
Lagrangian Decomposition for Dynamic
Real-Time Optimization: Applied to
Production Optimization Network

Ingvild Sørlie

Chemical Engineering and Biotechnology

Supervisor: Sigurd Skogestad, IKP
Co-supervisor: Dinesh Krishnamoorthy, IKP

Department of Chemical Engineering

Submission date: July 2017

Norwegian University of Science and Technology



 



Preface

This thesis was written as the final work of the master program in Chemical Engineering at the

Norwegian University of Science and Technology NTNU.

First, I would like to express my deepest gratitude towards my supervisor professor Sigurd Sko-

gestad for his guidance and inquisitive attitude to my work. I would also like to thank my co-

supervisor PhD candidate Dinesh Krishnamoorthy for his sharing of knowledge and help in trou-

bled times and on weekends.

My fellow master’s students at the Process Systems Engineering group also deserves acknowledg-

ment. The open and sharing environment with you has helped me get through this thesis. And all

of my other friends in Trondheim for supporting me and making me years at NTNU what it was.

Thanks to my parents for their proof reading, even when on vacation in the Seychelles. And also

for their encouragement throughout my six years as a master students.

Last, but not least, I send my love to popcorn-kollektivet, for all the laughter and cozy Sundays.

Declaration of Compliance

I hereby declare that this thesis is an independent work in agreement with the exam rules and

regulations of the Norwegian University of Science and Technology.

Ingvild Marie Sørlie
July 12, 2017, Trondheim

i





Abstract

The scope of this thesis was to investigate the use of lagrangian decomposition for a dynamic real-

time optimization(RTO) problem. The decomposition was performed on a gas lifted two-well net-

work, controlled by a nonlinear model predictive controller(NMPC). Even though decomposition

is a well known and utilized method, it has not been investigated much for the upstream produc-

tion of oil and gas. The dynamic lagrangian dual decomposition in this thesis is an extension of

previous work with steady state decomposition for gas lifted well networks.

The lagrangian dual decomposed NMPC was modeled and simulated in Matlab using CasADi

v3.1.0, the NLP problem was solved with the IPOPT solver. The base case refers to the lagrangian

decomposition simulations, which were performed for two different constraints becoming active.

The simulation results were compared to a centralized NMPC and a steady state optimization for

the same system. A successful decomposed NMPC should yield the same converged simulation

values as the centralized NMPC and steady state optimization. Numerical methods were applied

to improve the base case decomposed NMPC. The line search method, adjusting the step length

Æ for each update of the lagrangian multiplier ∏, was included to reach a better convergence of

∏ and lower the number of iterations needed. The augmented lagrangian, penalizing constraint

violations, was included to improve the start-up dynamics of the base case decomposed NMPC.

The base case decomposition simulation results show that the decomposed NMPC converges to

the same results as the centralized NMPC and a steady state optimization performed for the same

system. However, in certain cases, the dynamics in the initial part of the simulation could be prob-

lematic. For the case where the gas rate capacity is the active constraint, the decomposed sim-

ulation oscillates around the trajectory of the centralized NMPC, even violating the constraint.

When the available gas lift is the active constraint, the start-up dynamics is not a problem. The

line search method successfully brings down the number of iterations, but at the cost of a larger

constraint violation than in the base case decomposition. The augmented lagrangian decompo-

sition decreases the constraint violations and converges faster than the base case decomposition.

Combined with the fact that ∏ converges and that the simulation needs few iterations, it makes

this the best method for dynamic decomposition of this system.

Since the system used in this problem is very simple, the results are only of academic interest. No

conclusion can be made on the realistic uses of dynamic decomposition for control within the

oil and gas industry. However, the results show a possibility for this type of control system to be

suitable for use in more complex systems.
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Sammendrag

Hensikten med denne masteravhandlingen har vært å undersøke bruken av "lagrangian" dekom-

ponering for en dynamisk sanntidsoptimalisering Dekomponeringen ble utført på et nettverk av to

brønner med gasløft, regulert av en ikke-linear modellprediktiv kontroller(NMPC). Selv om dekom-

ponering er en mye brukt metode, har den ikke vært undersøkt så mye for bruk i oppstrøms olje

og gass produksjon. Den dynamiske dekomponeringen i denne avhandlingen er en forlengelse av

et arbeid gjort med stasjonærtilstand dekomponering for et nettverk av brønner med gasløft.

Den "lagrangian" dekomponerte NMPCen ble modellert og simulert i Matlab med bruk av CasADi

v3.1.0, NLP-problemet ble løst ved hjelp av IPOPT-solveren. "Base case" refererer til simuleringene

med "lagrangian" dekomponering, som ble simulert med to forskjellige aktive beskrankninger. Re-

sultatene fra simuleringene ble sammenlignett med simuleringer gjort med en sentralisert NMPC

og en statisk optimalisering av det samme systemet. En vellykket dynamisk dekomponering burde

gi de samme konvergerte simuleringsverdiene som den sentraliserte NMPCen og statisk optimalis-

ering. Numeriske metoder ble anvendt for å forbedre "base case" dekomponeringen. Linjesøkme-

toden, som tilpasser steglengdenÆ for hver oppdatering av "lagrangian" multiplikator ∏, ble brukt

for å oppnå en bedre konvergert verdi av ∏ og minke det nødvendige antallet iterasjoner. "Aug-

mented lagrangian" dekomponering, som straffer brudd på beskrankningene, ble inkludert for å

forbedre dynamikken i oppstartsfasen for "base case" dekomponerte NMPC problemet.

Simuleringsresultatene av "base case" dekomponeringen viser at den dekomponerte NMPCen

konvergerer til det samme resultatet som den sentraliserte NMPCen og statisk optimalisering. Men

for noen systemer kan dynamikken i oppstartsfasen av simuleringen være problematisk. Når to-

tal gasskapasitet er den aktive beskrankningen, så oscillerer den dekomponerte NMPCen rundt

den sentraliserte NMPCen og bryter beskrankningen. Dynamikken er imidlertid ikke et problem

når tilgjengelig gasløft er den aktive beskrankningen. Linjesøkmetoden lykkes i å redusere antallet

iterasjoner, men på bekostning av et større brudd på beskrankningene. Augmented lagrangian

dekomponering reduserer bruddet på beskrankningene og konvergerer til optimum raskere enn

"base case". Ettersom denne metoden også har få iterasjoner i simuleringen er "augmented la-

grangian" den beste metoden for dynamisk dekomponering av dette systemet.

Ettersom systemet brukt i dette problemet er veldig forenklet, så er resultatet av akademisk in-

teresse. Ingen konklusjoner kan trekkes om den praktiske innføringen av dynamisk dekompon-

erte reguleringssystemer i olje og gass-sektoren. Likevel viser resultatetene at slike typer reguler-

ingssystemer er mulige og fordelaktige for komplekse systemer.
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ẋ Derivative of differential states [-]

z Algebraic states variable set [-]

z Lower limit on the algebraic states [-]

z Upper limit on the algebraic states [-]

Greek letter:

Symbol Description Units

Æ step length in updating of Lagrange multiplier [-]

Ø Updating parameter in Augmented Lagrangian method [-]

∏ Lagrange multiplier [-]

¢max∏ Maximum change in ∏ over one oscillation [-]



xxii Chapter 0. List of Symbols

Greek letter:

Symbol Description Units

¢mi n∏ Minimum change in ∏ over one oscillation [-]

µ Penalty parameter in Augmented Lagrangian method [-]

© The objective function in an OCP [-]

Ω Contracting factor in line search method [-]

Ωa Density of gas in annulus [kg /m3]

Ωo Density of oil [kg /m3]

Ωw Density of fluid mixture in well tubing [kg /m3]

µ Interpolation parameters [-]



Chapter 1

Introduction

This work is the author’s final thesis and represents the conclusion of a M.Sc in Chemical Engi-

neering with the Norwegian University of Science and Technology NTNU. This work is a part of a

Norwegian Center for Research Based Innovation (SFI) named Subsea Production and Processing

(SUBPRO) which was started up in the third quarter of 2015. This Masters’ thesis is organized as

follows: The model is presented and assumptions are made in chapter 2, the basic theory of opti-

mization and control is presented in chapter 3 and the method to decomposition used in this work

is discussed in chapter 4. The simulations performed are explained in chapter 5 and the results are

presented and discussed in chapter 6 before the work is concluded in chapter 7.

Subsea technology is increasingly used, replacing the tradition of building platforms. This opens

more possibilities for smaller and difficultly located fields to be economically profitable. Technol-

ogy development makes it more profitable and safer to extract oil and gas. Prevention of mainte-

nance on platforms were previously an after thought but with new subsea solutions the planning

and design phase must entail methods to avoid unexpected maintenance and operation failure.

Analysis of real-time data and a good control strategy of the system can help avoid costly un-

planned down-time[1]. As failure and rehabilitation becomes increasingly expensive with subsea

operations the focus on predicting system behavior becomes more crucial and the cost and time

consuming development of such tools become more profitable for subsea fields[2]. The subsea

fields are also high in complexity where removing the human factor in favor of full automation

of production control can be very profitable. Another challenge can be that fields have different

characteristics, hence each case might have several technological challenges and need tailored

solutions[3][1]. These tailored solutions need to be included in the decision making process which

can be quite complex.

The complex decision making process of the offshore production of oil and gas can be divided in

a hierarchal way depending on the time-horizon of the decision making. This hierarchy is shown

in figure fig. 1.1. Long-term decision making involves asset management, infrastructure and in-

vestment strategy, while the medium decision making refers to reservoir management, involving

drilling and production scheduling and strategy. "Daily Production Optimization" decisions are

made with intervals of a few hours to a couple of days. Below that, on the lowest level of the control

hierarchy, is the control and automation layer that continuously accounts and correct for changes

1
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in the operating conditions[4][5]. The work done in this thesis is located on this level.

Figure 1.1: Typical decision making hierarchy for the control process of offshore oil and gas
production. Figure taken from [5] p.2 which was adapted from [4].

A controller in the lowest level could be an on-line real time optimization(RTO) controller, that

continuously manipulates the control input to adapt to changes in the system. A highly successful

RTO is the Model Predictive Controller(MPC), that uses a prediction of the controlled system for a

certain time horizon and optimizes that prediction. The optimized solution for the next time step

determines the set point for the controller and the measurements from the plant are given as input

for the next prediction optimization. It is a widely used tool for control in the process industry and

further research is very relevant[6].

There are two ways of separating a control system[7]. The vertical hierarchical decomposition

refers to a decoupling in time, normally with a sequential control design. The hierarchical system

above in fig. 1.1 is a vertical decomposition of plant control. The other way of partitioning a control

system is horizontal hierarchical decomposition. This is a decoupling in space, where the plant is

divided into decentralized subproblems. The decomposition in space is the main topic in this

thesis.

Gas lift is a complicated manipulated variable, the correct amount of lift gas increases the produc-

tion of oil, too much gas lift can decrease the gas and oil rate[8]. With limited amount of lift gas

available the correct allocation of the gas between wells can be complicated. Previously the two

methods used to optimize gas lift allocation were the equal-slope method, where the gas lift per-

formance curves were controlled to be equal, and the Quasi-Newton method[9]. Both methods

verify optimality by using derivative information and therefore problems tended to get stuck in

local optima[8].
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Usually the optimization problems within oil and gas are large and complex with hundreds of de-

cision variables. This is also the case with the Troll field, explained in [10]. When two or more

wells act together this affects the optimum allocation of gas lift, making it complex to control. In

a well network the gas lift optimization is a nonlinear and constrained problem that is in need

of good nonlinear optimization control structures. Finding the optimal control structure for gas

lifted oil well networks is what has been attempted in this thesis by using decomposition methods

for a dynamic system. In this work only two wells are included in the network. If the dynamic

decomposition can be performed for such a simple and small network, then the method might be

feasible for larger complicated networks where the benefits from decomposition are larger. This

is therefore an interesting academic problem, that maybe in the future can be evolved to practical

application.

1.1 Motivation for Performing a Decomposition on the Dy-

namic Control Problem

The idea behind decomposition is to separate a large and complex optimization problem, like gas

lifted oil well networks, into smaller subproblems, solving them separately either in parallel or

sequentially[11]. There are multiple methods of decomposition described in literature and dif-

ferent applications of the method. The method investigated in this work is the Lagrangian Dual

decomposition, which is described in detail in chapter 4.

Lagrangian relaxation of optimization problems and other decomposition method has been used

in a wide range of applications for a long time[12]. In process optimization decomposition can be

used in any level of the hierarchy. The approach has also been successfully performed for down-

stream industries [13]. A more aggressive decomposition method that builds on the lagrangian

dual method is the augmented lagrangian decomposition that penalizes constraint violations. This

method has previously also been applied to the downstream section of oil and gas production,

for example on production planning and scheduling[14] or supply chain planning for multiple

companies[15].

Even though decomposition is a well known and utilized method, it has not been investigated

much for the upstream production of oil and gas, or the optimization of allocating gas lift. Work on

a steady state control structure with decomposition of a large oil field network has previously been

performed, where the optimization gives the control set points[16][17]. The studies showed that

there is a limit to how complex and large the control systems can become, before a global control

structure has difficulties finding an optimal solution. The theoretical work on steady state decom-

position was modeled for the Troll field, and the decomposed control structures outperformed the
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global controllers when the composed subproblems were many enough. The work on steady state

decomposition is further discussed in section 4.1. The low level of usage of this method for oil

and gas production might be because of the efforts it demands to implement. However, with more

complex fields and larger networks of wells being utilized, the method might have an economi-

cal gain. Challenges to operating and maintain 115 subsea wells on the troll field[10] motivates

research into finding new and better methods to control production from subsea oil fields. In ad-

dition, there are drawbacks to using a single MPC on a large, complex system[18]. Splitting the

MPC into smaller subproblems might make the control structure more transparent and easier to

understand and maintain.

What this thesis wants to examine is a dynamic decomposition, optimizing over a time-horizon

and implementing the decomposed solutions into a NMPC for the whole two well system. The

dynamic lagrangian dual decomposition is performed as an extension of previous work with steady

state decomposition. Numerical methods were added to improve the dynamic decomposition.

The line search method adapts the step length for each iteration and the augmented lagrangian

decomposition adds a penalty for violating the constraints. The methods are explained in more

detail in chapter 4. In this work, a simplified model with two gas lifted wells is used to demonstrate

the concept of dynamic decomposition methods for a production.



Chapter 2

Problem Formulation

The gas lifted oil well network is set up with a model predictive controller to study the different

improvement possibilities. In this chapter, the assumptions, equations and Differential Algebraic

Equations(DAE) system for the model will be presented. The model of the network is based on a

common gas lifted well model used in the paper Stabilization of Gas Lifted Wells Based on State

Estimation by Eikrem et al[19]. The equations are written for a network with nw number of wells.

In this project two wells make up the network in a very simple model of a gas lifted well network.

The complete system that is used for this project is illustrated below in fig. 2.1.

Figure 2.1: Gas lifted well network consisting of two identical gas lifted wells connected to a
common manifold. The manifold leads to a separator not included in the model.

5
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2.1 Description of System and Assumptions

The set up of the well system is illustrated below in figure fig. 2.1. The gas lifted well system consists

of two wells connected through a manifold that mixes the fluid produced from both wells, before

the fluid travels up through the riser. The riser is connected to a separator that is not included in

the model, but the separator pressure is given as a parameter to the model. Both wells are identical,

one well is illustrated below in fig. 2.2. The wells consist of two inlets, one from a reservoir and one

gas lift injection. The gas lift enters the annulus surrounding the well tubing through the gas lift

injection valve, with a flow controller to adjust the inlet flow. The gas lift mixes with the gas-oil

mixed fluid from the reservoir through the injection valve at the bottom of the annulus, which is

also referred to as the downhole inlet. The production choke valve at the top of each well controls

the outlet flow from each well. The riser head valve at the top of the system has a gas capacity

constraint that is used in the control as the active constraint. The valve positions at the gas lift

inlet is the control input set to maximize total flow production of the gas lifted oil well system.

Figure 2.2: The gas lifted oil well that is used for this network. Figure taken from [19].
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2.1.1 Assumptions

For the modeling of the gas lifted oil well network, multiple assumptions were made. The assump-

tions are described below.

Reservoir properties

The reservoir properties are assumed to vary from well to well, and only the reservoir inflow model

is included in this model. The wells can be producing from different sections of the reservoir, or

different reservoirs all together. The reservoir model is not crucial for the network model.

Gas lift injection

The gas lift injection is adjusted with a flow controller on the gas lift injection valve. For this model,

the gas lift injection is assumed to be perfectly controlled to give the desired flow rate.

Manifold dynamics

The nw number of wells all produce to a common manifold. Compared to the length of the wells,

the manifold’s length is negligible and therefor also the manifold dynamics is assumed negligible.

The pressure in the manifold is assumed to be the same for all wells and at any given time.

Manifold pressure

It can be assumed that the riser dynamics are negligible, so the manifold is connected directly to

the separator. The separator is not included in the model. The manifold is assumed to have perfect

pressure controller. Any changes in the manifold pressure is assumed to be instantaneous.

Chokes

To avoid energy losses over the chokes, they should be kept as open as possible and therefor the

wellhead choke valves are assumed to be kept at a fully open position. This assumption coincides

with multiple other gas lifted wells where the wellhead choke is kept at a constant position and

the well production is manipulated by gas lift inlet rate[7]. Another assumption is that the valve

size has been chosen to be valid for most operating conditions by choosing an appropriate valve

parameter Cv . The downhole gas lift injection valve is modeled without a choke opening, this is

because the downhole gas lift injection valve usually is a mandrel with fixed opening.
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2.2 The Model Equations

This differential algebraic equation system (DAE) is built up of 3 differential equations and 12 al-

gebraic equations. The ṁ denotes the change in mass over time for a control volume for both gas

and oil. A flow sheet that depicts the control volumes with inlet and outlet flows of oil and gas is

included in fig. 2.3. The control volumes C11 and C12 make up well 1 with inlet from the reservoir

and gas lift, the control volumes C21 and C22 refer to well 2 also with inlet from gas lift and a sec-

ond reservoir. The outlet flows from the two wells are combined in the manifold and sent to the

separator.

Figure 2.3: A flow sheet depicting how the control volumes of the system is connected. For each
control volume the ṁ represents the change in mass over time. w denotes the flows in and out of

the control volumes. C11 and C12 make up well 1 and C21 and C22 make up well 2.
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2.2.1 Differential equations

Mass Balances

For each well i the mass balances are given in eq. (2.1)-eq. (2.3).

ṁg ai = wg li °wi vi (2.1)

ṁg ti = wi vi °wpgi +wr gi (2.2)

ṁoti = wr oi °wpoi (2.3)

Here mg ai is the mass of gas in the annulus, mg ti is the mass of gas in the tubing and moti is the

mass of oil in the tubing. wg li denotes the gas lift injection rate into well i, wi vi is the gas flow

into the tubing, wr gi and wr oi is the gas and oil rate in from the reservoir, wpgi and wpoi is the

production rate of gas and oil from each well.

2.2.2 Algebraic equations

The algebraic part of the model consists of the equation for pressure, density, and flow for a well

system of nw number of wells. In addition the equations for the cross-sectional area calculations

are needed.

Pressure Equations

The bottom hole pressure pbhi , well injection pressure pwii , the annulus pressure pai and the

wellhead pressure pwhi for each well is given in eq. (2.4) - eq. (2.7).

pbhi = pwii +Ωwi g Hbhi (2.4)

pwii = pwhi +
g

Lwi Awi

°
moti +mg ti °ΩoLbhi Abhi

¢
Hwi (2.5)

pai =
µ

Tai R

Vai Mw
+

g Lai

Lai Aai

∂
mg ai (2.6)

pwhi =
Twi R

Mw

0

@ mg ti

Lwi Awi +Lbhi Abhi °
moti
Ωo

1

A (2.7)

Here Hbhi and Hwi refers to the respective heights of each well below and above the injection point,

Lbhi , Lwi and Lai is the length of the well below and above the injection point and of the annulus,
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Abhi , Awi and Aai refers to the cross-sectional areas of the tubing below and above the injection

point as well as the annulus. The temperatures in the tubing and the annulus is denoted by Twi

and Tai , Ωo and Ωwi are respectively the density of oil and density of the oil-gas mixture in the

tubing, Mw is the molar weight of the gas, R is the gas constant and g is the acceleration of gravity

constant.

Density Equations

The density of the gas in the annulus Ωai and the fluid mixture in the tubing Ωwi for each well i is

given by eq. (2.8) and eq. (2.9).

Ωai =
Mw pai

Tai R
(2.8)

Ωwi =
mg ti +moti °ΩoLbhi Abhi

Lwi Awi

(2.9)

Flow

The flow through each of the downhole gas lift injection valves wi vi , the flow through each of the

production chokes wpci , the gas and oil production rate from each well wpgi and wpoi , and the gas

and oil flow rates from the reservoir into each well wr gi and wr oi is given in equations eq. (2.10) -

eq. (2.15).

wi vi =Ci vi

q
max(0,Ωai (pai °pwii )) (2.10)

wpci =Cpci

q
max(0,Ωwi (pwhi °pm)) (2.11)

wpgi =
mg ti

mg ti +moti

wpci (2.12)

wpoi =
moti

mg ti +moti

wpci (2.13)

wr gi =GORi wr oi (2.14)

wr oi = PIi (pri °pbhi ) (2.15)

Here Ci vi and Cpci are the injection valves and production valves characteristics, GORi is the Gas-

Oil ratio in each well and PIi and pri are the productivity indexes and pressure of the reservoir

supplying each well. The manifold where the two wells mix together has a pressure denoted by

pm .
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Cross-sectional Area Calculations

The cross-sectional area for the annulus Aai and tubing Awi for each well are calculated by using

the respective diameters Dai and Dwi in eq. (2.16) and eq. (2.17).

Aai =
ºD2

ai

4
°
ºD2

wi

4
(2.16)

Awi =
ºD2

wi

4
(2.17)

2.2.3 DAE Formulation

This system is modeled as a semi-explicit index-1 DAE system that has the form shown in eq. (2.18).

ẋ = f (x, z,u) (2.18a)

g (x, z,u) = 0 (2.18b)

Here f (x, z,u) denotes the set of the differential equations given in eq. (2.1) - eq. (2.3) and g (x, z,u)

denotes the set algebraic equations given in eq. (2.4) - eq. (2.15). This gives a set of differential

states, x, algebraic states, z, and the decision variables, u, that are shown below in eq. (2.19a) -

eq. (2.19c).

x =[mg ai mg ti moti ]T (2.19a)

z =[pbhi pwii pai pwhi Ωai Ωmi

wi vi wpci wpgi wpoi wr oi wr gi ] (2.19b)

u =wg li (2.19c)

2.3 Problem Formulation

The system used in this work has 4 manipulated variables (MVs), and these are the degrees of

freedom (DOF) in the control system. The DOF are two well head choke positions and the two

gas lift injection rates. To avoid production losses, the two chokes are positioned fully open. The
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two remaining DOF, the objective is to maximize the total produced oil, subject to total gas capac-

ity constraint and total available gas lift constraint. The problem formulation is shown below in

eq. (2.20e).

min °
nwX

i=1
wpoi (2.20a)

s.t .
nwX

i=1
wpgi ∑Qgmax (2.20b)

nwX

i=1
wg li ∑QGLmax (2.20c)

ẋ = f (x, z,u) (2.20d)

g (x, z,u) = 0 (2.20e)

Where the objective function is the sum of oil produce from each well wpoi , subject to two differ-

ent constraints in eq. (2.20b) and eq. (2.20c). The objective function is also subject to the system

equations, consisting of the differential and algebraic equations from eq. (2.18). Qgmax and QGLmax

denote the maximum gas capacity constraint and the available gas lift constraint.

2.4 The Decomposed Model

In this study, the main model is decomposed into subproblems connected by a common constraint

to investigate this control structure. The model with two gas lifted well systems is separated into

two subproblems, one problem for each well. The manifold pressure pm is given as an input to the

subproblems. The decomposed DAE structure for each subproblem i is shown in eq. (2.21) where

fi and gi are the separated differential and algebraic equations for each subproblem, each well,

denoted by i .

ẋi = fi (x, z,u) (2.21a)

gi (x, z,u) = 0 (2.21b)

For the decomposed system there is a set of differential states, x, algebraic states, z, and decision

variables u for each subproblem. The new sets for the first subproblem, well 1, is shown below

in eq. (2.22a) - eq. (2.22c) and the new sets for the second subproblem, well 2, is shown below in
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eq. (2.23a) - eq. (2.23c).

x1 =[mg a1 mg t1 mot1 ]T (2.22a)

z1 =[pbh1 pwi1 pa1 pwh1 Ωa1 Ωm1 wi v1 wpc1 wpg1 wpo1 wr o1 wr g1 ] (2.22b)

u1 =wg l1 (2.22c)

x2 =[mg a2 mg t2 mot2 ]T (2.23a)

z2 =[pbh2 pwi2 pa2 pwh2 Ωa2 Ωm2 wi v2 wpc2 wpg2 wpo2 wr o2 wr g2 ] (2.23b)

u2 =wg l2 (2.23c)

Subproblem 1 is formulated below in eq. (2.24d), where the objective function is the oil produced

from well 1, wpo1 subjected to either of the constraint. Only one of the constraints can be active,

depending on the values of the maximum gas capacity and the available gas lift. The objective

function is also subjected to the decomposed DAE from eq. (2.21).

min °wpo1 (2.24a)

s.t .
nwX

i=1
wpgi ∑Qgmax (2.24b)

or
nwX

i=1
wg li ∑QGLmax (2.24c)

eq. (2.21) (2.24d)

The second subproblem 2 is formulated similar to the first subproblem. The oil produced from

well 2, wpo2 , is maximized subjected to either of the constraints. The system equations for well 2

are defined from eq. (2.21), where i = 2, and the objective function is subjected to these differential

and algebraic equations.
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min °wpo2 (2.25a)

s.t .
nwX

i=1
wpgi ∑Qgmax (2.25b)

or
nwX

i=1
wg li ∑QGLmax (2.25c)

eq. (2.21) (2.25d)



Chapter 3

Control and Optimization Theory

Optimization is an important tool in any decision making, whether it happens naturally as a phys-

ical system seeking the state of minimum energy, or the engineer seeking to optimize production

in a plant. In science, optimization started with early mathematics and research on the topic was

mostly done in theory, until the development of the simplex method for linear programming in

1947 by Dantzig [20]. After this work, it started to become a focus to research and optimization

was implemented within real-world problems. Today, controlling operations to it’s optimum is a

vital part for the industry to save both time and money.

Identifying the objective, variables and constraints of an optimization problem is called modeling.

This model can be written as an optimal control problem(OCP), which aims to find the path of

the systems control variable to minimize the cost function[21]. Optimization and control is widely

used in chemical engineering, especially within the process system engineering, where problems

often can be complex, both in economics and performance of a large composed system. The need

for a common and automatic approach of finding the optimal solutions, are the basis for control

strategies. There is always a need for new and better solutions.

For a long time, the engineers’ intuition was the guidelines for controlling a chemical process sys-

tem. However, with more and more complex systems and plants, the theoretical work on MPC has

been trying to catch up to the long tradition of engineering use of the model predictive controller

method[22]. However, there are many large progresses being made within the field. An overview

of methods on Robust MPC up till 2006 was performed by Jalali et al and is presented in [23].

In this chapter, first an Optimal Control Problem(OCP) is defined, the concept of Real-Time Opti-

mization(RTO) and Model Predictive Control(MPC) is explained and then the collocation method

to solving Nonlinear MPC is presented. This follows the method of this thesis, starting with an OCP,

the collocation method is utilized to turn the problem into an NLP. Then the NLP is solved using

an Interior-Point Optimization approach in CadADi.

In mathematics and engineering, optimization is searching for the best solution of a problem, find-

ing a maximum or minimum of an objective function defined as f(x,z,u) depending on the variables

x, z, u, subjected to constraints defined by the system. For this work, the nonlinearity in the state

equations for the system classifies this as a nonlinear programming(NLP) problem. NLP is one of

15
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the methods to solving an optimization problem, when the constraint equations or the objective

function of an optimization problem have one or more nonlinear equations. An algorithm class to

solving NLP problems is the interior-point methods, it is considered one of the best solution tools

for large-scale nonlinear programming[21]. Nonlinear programming and the interior-point meth-

ods are explained further in "Numerical Optimization" by Nocedal and Wright[21]. The interior-

point method has been adapted to a programming algorithm and implemented as an open source

NLP solver named IPOPT(Interior-Point Optimization)[24] which is the solver used in this thesis.

3.1 Optimal Control Problem (OCP)

Optimal control is choosing the optimal values of input to a dynamic system. A standard opti-

mization problem using a semi-explicit DAE is presented in eq. (3.1) where x(t) are the differential

states, z(t) are the algebraic states, f(x,z,u,) are the differential equations and g(x,z,u,) are the al-

gebraic equations. More on DAE and numerical methods for solving can be found in "Computer

Methods for Ordinary Differential Equations and Differential-Algebraic Equations" by Ascher and

Petzold [25].

ẋ = f (x(t ), z(t ),u(t ))

x(0) = x0

g (x(t ), z(t ),u(t )) = 0

(3.1)

The state variables and the control variables have lower and upper constraints for the operating

conditions. The underline of the variables denotes the lower limit, x, z, u. The bar over the vari-

ables denote the upper limit of the states and control variables, x, z, u. The constraints of the states

and control variables are presented in eq. (3.4). The constraints are modeled from limitations of

the system, depending on for instance capacity constraints over valves or control volumes.

x ∑x ∑ x (3.2)

z ∑z ∑ z (3.3)

u ∑u ∑ u (3.4)

For this semi-explicit constrained DAE the OCP can be written eq. (3.5).
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min
u(t ),x(t ),z(t )

©(x(t ), z(t ),u(t ), p) (3.5a)

s.t ẋ = f (x(t ), z(t ),u(t ), p) (3.5b)

x(0) = x0 (3.5c)

g (x(t ), z(t ),u(t ), p) = 0 (3.5d)

x ∑ x ∑ x (3.5e)

z ∑ z ∑ z (3.5f)

u ∑ u ∑ u (3.5g)

3.2 Model Predictive Controller (MPC)

The Model Predictive Controller (MPC) uses a dynamic model to predict the system behavior for

a finite time-horizon and generate process input for a real-time optimization problem. The pre-

dicted input variable is optimized to obtain the optimal solution of the cost function. The opti-

mized value of the input for the current time step is implemented into the simulation of the plant

to develop a closed loop control system. For a detailed theory and examples of MPC design see

"Model Predictive Control: Theory and Design" by Rawlings and Mayne [26].

Traditionally, MPC consists of an optimization problem to achieve certain control objectives, such

as set point control, state and input constraints, rate of change constraints etc. The behavior of the

control variable is determined from an optimization starting at the current position and predicted

for a given time-horizon into the future. The measured variables for the states of the system are

given as new initial conditions for the next horizon optimization. The Receding horizon strategy

that define MPCs is illustrated in fig. 3.1 where the measured variables and the control variables

are plotted both in the past and in the predicted future. The measured and the predicted output is

compared to a reference trajectory.
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Figure 3.1: Receding horizon strategy used in an MPC. Where the predicted output and the
corresponding planned control input is shown in the future trying to reach the setpoint. The

measured output and past control input in the past is connected to the predicted values in the
present position k. The figure is taken from page 4 in [27].

The advantage to the MPC method is that it can anticipate future changes and change the control

variable accordingly, hence diminishing the impact of changes on the operating conditions. For

a plant with an implemented MPC, the benefits could be less down time, better performance of

control and improved flexibility. [22]

3.2.1 Nonlinear Model Predictive Control(NMPC)

NMPC is an OCP that is constantly solved on-line, usually for a DAE model. It is a MPC with a

nonlinear cost function or constraints equations. The cost function should penalize the distance

from an arbitrary state to an optimal solution of that state. NMPC is explained more in detail

in "Nonlinear Model Predictive Control: Theory and Algorithm" by Gründe et. al. [28]. A study

reviewing the recent advanced within dynamic RTOs like NMPC[29] concludes that advances in

large-scale NLP solvers opens for NMPC requiring very little on-line computations.

In this thesis the control system is an NMPC with a cost function of eq. (3.6) with dynamic parts

of the state equations. The mathematical model of the NMPC can be solved using the collocation

method described below to write the problem as an NLP.

J =°
nwX

i=1
wpoi (3.6)
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3.3 Real-time Optimization(RTO)

On line optimization constantly updates the control system according to measurements and the

prediction of the mathematical model of the system. The purpose is to operate a plant as close

to optimum as possible at all times. Traditionally, Real-time optimization(RTO) employs static

models and provides set points to lower layer MPC controllers. Static RTO is is often performed

open-loop and there is limited Feedback to the RTO and for this reason, it is not very good [7].

Dynamic RTO, on the other hand, uses a dynamic model on line and computes set points at each

sampling time. Increasingly, there has been a steady interest in tightly integrating the RTO and

MPC layers by combining economic and control objectives in the framework of the so-called Eco-

nomic MPC. In this work, the optimization problem is formulated as an economic MPC problem.

An economical model has an objective function that includes a cost or production value that is

maximized or minimized. The different uses and methods to RTO, as well as challenges to using

RTO, is discussed in [30]. In this work, the on line optimization problem is defined as a Real-time

production optimization(RTPO).

3.4 Collocation Method

For dynamic systems, a higher-order method is required for solving. The collocation method is a

higher-order implicit Runge-Kutta method often used to solve OCP. For this chapter, "Nonlinear

Programming: Concepts, Algorithms, and Applications to Chemical Processes" by Biegler [31], is

used as a central source. Also the method in this thesis is adapted from the lecture notes by Sébas-

tian Gross for "Winter School on Numerical Optimal Control with Differential Algebraic Equations"

[32] and [33]. The large-scale NLP formulation that results from the collocation of the OCP, pro-

duces a large, structured and sparse matrix which makes the problem more efficient to solve. In

addition to this advantage, DAE solvers with convergence difficulties can be avoided with better

NLP solvers.

3.4.1 Polynomial integration

In a time interval split into time grids, a function f can approximate over the time interval. Consid-

ering a time grid tk,0 . . . , tk,K 2 [tk , tk+1] a Lagrange polynomial can be defined for each tk,i on the

time interval to approximate f. The degree of the polynomial is the same as the number of points

on the time interval. The lagrangian polynomial Lk,i (t ) is defined in eq. (3.7) with the order of K.
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Lk,i (t ) =
KY

j=0, j 6=i

t ° tk, j

tk,i ° tk, j
(3.7)

Here tk,i with i 2 (0,4) with collocation points that are between tk and tk+1. The properties of the

Lagrange polynomial is defined in eq. (3.8).

Lk,i (tk,l ) =

8
<

:
1 if l = i

0 if l 6= i
(3.8)

Then interpolation with the parameters µk,i 2 Rn and Lk,i (t ) for each collocation point approxi-

mates approximates a function variable x.

x(µk , t ) =
kX

i=0
µk,i|{z}

par ameter s

· Lk,i (t )
| {z }

pol ynomi al s

(3.9)

The selection of the collocation points can be done with either a gauss-legendre or a radau roots

method. The collocation point location varies with the degree of the Lagrange polynomial. The

values of the collocation point for gauss-legendre and radau roots are included in table B.1 in ap-

pendix B.

For DAEs, the Radau collocation points are better suited, while the Gauss-Legendre collocation

points are better suited for ODEs. The Radau method for finding the collocation point, applies the

interpolation at every time-step and this discretization method has been found to behave much

better than collocation at Gauss-Legendre points. The Radau method is less exposed to oscillations

and is stable for stiff differential system equations and for large time-steps[34].

To illustrate the polynomial integration over an interval [k,k+1], the scheme representing a third

order direct collocation using Radau collocation points is included below in fig. 3.2. The polyno-

mial approximation is shown for the state and control variables x,z and u.
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Figure 3.2: Polynomial approximation for a third order direct collocation using Radaus points, on
a single sampling interval [k,k+1]. The differential states x has one more point than the algebraic
states z, which is located at tk,0 and assures the continuity with the shooting gap constraint. The

control input u is piecewise constant over the interval. Taken from[5] p.7.

3.4.2 Direct Collocation Method for a Constrained DAE problem

Direct collocation is a method within collocation in addition to single and multiple shooting collo-

cation. It is the most preferred method when it comes to handling DAE systems. The direct collo-

cation method is the approach that generates the biggest and the most sparse NLP. The method for

direct collocation is implemented for the given the semi-explicit DAE with constraints in eq. (3.1),

turning this DAE-problem into a NLP-problem. The definition of interpolation with the Lagrange

polynomials applied to the states of the semi-explicit DAE results in the interpolations for differ-

ential states x and the algebraic states z that are given in eq. (3.10a) and eq. (3.10b).
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x(µk , t ) =
kX

i=0

par ameter s
z}|{
µk,i ·

pol ynomi al s
z }| {
Lk,i (t ) (3.10a)

z(zk , t ) =
kX

i=0
zk,i|{z}

par ameter s

· Lk,i (t )
| {z }

pol ynomi al s

(3.10b)

For a point tk,i on the time interval, the approximations have the definition x(µk , tk,i ) = µk,i and

z(zk , tk,i ) = zk,i where the differential states have one higher degree of the polynomial, K+1, than

the algebraic state which have K degrees of freedom. This is because the algebraic states can be

discontinuous and does not need to close the shooting gap.

With the interpolations presented above, the constraints for the NLP problem from direct colloca-

tion for semi-explicit DAE become as shown in eq. (3.11a) for continuity constraint, eq. (3.11b) for

the dynamics constraint and eq. (3.11c) for the algebraic constraint.

0 = µk,K °µk+1,0 (3.11a)

@

@t
x(µk , tk,i ) = F (µk,i , zk,i ,uk ) (3.11b)

0 =G(µk,i , zk,i ,uk ) (3.11c)

Then the complete NLP problem transformed from DAE with direct collocation can be written as

an OCP as shown in eq. (3.12b).
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min
w

©(w) (3.12a)

s.t g (w) =

0

BBBBBBBBBBBBBBBBBBBB@

µ0,0 °x0

µ0,K °µ1,0

F (µk,0, zk,0,uk )° @
@t x(µk , tk,0)

G(µk,0, zk,0,uk )

. . .

µk,K °µk+1,0

F (µk,K , zk,K ,uk )° @
@t x(µk , tk,K )

G(µk,K , zk,K ,uk )

. . .

1

CCCCCCCCCCCCCCCCCCCCA

(3.12b)

Where the first row of the NLP constraints g(w) represents the initial conditions x0, second row

is the shooting gap constraints for continuity, third and fourth row are the integration constraints

for differential and algebraic states at k=0. The second to fourth rows are repeated for k=0,...,N+1,

as shown for a middle point k=K. The decision variables for this problem are collected in w =
{. . . ,µk,0,µk,1, zk,1, . . . ,µk,K , zk,K ,uk , . . .} for k=0, . . . , N °1.





Chapter 4

Decomposition

The motivation for performing a decomposition of a large scale problem is presented in the intro-

duction of this thesis in chapter 1. In this chapter, the previous work on decomposition is reviewed

before the general theory and idea of decomposition and the Lagrangian Dual(LD) decomposition

method is presented. Then, the decomposition methods are adapted to fit the model described in

chapter 2. This gives algorithms for the decomposition that are used in the programming and sim-

ulations of the decentralized solver of the system shown in chapter 5. Lastly, theory of numerical

methods for improving the results of the decompositions is presented. A very central source used

in this chapter is "Notes on Decomposition" by Boyd et al[11].

Decomposition is the method of solving a major problem by splitting it into multiple subproblems

and solve the minor problems either sequential or in parallel[11]. The decentralized optimization

problem can yield an optimal solution for each subproblem that is connected by a master problem

for the main control system.

When finding a good solution to a complicated problem using combinatorial optimization, two

criteria must be considered[35]. Each optimization problem must calculate:

• a lower bound that is as close to the optimum solution as possible

• an upper bound that is as close to the optimum solution as possible

The upper bound is in this case given by a maximum constraint on the total gas production capac-

ity. The objective is to find a lower bound that is as close to the optimum solution as possible by

using the different decomposition methods for the optimization problem. The Lagrange Dual(LD)

decomposition uses the Lagrange relaxation to enable a splitting of the main problem.

4.1 Previous Work on Decomposition

Dynamic decomposition is a well known method, but has not yet been investigated and imple-

mented into the field of oil and gas production. There is, however, work that has been done on

25
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steady state decomposition for usage within oil and gas, with the Troll field as an example field

structure. The method and conclusion of this work is explained below.

4.1.1 Decomposition in Oil and Gas

Two papers covering the use of decomposition within an oil and gas field was reviewed. The first

study compared two decomposition methods where Lagrangian decomposition was one method

[17]. The decomposition with Lagrangian relaxation was performed for a mixed integer linear pro-

gram (MILP) model of a gas lifted oil well system based on a general network topology, very similar

to the Troll field structure. The nonlinearity of the model was piecewise linearized before the de-

centralized model was developed with a LD decomposition. The decomposed model consist of

subproblems, each cluster containing one manifold. The subproblems are controlled by a master

problem, with the common constraint also decomposed and added to the objective functions.

The second paper investigated only LD decomposition for the Troll field with larger clusters, each

cluster containing two manifolds[16]. As in the first paper, the model was piecewise linearized so

that each subproblem becomes an MILP problem before the LD decomposition was performed.

Then, the Lagrangian decomposition was tested against a global strategy with all the clusters in

one MILP, and a with a preallocation of gas to each cluster for the sum of the gas reaching the gas

constraint.

The results and the conclusion from these papers favor the decomposition method for finding

the optimal set points for steady state optimization. They both argue that decomposition is well

suited for an oil and gas optimization problem for such a complex field structure as that of the Troll

field. The papers conclude that the decentralized control structure outperforms a global control

structure in efficiency and that it can be further improved by parallel solving of the decomposed

optimization problems. It is also noted in both papers that the decomposed structures can solve

larger problems more easily than the global method. In [17], the global method was not able to

solve a problem with eight clusters(subproblems) and struggled with six clusters. In [16], the global

approach was not able to handle more than two clusters, with six wells in each cluster. From this it

can be assumed that the more complex system, the more beneficial can decomposition become.

The paper comparing Danzig-Wolfe decomposition to LD decomposition, prefers the first method

because of a more efficient updating algorithm of Lagrange multipliers. In this paper, line search

method and an augmented lagrangian method are applied to improve the updating algorithm of

the lagrangian decomposition.

Since these are stationary problems, they are re-optimized frequently, typically once a day, which

means they can be defined as quasi-dynamic controls. One of the papers[17] points out that dy-

namic models being decomposed might be beneficial for certain model were the dynamics are
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important to the optimal performance, for example long pipe models. But this might be a chal-

lenge during start-up of wells, which can become a problem if shut down is frequently caused by

maintenance or other reasons.

4.2 Decomposition with Constraints

When the problem considered is not completely separable because of a common constraint, the

subproblems must be coupled through this constraint. A simple example where the subproblems

are coupled by a common constraint is shown below in eq. (4.1).

mi n f1(x1)+ f2(x2)

s.t . xi 2 C1, x2 2 C2

h1(x1)+h2(x2) ∑ 0

(4.1)

Where f1(x1) and f2(x2) are two subproblems coupled by a constraint that h1(x1) and h2(x2) col-

lectively has an upper limit of 0. In this study the Lagrange Dual decomposition has been used,

which is described below.

4.3 Dual decomposition - Lagrangian Relaxation

As mentioned above, a decomposition problem needs to generate a good lower and upper bound

for the problem. To generate a good lower bound, a Lagrangian relaxation of the original prob-

lem can be generated. The generating and application of the lagrangian relaxation is explained

in "Modern Heuristics Techniques for Combinatorial Problems" by Beasley[35]. The steps to La-

grangian relaxation for an integer program involves:

1. moving any number of the constraint into the objective functions adding a Lagrange multi-

plier to relax the constraints

2. finding an exact solution for the new integer program

The exact solution for the relaxed problem gives a lower bound to the optimum of the original

problem.
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There are multiple advantages to solving a relaxed integer program, instead of directly finding an

optimal solution for the original integer program. Two of the reasons for using Lagrangian re-

laxation is that it has been found to generate good lower bounds at low computational costs. In

addition, for a simple problem with complication of extra constraints, a solution where the con-

straints are absorbed into the objective function can simplify the total problem. In this problem

the Lagrange multiplier is variable coupling the common constraints of the two wells.

4.3.1 Lagrange Multiplier and Finding the Maximum Lower Bound

For an optimization problem given in eq. (4.2), the constraints can be relaxed using Lagrange mul-

tiplier ∏ to generate a lower bound for the optimal solution.

max f (x, y)

s.t . h(x, y) = a
(4.2)

This optimization problem can be rewritten with the Lagrangian relaxation by introducing the

Lagrange multiplier ∏∏ 0. Bringing the constraint into the objective function gives a new problem

in eq. (4.3). The new problem can be referred to as the Lagrangian Lower Bound Program (LLBP).

L (x, y,∏) = f (x, y)°∏ · (h(x, y)°a) (4.3)

To generate a lower bound as close to the optimal solution as possible, the choosing of the numer-

ical value of ∏ is very important, in other words the ideal solution is the maximum lower bound.

This problem is formulated by maximizing ∏ over the problem, 4.4, this gives the Lagrangian dual

program.

max
∏∏0

8
<

:
min f (x)+∏(a °h1(x))

s.t . x 2 (0,1)
(4.4)

4.3.2 Dual Decomposition for the well system with coupled constraints

Using the Lagrangian relaxation explained above, an optimization problem with a constraint can

be split into two subproblems with a common constraint[11]. The decomposed model is explained
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in previous chapter 2. The constraint is included in the optimization problem first with the use of

the Lagrange multiplier ∏. The partial Lagrangian is then written as in eq. (4.5).

L (x1, x2,∏) = f1(x1)+ f2(x2)+∏T (h1(x1)+h2(x2))

= ( f1(x1)+∏T h1(x1))+ ( f2(x2)+∏T h2(x2))
(4.5)

This partial Lagrangian can be split into two subproblems connected by a common∏ to not violate

the constraint while optimizing both subproblems. When the constraint is included in the opti-

mization problem it can be written as the dual function g (∏), shown in eq. (4.7). The decomposed

functions g1(∏) and g2(∏) can be evaluated fully independently, in parallel or sequential.

g (∏) = g1(∏)+ g2(∏) (4.6)

where : gi (∏) = ( fi (xi )+∏T hi (xi )) (4.7)

The first subproblem is written in eq. (4.8).

mi n f1(x1)+∏T h1(x1)

s.t . x1 2 C1

(4.8)

The second subproblem for this study of two well gas lifted system is written in eq. (4.9).

mi n f2(x2)+∏T h2(x2)

s.t . x2 2 C2

(4.9)

The master algorithm for the Lagrange Dual decomposition updates the Lagrange multiplier ∏

for each iteration until it reaches a given termination criteria. The master algorithm is illustrated

below in fig. 4.1.
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Figure 4.1: The general algorithm for LD decomposition with eq. (4.8) and eq. (4.9) as the two
decomposed optimization problems. The lagrange multiplier, the coupled variable in this
decomposition, is updated for each loop through the step length Æ until it converges to an

optimal value. The tolerance is set to be an acceptable value and is measured by the change in ∏

for each iteration.

4.3.3 Formulating the Lagrangian Dual Decomposition for the Model

For this study, the optimization objective for the first subproblem(eq. (4.11)) f1(x1) is the oil pro-

duction from well 1 and the decomposed constraint function h1(x1) presented in eq. (4.10) is the

gas produced from well 1. Through the Lagrange multiplier and the decomposed constraint func-

tion this subproblem has a common constraint for the total gas production capacity.

h1(x1) = wpg1 (4.10)

max wpo1 +∏T wpg1 (4.11)

In the same form as well 1, the decomposed optimization objective for the second subproblem

eq. (4.13) f2(x2) is the oil production from well 2. The decomposed constraint function h2(x2)

presented in eq. (4.12) is the gas produced from well 2 with the common constraint for the total

gas production capacity for both wells combined added.
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h2(x2) = wpg2 °Qgmax (4.12)

max wpo2 +∏T (wpg2 °Qgmax ) (4.13)

The flow sheet for solving the dual decomposition for this model is illustrated in fig. 4.2, following

the master algorithm given in fig. 4.1. The calculated gas production from each well is used to

update the Lagrange multiplier ∏ to maintain the active constraint of the total gas capacity. The

error from the active constraint corrects the ∏ with an appropriate step length Æk .

Figure 4.2: The algorithm for the lagrangian dual decomposition solution adapted to fit the
model used in this thesis. The two subproblems’ objective functions are given in eq. (4.11) and

eq. (4.13). The optimal gas production w§
pgi

for each subproblem and the step length Æk is used to
update the Lagrange multiplier ∏.

Since ∏ >0 the implementation of the error is written as in eq. (4.14).

∏= max(0,∏+Æk (wpg1 +wpg1 °Qgmax )) (4.14)
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4.4 Solving the dynamic master problem

After optimizing the decomposed OCPs and finding the correct value of the lagrangian multiplier

∏ for the optimal solution, the next step is implementing the optimal value of the control value at

the first time step into the simulation of the plant. The simulation of the plant is for the combined

model of the two wells, with the optimum of the two control variable found from the decentralized

model prediction. After the simulation of the plant, new initial values for the state variables are

given as input for the next optimization of each of the decomposed OCPs. The master problem

structure is shown in fig. 4.3.

Figure 4.3: The master algorithm for solving the closed-loop optimal control problem. The
algorithms for each solver, decomposed optimization, is shown in fig. 4.2. The optimal input

value of the MVs are given as input for simulation of the plant. The simulated measurements are
given as initial and boundary values to the solvers for the next optimization.

4.5 Line Search Methods

The line search method is a procedure to find a good step length, Æ, for each iteration as the value

of xk gets closer to the optimum solution. The algorithm searches along the direction pk for the

new iterate with a lower value than the current iterate value xk . From this search, the distance

to the next iteration point is determined, also known as the step length Æk . The efficiency of the
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method is very dependent on the choice of the step length Æk and direction pk . The background

for the line search method is taken from "Numerical Optimization" by Nocedal and Wright [21].

The trick is to find the right balance between choosing a large enough Æk , to give a sufficient re-

duction in the function value f , as well as not spending too much time searching for the best Æk .

Therefore, the line search method is performed in two stages, where the first stage is identifying

intervals for suitable values of Æk , and the second stage is estimating a good step within this spe-

cific interval. A common line search method outline of the first stage is to try out multiple values

of Æk until the step length satisfies certain conditions. There are multiple different termination

conditions[21]. For this study, the sufficient decrease condition is chosen as the terminating defi-

nition and backtracking is used to compute a new value of Æk for each iteration. This is described

below.

4.5.1 Sufficient Decrease Condition and Backtracking

Defining Æk from satisfying the condition f (xk +Æk pk ) < f (xk ), which implies a decrease in the

function value for each iteration, is a simple assumption to make. However, this assumption is not

sufficient for a certain convergence to the optimal solution of f . To account for this insufficient

reduction, the reduction of the function value f should correspond to the directional derivative as

well as the step lengthÆk . 5 f T
k pk is added to the decrease condition to give the sufficient decrease

condition which is presented in eq. (4.15).

f (xk +Æpk ) ∑ f (xk )+ cÆ5 f T
k pk (4.15)

Here f is the objective function, pk is the direction of the line search and c is a chosen variable. c

is defined on the interval [0,1], and is usually quite small in practice (c = 10°4)[21]. The method of

finding an acceptable interval for Æk for both the decrease in f and the derivative of the direction

is illustrated in fig. 4.4.
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Figure 4.4: An example of the intervals that are acceptable with the sufficient decrease condition.
Taken from page 33 in [21].

The sufficient decrease condition is not enough in itself, so other conditions can be added to the

problem to ensure that a good value is computed for Æk . However, a backtracking can also be

used to avoid adding extra conditions to the line search. The algorithm of sufficient decrease and

backtracking taken from [21] is presented below in fig. 4.5.

Figure 4.5: The algorithm for the line search method. As long as the current step length Æ does
not satisfy the sufficient decrease condition Æ is updated. When the condition is satisfied the step

length for the next iteration Æk is defined as the Æ from the last iteration.

The backtracking is simply a constant decrease inÆ for each iteration. The decrease inÆ is defined

by a contraction factor Ω. This means that the appropriate step length will be computed within a

finite number of iterations, since the Æ will eventually decrease to a small enough value. When the

step length fulfills the sufficient decrease condition, the current value of Æ is set as the step length

for the next optimization iteration, Æk =Æ
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4.6 Augumented Lagrangian

Augmented Lagrangian method is a penalizing method to counter constraint violations. The pe-

nalizing function Q is shown in eq. (4.16) where µ is the penalty parameter. Here, f(x) is the original

objective function of the OCP and ci is the i-th constraint function. The method for using the aug-

mented lagrangian is explained in detail in "Numerical Optimiaztion" by Nocedal and Wright in

[21].

Q(x;µ) = f (x)+ µ

2

X

i2≤
c2

i (x) (4.16)

The second term of eq. (4.16) penalizes constraint violations by a weight of µ/2, where µ is a cho-

sen parameter that can be tuned to fit the control problem. For the total augmented lagrangian

method shown in eq. (4.17), the lagrangian decomposition approach of moving a constraint ci

into the objective function is included as well as the new penalizing term.

LA(x,∏;µ) = f (x)°
X

i2≤
∏i ci (x)+ µ

2

X

i2≤
c2

i (x) (4.17)

For the work in this thesis, the constraint function is divided into two separate functions, as de-

scribed in chapter 3, h1 from eq. (4.10) and h2 from eq. (4.12). There is only one constraint func-

tion to include in the objective function, so the constraint function c becomes as defined below in

eq. (4.18).

c = h1 +h2 = wpg1 +wpg2 °Qgmax (4.18)

This yields that the optimization problem with the augmented lagrangian method becomes max

LA(x,∏;µ). For this model the Augmented Lagrangian becomes eq. (4.19).

LA(x,∏;µ) = wpo1 +wpo2 +∏(h1 +h2)+ µ

2
(h1 +h2)2 (4.19)

The subproblems are no longer separable due to the last term. Stephen Boyd et. al.[11] proposes

to solve this using the Alternating Direction Method of multipliers (ADMM), where each of the
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subproblems are solved sequentially. In other words, x2 is fixed, then the decomposed system is

solved for x1. In the second subproblem, x1 is fixed and the subproblem is solved for x2 beore

finally updating the master problem. The method to solving this is explained further in chapter 5.

The algorithm for solving the dual decomposition with augmented lagrangian is illustrated below

in fig. 4.6. The lagrange multiplier is here updated with the penalty parameter and for each itera-

tion the penalty parameter µ with a scalar Ø.

Figure 4.6: The algorithm for the augmented lagrangian method. The penalty parameter is used
to update ∏ for each iteration. The subproblems are not entirely separable so optimal solution of

w§
pg1

and w§
pg2

are given as input for the other decomposition problem in the next iteration.
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Simulation cases

This chapter gives details to how the methods explained previously were implemented for the sim-

ulations. The simulations were performed in Matlab using CasADi v3.1.0. For more details into the

functions and applications see the CasADi user guide [36]. Some snippets from the Matlab codes

are presented in appendix appendix C.

5.1 Centralized NMPC

The model was written as explained in chapter 2 and for use in CasADi. Collocation was used to

make the state equations and the constraints into a NLP matrix, that can be solved using IPOPT.

The behavior of the system was predicted for 60 sample instants and then optimized. The optimal

control inputs u§
1 and u§

2 for the first sample instant were implemented to the plant simulator.

The simulator yields measurements of the model states, which were given as input for the next

optimization of the prediction horizon. This loop was repeated for a time-horizon, where the sim-

ulation result were the past measured behavior of the plant. The NMPC in this thesis has 60 time

steps, each representing 5 minutes of operating time. The simulation scheme of the NMPC is il-

lustrated below in fig. 5.1.

Figure 5.1: The simulation scheme of the NMPC in this thesis. The loop of optimizing the
prediction horizon and simulating the plant make up the closed-loop simulation of the NMPC.

The initial values dx0, z0, u0 were given as input for the optimizer, and the optimal control input
was used to simulate the plant. The simulation measurements were given as initial values for the

next optimization. This loop continuous for the given time horizon.

37
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The simulation scheme described above is the same for all the decomposed NMPCs, however, with

some modification. The cost function and structure of the initial conditions and bounds matrices

are different with the LD decomposition.

5.2 Steady statesimulations

The steady state optimization was simulate to check the results of the decomposed NMPC. The

converged values of the control input and the gas and oil production from each well should be to

the same values for a decomposed NMPC as found from the steady state optimization of the same

system.

5.3 Lagrange Dual Decomposition of the NMPC

The separated wells were modeled as explained in section 2.4. When building the decomposed

NLP matrix the largest difference was including the Lagrangian relaxed constraint in the cost func-

tion. With the decomposed simulations the updating and iterations to find the correct Lagrangian

multiplier ∏ was added. The algorithm for this loop to find the correct ∏ is shown in fig. 4.2. This

algorithm must be repeated for each optimization of the prediction horizon as shown in fig. 5.1,

iterating until reaching a tolerance=0.15 or the maximum iterations cap at 5 iterations. The initial

values of the Lagrange multiplier ∏ and the step length Æ were chosen for the first iteration. For

each prediction optimization, the initial ∏ was set to be the past value optimal value.

5.3.1 Testing the Decomposed NMPC

The centralized and the decomposed NMPC were simulated for two different constraints being

active, the maximum gas capacity and the available gas lift. This was to verify the decentralized

model with the centralized model for two different operating conditions. The two runs are pre-

sented in table 5.1. Note that when the gas lift available was the active constraint, ∏ was updated

using the gas lift and the gas lift constraint was added to the objective function.

Table 5.1: Overview of the runs performed for the decomposed and centralized NMPC. For run
BC.1 and BC.2 the active constraint were respectively the gas capacity and the available gas lift.

Run # Gas Lift capacity(QGLmax ) Gas production capcity(Qgmax )
BC.1 5 8
BC.2 3 8
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5.4 Line Search Method

The sufficient decrease condition in eq. (4.15) was calculated for each update of ∏. The algorithm

shown in fig. 4.5 was repeated as long as the condition was not satisfied. The step length Æ was

decreased with a parameter Ω for each iteration. For the practical simulation, the tolerance of the

condition was not set to be exactly zero but rather close to zero. The steady state values from the

prediction horizons were used to calculate the condition. For each time step implementation Æ

was set back to it’s initial value. This was done for Æ to be large enough to push ∏ to the optimum

for each optimization of the prediction horizon.

5.4.1 Tuning the Parameters c and Ω

Initially the values of c and Ω were guessed with some background in literature[21]. The updating

parameter Ω is defined to be on the interval [0,1] and c is said to be quite small(c = 10°4). The

tuning of the parameters were then done by trial and error. The different runs to tune the param-

eters are shown in table 5.2 For the initial tuning of the parameters, the updating of ∏ was set to

run until the norm of the change in the ∏-vector was lower than the tolerance=0.15. In addition a

maximum for the update was set to 10 iterations. Three runs were performed without this iteration

cap, where two had a new measuring method of the tolerance. For run LS.8 and LS.9 the tolerance

was only calculated for change in ∏ at the first sample instant, tol=∏(1)k+1 °∏(1)k .

Table 5.2: Overview of runs performed to tune parameters in line search method. *The tolerance
(change in ∏) was calculated using only the first sample instant.

Run # Ω c Tolerance Iteration
Cap

LS.1 0.99 0.1 0.15 10
LS.2 0.99 0.001 0.15 10
LS.3 0.99 0.5 0.15 10
LS.4 0.9 0.1 0.15 10
LS.5 0.7 0.1 0.15 10
LS.6 0.5 0.1 0.15 10
LS.7 0.7 0.1 0.15 –
LS.8* 0.7 0.1 0.15 –
LS.9* 0.7 0.1 0.001 –
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5.5 Augmented Lagrangian

The augmented Lagrangian was implemented by adding an augmented Lagrangian part to the cost

function and slightly changing the updating method for each optimization iteration. The new cost

function for this method is given in eq. (4.19). This objective function is not separable with h1 and

h2. Because of this it was necessary to make a guess of h2 for the optimization of well 1, this guess

was set to half of the maximum gas production capacity (h20 =4). For the optimization of well 2 the

optimal value of h§
1 from subproblem 1 was given as an input. For the next iterations, the previous

optimal solutions h§
2 and h§

1 were given as input for respectively optimization of well 1 and well 2.

For the augmented lagrangian method, the step length for updating the Lagrange multiplier ∏ is

the penalty parameter µ. For each update of ∏, the penalty parameter is also updating by µ= Øµ,

where Ø∏ 1.

5.5.1 Tuning the Parameters µ and Ø

The tuning of the parameters µ and Ø was performed by a trial and error approach. The different

runs performed to test the parameters are presented below in table 5.3.

Table 5.3: Overview of runs performed to tune parameters in augmented lagrangian method.

Run # µ Ø Tolerance Iteration Cap
Aug.1 0.5 1 0.15 5
Aug.2 1 1 0.15 5
Aug.3 2 1 0.15 5
Aug.4 2 1.01 0.15 5
Aug.5 2 1.03 0.15 5
Aug.6 2 1.05 0.15 5
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Results and Discussion

In this thesis the objective has been to investigate the possibility of a dynamic decomposition for

a gas lifted oil well network. The two well system model is described in chapter 2, and the method

and theory behind the lagrangian dual decomposition method used for this work is explained in

chapter 4. The different simulations performed are outlined in chapter 5, describing the methods

and numerical data for each run included in this work.

In this chapter the results from the LD decomposition are presented and discussed. The decom-

posed NMPC is first numerically validated up against the centralized NMPC for two different ac-

tive constraints, before the deviation from the decentralized control structure is discussed in de-

tail. When presenting the results, only the most central data is presented in tables and plots as a

background for discussion. Two numerical methods were applied for improving the results of the

decomposition, line search method and augmented lagrangian decomposition. The results of the

best run for each numerical method are first presented and the run is compared to the base case

decomposition and the centralized NMPC. Then the results from all runs tuning the parameters

in the numerical methods are presented and the reason for choosing the best run is explained.

Finally, the two numerical methods are compared and discussed up against each other.

When interpreting the results, two major parts of the simulation results that are analyzed. The first

one is the past time horizon simulations, the simulated behavior of the system. The second is the

optimized prediction horizon, the part of the NMPC that attempts to predict future behavior of

the system. This predicted future is optimizes the measured variables by adjusting the prediction

horizon of the controlled variables. For this whole chapter it is important to understand the the-

ory behind NMPC described chapter 3 and how this theory has been applied to the model in this

system.

6.1 The Lagrange Dual Decomposition Simulations

When determining the success of the decomposed control system, it needs to be compared to a

centralized control system. The aim of using the method is to obtain the same result, just with a

more decentralized structure with subproblems that are coupled by a master control. Therefore,

41
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the results of the decomposed NMPC are compared to a centralized NMPC and a steady-state op-

timization for the same two well system. The difficult part of the decomposed simulations were

expected to be the initial dynamics, so this is studied in detail. The prediction horizon that is op-

timized for each time step is also studied for each decomposed run. For each prediction horizon

the lagrange multiplier is updated until reaching convergence, changing less than a certain tol-

erance for each update. This iteration of the prediction horizon with ∏ is only performed for the

decomposed solutions.

The base case decomposition simulation is explained in chapter 5 and the results are shown below

in fig. 6.1. The total gas production rate and gas rate for each well are plotted in the top left plot,

and the oil production rate for the same combination are shown in the top right plot. The gas

lift inlet to each well is shown in the bottom left plot and the gas-oil ratio (GOR) for each well are

shown on the bottom right. For all the plots the blue lines represents well 1, while the red lines

represents well 2. The black line represent the total of both wells. The simulation results will be

further investigated and discussed below.

Figure 6.1: The general simulation results for the base case of the decomposed NMPC. The gas
rate and oil rate for each well, the gas lift injection rate for both wells and the gas-oil ratio(GOR)
are plotted for each time step simulated. The blue and red lines refer to well 1 and well 2, while

the black lines are the total of both wells.

An important thing to note is that the gas production rate of the combined wells has reached max-

imum capacity, making the common constraint active and the solution optimal. From the plots in

fig. 6.1, it is observed that the simulation oscillates before finding it’s stable steady state value. The

oscillation is caused by the dynamics in the start up of the simulation, this is one of the challenges
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mentioned in the steady state decomposition paper[17] and discussed in section 4.1. This initial

dynamics part is of interest when investigating the decomposed NMPC further. But first the steady

state values of the decomposed NMPC needs to be validated to assure that the simulation yields

the same optimal solution as the centralized NMPC.

6.1.1 Validating with Gas Production Rate Capacity as Active Constraint

(Run BS.1)

When validating the decomposition method, the first confirmation is if the decomposed NMPC

converges to the same values as the equivalent centralized NMPC. The values found for the gas lift

rate and the production rates of gas and oil for both wells are checked. As shown below in table 6.1,

the results from the base case decomposed NMPC coincide with the results for a centralized NMPC

and the steady state optimization. From the table it can be concluded that the decomposed NMPC

simulates the same gas lift allocation as the centralized solution, and therefore decomposition

might be possible for the two-well gas lifted system modeled in this work.

Table 6.1: The converged simulation values for the base case decomposed NMPC, the centralized
NMPC and the steady state optimization of the model used in this work. Here the gas capacity

constraint is active.

wg l1 wg l2 wpg1 wpg2 wpo1 wpo2

Decomposed NMPC 2.595 1.398 4.145 3.855 15.50 16.38
Centralized NMPC 2.595 1.398 4.145 3.855 15.50 16.38
Steady State Optimization 2.595 1.398 4.145 3.855 15.50 16.38

From this it can be confirmed that the dynamic decomposition converges to the same result as the

global controller. However, the interesting part of the decomposed NMPC is the initial dynamics

and the ∏-prediction horizon coupling the constraints. The fact that the steady state decomposi-

tion can be performed for this type of system has been confirmed before in previous work[16][17].

The dynamic part is, as expected, the difficult part and to illustrate this the decomposed case is

plotted against the centralized case below.

The decomposed NMPC is plotted against the simulation of the centralized NMPC in fig. 6.2. The

simulations are plotted over the time-horizon, consisting of past measured behavior in negative

values from -300 to 0, and the predicted optimized behavior 300 minutes into the future. The gas

lift injection rate and the gas production rate from the wells are both plotted for this time horizon.

For the decomposed NMPC the lines are solid, where well 1 is blue, well 2 is red and the total

gas rate is black. For the centralized NMPC the lines are dashed and the orange represents well

1, the light blue represents well 2 and the gray dashed line is the total gas rate. For the predicted
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future values the colors are the same but the lines overlap so much that there is very little visible

differences.

Figure 6.2: The simulation of the base case of the decomposed NMPC plotted against the
centralized NMPC for comparison. The past simulation results are plotted from time -300

minutes to the present value of the system. The prediction horizons are plotted 300 minutes into
the future. The solid lines represent the decomposed NMPC, where the blue, red and black are
respectively well 1, well 2 and both wells combined. The dashed lines represent the centralized

NMPC, where the orange, light blue and gray are respectively well 1, well 2 and both wells
combined.

Figure 6.2 is included to illustrate how much the two control systems overlap. After the first 150

minutes, there is almost no visible deviation and that coincides with the converged numerical

values being the same, as shown in table 6.1. However, it is also clear that the trajectory for the

base case decomposed NMPC is not overlapping with the centralized NMPC for the initial part of

the simulation. This is due to the fact that the gas capacity constraints is not active during the

initial time steps. This will be further discussed in section 6.1.3.

6.1.2 Validating with Gas Lift Available as Active Constraint (Run BS.2)

The same base case decomposition can be validated a second way, by changing what the active

constraint is. This was done by changing the maximum available gas lift value, so that this con-

straint is reached before the constraint on gas rate capacity. This gives another assurance that the

decomposition was performed correctly and that it produces the same optimal value as the cen-

tralized NMPC would do. In this case, the input constraints are always active and therefore the

trajectory should be the same.
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The values are presented in table 6.2, and the comparison of the simulation values show that the

decomposed NMPC has converged to the same result as the two other methods. The steady state

optimization and the centralized NMPC simulations are performed with the gas lift as active con-

straint. There are some insignificant differences, but the conclusion is that the decomposed NMPC

can replace the centralized NMPC and produce the same results.

Table 6.2: The converged simulation values for the base case decomposed NMPC, the centralized
NMPC and the steady state optimization of the model used in this work. Here the available gas lift

constraint is active.

wg l1 wg l2 wpg1 wpg2 wpo1 wpo2

Decomposed NMPC 2.087 0.913 3.623 3.348 15.35 16.23
Centralized NMPC 2.088 0.912 3.623 3.348 15.35 16.23
Steady State Optimization 2.087 0.913 3.623 3.348 15.35 16.23

To compare all of the simulation values, the decomposed NMPC is plotted against the simulation

of the centralized NMPC in fig. 6.3. For these two solutions the gas lift is both the constraint and

the manipulated variable(MV), so the gas production rate is not included. The only simulation

included in this plot is the gas lift injection rate to each well and the total gas lift allocated. The

colors are the same as previously used, where blue, red and black represent the simulations of well

1, well 2 and total gas lift for the decomposed NMPC. The dashed lines represent the centralized

NMPC, where orange is well 1, light blue is well 2 and gray is the total gas lift.

Figure 6.3: The decomposed NMPC where the gas lift available is the active constraint is plotted
with the centralized NMPC. The past time horizon, from -300 to 0 minutes, and the predicted

future horizon, from the present 0 minutes until 300 minutes, for the gas lift for each well is
presented. The solid lines represent the decomposed NMPC, where the blue, red and black are
respectively well 1, well 2 and both wells combined. The dashed lines represent the centralized

NMPC, where the orange, light blue and gray are respectively well 1, well 2 and both wells
combined.

The simulations have an almost perfect overlap, as expected the initial part of the decomposed

simulation does not deviate from the centralized simulation. It is not necessary to study the ini-

tial trajectory for this simulation, as they overlap. However, it is interesting to study the prediction
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horizons over different time steps to see what is different for this active constraint versus the pre-

vious gas rate active constraint. This is done below.

Because the overlap is so good with available gas lift as the active constraint, the dynamic decom-

position might be a very suitable solution for some optimal control problems. For example, an

optimization problem where there is a limitation in gas lift capacity.

6.1.3 The Base Case Decomposition Results

After having validated the converged value, the results of the base case decomposition are pre-

sented and discussed further. The most central numerical results are presented in table 6.3. As

seen above, the total gas production rate is observed to oscillates around the constraint value, be-

fore stabilizing completely at the constraint value around N=27. For each oscillation the constraint

violation decreases significantly, the second violation is only a third of the first violation value. The

maximum constraint violation is given in the table below.

The other values given in table 6.3 refer to the optimized prediction horizon and it’s properties for

the last time step. For each time step the prediction horizon was optimized by updating ∏. The

base case ∏ never reaches the set tolerance, therefore the updating of ∏ was capped for each time

step at five iterations. The total number of iterations are given as a reference in the table, kept in

mind that this was capped without convergence of the ∏ prediction horizon.

Table 6.3: The central results from the base case decomposed NMPC. The maximum constraint
violations and the oscillation values of the last prediction horizon are presented, as well as the

total iterations for updating ∏.

Constraint
violations

¢max∏ ¢mi n∏ ¢maxGL Total
iterations

0.295 16 5 0.09 300

The difference in ∏-values over the prediction horizon are given as the maximum (¢max∏) and

minimum (¢mi n∏) difference for one oscillation. The largest oscillation over the gas lift prediction

horizon (¢maxGL) is also given. Even though the ∏ and gas lift rate prediction horizons have not

converged, the gas rate prediction for both wells has converged to optimal solution.

For steady state optimization, the lagrange multiplier for the coupling constraint is a scalar, where

as for dynamic decomposition the lagrange multiplier ∏(k) is a vector over the prediction horizon.

For the prediction horizon of the MVs to converge, ∏ needs to converge. As long as the∏ prediction

horizon oscillates the control system has not reached a stable solution.

The prediction horizon attempts to predict the trajectory of the control input needed to reach

an optimal solution. For each time step, the predicted future is optimized for a certain horizon.



6.1. The Lagrange Dual Decomposition Simulations 47

For the decomposed NMPC the optimization of the prediction horizon is done by updating ∏.

The update of ∏ and the prediction horizon is explained in more detail in chapter 4, but briefly

explained: the ∏ for each iteration is updated with the error between the predicted values and the

optimal solution. The prediction horizon should converge to a stable solution when optimum is

reached in the simulation, however, for the base case this does not happen.

To further illustrate the oscillations, the last optimized prediction horizon is shown in fig. 6.4. The

predicted behavior of the gas lift injection rate and the gas rate from each well and ∏ are presented

for N sample instant into the future. The prediction horizon in fig. 6.4 clearly shows that ∏ oscil-

lates.

Figure 6.4: The last optimized prediction horizon for the base case decomposition. The
prediction horizon of gas lift, gas rate and ∏ are plotted over the sample instants N.

The fact that ∏ does not converge to approximately the same value over the prediction horizon

shows that the control system is not fully stable. The line search method, which decreases the

step length as ∏ gets closer to the optimal solution, might help improve this oscillation and help ∏

converge to a more stable value. This will be the focus when tuning the line search.

At the end of each prediction horizon the values have a sudden increase. This can be seen for all

prediction horizons in this work and the cause is the same. This increase could easily be removed

by adding a terminal constraint to the simulation constraints, setting the last value to be the con-

verged value of the prediction horizon. This is a normal constraint to add in a predictive controller

to achieve full closed-loop stability, however, in this work, close-loop stability is ensured by using

a long prediction horizon[37].
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6.1.4 The Initial Dynamics

As mentioned above, the difficult part of a dynamic decomposition is the initial start-up of the

simulations. In this section the initial dynamics of the base case decomposed NMPC is compared

to of the centralized NMPC. Since the constraint is on the total gas rate, this is the only part focused

on when comparing the initial trajectory of the dynamic decomposition. The MV is the gas lift

rate, therefore the total gas lift used is not included in the comparison. The plotted values of the

initial dynamics is shown in fig. 6.5, on the left side in fig. 6.5a the black trajectory represents the

base case decomposition, while the gray line represents the centralized NMPC. The right fig. 6.5b

represent the gas lift rate trajectories, where the blue and red are well 1 and well 2 in the base case

decomposed NMPC, and the orange and light blue are well 1 and well 2 for the centralized NMPC.

(a) The initial dynamics simulation of the gas
production rate for the first time steps.

(b) The initial dynamics simulation of the gas lift
input to each well for the first time steps.

Figure 6.5: The first part of the simulations up-close, to illustrate the deviation between the
simulation trajectories of the decomposed NMPC and the centralized NMPC. The solid lines

represent the decomposed NMPC, where the blue, red and black are respectively well 1, well 2
and both wells combined. The dashed lines represent the centralized NMPC, where the orange,

light blue and gray are respectively well 1, well 2 and both wells combined.

It can be observed that the decomposed NMPC oscillates around the trend of the centralized so-

lution follows. This shows that the simulation is just unstable and not incorrect. The trajectory

for the decomposed solution violates the constraint with a peak at time step four, with a maxi-

mum value of 0.295 kg/s above the total gas rate constraint. For applications where the constraints

are soft, this is no problem. However, if the constraint coupling the subproblems is a hard con-

straint this might be an issue for the dynamic decomposition. In the simulations with the numer-

ical methods the constraint violations were sought decreased. However, there will always be an
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evaluation of the cost of constraint violations against the saved cost of the decomposed control

structure.

When comparing the initial dynamics to the predicted ∏ there is an obvious correlation. For the

first four time-step, the prediction horizon of∏ is zero for the first sample instant, meaning that the

∏ is not able to "push" for the optimal solution and the constraint is not coupling the decomposed

subproblems. As ∏ is giving the subproblems a common master constraint, it is natural that the

simulation solution is not pushed towards the active constraint when ∏ is equal to zero. It is clear

that ∏ pushes the convergence of the simulations and that the improvement of the ∏-prediction

could improve the dynamics of the decomposed NMPC. This is illustrated by the optimized pre-

diction horizon presented and discussed for different time steps below.

Therefore, the conclusion is that, when the coupling constraint is not active during a short period,

the lagrange multiplier is zero and is unable to coordinate the subproblems during these time

steps.

6.1.5 Optimization of the Prediction Horizon for Gas Capacity as Active

Constraint

When looking at the prediction horizon, the important things to notice are the first sample instant

of the horizon and the general trend. When the simulations has reached it’s optimum and is stable,

the prediction horizon should be converged to the steady state value and not oscillate.

The left fig. 6.6a pictures the first optimized prediction horizon after updating ∏ 5 times. The value

of the lagrange multiplier does not converge, and for the first few sample instants the predicted

values of ∏ are equal to zero. When ∏ is zero the common constraint is not active, therefore not

pushing the gas rate to reach the active constraint. The lack of push from the lagrange multiplier

can also be seen in the prediction horizon, as the total gas rate is less than the constraint value for

the first few sample instants.

The first predicted value of ∏ is zero for the first three time optimized prediction horizons, or in

other word first three time steps. At the fourth prediction horizon, included on the right in fig. 6.6b,

the ∏ prediction is non-zero for all sample instants. At this point, the decomposed NMPC starts

to push the simulation against the active constraint. For the fourth optimization of the prediction

horizon ∏ is active and so the predicted horizon of the total gas rate is much closer to the optimal

value.



50 Chapter 6. Results and Discussion

(a) The optimized prediction horizon for the first
time step in the base case decomposed NMPC.

(b) The optimized prediction horizon for the fourth
time step in the base case decomposed NMPC.

Figure 6.6: The prediction horizons for the base case of gas lift rate in each well, the gas
production rate for each well and the collective gas rate, and also the optimized lagrange
multiplier after 5 updates are plotted over the horizon of sample instants N. The red lines

represent well 1 and the blue lines represent well 2.

As mentioned, the fact that the constraint is violated during the initial period of the simulation is

due the coupling constraint not being active for the first few time steps. And the oscillations in

the optimized value of the ∏ can be connected to the oscillations in the simulation of the total gas

rate. The observation is that when the coupling constraints are not active, the master problem in

unable to co-ordinate the sub problems.

Although the lagrange multiplier has become active after the fourth time step, the value of ∏ still

doesn’t converge. This is an issue for the stabilization of the solution. The difference between the

∏ values vary a lot and does not stabilize, the oscillation values are shown in table 6.3. The gas lift

also oscillates with a large difference and does not converge to one value, although the produced

gas for both wells wpg1 and wpg2 does converge to the correct value.

6.1.6 Optimization of the Prediction Horizon for Available Gas Lift as

Active Constraint

Figure 6.7 shows a comparison of the first and the last prediction horizon for the decomposed

NMPC when the available gas lift is the active constraint. Here it can be observed in fig. 6.7a that

∏ is active and at a value close to optimum at the last prediction in fig. 6.7b. The fact that ∏ pushes

the solution towards the constraint from the beginning and does not oscillate is consistent with
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the results from the simulation. The total gas lift rate of both wells combined is also close to it’s

optimum solutions for the first optimized prediction horizon, and the first gas lift rate prediction

is the same as the trajectory in the simulations.

(a) The optimized prediction horizon for the first
time step in the decomposed NMPC.

(b) The optimized prediction horizon for the last time
step in the decomposed NMPC.

Figure 6.7: The optimized prediction horizon for the first and last time steps in the simulation of
the decomposed NMPC with the gas lift available as the active constraint. The gas lift rates, the
gas production rates and the coupling variable ∏ are optimized for a future prediction horizon.

The red lines represent well 1 and the blue lines represent well 2.

6.2 Implementing the Line Search Method

The line search method is described in chapter 4, in short the method finds a suitable step length

for each iteration as the solution gets closer to the optimum. Adding the line search method to the

base case decomposed NMPC has two advantages. The ∏-prediction horizon is able to converge

to a certain tolerance, and therefore there is no need to take a short-cut in capping the iterations of

updating ∏. The line search method also makes it possible to iterate closer to the optimal solution

for each time step, in effect removing the oscillations seen for the ∏-horizon in the base case. For

the right tuning, the iterations needed to obtain a converged ∏ can be decreased. The saved com-

putational time to obtain a good solution might be economical for some systems. However, the

constraint violations increase as the iterations needed decreases. When discussing computational

time in this work, it is measured in the amount of total iterations.

In the base case of the decomposed NMPC, the ∏ is each time updated with the same step length,

Æ = 10. For the line search decomposed NMPC the sufficient decrease method combined with
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the backtracking method was used to update the step length for each update of ∏. The runs per-

formed for the line search methods are presented in table 5.2 and described in chapter 5. The

results from the best run using the line search method is first presented and compared to the cen-

tralized NMPC, then compared to the base case decomposition. After the results from all the runs

are presented in three parts, the two first discusses the tuning of the parameters in the line search

method. The last part presents runs performed without an iteration cap and with a different mea-

surement of tolerances for updating of the ∏-prediction.

6.2.1 Comparing the Line Search Decomposed NMPC with the Central-

ized NMPC

The best tuned line search method is found to be run LS.8 and it is compared to the centralized

NMPC below. The interesting part to study is the initial dynamics of both NMPCs, shown together

in fig. 6.8. As the objective of the line search is to decrease the needed iterations and converge the

∏ prediction horizon, a successful result is not measured in the constraint violations. However,

this merged plot is included to illustrate how much more the decomposed NMPC violates the con-

straint when the line search has been used. The colors and line types used for the comparison are

the same as used above, where the decomposed NMPC with the best line search run is represented

by the solid lines and the centralized NMPC is represented with the dot-dashed lines.

(a) Total gas rates compared for Line Search
method and the centralized NMPC.

(b) Gas lift rates compared for Line Search
method and the centralized NMPC.

Figure 6.8: The first part of the simulations up-close, to illustrate the deviation between the
simulation trajectories of the line search method and the centralized NMPC. The solid lines

represent the best line search run LS.8, where the black is the total gas rate, the blue and the red
represents the gas lift rate in well 1 and well 2. The dot-dashed lines represent the centralized

NMPC, where the gray is the total gas rate, the orange and the light blue represents the gas lift rate
in well 1 and well 2.
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For both the total gas rate and the gas lift inlet rate, the trajectories of the decomposed NMPC

with line search is still different from that of the centralized solution. It can be concluded that the

deviation from the centralized NMPC are larger with the line search method. It is therefore more

interesting to look at the improvements of line search, by comparing the best run of the line search

method to the base case decomposed NMPC.

The converged values for including the line search method is not presented in a table, however,

the values for the line search decomposed NMPC were confirmed with the centralized NMPC and

the steady state optimization values presented in table 6.1.

6.2.2 Comparing the Line Search Decomposed NMPC with Base Case

Decomposition

The central results to compare for the line search method are presented below in table 6.4. As

well as the total iterations and the convergence of ∏, the constraint violations are also compared.

One of the biggest issues with the base case decomposed NMPC is that the prediction horizon of

∏ oscillates, not able to reach the tolerance criteria. With the line search method this is not the

case. ∏ converges and the method is also able to decrease the total needed iterations to get to that

convergence. When using the line search method to save computational time, the cost is in a larger

constraint violation.

Table 6.4: The central results from using the line search method compared to the base case
decomposition. The maximum constraint violations and the oscillations of the last prediction

horizons are presented, as well as the total iterations for updating ∏.

Sim Constraint
violations

¢max∏ ¢maxGL Total
iterations

Run LS.8 0.590 0 0.01 158
Base case 0.295 16 0.09 300

To illustrate the differences in convergence, the optimized prediction horizons for the first time

step are included in fig. 6.9. On the left in fig. 6.9a, the first prediction horizon for the base case

decomposed NMPC is included. On the right in fig. 6.9b, the first prediction of the best line search

run LS.8 is included. The obvious difference between the two prediction horizons is that the one

oscillation in the base case is not present for the line search method. Another difference is the

prediction of the gas rates for the line search, the combined produced gas rate is a little bit above

the constraint value, marked with a dashed line. This does not effect the converged simulation

result but might be a sign of why the constraint violation increases for the line search method.
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(a) The optimized prediction horizon for the first
time step in the base case decomposed NMPC.

(b) The optimized prediction horizon for the first
time step in the line search decomposed NMPC.

Figure 6.9: The first optimized prediction horizon of the decomposed NMPC with and without
the line search method. The red lines represent well 1 and the blue lines represent well 2. The

black lines represent the total gas rate.

The last optimized prediction horizon is more interesting. Here it can be seen that the oscillations

in the lagrange multiplier have diminished when using the line search method. The oscillations in

the gas lift rate prediction are also almost gone. The difference is a key advantage to including the

line search method in the decomposition.

(a) The optimized prediction horizon for the last
time step in the base case decomposed NMPC.

(b) The optimized prediction horizon for the first
time step in the line search decomposed NMPC.

Figure 6.10: The last optimized prediction horizon of the decomposed NMPC with and without
the line search method. The red lines represent well 1 and the blue lines represent well 2. The

black lines represent the total gas rate.
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This lack of oscillation comes from the tuning of the parameter c for the line search method. When

adjusting the line search method this parameter is first tuned, and then the optimal value found is

kept constant while the parameter Ω is tuned. The tuning of line search that affects the number of

iterations needed is the tuning of the updating parameter Ω.

The line search lessens the iterations needed and the oscillations in∏ are reduced, but at the cost of

a larger constraint violation. The advantages and disadvantages are discussed more below, when

presenting the results of the parameter tuning.

6.2.3 Tuning the Parameter c

The parameter c is a part of the inequality that must be fulfilled in the sufficient decrease method

presented in chapter 4. The criteria for ending the update of the step lengthÆ is very dependent on

the value of this parameter. The different values of c for the tuning runs are presented in table 5.2

in chapter 5. When tuning the parameter c the prediction horizon, in particular the oscillations of

∏, is the part of the result presented and discussed. The constraint violations are presented numer-

ically and the number of iterations and change in the step length Æ is presented in the appendix D

for more details.

The most important results from the tuning of the parameter are investigated and summed up

in table 6.5. Three different runs are performed where the parameter c is varied, while the other

parameter Ω is kept constant. The oscillations of the lagrange multiplier is presented in both the

¢max∏, the maximum change in the∏-values over one of the oscillations, and¢mi n∏ the minimum

change of ∏ over an oscillation. The maximum change in the prediction horizon of the MVs, gas

lift rates for each wells, is also presented for the three different runs. The constraint violations for

each run is also included, as this can be the trade off for converging ∏.

Table 6.5: The most central results for the runs performed for tuning the parameter c in the
decomposed NMPC with the line search method. The parameter c is varied with the values of

0.001, 0.1 and 0.5 for respectively LS.1, LS.2 and LS.3. The other parameter Ω is kept constant at
0.99.

Run # ¢max∏ ¢mi n∏ ¢maxGL Constraint
violations

LS.1 31 5 0.16 0.21
LS.2 10 0(converged) 0.02 0.36
LS.3 27 10 0.13 0.50

From the results presented in table 6.5 it is clear that run LS.2, shown in fig. 6.11b, has the best

value for the parameter, c=0.1. Run LS.2 is the only of these three simulations that has a lagrange
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multiplier and MVs that converges for the last optimized prediction horizon. Although both run

LS.1 and run LS.3 don’t converge for ∏, the constraint violation are very different. From the results

it seems that the constraint violations increase with the increase of c. This can be connected to

the small step length value that Æ iterates to, when the parameter c has a large value. When Æ

decreases fast, the update of ∏ for each iterations is smaller and therefore slower. When ∏ is slower

in getting to the optimal value, the constraint violation becomes larger. The updated value of Æ for

each time step is shown in appendix D, and are consistent with the trend explained above.

To get a better idea of the difference in ∏ prediction horizons of each run, they are included below

in fig. 6.11. The last optimized prediction horizons of ∏ is presented for each of the three runs. The

prediction horizon of the gas lift rate and the gas production rate are not included, seeing that ∏ is

the best representation for the convergence. From these plots, it is clear that the differences when

tuning the parameter c are large. The oscillations are large for both in run LS.1 and run LS.3, but

for the second run the horizon of ∏ has converged.

(a) The optimized prediction horizon of ∏ for the last time step
of run LS.1, where c=0.001 and Ω = 0.99.

(b) The optimized prediction horizon of ∏ for the last time step
of run LS.2, where c=0.1 and Ω = 0.99.

(c) The optimized prediction horizon of ∏ for the last time step
of run LS.3, where c=0.5 and Ω = 0.99.

Figure 6.11: The comparison of the ∏ prediction horizon over sample instants N for the last time
step. The runs are performed for tuning the parameter c.
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Runs were also performed for the same values of c but with a smaller value ofΩ = 0.9. These showed

no difference in performance from the results presented above and are therefore not included in

this work. It does however, support the result that c = 0.1 is the correct value of the parameter.

From this it can be concluded that with the right tuning, the oscillations observed for the lagrange

multiplier in the prediction horizon can be removed by using the line search method. The method

adjusts the time step as the solution nears the optimum, making it easier to reach the optimal

solution. However, as the correct value of the parameter c is in between two values, it can be

assumed that the parameter can be hard to tune correctly. For a system with hard constraints

this is not a good method, as also the constraint violation increases compared to the base case

decomposition.

Since only run LS.2 converges, the number of iterations are not discussed. Run LS.1 and run LS.3

always iterate until reaching the cap set to 10 iterations. Therefore the total number of iterations

will only be discussed for the next runs in the line search method. When tuning the updating pa-

rameter Ω, the main measure of good tuning is the total number of iterations needed for reaching

the optimal solution. The simulation trajectory is also not focused on, because the simulations

with the line search method are similar to the base case decomposition and each other.

6.2.4 Tuning the Parameter Ω

The parameter Ω is the updating parameter of the step length Æ, explained in chapter 4. The value

of the parameter determines how fast the step length decreases when trying to satisfy the sufficient

decrease method. The larger Ω is, the more aggressive is the line search method. When tuning the

updating parameter Ω, the interesting result to look at is the iterations used for each optimization

of the prediction horizon over the entire simulation. However, there are disadvantages to tuning

the method too aggressively, like larger constraint violations.

The runs where the parameter c is kept constant and the Ω is varied are presented in table 5.2

in chapter 5. The parameter c is set to 0.1, the optimal value determined above. As mentioned

previously, Ω affects the number of iterations needed for ∏ to converge. When presenting the most

important results, this is the main focus. The rest of the results are included in appendix D for

more details.

The most central results are summed up in table 6.6, showing the constraint violations for each

run, as well as the number of iterations for the last few time steps. The number of times steps it

takes before the iterations to not reach the cap at 10 iterations and the total number of iterations

for the whole are also included. The three last values mentioned are included to compare iterations

of the different runs.
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Table 6.6: The most central results for the runs performed for tuning the parameter Ω in the
decomposed NMPC with the line search method. The parameter Ω is varied with the values of 0.9,
0.7 and 0.5 for respectively run LS.4, LS.5 and LS.6. The other parameter c is kept constant at 0.1.

Run # Constraint
violations

iterations
convergence

iterations<10
sample time N

total iterations

LS.4 0.408 2 24 331
LS.5 0.453 3 11 300
LS.6 0.513 2 Never reaches

10 (max 7)
216

As seen from the table, as the parameter Ω decreases the constraint violation increases, while the

iterations are respectively decreasing. Therefore this is a method of using fewer iterations to obtain

the same results, at a cost of a larger constraint violation. The threshold for when the cost of vio-

lating the constraint is too large depends on the constraint and the consequences of violating that

constraint. For soft constraints, the time saved using fewer iterations to get equally good control

might be profitable. As mentioned above, a smaller step length will make the ∏-prediction horizon

take longer to reach optimum. Therefore the constraint violation keeps becoming larger as the

updating parameter decreases. However, once the ∏ is close to optimum, the line search method

makes it possible to converge completely.

From the results, run LS.6 is the least time consuming run with 84 fewer iterations or more. The

small increase in the constraint violation is a good trade off for the saved cost in computational

time. As the ∏-prediction in the base case decomposition does not converge, the only other suit-

able run to compare run LS.6 with is run LS.2. Run LS.2 converges to the optimal value with a total

of 360 iteration, and with a constraint violation that is 0.25 kg/s smaller. The cost of decreasing the

iterations will always be a trade off against the accuracy of the simulation.

When discussing the iteration convergence and the sample time where the iterations no longer

reach the cap of 10 iterations, it is easier to do so with a graphical presentation given in fig. 6.12.

There is a clear trend that at one point the iterations starts decreasing at an almost steady pace,

until it settles to a constant value of iterations needed. This is because of the warm start used for

the ∏ optimization, meaning that the previous optimized value of the ∏-vector is the starting point

for the optimization for the next time step. Therefore when ∏ converges to an optimal value, over

time fewer and fewer iterations are needed to find the new optimized value.
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(a) The number of iterations in run 4 (Ω=0.9) needed for each
optimization on the time horizon.

(b) The number of iterations in run 5 (Ω=0.7) needed for each
optimization on the time horizon.

(c) The number of iterations in run 6 (Ω=0.5) needed for each
optimization on the time horizon.

Figure 6.12: The overview of how many iterations that were needed for ∏ to converge for each
time step. At each time step the optimization of the prediction horizon iterates until the

convergence of ∏ reaches the tolerance=0.15.

All of the runs seem to stabilize at two or three iterations per time step for the last part of the

simulations. The difference is in how long it takes the iterations to start to decrease. The first

run reaches the cap of 10 iterations for almost half of the simulation, while the iterations of the

second run starts to decrease after only a sixth of the simulation’s time steps. For the last run,

the iterations never reach the cap, leading to this run having much fewer total iterations. It has a

maximum iteration per time step of only 7 iterations.

Since this work does not entail a hard constraint, and since constraints on capacity usually uses

some safety off-push from the real constraint, the saved cost with fewer iterations is desirable. For

the fewest iterations, run LS.6 and Ω = 0.5 would be the best choice.



60 Chapter 6. Results and Discussion

6.2.5 Line Search method Without Maximum Iterations

After tuning the two parameters, it is of interest to investigate how removing the cap on the max-

imum number of iterations will affect the simulation. The three runs discussed below were per-

formed without a cap on the maximum number of iterations and with two different methods of

measuring the tolerance. The first run has the same parameters as run LS.5 but without iteration

cap, this is because run LS.6 already does not reach the cap. The two last runs have a different

way of measuring the tolerance, change in ∏ for each update, by only looking at the change in ∏

at the first sample instant of the prediction horizon. As the new tolerance measurement makes it

possible to reach a smaller tolerance, the last run LS.9 has a different tolerance criteria. The runs

are described in more detail in chapter 5 and the values of the runs are shown in table 5.2.

For these runs, again the interesting results are the iterations and the constraint violations. In

table 6.7 the maximum iterations per optimization of prediction horizon and the total number of

iterations for each run are presented, along with the constraint violations and the convergence

value of the step length Æ.

Table 6.7: Overview of runs performed without maximum iterations in line search method. For
run LS.8 and LS.9 the tolerance was calculated using only the first sample instant.

Run # Constraint
violations

Æ convergence max iterations Total #
iterations

LS.7 0.468 3.43 11 303
LS.8 0.590 4.9 9 158
LS.9 0.549 4.9 23 363

As run LS.7 is the same as run LS.5 without the iteration cap, the first comparison should be made

between these two. When removing the iteration cap the total iteration increases with three itera-

tions, while the constraint violation also increases. This is not a good trade off, and might point to

it not being efficient for the solution to iterate a lot in the early stage of the simulations. It might be

wiser to skip some iterations when the first few ∏s of the prediction horizon are zero and wait with

the accurate line search approach for later time steps. This can be obtained by only measuring the

tolerance for the first sample instant of ∏ on the prediction horizon. If the first sample instant of ∏

has stopped updating, the iteration loop will be stopped even though the rest of the horizon might

still be changing.

To look at the effect of this new tolerance measurement, run LS.7 and run LS.8 are compared.

It is observed that the number of iterations is almost cut in half, while the constraint violations

increases a lot. The trade off is fewer iterations against a larger constraint violation, but in this case

it seems economical. The difference in constraint violation from run LS.8 to run LS.9 is a decrease.

Then again, the total amount of iterations increase because an even more precise convergence is
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reached. The added accuracy in run LS.9 does not pay off as much in constraint violations as it

loses in iteration efficiency.

As seen in table 6.7, there is just a small difference in the maximum iterations for one optimization

of the prediction horizon for run LS.7 and LS.8. However, run LS.8 has a lot more peaks than run

LS.7, which can be seen in fig. 6.13. Since the tolerance is lowered significantly for run LS.9, there

is also respectively more iterations need to find a more exact solution, this is shown in the large

number of peaks and total amount of iterations need.

(a) Iterations needed for each time step in run LS.7.

(b) Iterations needed for each time step in run LS.8.

(c) Iterations needed for each time step in run LS.9.

Figure 6.13: The development of the iterations needed to reach convergence of ∏ for each time
step in the simulation.

The same oscillation in number of iterations are seen for both run LS.8 in fig. D.6b and run LS.9

in fig. D.6c. Therefore it can be concluded that the reason for these oscillations is the method of

measuring the tolerance, which is only done in this way for these two runs. The time steps for the
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peaks of iterations observed in fig. D.6b and fig. D.6c, overlap with the time step for the oscillations

seen in the simulations. It seems that when an update of ∏ is needed the iterations increase only

for a short while. This makes the second method of measuring tolerance more economical in

iterations, but less tight when it comes to the constraint violations.

To further affirm the conclusion that the second measuring method is more economical, a run

with this method was performed with the parameters from run LS.6. The results were 136 total

iterations, with a maximum constraint violation of 0.598 kg/s above the total gas rate capacity.

This is the lowest number of iterations and the largest constraint violation, however only 0.008

kg/s more than for run LS.8. The saved cost in iterations make up for that increase. If the aim of

this method is saving time at a cost in performance, the last run would be the ideal. The results

from this run is included in appendix E.

6.3 Implementing the Augmented Lagrangian

The augmented lagrangian decomposition penalizes the constraint violations and has an even

tighter control than the regular lagrangian dual decomposition. It is explained in more details in

chapter 4. In short, an extra penalizing term is added to the objective function of the decomposed

problem, the penalizing parameter µ deciding the weight of the penalty. The penalty parameter is

updated for each iteration by the updating parameter Ø.

The augmented lagrangian implementation diminishes the oscillations in the standard lagrangian

decomposition dynamics. The constraint violations are still present, varying with the different

values of the tuning parameters. Therefore the initial dynamics for the best augmented lagrangian

run are compared and discussed against the centralized NMPC. Then the augmented lagrangian

decomposition is compared to the base case decomposed NMPC. After this, the tuning of the two

parameters for augmented lagrangian decomposition is presented. The results and discussion

around the different runs conclude the best suited value for the parameters.

6.3.1 Comparing the Augmented Lagrangian Decomposed NMPC with

the Centralized NMPC

The augmented lagrangian affect the dynamics and constraint violations of the simulations, so

the interesting part to compare with the centralized NMPC is the initial dynamics. As run Aug.3

is found to be the best tuned augmented lagrangian decomposition, it is plotted together with the

centralized NMPC. As for the previous investigation on the initial dynamics, the total gas rate is

presented on the left in fig. 6.14a and the gas lift inlet to each well is shown on the right in fig. 6.14b.
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When compared to the initial dynamics for the base case, it is observed that the augmented la-

grangian decomposition gives a trajectory that is closer to the trajectory of the centralized NMPC.

The violation of the constraint also seems to have decreased but it is still present. The colors and

line types used for the comparison are the same as used above, where the best augmented la-

grangian decomposed NMPC run Aug.3 is represented by the solid lines and the centralized NMPC

is represented with the dot-dashed lines.

(a) The total gas production rate compared. (b) The gas lift inlet to each well compared.

Figure 6.14: The initial dynamics for the augmented lagrangian decomposed NMPC are
compared to the simulation of the centralized NMPC. The black line represent the total gas rate

for the best run Aug.3, the blue and the red represent the gas lift rate in well 1 and 2. The gray line
represent the total gas rate for the centralized NMPC, the orange and light blue represent gas lift

rate for well 1 and well 2.

It seems that the total gas rate in fig. 6.14a violates the constraint only twice, and the second time

is much less than the first initial peak of the augmented lagrangian decomposition simulation.

The augmented lagrangian decomposed NMPC trajectory does not follow that of the centralized

NMPC, however it does not oscillate much around the solution. The fact that the oscillations have

diminished is supported by the trajectory of the gas lift inlet rates shown in fig. 6.14b. The sim-

ulations don’t have the same path but quickly reach the same values. If the constraint is a hard

one, the augmented lagrangian method might be not enough to make the use of decomposition

suitable. If the constraint is soft and it is profitable to have a small constraint violation as possible,

then the augmented lagrangian method can be used for a dynamic decomposition control system.

To compare the effect of using the augmented lagrangian decomposition method, it is compared

to the base case decomposition.
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6.3.2 Comparing the Augmented Lagrangian Decomposed NMPC with

the Base Case Decomposition

To compare the best run(Aug.3) of the augmented lagrangian decomposition to the base case de-

composition, some central results are presented in table 6.8. The most interesting is the compar-

ison of the constraint violations and the time until convergence. Also the first ∏-value in the last

prediction horizon is presented as ∏(1), and the time step at which ∏ becomes active for the entire

prediction horizon is also included for comparison.

Table 6.8: The central results from using the augmented lagrangian method compared to the base
case decomposition. The maximum constraint violations and the convergence time are included,
as well as the converged ∏ at the first sample instant and the interval on the time horizon where ∏

is larger than zero.

Sim Constraint
violations

Convergence
(time step #)

∏(1) ∏ active (time
step #)

Run Aug.3 0.129 18 5.34 6
Base case 0.295 27 21.65 4

It is clear from the table above that the constraint violations and the convergence towards opti-

mum improve when the augmented lagrangian method is used. The time step at which∏ becomes

active for the entire prediction horizon is later than for the base case. However, this also coincides

with the peak of the maximum constraint violation being a few steps later for the augmented la-

grangian method. Although it takes longer for ∏ to begin to push, once the constraint is active the

added penalty pushes harder, and therefore lessens the constraint violation. As a natural effect

of adding a penalty to the constraint, the implemented value of ∏ is a lot less for the augmented

lagrangian decomposition. Below, the trajectories of the augmented lagrangian and the base case

decomposed NMPC are plotted together with respectively solid and dot-dashed lines. The trend

explained above is clearly observed, and the results support the conclusion that the trajectory is

better with the augmented lagrangian decomposed NMPC. The colors and line types used for the

comparison are the same as used above. The best augmented lagrangian decomposed NMPC is

represented by the solid lines, but here, the base case decomposed NMPC is represented with the

dot-dashed lines.
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(a) The total gas production rate compared. (b) The gas lift inlet to each well compared.

Figure 6.15: The initial dynamics for the augmented lagrangian decomposed NMPC are
compared to the simulation of the base case decomposed NMPC. The solid lines represent the
best run Aug.3 for the augmented lagrangian method, where the black is total gas rate, the blue
and the red represent the gas lift rate in well 1 and 2. The dot-dashed lines represent the base

case, with the gray line representing the total gas rate, the orange and light blue represent gas lift
rate for well 1 and well 2.

Another advantage to using the augmented lagrangian decomposed NMPC over the base case, is

the fact that the iterations are lessened, also by using this method. The best run with the aug-

mented lagrangian decomposition only iterates a total of 192 times, this is less than for the base

case decomposition. As opposed to with the base case decomposition, the ∏ prediction horizon

does converge with the augmented lagrangian. The iterations were, as in the base case, capped

at 5 iterations. However, after the 24th time step, the iterations settle at only two iterations. The

development of iterations for the best run of augmented lagrangian is shown below in fig. 6.16.

Figure 6.16: The iterations for each time step in the best run with augmented lagrangian
decomposition Aug.3. Max 5 iterations for each time step.
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The converged values for the augmented lagrangian decomposition are not completely consistent

with the reference values from the centralized NMPC and the steady state optimization(ss-opt).

The deviation is shown in table 6.9, and for run Aug.5 and run Aug.6 the deviation is considered to

be too large for the runs to be optimal decomposed NMPCs. For the rest of the runs, the error is

not considerer too significant for the solution to be valid.

Table 6.9: The converged values for each run performed with augmented lagrangian of the gas lift
and gas rate for each well. The reference values from the steady state optimization are also

presented to illustrate the deviation.

Run # wg l1 wg l2 wpg1 wpg2

Aug.1 2.598 1.407 4.148 3.864
Aug.2 2.597 1.404 4.147 3.861
Aug.3 2.596 1.400 4.146 3.857
Aug.4 2.595 1.401 4.145 3.858
Aug.5 2.573 1.389 4.135 3.857
Aug.6 2.568 1.391 4.118 3.848
ss-opt 2.595 1.398 4.145 3.855

This error from the reference simulations appears to be due to the extra penalty constraint added

into the cost function. When the penalty parameter is too large, the decomposed control struc-

ture does not seem to converge to the correct optimum. This will be a part of the discussion for

tuning the parameters below. When tuning the parameters the constraint violation and the con-

vergence time are the most central results. For the augmented lagrangian it is hard to compare the

prediction horizon of ∏, seeing that the value of ∏ is dependent on the value of µ and it changes for

each run. But from looking at the prediction horizons it is apparent that oscillations in ∏ are not

present for any of the runs. The prediction horizons for the augmented lagrangian are included in

the appendix E

6.3.3 Tuning the Parameter µ

The parameterµ is the weight given to the penalty of the quadratic constraint violations. Therefore

this parameter is referred to as the penalty parameter. The simulation runs for tuning the penalty

parameter is explained in chapter 5 and the different values are presented in table 5.3.

The central values for the three first runs tuning the parameter µ are presented below in table 6.10.

The constraint violation decreases with the increase in µ, so does the time steps it takes for the

solutions to converge. This because the penalty of the constraint violations pushes harder for a

larger penalty parameter. The ∏-value both at convergence and at the first time step decreases as

µ increases, due to the adding the penalty part to the cost function forcing ∏ to decrease.
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Table 6.10: The most central results for the runs performed for tuning the parameter µ in the
augmented lagrangian decomposed NMPC. The parameter µ is varied with the values of 0.5, 1
and 2 for respectively run Aug.1, Aug.2 and Aug.3. The other parameter Ø is kept constant at 1.

Run # Constraint
violations

convergence
(time step #)

wpgtot (N=1) Time-step
opt-sol found

Aug.1 0.344 48 7.918 3
Aug.2 0.301 25 7.690 5
Aug.3 0.129 18 7.474 4

From the results presented above, it can be observed that both the constraint violations and the

time until the simulation has converge decreases with increase in the penalty parameter. However,

the first optimization of the prediction horizon does not reach the active constraint. The larger µ

is, the further from the optimized value is the prediction horizon for the first time step. Although

by the fifth time step all of the runs have reached the active constraint.

To illustrate the different trajectory of each of the runs, the initial dynamics are plotted for run

Aug.1-Aug.3 in fig. 6.17. The total gas production rates are plotted over the time horizon.

(a) Total produced gas rate run Aug.1. µ= 0.5
and Ø= 1.

(b) Total produced gas rate run Aug.2. µ= 1 and
Ø= 1.

(c) Total produced gas rate run Aug.3. µ= 2 and Ø= 1.

Figure 6.17: The total gas rate from the augmented lagrangian decomposed NMPC is shown
up-close, for run Aug.1-Aug.3 to illustrate the trajectory of the simulation.
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For the first run with the lowest value of µ, shown in fig. 6.17a, the solution takes a long time to

converge towards the constraint value, but it does not oscillate. For the second run, shown in

fig. 6.17b, the constraint violation is a little bit less and it is converging much faster however, there

is more oscillation. The best run is clearly the third run shown in fig. 6.17c, with the smallest

constraint violation and the quickest convergence. Although, for this run the optimal solution is

not obtained in the prediction horizon until the fourth time step.

The gas lift rate simulations are not included, as they are not very visibly different. When studied

closely, the difference in the trajectory of the gas lift simulations is that the larger µ is, the steeper

is the gas lift rate trajectory. The gas lift rate trajectories are included in the appendix E. The opti-

mized prediction horizons are also included in the appendix for the first and the last time step.

Run Aug.3 is the only run that improves the constraint violation of the base case, so the augmented

lagrangian method needs correct tuning to improve the decomposition. This might cause difficulty

with a hard constraint, however, when tuned correctly the method can eliminate more than half of

the constraint violations.

6.3.4 Tuning the Parameter Ø

The parameter Ø is the update parameter increasing the penalty parameter for each update of ∏.

The different runs for tuning the updating parameterØ are explained in chapter 5 and the different

values are presented in table 5.3.

With augmented lagrangian decomposition the lagrange multiplier is updated with the step length

of the penalty parameter µ. As with the line search method and the step length Æ, µ is reset to the

initial value before each optimization of the prediction horizon. This is necessary for the penalty

parameter to not become to large and push the prediction horizon away from the optimal solu-

tion. As the updating parameter increases the penalty parameter, Ø must be greater or equal to

one. For the runs shown above Ø= 1, meaning the penalty parameters is the same throughout the

simulations.

The central results of the simulations for the tuning ofØ are presented in table 6.11. When attempt-

ing to set Ø to a larger value than one, the optimization of the prediction horizon struggles to reach

the active constraint. This can be observed by looking at the intervals where the first sample in-

stant of ∏ (∏(1)) is active and the last predicted value of the total gas rate. For run Aug.5 and Aug.6,

the prediction horizon does not reach the active constraint for all the time steps of the horizon. In

the simulation however, run Aug.5 reaches the optimum total gas rate. For more details the last

prediction horizons can be found in appendix E.
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Table 6.11: The most central results for the runs performed for tuning the parameter Ø in the
augmented lagrangian decomposed NMPC. The parameter Ø is varied with the values of 1.01, 1.03
and 1.05 for respectively run Aug.4, Aug.5 and Aug.6. The other parameter µ is kept constant at 2.

Run # Constraint
violations

convergence
(time step #)

last predicted
wpgtot

∏(1) active
interval

Aug.4 0.105 40 8.00 N=[6-60]
Aug.5 0.051 25 7.914 N=[7-11]
Aug.6 -0.031 20 7.86 Never active

In addition to the numerical results in the table above, the total gas production rates are presented

in fig. 6.18, in the same way as the previous three runs. The observed trends of the gas lift matches

the numerical values presented in the table above.

(a) Total produced gas rate for run Aug.4.
Ø= 1.01 and µ= 2.

(b) Total produced gas rate for run Aug.5.
Ø= 1.03 and µ= 2.

(c) Total produced gas rate for run Aug.6. Ø= 1.05 and µ= 2.

Figure 6.18: The total gas rate from the augmented lagrangian decomposed NMPC.

For run Aug.4 the constraint violation is lessened but the time until convergence is a lot longer. For

run Aug.5 the constraint violations and the convergence is less, however the ∏ is only active for a

short interval on the time horizon. This paired with the fact that the prediction horizon does not

fully converge to the optimum value of the total gas rate, makes run Aug.5 not a valid run. This

is also the case for run Aug.6, seeing that for this run the first sample instant on the ∏ prediction
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horizon is never non-zero. The simulation in run Aug.6 never reaches the active constraint, and is

therefore not optimal and not a valid run. Since ∏ is never active for run Aug.6, the subproblems

are never coupled and therefore this is just two separate control structures, not a decomposed

NMPC.

For run Aug.4, the constraint violation has decrease compared to the best value found in run Aug.3.

Although the convergence takes longer, as can be seen in fig. 6.18a. The simulation is also observed

to oscillates after the optimal solution is reached. This tuning of the control system therefore seems

to be more instable than for that in run Aug.3. Run Aug.5 in fig. 6.18b also seems to be instable,

and oscillates at the end of the simulated horizon, after having reached the steady state value. The

last run, shown in fig. 6.18c, has the largest value of the update parameter Ø and never reaches

the optimal solution for the entire simulation. Hence the common constraint for the subproblems

is not active.The trends of instability can also be observed in the simulation results of the gas lift

injection rate shown in fig. 6.19.

(a) Run Aug.4 close up of total produced gas rate.
Ø= 1.01 and µ= 2.

(b) Run Aug.5 close up of total produced gas
rate. Ø= 1.03 and µ= 2.

(c) Run Aug.6 close up of total produced gas rate. Ø= 1.05 and µ= 2.

Figure 6.19: The gas lift rate for each well from the augmented lagrangian decomposed NMPC.

The gas lift rates for run Aug.4(fig. 6.19a) and for run Aug.5(fig. 6.19b), show the same oscillations at

the end of the simulation as they did for the total gas rates. This supports the conclusion that these

runs are not stable, and that increase in the penalty parameter can make the augmented lagrangian

decomposed NMPC unstable. There are no oscillations observed for run Aug.6, then again the
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constraint was never active for the subproblems in this run, making it stabilize at solutions that

are separately optimal.

As a conclusion the updating parameter Ø should be equal to one, in other words µ was the same

throughout the simulations. None of these runs are stable enough for the decomposed NMPC, and

therefore run Aug.3 was the best run for the augmented lagrangian decomposition. As for the line

search method, augmented lagrangian method must be carefully tuned to give an advantage. With

the wrong tuning, the decomposition might produce a worse result.

6.4 Comparing the Numerical Methods

The two numerical methods have different improvements and purposes, and are therefore hard to

directly compare. However, their total effects can be compared and discussed. The comparison of

these methods are compared for the gas lifted well network system used in this thesis.

Line search method is mostly suitable for a system with soft constraints, and where lowering the

number of iterations can be profitable. As it increases the constraint violations, it is not a good

method for a tighter control of the decomposed system. The line search is also fairly hard to tune,

and can therefore be hard to operate. The tuning does not send the system outside of specs, but

it needs correct tuning to save computational time. For this system, where ∏ does not converge

for the base case, a numerical method was needed for the prediction horizon to be optimized

properly. Since the constraints in this work are soft, the line search method was eligible for making

this improvement.

Unlike the line search method the constraint violations are lessened when using the augmented

lagrangian decomposition. The prediction horizon of ∏ also converges using the augmented la-

grangian method. Although the total number of iterations are not the focus when tuning the aug-

mented lagrangian method, the best case has relatively few iterations. However, this method is

also hard to tune correctly. A wrongly tuned augmented lagrangian decomposed NMPC can actu-

ally end up without a proper decomposition, where the constraint coupling the two subproblems

is not active. This is a major issue that might cause economical losses as a result. Still, tuned

correctly the lagrangian method is the best in terms of the dynamics of the initial simulations.





Chapter 7

Conclusion

The purpose of this thesis was to investigate the possibility of using dynamic decomposition as a

control tool within the oil and gas sector. As todays industry seeks better optimization and uti-

lization of oil production and profit, the control systems are becoming more complex. With the

complexity of systems becoming larger, the control structure needs more automation and better

solutions for solving the large optimization problems. Introducing a dynamic decomposition of

the large control structures can make it possible to have a global constraint for a larger problem

and it can simplify the operating work on the total system. An additional advantage of a dynamic

decomposed control structure is the possibility of shutting down one subsystem for maintenance,

while still having an active control optimizing for the remaining subproblems.

The previous work on decomposition for oil and gas well network has only been investigating a

steady state control system. The previously published work found the controller input from steady

state subproblems connected by a common constraint, making it necessary for operators to man-

ually reset the controller input with a chosen interval. The dynamic decomposition in this work

looks at optimizing a prediction horizon for a NMPC, updating the controller set point automati-

cally as the operating conditions changes. If it is possible to obtain a dynamic decomposed NMPC

that controls the system satisfactory, this can remove the human factor of resetting the set point

from the steady state decomposition.

The base case decomposition in this thesis refers to the lagrangian dual decomposition performed

for a gas lifted two-well network system. The simulation results show that the decomposed NMPC

converges to the same results as the centralized NMPC and a steady state optimization performed

for the same system. However, in certain cases, the dynamics in the initial part of the simulation

could be problematic. For the case where the gas rate is the active constraint, the decomposed

simulation oscillates around the trajectory of the centralized NMPC, even violating the constraint.

This validates the concerns about the start-up in the dynamic decomposition made in [17], how-

ever, this is just a problem for some cases. In addition to the dynamic issues, the ∏ prediction

horizon does not converge throughout the optimization, so closed-loop stability is not obtained.

These problems with the base case decomposition are attempted improved by applying numerical

solutions to the decomposed NMPC.

The line search method successfully brings down the number of iterations, but at the cost of a
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larger constraint violation than in the base case decomposition. With a converged ∏ prediction

horizon and saved computational time, this is an improvement to the base case decomposed

NMPC simulation. Although hard to tune, with the correct parameters the line search method

can cut two-thirds of the computational time, measured in iterations. From comparing two dif-

ferent ways of measuring the change in ∏ an important finding was made. If ∏ is not active, in

other words zero, for the first sample instant in the prediction horizon, the optimization should

be stopped after few iterations. This is to save computational time for the optimization of ∏, as

the total amount of iterations become considerable lower and the change in simulation results are

minor. Although this is a result found for the line search method, this rule applies to all dynamic

decomposition with a lagrangian relaxation of the constraints.

The augmented lagrangian decomposition decreases the constraint violations and converges faster

than the base case decomposition. Combined with the fact that ∏ converges and that the simula-

tion needs few iterations, it makes this the best method for dynamic decomposition of this system.

However, there are some difficulties to tuning this method, in the worst case not being able to reach

optimal solution for certain parameters. Still, with the best tuned run the augmented lagrangian

decomposed NMPC has a correct solution with the least amount of constraint violation and few

total iterations.

Since the system used in this problem is very simple, the results are only of academic interest. No

conclusion can be made on the realistic uses of dynamic decomposition for control within the oil

and gas industry. However, the results show a possibility for this type of control system to be suit-

able for use in more complex systems. In theory, the simple model is easily scaled up, but dynamics

might increase for a larger system. Some systems might not be suitable for decomposed control

structures, like some cases with hard constraints. However, control problems like the available

gas lift constraint can handle hard constraints with a decomposed control system. When the con-

trolled system has a soft constraint the dynamic decomposition could be a good control method.

7.1 Further Work

As mentioned above, this dynamic decomposition was applied to a very simple model, so no final

conclusions can be made about the use of dynamic decomposition from this work alone. There-

fore, further work should focus on testing dynamic decomposition for a more complex and larger

model. Adding more wells or manifolds to the model, as well as including uncertainties in the

simulations, will make it easier to judge the potential of the method.
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Appendix A

Model Parameters and Initialization Val-

ues

Table A.1: List of parameters given as input to the NMPC for the gas lifted oil well system.

Parameter Value[Well1;Well2] Unit
Lw [1500;1500] [m]
Hw [1000;1000] [m]
Dw [0.121;0.121] [m]
Lbh [500;500] [m]
Hbh [100;100] [m]
Dbh [0.121;0.121] [m]
La [1500;1500] [m]
Ha [1000;1000] [m]
Da [0.189;0.189] [m]
Ωo [9;8]·102 [kg /m3]
Ci v [0.1;0.1]·10°3 [m2]
Cpc [1;1]·10°3 [m2]
pr es [150;155] [bar]
pm [20;18] [bar]
PI [2.2;2.2]* [kg /s ·bar ]
Ta [28;28] [°C ]
Tw [32;32] [°C ]
Parameter Value[Well1;Well2] Unit
Mw 20 ·10°3 [g/mol]
Active constraints:
qGLMax 5 [kg/s]
QgMax 8 [kg/s]
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Table A.2: List of initial values of the state variables and the control variables. These initial values
are taken from previously simulated data.

Parameter Value Unit

mg a0 [9.34;10.20] [kg]

mg t0 [1.88;1.56] [kg]

mot0 [11.95;12.59] [kg]

pai0 [80.65;88.08] [bar]

pwh0 [25.68;28.50] [bar]

pwi0 [74.87;82.79] [bar]

pbh0 [83.70;90.64] [bar]

Ωai0 [6.93;7.57] [kg /m3]

Ωm0 [5.01;5.53] [kg /m3]

wi v0 [2.00;2.00] [m/s]

wpc0 [16.88;21.69] [m/s]

wpg0 [2.29;2.39] [m/s]

wpo0 [14.59;19.31] [m/s]

wr o0 [14.58;19.31] [m/s]

wr g0 [2.29;2.39] [m/s]

wg l0 [1;1] [m/s]

GOR [0.1;0.15] [kg/kg]



Appendix B

Collocation Points

Table B.1: Shifted Gauss-Legendre and Radau roots as collocation points. [31]

Polynomial Degree Legendre Roots Radau Roots

1 0.500000 1.000000

2 0.211325 0.333333
0.788675 1.000000

3 0.112702 0.155051
0.500000 0.644949
0.887298 1.000000

4 0.069432 0.088588
0.330009 0.409467
0.669991 0.787659
0.930568 1.000000

5 0.46910 0.057104
0.230765 0.057104
0.230765 0.276843
0.500000 0.583590
0.769235 0.860204
0.953090 1.000000
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Matlab Code Snippets: NMPC

Code Snippets C.1: NMPC modelling

1 c lear a l l

2 c l c

3 %% Import CasADi

4 addpath ( ’C: \ Users\ IngvildMarie \Documents\CasADi\ casadi°matlabR2014b°v3 . 1 . 0 ’

)

5 import casadi . *
6 %% Set parameters , i n i t i a l values , upper and lower bounds

7 % A l l the parameter values are defined inside t h i s function

8 GasLiftSystem_Param ;

9 n_w = par . n_w ; % no . of wells ;

10 N = 60; % no . of samples

11 t f = 300; % sampling time

12 T = t f *N;

13 % The i n i t i a l values , upper and lower bounds are defined here :

14 [ dx0 , z0 , u0 , lbx , lbz , lbu , ubx , ubz , ubu] = GasLiftSystem_Initialization_bounds (

par ) ;

15

16 %% Modelling

17

18 L_w = par . L_w ;

19 H_w = par .H_w;

20 D_w = par .D_w;

21

22 L_bh = par . L_bh ;

23 H_bh = par . H_bh;

24 D_bh = par . D_bh ;

25

26 L_a = par . L_a ;

27 H_a = par . H_a ;
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28 D_a = par . D_a ;

29

30 rho_o = par . rho_o ;

31 C_iv = par . C_iv ;

32 C_pc = par . C_pc ;

33

34 A_w = pi . * (D_w/2) . ^ 2 ;

35 A_bh = pi . * ( D_bh/2) . ^ 2 ;

36 V_a = L_a . * ( pi . * ( D_a/2) .^2 ° pi . * (D_w/2) . ^ 2 ) ;

37

38 Zc = 1 ;

39 % d i f f e r e n t i a l s t a t e s

40 m_ga = MX. sym( ’m_ga ’ ,n_w) ;

41 m_gt = MX. sym( ’m_gt ’ ,n_w) ;

42 m_ot = MX. sym( ’m_ot ’ ,n_w) ;

43 % Algebraic s t a t e s

44 p_ai = MX. sym( ’ p_ai ’ ,n_w) ; % 1°2

45 p_wh = MX. sym( ’p_wh ’ ,n_w) ; % 3°4

46 p_wi = MX. sym( ’ p_wi ’ ,n_w) ; % 5°6

47 p_bh = MX. sym( ’p_bh ’ ,n_w) ; % 7°8

48 rho_ai = MX. sym( ’ rho_ai ’ ,n_w) ; % 9°10

49 rho_m = MX. sym( ’rho_m ’ ,n_w) ; % 11°12

50 w_iv = MX. sym( ’ w_iv ’ ,n_w) ; % 13°14

51 w_pc = MX. sym( ’w_pc ’ ,n_w) ; % 15°16

52 w_pg = MX. sym( ’w_pg ’ ,n_w) ; % 17°18

53 w_po = MX. sym( ’w_po ’ ,n_w) ; % 19°20

54 w_ro = MX. sym( ’w_ro ’ ,n_w) ; % 21°22

55 w_rg = MX. sym( ’ w_rg ’ ,n_w) ; % 23°24

56 % control input

57 w_gl = MX. sym( ’ w_gl ’ ,n_w) ;

58

59 % parameters

60 p_res = MX. sym( ’ p_res ’ ,n_w) ;

61 PI = MX. sym( ’ PI ’ ,n_w) ;

62 GOR = MX. sym( ’GOR’ ,n_w) ;

63 T_a = MX. sym( ’ T_a ’ ,n_w) ;

64 T_w = MX. sym( ’T_w ’ ,n_w) ;

65 p_m = MX. sym( ’p_m ’ , 1 ) ;
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66

67 % algebraic equations

68 f1 = °p_ai . * 1 e5 + ( ( R . * T_a . / ( V_a . *M) + 9 . 8 1 . *H_a . / V_a ) . * m_ga. * 1 e3 ) ;

69 f2 = °p_wh. * 1 e5 + ( ( R . * T_w. /M) . * ( m_gt . * 1 e3 . / ( L_w . *A_w + L_bh . * A_bh ° m_ot . * 1

e3 . / rho_o ) ) ) ;

70 f3 = °p_wi . * 1 e5 + (p_wh. * 1 e5 + 9 . 8 1 . / (A_w. * L_w) . *max( 0 , ( m_ot . * 1 e3+m_gt . * 1 e3°
rho_o . * L_bh . * A_bh) ) . *H_w) ;

71 f4 = °p_bh . * 1 e5 + ( p_wi . * 1 e5 + rho_o . * 9 . 8 1 . *H_bh) ;

72 f5 = °rho_ai . * 1 e2 +(M. / ( R . * T_a ) . * p_ai . * 1 e5 ) ;

73 f6 = °rho_m. * 1 e2 + ( m_gt . * 1 e3+m_ot . * 1 e3 ° rho_o . * L_bh . * A_bh) . / ( L_w . *A_w) ;

74 f7 = °w_iv + C_iv . * sqrt ( rho_ai . * 1 e2 . * ( p_ai . * 1 e5 ° p_wi . * 1 e5 ) ) ;

75 f8 = °w_pc + C_pc . * sqrt (rho_m. * 1 e2 . * ( p_wh. * 1 e5 ° p_m. * 1 e5 ) ) ;

76 f9 = °w_pg + ( m_gt . * 1 e3 . /max(1e°3 ,(m_gt . * 1 e3+m_ot . * 1 e3 ) ) ) . * w_pc ;

77 f10 = °w_po + (m_ot . * 1 e3 . /max(1e°3 ,(m_gt . * 1 e3+m_ot . * 1 e3 ) ) ) . * w_pc ;

78 f11 = °w_ro + PI . * 1 e°6.*( p_res . * 1 e5 ° p_bh . * 1 e5 ) ;

79 f12 = °w_rg . * 1 e°1 + GOR. * w_ro ; % 23 ° 24

80 % d i f f e r e n t i a l equations

81 df1 = ( w_gl ° w_iv ) . * 1 e°3;

82 df2 = ( w_iv + w_rg . * 1 e°1 ° w_pg) . * 1 e°3;

83 df3 = ( w_ro ° w_po) . * 1 e°3;

84

85 % Form the DAE system

86 d i f f = v e r t c at ( df1 , df2 , df3 ) ;

87 alg = v e r t c at ( f1 , f2 , f3 , f4 , f5 , f6 , f7 , f8 , f9 , f10 , f11 , f12 ) ;

88

89 % give parameter values

90 alg = subst i tute ( alg , p_res , par . p_res ) ;

91 alg = subst i tute ( alg , PI , par . PI ) ;

92 alg = subst i tute ( alg , T_a , par . T_a ) ;

93 alg = subst i tute ( alg , T_w, par . T_w) ;

94 alg = subst i tute ( alg ,p_m, par .p_m( 1 ) ) ;

95

96 % concatenate the d i f f e r e n t i a l and algebraic s t a t e s

97 x_var = v e r t ca t (m_ga, m_gt , m_ot) ;

98 z_var = v e r t c at ( p_ai , p_wh, p_wi , p_bh , rho_ai , rho_m , w_iv , w_pc , w_pg , w_po, w_ro ,

w_rg ) ;

99 p_var = v e r t c a t ( w_gl ,GOR) ;

100
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101 % Define Steady s t a t e objective

102 L = °sum(w_po) ;

103 % Define the DAE system

104 dae = s t r u c t ( ’ x ’ , x_var , ’ z ’ , z_var , ’p ’ , p_var , ’ode ’ , d i f f , ’ alg ’ , alg , ’quad ’ ,L ) ;

% der ( m_tot ) = w_in ° w_out ;

105 opts = s t r u c t ( ’ t f ’ ,T/N) ;

106

107 % create IDAS integrator ° Simulator Model

108 F = integrator ( ’F ’ , ’ idas ’ , dae , opts ) ;

109

110 % Create the semi°e x p l i c i t DAE function of the form :

111 % x_dot = f ( x , z , u)

112 % g ( x , z , u) = 0

113 f = Function ( ’ f ’ , { x_var , z_var , p_var } , { d i f f , alg , L } , { ’ x ’ , ’ z ’ , ’p ’ } , { ’ xdot ’ , ’ z j ’

, ’ qj ’ } ) ;

Code Snippets C.2: The collocation method used for both centralized and decomposed NMPC

1 %% Direct Collocation

2

3 % Degree of interpolat ing polynomial

4 d = 3 ;

5

6 % Get col location points

7 tau_root = [ 0 , collocation_points (d , ’ radau ’ ) ] ;

8

9 % C o e f f i c i e n t s of the col location equation

10 C = zeros (d+1 ,d+1) ;

11

12 % C o e f f i c i e n t s of the continuity equation

13 D = zeros (d+1 , 1) ;

14

15 % C o e f f i c i e n t s of the quadrature function

16 B = zeros (d+1 , 1) ;

17

18 % Construct polynomial basis

19 for j =1:d+1

20 % Construct Lagrange polynomials to get the polynomial basis at the

col location point
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21 coeff = 1 ;

22 for r =1:d+1

23 i f r ~= j

24 coeff = conv ( coeff , [ 1 , °tau_root ( r ) ] ) ;

25 coeff = coeff / ( tau_root ( j )°tau_root ( r ) ) ;

26 end

27 end

28 % Evaluate the polynomial at the f i n a l time to get the c o e f f i c i e n t s of

the continuity equation

29 D( j ) = polyval ( coeff , 1 . 0 ) ;

30

31 % Evaluate the time d e r i v a t i v e of the polynomial at a l l col location

points to get the c o e f f i c i e n t s of the continuity equation

32 pder = polyder ( coeff ) ;

33 for r =1:d+1

34 C( j , r ) = polyval ( pder , tau_root ( r ) ) ;

35 end

36

37 % Evaluate the i n t e g r a l of the polynomial to get the c o e f f i c i e n t s of the

quadrature function

38 pint = polyint ( coeff ) ;

39 B( j ) = polyval ( pint , 1 . 0 ) ;

40 end

Code Snippets C.3: Building the nlp for centralized NMPC

1 %% Optimization and Simulation

2

3 nu = 2 ;

4 nz = length ( z_var ) ; % no . of alg s t a t e s

5 nx = length ( x_var ) ; % no . of d i f f s t a t e s

6 GOR_val=par .GOR;

7 %% Build NLP

8 % empty nlp

9 w = { } ;

10 w0 = [ ] ;

11 lbw = [ ] ;

12 ubw = [ ] ;

13 J = 0 ;
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14 g = { } ;

15 lbg = [ ] ;

16 ubg = [ ] ;

17

18 % i n i t i a l conditions

19 X0 = MX. sym( ’X0 ’ , nx ) ;

20 Z0 = MX. sym( ’Z0 ’ , nz ) ;

21 w = {w{ : } , X0 , Z0 } ;

22 lbw = [ lbw ; dx0 ; z0 ] ;

23 ubw = [ubw; dx0 ; z0 ] ;

24 w0 = [w0; dx0 ; z0 ] ;

25

26 U0 = MX. sym( ’U0 ’ , 2 ) ;

27 GOR0 = MX. sym ( [ ’GOR0 ’ ] ,nu) ;

28 Upar0 = v e r t c at (U0,GOR0) ;

29 w = {w{ : } , Upar0 } ;

30 lbw = [ lbw ; u0 ; GOR_val ] ;

31 ubw = [ubw; u0 ; GOR_val ] ;

32 w0 = [w0; u0 ; GOR_val ] ;

33

34 % Formulate NLP

35 Xk = X0 ;

36 Xkj = { } ;

37 Zkj = { } ;

38 Uk_prev = U0;

39

40 for k = 0 :N°1

41

42 % PWC control input at time i n t e r v a l k

43 Uk = MX. sym ( [ ’U_ ’ num2str ( k ) ] , nu) ;

44 GOR_k = MX. sym ( [ ’GOR_ ’ num2str ( k ) ] ,nu) ;

45 Upar = v e r t ca t (Uk,GOR_k) ;

46 w = {w{ : } , Upar } ;

47 lbw = [ lbw ; lbu ; GOR_val ] ;

48 ubw = [ubw; ubu ; GOR_val ] ;

49 w0 = [w0; u0 ; GOR_val ] ;

50

51 % s t a t e at col location points = s ( \ theta )
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52 Xkj = { } ;

53 Zkj = { } ;

54

55 % build d i f f and alg s t a t e vectors for each col location point at time k

56 for j = 1 :d

57 Xkj { j } = MX. sym ( [ ’X_ ’ num2str ( k ) ’ _ ’ num2str ( j ) ] , nx ) ;

58 Zkj { j } = MX. sym ( [ ’Z_ ’ num2str ( k ) ’ _ ’ num2str ( j ) ] , nz ) ;

59 w = {w{ : } , Xkj { j } , Zkj { j } } ;

60 lbw = [ lbw ; lbx ; lbz ] ;

61 ubw = [ubw; ubx ; ubz ] ;

62 w0 = [w0; dx0 ; z0 ] ;

63 end

64

65 % Loop over col location points

66 Xk_end = D( 1 ) *Xk ;

67

68 for j = 1 :d

69 % Expression for the s t a t e d e r i v a t i v e at the col location point

70 % \dot s ( \ theta_k , t ) = \sum \ theta_k , j *\ dot P_k , j

71

72 xp = C( 1 , j +1) *Xk ; % helper s t a t e

73

74 for r = 1 :d

75 xp = xp + C( r +1 , j +1) * Xkj { r } ;

76 end

77

78 [ f j , zj , qj ] = f ( Xkj { j } , Zkj { j } , Upar) ;

79

80 g = { g { : } , t f * f j °xp , z j } ; % dynamics and algebraic constraints

81 lbg = [ lbg ; zeros ( nx , 1 ) ; zeros ( nz , 1 ) ] ;

82 ubg = [ ubg ; zeros ( nx , 1 ) ; zeros ( nz , 1 ) ] ;

83

84 % Gas capacity constraints on a l l the col location points

85 g = { g { : } , ( Zkj { j } ( 1 7 ) +Zkj { j } ( 1 8 ) ) } ;

86 lbg = [ lbg ; 0 ] ;

87 ubg = [ ubg ;QgMax ] ;

88

89 % Add contribution to the end s t a t e s
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90 Xk_end = Xk_end + D( j +1) * Xkj { j } ;

91

92 % Add contribution to the cost function

93 J = J +(B( j +1) * qj * t f ) + 10.*sum( ( Uk_prev ° Uk) . ^ 2 ) ;

94 % second term penalizes MV moves

95 end

96

97 % control input at prev sampling time u_ { k°1}

98 Uk_prev = MX. sym ( [ ’ Uprev_ ’ num2str ( k+1) ] , nu) ;

99 Uk_prev = Uk; % set u_ { k°1} = u_k before incrementing k

100

101 % New NLP variable for s t a t e at end of i n t e r v a l

102 % Additional DOF for shooting gap constraints

103 Xk = MX. sym ( [ ’X_ ’ num2str ( k+1) ] , nx ) ;

104

105 w = {w{ : } , Xk } ;

106 lbw = [ lbw ; lbx ] ;

107 ubw = [ubw; ubx ] ;

108 w0 = [w0; dx0 ] ;

109

110 % Shooting Gap constraint

111 g = { g { : } , Xk_end°Xk } ;

112 lbg = [ lbg ; zeros ( nx , 1 ) ] ;

113 ubg = [ ubg ; zeros ( nx , 1 ) ] ;

114

115 % constraint on the t o t a l gas l i f t rate

116 g = { g { : } , sum(Uk) } ;

117 lbg = [ lbg ; 0 ] ;

118 ubg = [ ubg ;qGLMax ] ;

119 end

120

121 % create and solve NLP solver

122 nlp = s t r u c t ( ’ x ’ , v e r t c at (w{ : } ) , ’ f ’ , J , ’ g ’ , v e r t c at ( g { : } ) ) ;

123

124 % Assign IPOPT solver

125 solver = nlpsol ( ’ solver ’ , ’ ipopt ’ , nlp ) ;
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Code Snippets C.4: The closed-loop simulations of the NMPC

1 for sim_k = 1 : nIter

2 % Solve NLP

3 sol = solver ( ’ x0 ’ ,w0, ’ lbx ’ , lbw , ’ubx ’ ,ubw, ’ lbg ’ , lbg , ’ubg ’ ,ubg) ;

4

5 % Extract Solution

6 w_opt = f u l l ( sol . x ) ;

7

8 % e x t r a c t solution from the Big solution array

9 n_w_i = nx+nz+nu+nu+( ( nx+nz ) *d+nx+nu+nu) *N; % s i z e of solution vector

10 u_opt1 = [ w_opt ( ( nx+nz+nu+nu+1) : d*nz+(d+1) *nx+nu+nu : n_w_i ) ;NaN] ;

11 u_opt2 = [ w_opt ( ( nx+nz+nu+nu+2) : d*nz+(d+1) *nx+nu+nu : n_w_i ) ;NaN] ;

12

13 % implement the f i r s t sample on the simulator

14 u_in_1 = u_opt1 ( 1 , 1 ) ;

15 u_in_2 = u_opt2 ( 1 , 1 ) ;

16 u_in = [ u_in_1 ; u_in_2 ; GOR_val ] ;

17

18 %% Simulator using IDAS integrator

19 % Simulate Plant

20 Fk = F( ’ x0 ’ , dx0 , ’ z0 ’ , z0 , ’p ’ , u_in ) ;

21

22 % set new i n i t i a l values for the next i t e r a t i o n

23 dx0 = f u l l ( Fk . x f ) ;

24 z0 = f u l l ( Fk . z f ) ;

25 u0 = [ u_in_1 ; u_in_2 ; GOR_val ] ;

26 J _ r e a l ( sim_k ) = f u l l ( Fk . qf ) ;

27

28 %% Set new i n i t i a l values for next i t e r a t i o n

29 w0 = [ ] ;

30 lbw = [ ] ;

31 ubw = [ ] ;

32

33 w0 = [w0; dx0 ; z0 ] ;

34 lbw = [ lbw ; dx0 ; z0 ] ;

35 ubw = [ubw; dx0 ; z0 ] ;

36 w0 = [w0; u0 ] ;

37 lbw = [ lbw ; u0 ] ;
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38 ubw = [ubw; u0 ] ;

39 for i = 1 :N

40 w0 = [w0; u0 ] ;

41 lbw = [ lbw ; lbu ; GOR_val ] ;

42 ubw = [ubw; ubu ; GOR_val ] ;

43 for d = 1:3

44 w0 = [w0; dx0 ; z0 ] ;

45 lbw = [ lbw ; lbx ; lbz ] ;

46 ubw = [ubw; ubx ; ubz ] ;

47 end

48 w0 = [w0; dx0 ] ;

49 lbw = [ lbw ; lbx ] ;

50 ubw = [ubw; ubx ] ;

51 end

52

53 end

Code Snippets C.5: Updating lambda for the decomposed NMPC

1 alpha =10;

2 lambda = 20.* ones ( par .N, 1 ) ;

3 for sim_k =1:N

4 t0 = 0 . * lambda ;

5 t o l =1;

6 i t e r = 0 ;

7 while t o l > 0.0001 && i t e r <5

8

9 [ sol1 , par ] = WellOptDyn ( par , 1 , OptCase , lambda , i n i t 1 ) ;

10 w_opt1 = f u l l ( sol1 . x ) ;

11 w_pg1 = w_opt1 ( [ ( nx+nz°3) , ( nx+nz°3)+(nx+nz+nu) : d*nz+(d+1) *nx+nu :

n_w_i ] ) ;

12

13 [ sol2 , par ] = WellOptDyn ( par , 2 , OptCase , lambda , i n i t 2 ) ;

14 w_opt2 = f u l l ( sol2 . x ) ;

15 w_pg2 = w_opt2 ( [ ( nx+nz°3) , ( nx+nz°3)+(nx+nz+nu) : d*nz+(d+1) *nx+nu :

n_w_i ] ) ;

16

17 lambda = max( 0 , lambda + alpha * ( w_pg1 ( 1 : end°1) + w_pg2 ( 1 : end°1) ° 8 . *
ones ( par .N, 1 ) ) ) ;
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18 t o l = norm( abs ( lambda ° t0 ) ) ;

19 i t e r = i t e r + 1 ;

20 t0 = lambda ;

21 end

22 . . .

Code Snippets C.6: Bulding of the nlp for the decomposed NMPC

1 function [ sol , par ] = WellOptDyn ( par , wellNo , OptCase , t , i n i t )

2 addpath ( ’C: \ Users\ IngvildMarie \Documents\CasADi\ casadi°matlabR2014b°v3 . 1 . 0 ’

)

3 import casadi . *
4

5

6 [ d i f f , alg , L , var ] = WellModel ( par , wellNo ) ;

7 x_var = var . x ;

8 z_var = var . z ;

9 p_var = var . p ;

10 dae = s t r u c t ( ’ x ’ , x_var , ’ z ’ , z_var , ’p ’ , p_var , ’ode ’ , d i f f , ’ alg ’ , alg , ’quad ’ ,L ) ;

11

12 f = Function ( ’ f ’ , { x_var , z_var , p_var } , { d i f f , alg , L } , { ’ x ’ , ’ z ’ , ’p ’ } , { ’ xdot ’ , ’ z j ’

, ’ qj ’ } ) ;

13

14 %% Optimization and Simulation

15 i t = 1 ;

16

17 % empty nlp

18 w = { } ;

19 w0 = [ ] ;

20 lbw = [ ] ;

21 ubw = [ ] ;

22 J = 0 ;

23 g = { } ;

24 lbg = [ ] ;

25 ubg = [ ] ;

26

27 for j s = 1 : nS

28 GOR_val = GOR_case( wellNo , j s ) ;

29
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30 % i n i t i a l conditions for each scenario

31 X0 = MX. sym( ’X0 ’ , nx ) ;

32 Z0 = MX. sym( ’Z0 ’ , nz ) ;

33 w = {w{ : } , X0 , Z0 } ;

34 lbw = [ lbw ; dx0 ; z0 ] ;

35 ubw = [ubw; dx0 ; z0 ] ;

36 w0 = [w0; dx0 ; z0 ] ;

37

38 % Formulate NLP

39 Xk = X0 ;

40 Xkj = { } ;

41 Zkj = { } ;

42 Uk_prev = u0 ;

43 for k = 0 :N°1

44

45 Uk = MX. sym ( [ ’U_ ’ num2str ( k ) ’ _ ’ num2str ( j s ) ] ,nu) ;

46 GOR_k = MX. sym ( [ ’GOR_ ’ num2str ( k ) ’ _ ’ num2str ( j s ) ] , nu) ;

47 Upar = v e r t ca t (Uk,GOR_k) ;

48 w = {w{ : } , Upar } ;

49 lbw = [ lbw ; lbu ; GOR_val ] ;

50 ubw = [ubw; ubu ; GOR_val ] ;

51 w0 = [w0; u0 ; GOR_val ] ;

52

53 % s t a t e at col location points = s ( \ theta )

54 Xkj = { } ;

55 Zkj = { } ;

56

57 for j = 1 :d

58 Xkj { j } = MX. sym ( [ ’X_ ’ num2str ( k ) ’ _ ’ num2str ( j ) ’ _ ’ num2str (

j s ) ] , nx ) ;

59 Zkj { j } = MX. sym ( [ ’Z_ ’ num2str ( k ) ’ _ ’ num2str ( j ) ’ _ ’ num2str (

j s ) ] , nz ) ;

60 w = {w{ : } , Xkj { j } , Zkj { j } } ;

61 lbw = [ lbw ; lbx ; lbz ] ;

62 ubw = [ubw; ubx ; ubz ] ;

63 w0 = [w0; dx0 ; z0 ] ;

64 end

65
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66 % Loop over col location points

67 Xk_end = D( 1 ) *Xk ;

68

69 for j = 1 :d

70 % Expression for the s t a t e d e r i v a t i v e at the col location

point

71 % \dot s ( \ theta_k , t ) = \sum \ theta_k , j *\ dot P_k , j

72 xp = C( 1 , j +1) *Xk ; % helper s t a t e

73

74 for r = 1 :d

75 xp = xp + C( r +1 , j +1) * Xkj { r } ;

76 end

77

78 [ f j , zj , qj ] = f ( Xkj { j } , Zkj { j } , Upar) ;

79

80 g = { g { : } , t f * f j °xp , z j } ; % dynamics and algebraic

constraints

81 lbg = [ lbg ; zeros ( nx , 1 ) ; zeros ( nz , 1 ) ] ;

82 ubg = [ ubg ; zeros ( nx , 1 ) ; zeros ( nz , 1 ) ] ;

83

84 i f wellNo == 1

85 qgWell = 0 ;

86 e lse

87 qgWell = 8 ;

88 end

89 % Add contribution to the end s t a t e s

90 Xk_end = Xk_end + D( j +1) * Xkj { j } ;

91 i f k == N°1

92 J = J + t ( k+1) * ( Zkj { j } ( 9 ) ° qgWell ) + wS( j s ) . * ( B( j +1) *
qj * t f ) + 10.*sum( ( Uk_prev ° Uk) . ^ 2 ) ;

93 e lse

94 J = J + t ( k+1) * ( Zkj { j } ( 9 ) ° qgWell ) + wS( j s ) . * ( B( j +1) * qj

* t f ) + 10.*sum( ( Uk_prev ° Uk) . ^ 2 ) ;

95 end

96

97 end

98

99 Uk_prev = MX. sym ( [ ’ Uprev_ ’ num2str ( k+1) ] ,nu) ;
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100 Uk_prev = Uk;

101

102 % New NLP variable for s t a t e at end of i n t e r v a l

103 Xk = MX. sym ( [ ’X_ ’ num2str ( k+1) ’ _ ’ num2str ( j s ) ] , nx ) ;

104 w = {w{ : } , Xk } ;

105 lbw = [ lbw ; lbx ] ;

106 ubw = [ubw; ubx ] ;

107 w0 = [w0; dx0 ] ;

108

109 % Shooting Gap constraint

110 g = { g { : } , Xk_end°Xk } ;

111 lbg = [ lbg ; zeros ( nx , 1 ) ] ;

112 ubg = [ ubg ; zeros ( nx , 1 ) ] ;

113

114 g = { g { : } , sum(Uk) } ;

115 lbg = [ lbg ; 0 ] ;

116 ubg = [ ubg ; par .qGLMax ] ;

117

118 i f k < nR

119 u_ant { js , k+1} = MX. sym ( [ ’ u_ant_ ’ num2str ( k ) ’ _ ’ num2str ( j s )

] ,nu) ;

120 u_ant { js , k+1} = Uk;

121 end

122 end

123 end

124

125 % Add Non°a n t i c i p a t i v i t y constraints

126 for k = 1 :nR

127 for j s = 1 : nS°1

128 i f ~isnan ( nonant ( js , k ) )

129 i f nonant ( j s ) == nonant ( j s +1)

130 g = { g { : } , ( u_ant { js , k } ° u_ant { j s +1 ,k } ) } ;

131 lbg = [ lbg ; zeros (nu, 1 ) ] ;

132 ubg = [ ubg ; zeros (nu, 1 ) ] ;

133 end

134 end

135 end

136 end



97

137

138 % create and solve NLP solver

139 nlp = s t r u c t ( ’ x ’ , v e r t c at (w{ : } ) , ’ f ’ , J , ’ g ’ , v e r t c at ( g { : } ) ) ;

140 solver = nlpsol ( ’ solver ’ , ’ ipopt ’ , nlp ) ;

141 sol = solver ( ’ x0 ’ ,w0, ’ lbx ’ , lbw , ’ubx ’ ,ubw, ’ lbg ’ , lbg , ’ubg ’ ,ubg) ;

Code Snippets C.7: Updating the lambda with the line search method

1 lambda = 20.* ones ( par .N, 1 ) ;

2 alpha =10;

3 c = 0 . 1 . * ones ( par .N, 1 ) ;

4 rho = 0 . 7 ;

5 for sim_k =1:N

6 t0 = 0 . * lambda ;

7 t o l =1;

8 i t e r = 0 ;

9 alpha =10;

10 while t o l > 0.15 && i t e r <10

11

12 [ sol1 , par ] = WellOptDyn ( par , 1 , OptCase , lambda , i n i t 1 ) ;

13 w_opt1 = f u l l ( sol1 . x ) ;

14 u_opt1 = [ w_opt1 ( ( nx+nz+1) : d*nz+(d+1) *nx+nu : n_w_i ) ;NaN] ;

15 w_po1 = w_opt1 ( [ ( nx+nz°2) , ( nx+nz°2)+(nx+nz+nu) : d*nz+(d+1) *nx+nu : n_w_i ] ) ;

16 w_pg1 = w_opt1 ( [ ( nx+nz°3) , ( nx+nz°3)+(nx+nz+nu) : d*nz+(d+1) *nx+nu : n_w_i ] ) ;

17

18 [ sol2 , par ] = WellOptDyn ( par , 2 , OptCase , lambda , i n i t 2 ) ;

19 w_opt2 = f u l l ( sol2 . x ) ;

20 u_opt2 = [ w_opt2 ( ( nx+nz+1) : d*nz+(d+1) *nx+nu : n_w_i ) ;NaN] ;

21 w_po2 = w_opt2 ( [ ( nx+nz°2) , ( nx+nz°2)+(nx+nz+nu) : d*nz+(d+1) *nx+nu : n_w_i ] ) ;

22 w_pg2 = w_opt2 ( [ ( nx+nz°3) , ( nx+nz°3)+(nx+nz+nu) : d*nz+(d+1) *nx+nu : n_w_i ] ) ;

23

24 lambda = max( 0 , lambda + alpha * ( w_pg1 ( 1 : end°1) + w_pg2 ( 1 : end°1) ° 8 . * ones

( par .N, 1 ) ) ) ;

25 t o l = norm( abs ( lambda ° t0 ) ) ;

26 %t o l =lambda ( 1 )°t0 ( 1 ) ;

27 i t e r = i t e r + 1 ;

28 t0 = lambda ;

29

30 %Updating alpha
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31 wpo=w_po1 ( 1 : end°1 ,1) + w_po2 ( 1 : end°1 ,1) ;

32 wpg=(w_pg1 ( 1 : end°1 ,1) + w_pg2 ( 1 : end°1 ,1) ° 8 . * ones ( par .N, 1 ) ) ;

33 Jm=wpo + lambda . * wpg;

34 pk=°1*wpg;

35 gradJm=wpg ’ ;

36 Jmp=wpo + (lambda+alpha . * pk ) . * wpg;

37 rhs=Jm + c * alpha . * gradJm*pk ;

38 l s t o l =Jmp°rhs ;

39 l s t o l =sum( l s t o l (30) ) ;

40 while l s t o l >0

41 alpha=rho * alpha ;

42 Jmp=wpo + (lambda+alpha . * pk ) . * wpg;

43 rhs=Jm + c * alpha . * gradJm*pk ;

44 l s t o l =Jmp°rhs ;

45 l s t o l =round ( ( l s t o l (30) ) ) ;

46 end

47 end

48 . . .

Code Snippets C.8: Updating the lambda with the augmented lagrangian method

1 lambda = 20.* ones ( par .N, 1 ) ;

2 alpha =10;

3 my=2;

4 beta =1.03;

5 for sim_k =1:N

6 t0 = 0 . * lambda ;

7 t o l =1;

8 i t e r = 0 ;

9 my=2;

10 while t o l > 0.15 && i t e r <5

11

12 [ sol1 , par ] = WellOptDyn_Aug ( par , 1 , OptCase , lambda ,my, h2 , i n i t 1 ) ;

13 w_opt1 = f u l l ( sol1 . x ) ;

14 w_pg1 = w_opt1 ( [ ( nx+nz°3) , ( nx+nz°3)+(nx+nz+nu) : d*nz+(d+1) *nx+nu : n_w_i ] ) ;

15 h1=w_pg1 ( 1 : end°1) ;

16

17 [ sol2 , par ] = WellOptDyn_Aug ( par , 2 , OptCase , lambda ,my, h1 , i n i t 2 ) ;

18 w_opt2 = f u l l ( sol2 . x ) ;



99

19 w_pg2 = w_opt2 ( [ ( nx+nz°3) , ( nx+nz°3)+(nx+nz+nu) : d*nz+(d+1) *nx+nu : n_w_i ] ) ;

20 h2=w_pg2 ( 1 : end°1) ;

21

22 lambda = max( 0 , lambda + my. * ( w_pg1 ( 1 : end°1) + w_pg2 ( 1 : end°1) ° 8 . * ones (

par .N, 1 ) ) ) ;

23 my=beta *my;

24 t o l = norm( abs ( lambda ° t0 ) ) ;

25 i t e r = i t e r + 1 ;

26 t0 = lambda ;

27 end

28 . . .

Code Snippets C.9: The cost function with the added penalty from the augmented lagrangian

1 i f wellNo == 1

2 qgWell = 0 ;

3 h2=h( k+1)°qgWell ;

4 e lse

5 qgWell = 8 ;

6 h2=h( k+1) ;

7 end

8 % Add contribution to the end s t a t e s

9 Xk_end = Xk_end + D( j +1) * Xkj { j } ;

10 i f k == N°1

11 J = J + t ( k+1) * ( Zkj { j } ( 9 ) ° qgWell ) + wS( j s ) . * ( B( j +1) * qj * t f ) + (m/2) * ( (

Zkj { j } ( 9 ) +h2 ) . ^ 2 ) + 10.*sum( ( Uk_prev ° Uk) . ^ 2 ) ;

12 e lse

13 J = J + t ( k+1) * ( Zkj { j } ( 9 ) ° qgWell ) + wS( j s ) . * ( B( j +1) * qj * t f ) + (m/2) * ( (

Zkj { j } ( 9 ) +h2 ) . ^ 2 ) + 10.*sum( ( Uk_prev ° Uk) . ^ 2 ) ;

14 end





Appendix D

Line Search Method Plots

D.1 Tuning the Parameter c

The development of the iterations and Æ over the time horizon for run LS.1 is shown below in

fig. D.1. The iterations run until the change in ∏ reaches a set tolerance=0.15 or the number of

iterations exceed the maximum iteration cap of ten iterations. Run LS.1 below never converges to

the set tolerance, and therefore the iterations for all time steps are 10. The Æ is the step length,

which is adjusted by the line search method. Æ varies sporadically for each run, with no visible

trend.

Figure D.1: The development of the iterations and the step length Æ over the time horizon for run
LS.1.

The development of the iterations and Æ over the time horizon for run LS.2 is shown below in

fig. D.2. The iterations reach the maximum iterations for the first half of the time horizon, when

the number of iterations steadily decrease until stabilizing on two iterations needed for each time

step. The step length Æ mirrors the iterations trend, being small at first, then not updating a lot.

This is natural, as when the total gas lift approaches the optimal solution, Æ does not need to

update a lot for the set value of 10.

101



102 Appendix D. Line Search Method Plots

Figure D.2: The development of the iterations and the step length Æ over the time horizon for run
LS.2.

The development of the iterations and Æ over the time horizon for run LS.3 is shown below in

fig. D.3. The iterations reach maximum for all time steps, and the Æ updates less after the first 10

time steps.

Figure D.3: The development of the iterations and the step length Æ over the time horizon for run
LS.3.

From this it can be seen that run LS.1 and run LS.2 reach the maximum iteration cap each time

step.
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D.1.1 Tuning Parameter c with Ω = 0.9

When checking the tuning of c, three runs with the same values of c where performed with a dif-

ferent value of Ω. For the runs shown in fig. D.4 below Ω = 0.9, while c was varied with the values

of 0.001, 0.1 and 0.5. This tuning of c with a different Ω yields the same results, and the same

conclusion as for the other runs LS.1, LS.2 and LS.3 tuning the parameter c.

(a) The optimized prediction of lambda for the last time step, where c=0.001 and Ω = 0.9.

(b) The optimized prediction of lambda for the last time step, where c=0.1 and Ω = 0.9.

(c) The optimized prediction of lambda for the last time step, where c=0.5 and Ω = 0.9.

Figure D.4: The comparison of the lambda prediction horizon over sample instants N for the last
time step. The results were from an extra run performed for the tuning of parameter c, with a

different constant Ω = 0.9.
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D.2 Tuning the Parameter Ω

The alpha development in the runs tuning Ω, LS.4,LS.5 and LS.6, are shown below in appendix D.2.

The development of Æ is a mirroring of the iterations development, which as explained above is

from the fact that Æ needs less updating close to the optimal solution.

(a) Æ development for each time step in run LS.4.

(b) Æ development for each time step in run LS.5.

(c) Æ development for each time step in run LS.6.

Figure D.5: The development of the Æ for each time step in the simulation for run LS.4, LS.5 and
LS.6.
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D.3 Line Search method Without Maximum Iterations

The Æ development for the runs performed without a cap on the iterations, LS.7,LS.8 and LS.9, are

shown below in appendix D.2. The development of Æ is a mirroring of the iterations development,

which as explained above is from the fact that Æ needs less updating close to the optimal solution.

The dips in theÆ development that can be seen below, are the opposite of the peaks in the iteration

development, due to the new method of measuring tolerance.

(a) Æ development for each time step in run LS.7.

(b) Æ development for each time step in run LS.8.

(c) Æ development for each time step in run LS.9.

Figure D.6: The development of the Æ for each time step in the simulation.
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D.3.1 Run Aug.6 with the Measuring Tolerance

For run 6, which never reached the maximum iterations cap throughout the simulation, a run

with the new measuring method for tolerance was performed. The run is shown below in fig. D.7.

The new measuring method calculates the change in only the first ∏ on the prediction horizon,

tol=∏(1)k+1°∏(1)k . This result is not included with the other runs, however, it had fewer iterations

than any of the runs. This confirms that the method where tolerance is measured for only the first

sample instant in the prediction horizon is the best for lowest number of iterations needed for

simulation.

Figure D.7: The development of iterations and Æ for each time step throughout the simulation for
the extra run, a modified run LS.6 with the new method of measuring tolerance.
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Augmented Lagrangian Method Plots

E.1 Tuning the Parameter µ

The gas lift injection rate for run Aug.1, Aug.2 and Aug.3 are shown below in fig. E.1.

(a) The gas lift injection rates for the wells in run
Aug.1, where µ= 0.5 and Ø= 1.

(b) The gas lift injection rates for the wells in run
Aug.2, where µ= 1 and Ø= 1.

(c) The gas lift injection rates for the wells in run Aug.3, where µ= 2 and Ø= 1.

Figure E.1: The gas lift rate for each well from the augmented lagrangian decomposition NMPC is
shown up-close, for run Aug.1-Aug.3 to illustrate the trajectory of the simulation.

The prediction horizons for the first three runs for augmented lagrangian decomposition are shown

in fig. E.2. For run Aug.1 the first and the last optimized prediction horizon are shown fig. E.2a and

fig. E.2b, for run Aug.2 the first and the last optimized prediction horizon are shown in fig. E.2c and
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fig. E.2d and for run Aug.3 the first and the last optimized prediction horizon are shown in fig. E.2e

and fig. E.2f.

(a) The first optimized prediction horizon
for Aug.1.

(b) The last optimized prediction horizon
for Aug.1

(c) The first optimized prediction horizon
for Aug.2.

(d) The last optimized prediction horizon
for Aug.2.

(e) The first optimized prediction horizon
for Aug.3.

(f ) The last optimized prediction horizon
for Aug.3.

Figure E.2: The first and last optimized prediction horizon for run Aug.1-Aug.3.
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E.2 Tuning the Parameter Ø

The last prediction horizon of the total gas rate from both wells are shown below in fig. E.3. They

are included to show the deviation of the prediction from the optimal value. It can be seen that the

last optimized prediction horizon does not reach the active constraint in run Aug.5 and Aug.6, and

the runs are therefore not valid.

(a) The last optimized prediction horizon for total gas rate in run Aug.4, where Ø= 1.01 and µ= 2.

(b) The last optimized prediction horizon for total gas rate in run Aug.6, where Ø= 1.01 and µ= 2.

(c) The last optimized prediction horizon for total gas rate in run Aug.6, where Ø= 1.01 and µ= 2.

Figure E.3: The last optimized prediction horizons for the total gas rate in run Aug.4-Aug.6, where
Ø is tuned. The solid black line is the total gas rate over the sample instants and the dashed pink

line marks the gas capacity constraint at 8 kg/s.


