposition method Average number of iterations Maximum number of iterations

Primal Decomposition 1.5660 22
Dual Decomposition 1.0764 5

Figure 5.24: Optimal gas lift injection rate. The maximum number of iterations to solve the master
problem is set equal to one.

Primal decomposition requires, on average, 50% more iterations than dual decomposition.
Great differences are present in the maximum number of iterations, which is 22 for primal
decomposition and only 5 for dual decomposition. It is evident that dual decomposition
requires a significant lower amount of iterations to solve the master problem. The reduced
number of maximum iterations can be relevant whenever the system is so complex that it is
not easy to find a global optimum during one sample time. In this cases, the requirement of
a low number of iterations can lead the choice between the two decomposition techniques
towards the fastest one. This case study is too simple to present this problem, however
it is possible to simulate it imposing in the distributed optimizers a maximum number
of iterations equal to 1 to solve the master problem. In figure 5.24 one graph from this
simulation is presented: the optimal injection rate computed by the distributed optimizers
is compared to the same optimal value computed during normal simulations, with no limits
on master problem’s iterations.

It can be noted that the PD-based optimizer requires some samples to converge to the
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real optimal solution. The system would work suboptimally during all these transients to
find the real optimal process conditions, that can last even one hour (between t = 7hr and
t = 8hr). However, it must be noted that these transients are associated to the finding
of the global optimum, not the local one. The production would be suboptimal from a
global point of view, but the subsystems would be working optimally with that temporary
allocation of resources. As expected, dual decomposition is faster and it can reach the
global optimum in just a few samples. Moreover, looking at figure 5.24 it is possible to
see the different behaviour of the two master problems: while in primal decomposition
the solution gradually converge to the optimal one, in dual decomposition the first step
solution is already very close to the optimal one. Their behaviours resemble somehow the
behaviour of a second order overdamped system (in primal decomposition) or a second order
underdamped system (dual decomposition). The peaks that can be seen in figure 5.24 at
t = 9hr and t = 20hr in the primal decomposition line are due to the violation of local
constraints and the consequent change in the resources allocation. This problem is not found
in dual decomposition because the allocation of resources is not necessary for the solution
of the master problem. In the other figures (5.25 - 5.26 - 5.27) the values of wpg, wgl and
wpo for the these particular simulations are reported. While no particular differences can be
found in dual decomposition’s trends, primal decomposition shows slower dynamics, due to
the longer time needed to converge to find the globally optimal process conditions. This
delay is significant for the oil production: in figure 5.27 it is evident that dual decomposition
permits a larger oil production.

5.5.2 Profits

As shown previously in this chapter, only minor differences are present between the two
distributed optimizers. The profits of the plant in the two cases are presented in figure 5.28
and in table 5.4.

Table 5.4: Plant’s income with distributed optimizers.

Decomposition method Total oil produced [ton] Total gas flared [ton] Total income [107$]

No (Centralized) 14117 2.8325 1.3710
Primal Decomposition 14117 2.9615 1.3709
Dual Decomposition 14117 3.0319 1.3708

While the oil production between PD and DD is exactly the same, small differences can
be found for what concerns the flared gas, with consequences on the plant profits. However,
both the distributed optimizers are able to manage wisely the constraints violations, which
is the main factor that permits to compare the total incomes in this case study. In other
kind of systems, where the costs related to constraint’s violations are negligible if compared
to the main source of income, the presence of suboptimal production periods, as the ones
shown in figures 5.13 - 5.14, can make more relevant the differences between centralized and
ditributed optimizers.
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Figure 5.25: Produced gas in distributed optimizers. The maximum number of iterations to solve
the master problem is set equal to one.

Figure 5.26: Gas lift injection rate in distributed optimizers. The maximum number of iterations
to solve the master problem is set equal to one.
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Figure 5.27: Produced oil in distributed optimizers. The maximum number of iterations to solve
the master problem is set equal to one.

Figure 5.28: Comparison between distributed optimizers: profits.
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Between the two distributed optimizers minor differences exist, and the choice between
the two can be influenced by other factors, as the convergence rate, the computational time
and the availability of informations.

5.6 Computational time

Lastly, ulterior considerations can be made about the computational effort associated to the
three optimizers. In table 5.5 the average and maximum computational time for the solving
of the optimal problem are reported. In the MPC’s columns, there are two numbers for the
distributed optimizers: they refer respectively to the computational time of the MPC in the
first and second clusters.

Table 5.5: Computational times.

Optimizer Avg. Opt. time [s] Max. Opt. time [s] Avg. MPC time [s] Max MPC time [s]

Centralized 0.0195 0.1792 0.9911 14.1090
Primal Dec. 0.0554 0.7605 0.5260 0.5337 2.9361 5.7308
Dual Dec. 0.2050 2.5596 0.5085 0.5267 2.7382 7.2283

For what concerns the time required by the optimizers, it can be noted that the centralized
optimizer is the fastest solver. The system is too simple to emphasize the improvements
associated to system decomposition. The necessity of solving the master problem and
repeting the optimization calculus for more iterations is more relevant, from a computational
effort point of view, than the advantages introduced by system decomposition. While primal
decomposition’s computational times are of the same order of magnitude of centralized
optimizer’s ones, dual decomposition requires on average ten times more time. Looking to
the number of iterations required by the two distributed optimizers, this result is unexpected:
even though dual decomposition requires less iterations to solve the master problem, its
computational effort is significantly higher than primal decomposition. The reason of this
large difference could lie in the different formulation of the NLP problems: while in primal
decomposition the optimal problem is constrained (as in the case of the centralized optimizer),
in dual decomposition the optimization of the Lagrangian function is an unconstrained
problem. Probably IPOPT (the NLP solver) needs a greater effort to solve these kinds of
unconstrained problems. Another reason could be in the higher complexity of the Lagrangian
function respect to a simpler cost function. It is not clear the exact reason of this difference
in computational efforts, but it is possible to suppose that it is related to how IPOPT deals
with the two different optimization problems.

For what concerns the comparison between centralized and decomposed MPC, the average
computational times are similar: for both the controllers the average computatonal time is
around one second. However, if we suppose that in the distributed MPC the computations
are carried out in parallel, it is allowable to say that the distributed MPC requires half the
time to perform the computations. The computational effort is exactly the half because the
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two subsystems are composed by three wells each, thus, one subsystems is exactly one half
of the original system. The advantages of the system decomposition can be noted looking
at the maximum computational time required by the MPC: while in the centralized MPC
the maximum time is around 14 seconds, in the distributed optimizers it is around 9 or 10
seconds. The decomposition advantages are more evident in the MPC because, even though
the objective function is simpler, the computations that must be carried out are higher in
number and complexity respect to the ones carried out during the static optimization.
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Chapter 6

Concluding Remarks and future work

The purpose of this thesis was to investigate the possibility of developing and using a
distributed optimizer based on the hybrid RTO framework. With the development and
spreading of subsea technology, offshore oil wells networks have increased in dimensions and
complexity. The possibility of performing a system decomposition can simplify the control
and optimization of such production systems. An additional advantage of a decomposed
optimization and control structure is the possibility of shutting down one subsystem for
maintenance while still having an active controller optimizing the remaining subproblems.

In this work, the distributed optimizer based on HRTO has been developed and formulated
in MATLAB R2017b programming environment. The case study refers to a gas-lifted oil
wells network composed by two clusters of three wells each, on which the decomposition has
been performed. The simulations show that the distributed optimizer converges to the same
results as the centralized optimizer. For what concerns the control layer, a Nonlinear Model
Predictive Controller has been chosen as a better alternative to a classical Proportional
Integral controller, due to its ability in dealing actively with dynamic constraint violations.

During the comparison between centralized and distributed optimizers no significant
differences have been found concerning the plants profits, but a delicate theme has emerged:
the definition of local constraints. While in a centralized control system only the effective
global constraints exist, in a distributed one it is necessary to formulate local constraints to
coordinate the global production. Despite these constraints are not real and concrete limits,
their violation could lead a distributed MPC to take suboptimal decisions.

Regarding the two decomposition methods adopted in this work, no appreciable differences
in the profits have been found during the simulations. However, primal decomposition
requires, on average, a lower computational time to perform the optimization, even though
less iterations are necessary to dual decomposition in order to find the solution of the master
problem.

In this case study a particular attention has been put on privacy issues and on information
sharing between the two subsystems. While dual decomposition requires the sharing of the
optimal process conditions themselves, primal decomposition needs only the subgradients of
the subproblems’ solution, from which no informations regarding productivities, profits and
strategies can be deducted.

85
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Even though in this work primal decomposition seems to be the better alternative, due
to its lower computational effort and allowing a higher privacy between the subsystems, dual
decomposition could be preferable whenever it is required to converge to the global optimum
in a limited number of iterations. Thus, it is not possible to define in an univocal way the
best decomposition method for this kind of optimizer, the choice must be taken considering
the system to be optimized and the main objectives of the optimal control framework.

6.1 Further work

The case study considered in this work is still not enough complex to significantly appreciate
the system’s decomposition advantages from a computational effort point of view. It is
necessary to try to apply the same distributed optimization framework to different and more
complex systems. In particular it could be interesting to test the distributed optimizer’s
performances when the subsystems are organized in series, instead of in parallell as the
wells clusters considered in this work. This could be the case of a large chemical plant,
where the decomposition is performed on one single production line, following the succession
of equipment through which raw materials must pass to be transormed in products. The
subsystems would show different kinds of interactions, that are worth to be analyzed.

Further work is necessary also in the development of a rigorous method to formulate local
constraints whenever advanced control layers are adopted. It is also possible to investigate
other solvers or new techniques to reduce the number of iteration required for the solution of
the master problem. One possibility could be to introduce a quadratic function for updating
the master problem, as described in (Wenzel et al., 2018).
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Code Snippets

A.1 Simulator

1 f unc t i on [ F , x_var , z_var , p_var , alg , d i f f , L ] =
Cent ra l i z edS imu la to r ( par )

2

3 import ca sad i .∗
4

5 n_w = par .n_w;
6

7 L_w = par .L_w;
8 H_w = par .H_w;
9 D_w = par .D_w;

10

11 L_bh = par . L_bh ;
12 H_bh = par .H_bh;
13 D_bh = par .D_bh;
14

15 L_a = par .L_a ;
16 H_a = par .H_a;
17 D_a = par .D_a;
18

19 rho_o = par . rho_o ;
20 C_iv = par . C_iv ;
21 C_pc = par . C_pc ;
22 rho_ro = sum( rho_o ) /2 ;
23

24 mu_oil = 1∗ 0 . 0 01; % 1cP o i l v i s c o s i t y
25

26 A_w = pi . ∗ (D_w/2) . ^ 2 ;

87



88 APPENDIX A. CODE SNIPPETS

27 A_bh = pi . ∗ (D_bh/2) . ^ 2 ;
28 V_a = L_a . ∗ ( p i . ∗ (D_a/2) .^2 − pi . ∗ (D_w/2) .^2 ) ;
29

30 % d i f f e r e n t i a l s t a t e s
31 m_ga = MX. sym( ’m_ga ’ ,n_w) ; % 1−6
32 m_gt = MX. sym( ’m_gt ’ ,n_w) ; % 7−12
33 m_ot = MX. sym( ’m_ot ’ ,n_w) ; % 13−18
34

35 % Algebra i c s t a t e s
36 p_ai = MX. sym( ’ p_ai ’ ,n_w) ; % 1−6
37 p_wh = MX. sym( ’p_wh ’ ,n_w) ; % 7−12
38 p_wi = MX. sym( ’p_wi ’ ,n_w) ; % 13−18
39 p_bh = MX. sym( ’p_bh ’ ,n_w) ; % 19−24
40 rho_ai = MX. sym( ’ rho_ai ’ ,n_w) ; % 25−30
41 rho_m = MX. sym( ’rho_m ’ ,n_w) ; % 31−36
42 w_iv = MX. sym( ’w_iv ’ ,n_w) ; % 37−42
43 w_pc = MX. sym( ’w_pc ’ ,n_w) ; % 43−48
44 w_pg = MX. sym( ’w_pg ’ ,n_w) ; % 49−54
45 w_po = MX. sym( ’w_po ’ ,n_w) ; % 55−60
46 w_ro = MX. sym( ’w_ro ’ ,n_w) ; % 61−66
47 w_rg = MX. sym( ’w_rg ’ ,n_w) ; % 67−72
48

49 % con t r o l input
50 w_gl = MX. sym( ’w_gl ’ ,n_w) ;
51

52 % parameters
53 p_res = MX. sym( ’ p_res ’ ,n_w) ;
54 PI = MX. sym( ’ PI ’ ,n_w) ;
55 GOR = MX. sym( ’GOR’ ,n_w) ; % the only time vary ing parameter
56 p_m = MX. sym( ’p_m’ ,n_w) ;
57 T_a = MX. sym( ’T_a ’ ,n_w) ;
58 T_w = MX. sym( ’T_w’ ,n_w) ;
59 R = par .R;
60 Mw = par .Mw;
61

62 % a l g e b r a i c equat ions
63 f1 = −p_ai . ∗1 e5 + ( (R.∗T_a. / (V_a.∗Mw) + 9 . 81. ∗H_a./V_a) .∗m_ga . ∗1

e3 ) + (Mw. / (R.∗T_a) . ∗ ( (R.∗T_a. / (V_a.∗Mw) + 9 . 81. ∗H_a./V_a) .∗
m_ga . ∗1 e3 ) ) . ∗ 9 . 81. ∗H_a;

64 f 2 = −p_wh. ∗1 e5 + ( (R.∗T_w./Mw) . ∗ ( m_gt . ∗1 e3 . / (L_w.∗A_w + L_bh.∗
A_bh − m_ot . ∗1 e3 . / rho_o ) ) ) − ( (m_gt . ∗1 e3+m_ot . ∗1 e3 ) . / (L_w.∗A_w
) ) . ∗ 9 . 81. ∗H_w/2 ;
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65 f 3 = −p_wi . ∗1 e5 + (p_wh. ∗1 e5 + 9 . 81. / (A_w.∗L_w) .∗max(0 , (m_ot . ∗1 e3
+m_gt . ∗1 e3−rho_o .∗L_bh.∗A_bh) ) .∗H_w + 128 .∗ mu_oil .∗L_w.∗w_pc
. / ( 3 .14 . ∗D_w. ^ 4 . ∗ ( ( m_gt . ∗1 e3 + m_ot . ∗1 e3 ) .∗p_wh. ∗1 e5 .∗Mw.∗ rho_o
) . / ( m_ot . ∗1 e3 .∗p_wh. ∗1 e5 .∗Mw + rho_o .∗R.∗T_w.∗m_gt . ∗1 e3 ) ) ) ;

66 f 4 = −p_bh . ∗1 e5 + (p_wi . ∗1 e5 + rho_o . ∗ 9 . 81. ∗H_bh + 128 .∗ mu_oil .∗
L_bh.∗ w_ro . / ( 3 .14 . ∗D_bh. ^ 4 . ∗ rho_o ) ) ;

67 f 5 = −rho_ai . ∗1 e2 +(Mw. / (R.∗T_a) .∗ p_ai . ∗1 e5 ) ;
68 f 6 = −rho_m . ∗1 e2 + ( (m_gt . ∗1 e3 + m_ot . ∗1 e3 ) .∗p_wh. ∗1 e5 .∗Mw.∗ rho_o

) . / ( m_ot . ∗1 e3 .∗p_wh. ∗1 e5 .∗Mw + rho_o .∗R.∗T_w.∗m_gt . ∗1 e3 ) ;
69 f 7 = −w_iv + C_iv .∗ s q r t ( rho_ai . ∗1 e2 . ∗ ( p_ai . ∗1 e5 − p_wi . ∗1 e5 ) ) ;
70 f 8 = −w_pc + 1. ∗ C_pc .∗ s q r t (rho_m . ∗1 e2 . ∗ (p_wh. ∗1 e5 − p_m. ∗1 e5 ) ) ;
71 f 9 = −w_pg + (m_gt . ∗1 e3 . /max(1e−3 ,(m_gt . ∗1 e3+m_ot . ∗1 e3 ) ) ) .∗w_pc ;
72 f10 = −w_po + (m_ot . ∗1 e3 . /max(1e−3 ,(m_gt . ∗1 e3+m_ot . ∗1 e3 ) ) ) .∗w_pc ;
73 f 11 = −w_ro + PI . ∗1 e−6.∗( p_res . ∗1 e5 − p_bh . ∗1 e5 ) ;
74 f12 = −w_rg . ∗1 e−1 + GOR.∗ w_ro ;
75

76 % d i f f e r e n t i a l equat ions
77 d f1 = (w_gl − w_iv) . ∗1 e−3;
78 df2 = (w_iv + w_rg . ∗1 e−1 − w_pg) . ∗1 e−3;
79 df3 = (w_ro − w_po) . ∗1 e−3;
80

81 % Def ine v a r i a b l e s f o r combined systems ( needed only f o r
decomposit ion case )

82

83 % Form the DAE system
84 d i f f = ve r t ca t ( df1 , df2 , df3 ) ;
85 a lg = ve r t ca t ( f1 , f2 , f3 , f4 , f5 , f6 , f7 , f8 , f9 , f10 , f11 , f12 ) ;
86 x_var = ve r t ca t (m_ga, m_gt , m_ot) ;
87 z_var = ve r t ca t ( p_ai ,p_wh, p_wi , p_bh , rho_ai , rho_m , w_iv , w_pc ,w_pg,

w_po, w_ro , w_rg) ;
88 p_var = ve r t c a t (w_gl ,GOR) ;
89

90 L = −sum(w_po) + 0.25∗ sum(w_gl ) ;
91

92 a lg = s u b s t i t u t e ( alg , p_res , par . p_res ) ;
93 a lg = s u b s t i t u t e ( alg , PI , par . PI ) ;
94 a lg = s u b s t i t u t e ( alg ,p_m, par .p_m) ;
95 a lg = s u b s t i t u t e ( alg ,T_a, par .T_a) ;
96 a lg = s u b s t i t u t e ( alg ,T_w, par .T_w) ;
97

98 dae = s t r u c t ( ’ x ’ , x_var , ’ z ’ , z_var , ’p ’ , p_var , ’ ode ’ , d i f f , ’ a l g ’ , a lg , ’
quad ’ ,L) ; . . .
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99 % der (m_tot ) = w_in − w_out ;
100 opts = s t r u c t ( ’ t f ’ , par . t f ) ;
101

102 % crea t e IDAS i n t e g r a t o r
103 F = i n t e g r a t o r ( ’F ’ , ’ i da s ’ , dae , opts ) ;

A.2 Dynamic estimator: EKF

1 f unc t i on [ f_EKF, JacFx ,h_EKF, JacHx ,z_EKF, yIndex ] = EKF( par )
2 % Import CasADi
3 import ca sad i .∗
4

5 n_w = par .n_w; % no . o f w e l l s ;
6

7 % Model l ing
8

9 L_w = par .L_w;
10 H_w = par .H_w;
11 D_w = par .D_w;
12

13 L_bh = par . L_bh ;
14 H_bh = par .H_bh;
15 D_bh = par .D_bh;
16

17 L_a = par .L_a ;
18 H_a = par .H_a;
19 D_a = par .D_a;
20

21 rho_o = par . rho_o ;
22 C_iv = par . C_iv ;
23 C_pc = par . C_pc ;
24

25 mu_oil = 1∗ 0 . 0 01; % 1cP o i l v i s c o s i t y
26

27 A_w = pi . ∗ (D_w/2) . ^ 2 ;
28 A_bh = pi . ∗ (D_bh/2) . ^ 2 ;
29 V_a = L_a . ∗ ( p i . ∗ (D_a/2) .^2 − pi . ∗ (D_w/2) .^2 ) ;
30

31 Mw = par .Mw;
32 R = par .R;
33

34 % d i f f e r e n t i a l s t a t e s
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35 m_ga = MX. sym( ’m_ga ’ ,n_w) ; % 1−2
36 m_gt = MX. sym( ’m_gt ’ ,n_w) ; % 3−4
37 m_ot = MX. sym( ’m_ot ’ ,n_w) ; % 5−6
38

39 % con t r o l input
40 w_gl = MX. sym( ’w_gl ’ ,n_w) ;
41 GOR = MX. sym( ’GOR’ ,n_w) ;
42

43 % a l g e b r a i c equat ions used f o r s u b s t i t u t i o n in the ODE model
44 p_m = par .p_m;
45 p_ai = 1e−5 .∗ ( ( (R.∗ par .T_a. / (V_a.∗Mw) + 9 . 81. ∗H_a./V_a) .∗m_ga. ∗1

e3 ) + (Mw. / (R.∗ par .T_a) . ∗ ( (R.∗ par .T_a. / (V_a.∗Mw) + 9 . 81. ∗H_a./
V_a) .∗m_ga . ∗1 e3 ) ) . ∗ 9 . 81. ∗H_a) ;

46 p_wh = 1e−5 .∗ ( ( (R.∗ par .T_w./Mw) . ∗ ( m_gt . ∗1 e3 . / (L_w.∗A_w + L_bh.∗
A_bh − m_ot . ∗1 e3 . / rho_o ) ) ) − ( (m_gt . ∗1 e3+m_ot . ∗1 e3 ) . / (L_w.∗A_w
) ) . ∗ 9 . 81. ∗H_w/2) ;

47 rho_ai = 1e−2.∗(Mw. / (R.∗ par .T_a) .∗ p_ai . ∗1 e5 ) ;
48 rho_m = 1e−2 .∗ ( ( (m_gt . ∗1 e3 + m_ot . ∗1 e3 ) .∗p_wh. ∗1 e5 .∗Mw.∗ rho_o ) . / (

m_ot . ∗1 e3 .∗p_wh. ∗1 e5 .∗Mw + rho_o .∗R.∗ par .T_w.∗m_gt . ∗1 e3 ) ) ;
49 w_pc = C_pc .∗ s q r t (rho_m . ∗1 e2 . ∗ (p_wh. ∗1 e5 − p_m. ∗1 e5 ) ) ;
50 w_pg = (m_gt . ∗1 e3 . / ( m_gt . ∗1 e3+m_ot . ∗1 e3 ) ) .∗w_pc ;
51 w_po = (m_ot . ∗1 e3 . / ( m_gt . ∗1 e3+m_ot . ∗1 e3 ) ) .∗w_pc ;
52 p_wi = 1e−5.∗((p_wh. ∗1 e5 + 9 . 81. / (A_w.∗L_w) .∗max(0 , (m_ot . ∗1 e3+

m_gt . ∗1 e3−rho_o .∗L_bh.∗A_bh) ) .∗H_w + 128 .∗ mu_oil .∗L_w.∗w_pc
. / ( 3 .14 . ∗D_w. ^ 4 . ∗ ( ( m_gt . ∗1 e3 + m_ot . ∗1 e3 ) .∗p_wh. ∗1 e5 .∗Mw.∗ rho_o
) . / ( m_ot . ∗1 e3 .∗p_wh. ∗1 e5 .∗Mw + rho_o .∗R.∗ par .T_w.∗m_gt . ∗1 e3 ) ) ) )
;

53 p_bh = 1e−5.∗(p_wi . ∗1 e5 + rho_o . ∗ 9 . 81. ∗H_bh + 128 .∗ mu_oil .∗L_bh.∗
w_po . / ( 3 .14 . ∗D_bh. ^ 4 . ∗ rho_o ) ) ;

54 w_iv = C_iv .∗ s q r t ( rho_ai . ∗1 e2 . ∗ ( p_ai . ∗1 e5 − p_wi . ∗1 e5 ) ) ;
55 w_ro = ( par . PI ) . ∗1 e−6.∗( par . p_res . ∗1 e5 − p_bh . ∗1 e5 ) ;% w_ro = (−

IPR . a + sq r t (IPR . a .^2+4∗IPR . b . ∗ ( p_res−p_bh) . ∗1 e5 ) ) . / ( 2 . ∗ IPR . b) ;
56 w_rg = 1 e1 .∗GOR.∗ w_ro ;
57

58

59 % d i f f e r e n t i a l equat ions
60 d f1 = m_ga + par . tSim . ∗ ( w_gl − w_iv) . ∗1 e−3;
61 df2 = m_gt + par . tSim . ∗ ( w_iv + w_rg . ∗1 e−1 − w_pg) . ∗1 e−3;
62 df3 = m_ot + par . tSim . ∗ ( w_ro − w_po) . ∗1 e−3;
63 df4 = GOR ;
64

65 % Concatenate the d i f f e r e n t i a l and a l g e b r a i c equat ions
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66 d i f f = ve r t ca t ( df1 , df2 , df3 , df4 ) ;
67

68 % d i f f e r e n t i a l equat ions
69 df1C = (w_gl − w_iv) . ∗1 e−3;
70 df2C = (w_iv + w_rg . ∗1 e−1 − w_pg) . ∗1 e−3;
71 df3C = (w_ro − w_po) . ∗1 e−3;
72

73 % Concatenate the d i f f e r e n t i a l and a l g e b r a i c equat ions
74 d i f fC = ve r t c a t ( df1C , df2C , df3C ) ;
75

76 % concatenate the d i f f e r e n t i a l and a l g e b r a i c s t a t e s
77 x_EKF = ver t ca t (m_ga, m_gt , m_ot ,GOR) ;
78 p_EKF = ve r t ca t (w_gl ) ;
79

80

81 %%
82

83 f_EKF = Function ( ’f_EKF ’ ,{x_EKF,p_EKF} ,{ d i f f } ,{ ’ x ’ , ’ p ’ } ,{ ’ xdot ’ })
;

84 JacFx = Function ( ’ JacFx ’ ,{x_EKF,p_EKF} ,{ jacob ian ( d i f f ,x_EKF) }) ;
85

86 y_model = ve r t c a t (p_wh, p_bh , w_po, w_pg, w_ro , w_rg) ;
87

88 h_EKF = Function ( ’h_EKF ’ ,{x_EKF,p_EKF} ,{y_model }) ;
89 JacHx = Function ( ’ JacHx ’ ,{x_EKF,p_EKF} ,{ jacob ian (y_model ,x_EKF) })

;
90

91

92 p_wh_Index = n_w+1:2∗n_w;
93 p_bh_Index = 3∗n_w+1:4∗n_w;
94 w_po_Index = 9∗n_w+1:10∗n_w;
95 w_pg_Index = 8∗n_w+1:9∗n_w;
96 w_ro_Index = 10∗n_w+1:11∗n_w;
97 w_rg_Index = 11∗n_w+1:12∗n_w;
98

99 yIndex = [ p_wh_Index , p_bh_Index , w_po_Index , w_pg_Index , w_ro_Index
, w_rg_Index ] ;

100

101 z_vec = ve r t ca t ( p_ai ,p_wh, p_wi , p_bh , rho_ai , rho_m , w_iv , w_pc ,w_pg,
w_po, w_ro , w_rg) ;

102 z_EKF = Function ( ’z_EKF ’ ,{x_EKF,p_EKF} ,{ z_vec }) ;
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A.3 Nonlinear Model Predictive Controller

1 f unc t i on [ s o l v e r ,MPC] = SetpointNMPC( par_x , MPCinit , Optimizer )
2 import ca sad i .∗
3

4 [~ ,~ ,~ , lbx , lbz , lbu , ubx , ubz , ubu ] = I n i t i a l i z a t i on_ bound s ( par_x ) ;
5

6 dx0 = MPCinit . dx0 ;
7 z0 = MPCinit . z0 ;
8 u0 = MPCinit . u0 ;
9 u_in = MPCinit . u_in ;

10

11 GOR_val = par_x .GOR;
12 PI_val = par_x . PI ;
13

14 n_w = par_x .n_w;
15 R = par_x .R;
16 Mw = par_x .Mw;
17

18 %% Model l ing
19

20 L_w = par_x .L_w;
21 H_w = par_x .H_w;
22 D_w = par_x .D_w;
23

24 L_bh = par_x . L_bh ;
25 H_bh = par_x .H_bh;
26 D_bh = par_x .D_bh;
27

28 L_a = par_x .L_a ;
29 H_a = par_x .H_a;
30 D_a = par_x .D_a;
31

32 rho_o = par_x . rho_o ;
33 C_iv = par_x . C_iv ;
34 C_pc = par_x . C_pc ;
35 rho_ro = sum( rho_o ) /2 ;
36

37 mu_oil = 1∗ 0 . 0 01; % 1cP o i l v i s c o s i t y
38

39 A_w = pi . ∗ (D_w/2) . ^ 2 ;
40 A_bh = pi . ∗ (D_bh/2) . ^ 2 ;
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41 V_a = L_a . ∗ ( p i . ∗ (D_a/2) .^2 − pi . ∗ (D_w/2) .^2 ) ;
42

43 % d i f f e r e n t i a l s t a t e s
44 m_ga = MX. sym( ’m_ga ’ ,n_w) ; % 1−6
45 m_gt = MX. sym( ’m_gt ’ ,n_w) ; % 7−12
46 m_ot = MX. sym( ’m_ot ’ ,n_w) ; % 13−18
47

48 % Algebra i c s t a t e s
49 p_ai = MX. sym( ’ p_ai ’ ,n_w) ; % 1−6
50 p_wh = MX. sym( ’p_wh ’ ,n_w) ; % 7−12
51 p_wi = MX. sym( ’p_wi ’ ,n_w) ; % 13−18
52 p_bh = MX. sym( ’p_bh ’ ,n_w) ; % 19−24
53 rho_ai = MX. sym( ’ rho_ai ’ ,n_w) ; % 25−30
54 rho_m = MX. sym( ’rho_m ’ ,n_w) ; % 31−36
55 w_iv = MX. sym( ’w_iv ’ ,n_w) ; % 37−42
56 w_pc = MX. sym( ’w_pc ’ ,n_w) ; % 43−48
57 w_pg = MX. sym( ’w_pg ’ ,n_w) ; % 49−54
58 w_po = MX. sym( ’w_po ’ ,n_w) ; % 55−60
59 w_ro = MX. sym( ’w_ro ’ ,n_w) ; % 61−66
60 w_rg = MX. sym( ’w_rg ’ ,n_w) ; % 67−72
61

62 % con t r o l input
63 w_gl = MX. sym( ’w_gl ’ ,n_w) ;
64 w_gl_SP = MX. sym( ’w_gl_SP ’ ,n_w) ;
65

66 % parameters
67 p_res = MX. sym( ’ p_res ’ ,n_w) ;
68 PI = MX. sym( ’ PI ’ ,n_w) ;
69 GOR = MX. sym( ’GOR’ ,n_w) ; % the only time vary ing parameter
70 p_m = MX. sym( ’p_m’ ,n_w) ;
71 T_a = MX. sym( ’T_a ’ ,n_w) ;
72 T_w = MX. sym( ’T_w’ ,n_w) ;
73 R = par_x .R;
74 Mw = par_x .Mw;
75

76 % a l g e b r a i c equat ions
77 f1 = −p_ai . ∗1 e5 + ( (R.∗T_a. / (V_a.∗Mw) + 9 . 81. ∗H_a./V_a) .∗m_ga . ∗1

e3 ) + (Mw. / (R.∗T_a) . ∗ ( (R.∗T_a. / (V_a.∗Mw) + 9 . 81. ∗H_a./V_a) .∗
m_ga . ∗1 e3 ) ) . ∗ 9 . 81. ∗H_a;

78 f 2 = −p_wh. ∗1 e5 + ( (R.∗T_w./Mw) . ∗ ( m_gt . ∗1 e3 . / (L_w.∗A_w + L_bh.∗
A_bh − m_ot . ∗1 e3 . / rho_o ) ) ) − ( (m_gt . ∗1 e3+m_ot . ∗1 e3 ) . / (L_w.∗A_w
) ) . ∗ 9 . 81. ∗H_w/2 ;
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79 f 3 = −p_wi . ∗1 e5 + (p_wh. ∗1 e5 + 9 . 81. / (A_w.∗L_w) .∗max(0 , (m_ot . ∗1 e3
+m_gt . ∗1 e3−rho_o .∗L_bh.∗A_bh) ) .∗H_w + 128 .∗ mu_oil .∗L_w.∗w_pc
. / ( 3 .14 . ∗D_w. ^ 4 . ∗ ( ( m_gt . ∗1 e3 + m_ot . ∗1 e3 ) .∗p_wh. ∗1 e5 .∗Mw.∗ rho_o
) . / ( m_ot . ∗1 e3 .∗p_wh. ∗1 e5 .∗Mw + rho_o .∗R.∗T_w.∗m_gt . ∗1 e3 ) ) ) ;

80 f 4 = −p_bh . ∗1 e5 + (p_wi . ∗1 e5 + rho_o . ∗ 9 . 81. ∗H_bh + 128 .∗ mu_oil .∗
L_bh.∗ w_ro . / ( 3 .14 . ∗D_bh. ^ 4 . ∗ rho_o ) ) ;

81 f 5 = −rho_ai . ∗1 e2 +(Mw. / (R.∗T_a) .∗ p_ai . ∗1 e5 ) ;
82 f 6 = −rho_m . ∗1 e2 + ( (m_gt . ∗1 e3 + m_ot . ∗1 e3 ) .∗p_wh. ∗1 e5 .∗Mw.∗ rho_o

) . / ( m_ot . ∗1 e3 .∗p_wh. ∗1 e5 .∗Mw + rho_o .∗R.∗T_w.∗m_gt . ∗1 e3 ) ;
83 f 7 = −w_iv + C_iv .∗ s q r t ( rho_ai . ∗1 e2 . ∗ ( p_ai . ∗1 e5 − p_wi . ∗1 e5 ) ) ;
84 f 8 = −w_pc + 1. ∗ C_pc .∗ s q r t (rho_m . ∗1 e2 . ∗ (p_wh. ∗1 e5 − p_m. ∗1 e5 ) ) ;
85 f 9 = −w_pg + (m_gt . ∗1 e3 . /max(1e−3 ,(m_gt . ∗1 e3+m_ot . ∗1 e3 ) ) ) .∗w_pc ;
86 f10 = −w_po + (m_ot . ∗1 e3 . /max(1e−3 ,(m_gt . ∗1 e3+m_ot . ∗1 e3 ) ) ) .∗w_pc ;
87 f 11 = −w_ro + par_x . PI . ∗1 e−6.∗( p_res . ∗1 e5 − p_bh . ∗1 e5 ) ;
88 f12 = −w_rg . ∗1 e−1 + GOR.∗ w_ro ;
89

90 % d i f f e r e n t i a l equat ions
91 d f1 = (w_gl − w_iv) . ∗1 e−3;
92 df2 = (w_iv + w_rg . ∗1 e−1 − w_pg) . ∗1 e−3;
93 df3 = (w_ro − w_po) . ∗1 e−3;
94

95 % Def ine v a r i a b l e s f o r combined systems ( needed only f o r
decomposit ion case )

96

97 % Form the DAE system
98 d i f f = ve r t ca t ( df1 , df2 , df3 ) ;
99 a lg = ve r t ca t ( f1 , f2 , f3 , f4 , f5 , f6 , f7 , f8 , f9 , f10 , f11 , f12 ) ;

100

101 % give parameter va lue s
102 a lg = s u b s t i t u t e ( alg , p_res , par_x . p_res ) ;
103 a lg = s u b s t i t u t e ( alg ,T_a, par_x .T_a) ;
104 a lg = s u b s t i t u t e ( alg ,T_w, par_x .T_w) ;
105 a lg = s u b s t i t u t e ( alg ,p_m, par_x .p_m) ;
106

107 % concatenate the d i f f e r e n t i a l and a l g e b r a i c s t a t e s
108 x_var = ve r t ca t (m_ga, m_gt , m_ot) ;
109 z_var = ve r t ca t ( p_ai ,p_wh, p_wi , p_bh , rho_ai , rho_m , w_iv , w_pc ,w_pg,

w_po, w_ro , w_rg) ;
110 p_var = ve r t c a t (w_gl , w_gl_SP ,GOR) ;
111

112 L = sum ( ( w_gl−w_gl_SP) .^2 ) ; % Pena l i z e s e t p o i n t dev i a t i on
113
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114 f = Function ( ’ f ’ ,{ x_var , z_var , p_var } ,{ d i f f , a lg , L} ,{ ’ x ’ , ’ z ’ , ’ p ’ } ,{
’ xdot ’ , ’ z eva l ’ , ’ q j ’ }) ;

115

116 %% Direc t Co l l o ca t i on
117

118 % Degree o f i n t e r p o l a t i n g polynomial
119 d = 3 ;
120

121 % Get c o l l o c a t i o n po in t s
122 tau_root = [ 0 , c o l l o c a t i on_po in t s (d , ’ radau ’ ) ] ;
123

124 % C o e f f i c i e n t s o f the c o l l o c a t i o n equat ion
125 C = ze ro s (d+1,d+1) ;
126

127 % C o e f f i c i e n t s o f the con t i nu i t y equat ion
128 D = ze ro s (d+1, 1) ;
129

130 % C o e f f i c i e n t s o f the quadrature func t i on
131 B = ze ro s (d+1, 1) ;
132

133 % Construct polynomial b a s i s
134 f o r j =1:d+1
135 % Construct Lagrange polynomia ls to get the polynomial b a s i s

at the c o l l o c a t i o n po int
136 c o e f f = 1;
137 f o r r =1:d+1
138 i f r ~= j
139 c o e f f = conv ( c o e f f , [1 , −tau_root ( r ) ] ) ;
140 c o e f f = c o e f f / ( tau_root ( j )−tau_root ( r ) ) ;
141 end
142 end
143 % Evaluate the polynomial at the f i n a l time to get the

c o e f f i c i e n t s o f the con t i nu i t y equat ion
144 D( j ) = po lyva l ( c o e f f , 1 . 0 ) ;
145

146 % Evaluate the time d e r i v a t i v e o f the polynomial at a l l
c o l l o c a t i o n po in t s to get the c o e f f i c i e n t s o f the
con t i nu i t y equat ion

147 pder = polyder ( c o e f f ) ;
148 f o r r =1:d+1
149 C( j , r ) = po lyva l ( pder , tau_root ( r ) ) ;
150 end
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151

152 % Evaluate the i n t e g r a l o f the polynomial to get the
c o e f f i c i e n t s o f the quadrature func t i on

153 pint = po ly in t ( c o e f f ) ;
154 B( j ) = po lyva l ( pint , 1 . 0 ) ;
155 end
156

157

158 nu = n_w; % Length ( p_var ) ;
159 nz = 12∗n_w; % Number o f a l g e b r a i c s t a t e s
160 nx = 3∗n_w;
161 np = nu ;
162 nd = nx ;
163

164 %% Build NLP s o l v e r
165

166 % empty nlp
167 w = {}; w0 = [ ] ; lbw = [ ] ; ubw = [ ] ;
168 J = 0 ;
169 g = {} ; lbg = [ ] ; ubg = [ ] ;
170

171 % i n i t i a l c ond i t i on s f o r each s c e n a r i o
172 X0 = MX. sym( ’X0 ’ , nx ) ; Z0 = MX. sym( ’Z0 ’ , nz ) ;
173 w = {w{ :} , X0} ; lbw = [ lbw ; lbx ] ; ubw = [ ubw ; ubx

] ;
174 w0 = [ w0 ; dx0 ] ;
175

176 X0_par = MX. sym( ’X0_par ’ , nx ) ;
177

178 % i n i t i a l c ond i t i on s
179 g = {g { : } ,X0 − X0_par } ; lbg = [ lbg ; z e r o s (nx ,1) ] ; ubg = [ ubg ;

z e r o s (nx ,1 ) ] ;
180

181 U0 = MX. sym( ’U0 ’ , nu ) ;
182 GOR_est = MX. sym( ’GOR_est ’ , nu ) ;
183

184 % Formulate NLP
185 Xk = X0 ; Xkj = {} ; Zkj = {} ; Uk_prev =

U0 ;
186 j s = 1;
187

188 f o r k = 0 : par_x . Horizon_Samples−1
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189

190 Uk = MX. sym ( [ ’U_’ num2str ( k ) ’_ ’ num2str ( j s ) ] , nu ) ;
191

192 Upar = ve r t c a t (Uk, w_gl_SP , GOR_est) ;
193

194 w = {w{ :} ,Uk} ;
195 lbw = [ lbw ; lbu ] ;
196 ubw = [ ubw ; ubu ] ;
197 w0 = [ w0 ; u0 ] ;
198

199 Xkj = {} ;
200 Zkj = {} ;
201

202 f o r j = 1: d
203 Xkj{ j } = MX. sym ( [ ’X_’ num2str ( k ) ’_ ’ num2str ( j ) ’_ ’

num2str ( j s ) ] , nx ) ;
204 Zkj{ j } = MX. sym ( [ ’Z_ ’ num2str ( k ) ’_ ’ num2str ( j ) ’_ ’

num2str ( j s ) ] , nz ) ;
205 % i f par . sv
206 s { j } = MX. sym ( [ ’ s_ ’ num2str ( k ) ’_ ’ num2str ( j ) ’_ ’

num2str ( j s ) ] ,1) ;
207 % end
208 w = {w{ :} , Xkj{ j } , Zkj{ j }} ;
209 lbw = [ lbw ; lbx ; lbz ] ;
210 ubw = [ ubw ; ubx ; ubz ] ;
211 w0 = [ w0 ; dx0 ; z0 ] ;
212 end
213

214 % Loop over c o l l o c a t i o n po in t s
215 Xk_end = D(1) ∗Xk;
216

217 f o r j = 1: d
218 % Express ion f o r the s t a t e d e r i v a t i v e at the c o l l o c a t i o n

po int
219 xp = C(1 , j +1)∗Xk; % he lpe r s t a t e
220 f o r r = 1: d
221 xp = xp + C( r +1, j +1)∗Xkj{ r } ;
222 end
223 [ f j , z j , q j ] = f ( Xkj{ j } , Zkj{ j } , Upar ) ;
224

225 g = {g { : } , par_x . t f ∗ f j−xp , z j } ; % dynamics and a l g e b r a i c
c o n s t r a i n t s
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226 lbg = [ lbg ; z e r o s (nx ,1) ; z e r o s ( nz ,1 ) ] ;
227 ubg = [ ubg ; z e r o s (nx ,1) ; z e r o s ( nz ,1 ) ] ;
228

229 % Gas capac i ty c o n s t r a i n t s on a l l the c o l l o c a t i o n po in t s
230 % i f par . sv
231 g = {g { : } , sum( Zkj{ j }(8∗n_w+1:9∗n_w) )−s { j }} ;
232 % end
233

234 lbg = [ lbg ; 0 ] ;
235 ubg = [ ubg ; par_x .w_pg_max ] ;
236

237 % Slack v a r i a b l e s f o r gas capac i ty c o n s t r a i n t s
238 % i f par . sv
239 w = {w{ :} , s { j }} ;
240 lbw = [ lbw ; 0 ] ;
241 i f Optimizer . Cent ra l i z ed
242 ubw = [ ubw ; 2 ] ;

%%%
243 e l s e
244 ubw = [ ubw ; 1 ] ;
245 end
246 w0 = [ w0 ; 0 ] ;
247 % end
248

249 % Add con t r i bu t i on to the end s t a t e s
250 Xk_end = Xk_end + D( j +1)∗Xkj{ j } ;
251

252 % Object ive f unc t i on s
253 % i f par . sv
254 J = J + (B( j +1)∗ qj ∗par_x . t f ) + 40∗ s { j } + . . .
255 0 .5∗ sum ( ( Uk_prev − Uk) .^2 ) ;

%%%
256

257 % end
258 end
259

260 Uk_prev = MX. sym ( [ ’Uprev_ ’ num2str ( k+1) ] , nu ) ;
261 Uk_prev = Uk ;
262

263 % New NLP v a r i a b l e f o r s t a t e at end o f i n t e r v a l
264 Xk = MX. sym ( [ ’X_’ num2str ( k+1) ’_ ’ num2str ( j s ) ] , nx ) ;
265 w = {w{ :} ,Xk} ;
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266 lbw = [ lbw ; lbx ] ;
267 ubw = [ ubw ; ubx ] ;
268 w0 = [ w0 ; dx0 ] ;
269

270 % Shooting Gap c o n s t r a i n t
271 g = {g { : } ,Xk_end−Xk} ;
272 lbg = [ lbg ; z e r o s (nx ,1) ] ;
273 ubg = [ ubg ; z e r o s (nx ,1) ] ;
274

275 g = {g { : } , sum(Uk) } ;
276 lbg = [ lbg ; 0 ] ;
277 ubg = [ ubg ; par_x .w_pg_max ] ;
278

279 end
280

281 % crea t e and so l v e NLP s o l v e r
282 opts = s t r u c t ( ’ warn_init ial_bounds ’ , f a l s e , . . .
283 ’ pr int_time ’ , f a l s e , . . .
284 ’ ipopt ’ , s t r u c t ( ’ p r i n t_ l ev e l ’ ,1) ) ;
285

286 nlp = s t r u c t ( ’ x ’ , v e r t c a t (w{ : } ) , ’p ’ , v e r t c a t (w_gl_SP , GOR_est , X0_par
, U0) , . . .

287 ’ f ’ , J , ’ g ’ , v e r t c a t ( g { : } ) ) ;
288

289 s o l v e r = n l p s o l ( ’ s o l v e r ’ , ’ ipopt ’ , nlp , opts ) ;
290

291 MPC. w0 = w0 ;
292 MPC. lbw = lbw ;
293 MPC. ubw = ubw ;
294 MPC. lbg = lbg ;
295 MPC. ubg = ubg ;
296 MPC. d = d ;
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EKF validation and plant’s measurements

Figure B.1: Well head pressure during final simulation.
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Figure B.2: Bottom hole pressure during final simulation.

Figure B.3: Produced oil during final simulation.
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Figure B.4: Produced gas during final simulation.

Figure B.5: Oil from the reservoir during final simulation.
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Figure B.6: Gas from the reservoir during final simulation.

Figure B.7: Real and estimated GORs during final simulation.



Bibliography

Abdalsadig, M., A. Nourian, G. Nasr, and M. Babaie (2016). “Gas Lift Optimization to Improve
Well Performance”. International Journal of Mechanical and Mechatronics Engineering 10.3
(see p. 26).

Andersson, J. A. E., J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl (In Press, 2018). “CasADi – A
software framework for nonlinear optimization and optimal control”. Mathematical Programming
Computation (see p. 36).

— (2018). CasADi documentation. https://web.casadi.org/docs/. [Online; accessed September-
2019] (see p. 36).

Camara, M. M., A. D. Quelhas, and J. C. Pinto (2016). “Performance evaluation of real industrial
RTO systems”. Processes 4, p. 44 (see p. 7).

Dan, S. (2006). “Optimal state estimation: Kalman, H infinity and nonlinear approaches”. In:
PROCEEDINGS OF THE IEEE. John Wiley & Sons (see p. 38).

Darby, M. L., M. Nikolaou, J. Jones, and D. Nicholson (2011). “RTO: an overview and assessment
of current practice”. Journal of Process Control 21.6, pp. 874–84 (see p. 2).

Eikrem, G. O., L. Imsland, and B. Foss (2004). “Stabilization of Gas Lifted Wells Based in State
Estimation”. IFAC Proceedings Volumes 37.1, pp. 323–328 (see p. 26).

Farina, M., G. Ferrari, F. Manenti, and E. Pizzi (2016). “Assessment and comparison of distributed
model predictive control schemes: Application to a natural gas refrigeration plant”. Computers
& Chemical Engineering 89 (see p. 56).

Foss, B. A. and J. P. Jensen (2011). “Performance analysis for closed-loop reservoir management”.
SPE Journal 16.01, pp. 183–190 (see p. 1).

Grune, L. and J. Pannek (2011). Nonlinear Model Predictive Control: Theory and algorithm (see
p. 53).

Hauge, J. and T. Horn (2005). “The Challenge of Operating and Maintaining 115 Subsea Wells on
the Troll Field”. Offshore Technology Conference, Houston, Texas, pp. 1–4 (see p. 3).

Hindmarsh, A. C., P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward (2005a). IDAS documentation. https://computing.llnl.gov/projects/sundials/idas.
[Online; accessed September-2019] (see p. 36).

— (2005b). “SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers”. ACM
Transactions on Mathematical Software (TOMS) 31.3, pp. 363–396 (see p. 36).

105

https://web.casadi.org/docs/
https://computing.llnl.gov/projects/sundials/idas


106 BIBLIOGRAPHY

Julier, S. J. and J. K. Uhlmann (2004). “Unscented Filtering and Nonlinear Estimation”. In:
PROCEEDINGS OF THE IEEE, pp. 401–422 (see p. 9).

Kalman, R. E. and R. S. Bucy (1961). “New results in linear filtering and prediction theory”.
TRANS. ASME, SER. D, J. BASIC ENG, p. 109 (see p. 38).

Kalman, R. (1960). Contributions to the Theory of Optimal Control (see p. 38).
Krishnamoorthy, D., M. A. Aguiar, B. A. Foss, and S. Skogestad (2018). “A distributed optimization

strategy for large scale oil and gas production systems”. 2018 IEEE Conference on Control
Technology and Applications (CCTA) (see p. 16).

Krishnamoorthy, D., B. A. Foss, and S. Skogestad (2018). “Steady-state real-time optimization
using transient measurements”. Computers and Chemical Engineering 115, pp. 34–45 (see pp. 2,
3, 6, 9–12, 28, 37, 42, 67).

Krishnamoorthy, D., B. Foss, and S. Skogestad (2016). “Real time optimization under uncertainity
applied to gas lifted wells”. Processes 4.4 (see pp. 28, 56).

Larsson, T. and S. Skogestad (2000). “Plantwide control - a review and new design procedure”.
Model Identification and Control 21.4, p. 209 (see p. 1).

Maciejowski, J. M. (2001). Predictive control with constraints (see p. 54).
Maciejowsky, J. M. (2002). Predictive control: with constraints (see p. 10).
MathWorks (2017). MATLAB documentation. https://it.mathworks.com/help/. [Online; accessed

10-September-2019] (see p. 36).
MATLAB (2017). version R2017b. Natick, Massachusetts: The MathWorks Inc. (see p. 36).
Moradzadeh, M., R. Boel, and L. Vandevelde (Feb. 2014). “Anticipating and Coordinating Voltage

Control for Interconnected Power Systems”. Energies 7, pp. 1027–1047. doi: 10.3390/en7021027
(see p. 54).

Moreno, J. and T. Markeset (2002). “Identifying Challenges in the Maintenance of Subsea
Petroleum Production Systems”. IFIP International Conference on Advances in Production
Manegement Systems, pp. 101–110 (see p. 1).

Rangaiah, G. P. and V. Kariwala (2012). “Plantwide control: Recent Developments and Applica-
tions”. John Wiley & Sons (see p. 1).

Rawlings, J. B. and D. Q. Mayne (2009). Model Predictive Control Theory and design (see p. 53).
Skogestad, S. (1999). “Plantwide control: The search for the self-optimizing control structure”. In:

In: Preprints 14th IFAC World, pp. 325–330 (see p. 1).
— (2003). “Simple analytic rules for model reduction and PID controller tuning”. Journal of

Process Control 13.4, pp. 291–309 (see p. 51).
— (2004). Control structure design for complete chemical plants (see p. 1).
— (2017). PID tuning using the SIMC rules. http://folk.ntnu.no/skoge/prosessregulering/lectures/

SiS6SIMC_tuning.pdf. [Online; accessed September-2019] (see p. 51).
Wan, E. (2016). “Sigma-Point Filters: An overview with applications to integrated navigation

and vision assisted control”. Nonlinear Statistical Signal Processing Workshop, 2006 IEEE (see
p. 9).

https://it.mathworks.com/help/
https://doi.org/10.3390/en7021027
http://folk.ntnu.no/skoge/prosessregulering/lectures/SiS6SIMC_tuning.pdf
http://folk.ntnu.no/skoge/prosessregulering/lectures/SiS6SIMC_tuning.pdf


BIBLIOGRAPHY 107

Wang, P. (2003). “Development and applications of production optimization techniques for
petroleum fields”. PhD thesis (see p. 26).

Watcher, A. and L. Biegler (2006). “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming”. Mathematical Programming (see p. 36).

— (2018). IPOPT documentation. https://www.coin-or.org/Ipopt/documentation/. [Online;
accessed September-2019] (see p. 36).

Wenzel, S., R. Paulen, S. Kramer, B. Beisheim, and S. Engell (2018). “Shared Resource Allocation in
an Integrated Petrochemical Site by Price-based Coordination using Quadratic Approximation”.
2016 European Control Conference (ECC) (see pp. 21, 86).

https://www.coin-or.org/Ipopt/documentation/


108 BIBLIOGRAPHY



Acknowledgements

First, I would like to thank Professor Flavio Manenti, for accepting to be my supervisor and
for all the opportunities he gave me.

Thanks to all NTNU’s PSE group, for welcoming me and giving me the possibility to work
on this topic. In particular, I would like to thank my supervisors: Professor Sigurd Skogestad,
for his guidance and constant encouragement, and PhD candidate Dinesh Krishnamoorthy,
for constantly helping me with great attention and patience.

My exchange period in Trondheim has been amazing, mostly because of all the people I
met. A huge “thank you” to all of them, honorable mentions to the people of HK31 and the
guys of the Easter trip. The Erasmus was the cherry on top of all the incredible years I spent
at Politecnico. Thanks to all my friends from university, to the people from GranoPuro and
from Pol.Or. and, of course, to all the friends from Stezzano.

A huge thanks also to my family, for always supporting and encouraging me during these
years of study.

Last, but not least, thanks to Marina, for checking the grammar of all this work (except
for this page, I hope there are no blunders) and for all the rest.

Carlo Valli, Milan
September, 2019

109



110 ACKNOWLEDGEMENTS



Colophon

This document was created using LATEX 2ε and edited within the TEXWorks editor, with the
help of arara (by Paulo Cereda) typesetting directives. The text body is set in 11 pt Latin
Modern Roman, a typeface derived from the Computer Modern fonts designed by Donald E.
Knuth. The bibliography was typeset using BibLATEX.

Copyright Notice

This document is an original work of Carlo Valli, and as author, according to Law no. 633/1941
and successive changes, he acquires ownership of the copyrights linked on this document,
including moral and patrimonial rights. Any authorization of usage must be drafted in
written form by the author.


	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols and Acronyms
	Abstract
	Estratto
	Introduction
	1 Real time optimization
	1.1 Introduction
	1.2 Static RTO
	1.2.1 Description
	1.2.2 Model adaptation step
	1.2.3 Optimization step
	1.2.4 Problems related to SRTO

	1.3 Dynamic RTO
	1.3.1 Description
	1.3.2 Dynamic estimator
	1.3.3 Optimization step
	1.3.4 Problems related to DRTO

	1.4 Hybrid RTO
	1.4.1 Description
	1.4.2 Dynamic estimator
	1.4.3 Optimization step
	1.4.4 Comparison with SRTO and DRTO


	2 Distributed optimization
	2.1 Introduction and reasons
	2.2 Decomposition methods
	2.2.1 Primal decomposition
	2.2.2 Dual decomposition


	3 Case study: Gas Lift Oil Wells Network
	3.1 Introduction and overview of the system
	3.1.1 Gas lifted well
	3.1.2 Network and decomposition

	3.2 Modelling
	3.2.1 Mass balance of different phases
	3.2.2 Density models
	3.2.3 Pressure models
	3.2.4 Flow models
	3.2.5 DAE formulation

	3.3 Optimization
	3.3.1 Constraints
	3.3.2 Objective function


	4 Case study optimization
	4.1 Introduction
	4.2 Softwares
	4.3 Simulator
	4.4 Estimator
	4.4.1 Extended Kalman Filter

	4.5 Optimizer
	4.5.1 Centralized optimizer
	4.5.2 Distributed Optimizers

	4.6 Control layer
	4.6.1 Proportional-Integral controller
	4.6.2 Non Linear Model Predictive Controller


	5 Results and discussion
	5.1 Design of experiment
	5.2 Choice of control layer
	5.2.1 Controlled variable for the PI controller
	5.2.2 PI controller and MPC

	5.3 Distributed optimizers' validation
	5.4 Comparison between centralized and distributed optimizers
	5.5 Comparison between primal and dual decomposition
	5.5.1 Convergence rate
	5.5.2 Profits

	5.6 Computational time

	6 Concluding Remarks and future work
	6.1 Further work

	A Code Snippets
	A.1 Simulator
	A.2 Dynamic estimator: EKF
	A.3 Nonlinear Model Predictive Controller

	B EKF validation and plant's measurements
	Acknowledgements

