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Abstract

Offshore production facilities using pipeline-riser systems are experiencing terrain-
induced cyclic flow instability due to its pipeline configuration and multiphased
flow. The cyclic flow instability has been referred to as severe slugging. Anti-slug
control using the top-side choke valve is time-variant and open-loop unstable in
multiphased flow. The control systems available today are not robust and tend
to become unstable over time, as a result of inflow disturbances or plant dynamic
changes. This study investigates adaptive controller aiming to increase the ro-
bustness and restore the closed-loop performance while operating under unknown
uncertainties, and thus drive the system towards a higher production rate.

Three types of adaptive systems was evaluated in order to increase the robust-
ness of already existing optimal anti-slug control system. One self-tuning approach,
and two Model Reference Adaptive Controllers (MRAC) - with increasing com-
plexity was investigated. A comparison of an optimal tuned Proportional-integral-
derivative-filter (PIDF) controller to Linear-Quadratic-Regulator (LQR) followed
by Loop-Transfer-Recovery (LTR) without adaptation was also investigated.

There was a clear difference between self-tuning and the adaptive systems, in
which a scalar reference model improved the robustness and outperformed the
other adaptive systems. A self-tuning system was based upon updating the con-
troller using the slope after system excitation, along with a desired closed-loop
constant. The main drawback of self-tuning was that a miscalculation would re-
sult in instability with no point of return. A more complex observer-like reference
model adaptive system was not efficient enough using only one measurement. This
may be due to the significant measurement noise, which alters the error between
the observing model and the actual process. The robustness, performance and sta-
bility margins had minor differences in comparison to an optimal tuned PIDF and
Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR).
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Sammendrag

Offshore produksjonsanlegg som bruker stigerør systemer opplever syklisk ustabil
strømning basert på rørledningskonfigurasjonen og flerfasig massetransport. Denne
sykliske ustabiliteten blir referert til som severe slugging. Anti-slug kontrollsyste-
mer som bruker en strupeventil på toppen av stigerøret er tidsvariante og ustabil
ved åpen-sløyfe. Eksisterende kontrollsystemer tilgjengelige i dag er ikke robuste,
og vil omsider ustabil som en konsekvens av usikkerhet i innstrømningen eller
dynamiske endringer i prosessanlegget. Denne studien undersøker adaptive kon-
trollsystemer med mål i å øke robustheten og gjenvinne ytelsen ved lukket sløyfe,
og dermed drive systemet mot en økt produksjonsmengde.

Tre ulike typer adaptive systemer har blitt undersøkt for å øke robustheten
av allerede eksisterende anti-slug kontrollsystemer. En av systemene innebar et
selvjusterende system, og to modell referanse baserte systemer. En sammenligning
av en optimalt tunet PIDF kontroller mot LQR, etterfulgt av LTR uten adaptiv
prosedyre ble også undersøkt.

Det var en klar forskjell mellom selvjusterende og de adaptive systemene, der en
skalar referansemodell utklasserte de andre modellene. Det selvjusterende systemet
var basert på en oppdatering av kontrolleren ved å bruke stigningskurven etter en
eksitasjon av prosessen, i tillegg til en ideell tidskonstant. Den største utfordringen
med selvjusteringen var at en feilberegning kunne resultere i ustabilitet uten mu-
lighet for gjenvinning av stabilitet. Et mer komplekst adaptive system ved bruk
av observator referansemodell var ikke effektiv nok med kun én måling. Dette kan
skyldes den betydelige målestøyen som opptrer i måledataene. Robusthet, ytelse og
stabilitetsmarginer viste mindre forskjeller i sammenligning av en optimalt tunet
PIDF og med LQG/LTR.
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Chapter 1

Introduction

1.1 Severe slugging in flow line-riser systems

Floating facilities are able to move laterally with the wind and waves. The pipeline
risers are, however, fixed to the seafloor, which implies that a certain displacement
may occur between the riser pipeline and the connection point to the subsea reser-
voir. Various mechanisms and configurations are used to expand and contract the
pipeline riser movements in reference to the floating facility. Some mechanisms
used to act as motion compensator are e.g. buoyancy cans attached to the flex-
ible pipeline. These buoyancy cans contributes to ensure that the pipeline may
withstand the dynamic tension and stress level. Some of the configurations applied
today are exemplified in Figure 1.2.

Slugging are most frequently caused by the flow line geometry and uneven
fluid distribution among phases within the equipment. These properties are in-
ducing multiphase flow velocity differences and instability in gas lift flow. This
multi phased flow may include oil, water, gas, sand, sediments, and other solid
compounds such as wax, asphaltenes and napthenates among others.1 The effect
of these phases combined with the modified pipeline configuration induces terrain-
induced slug flow cycles with large pressure and flow variations.2 A slug is a mixture
of liquid and solid components which are forced out of the pipeline due to a high
pressurized gas pocket. Most oil reservoirs produces gas, which will accumulate at
the highest point, while the liquid will form a liquid blockage at the lowest point
of the pipeline.3 The accumulated gas will eventually build up and violently burst
out through the pipeline. A step wise schematic presentation of severe slugging is
presented in Figure 1.1. In this figure there are four stages summarized, in which
can be explained as following:

1
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• Step a) - Gas accumulates at the highest point, and consequently liquid at
the lowest point due to density differences.

• Step b) - The gas pressure is lower than the hydrostatic pressure. The
liquid is blocking the riser entrance, and prevents the gas from escaping. Gas
pressure will continue to increase.

• Step c) - When the gas pressure exceeds the hydrostatic pressure, the gas
will push the liquid out of the riser - causing a violent blowout.

• Step d) - All the available liquid in riser has been pushed out, and will
eventually fall back into the lowest point and the process will repeat.

a)  Slug formation b)  Slug production

d)  Liquid fallback c)  Blowout

Liquid

Gas

Figure 1.1: Steps involved in terrain-induced slug flow cycle for a pipeline-riser configu-
ration with a separator at topside of the riser pipe. Liquid presented in red, and gas in
white.

Unstable flow may, consequential, lead to poor separation followed by heat ex-
changer damage, while unstable pressure may lead to high level trips in compressor
or separators. The economic losses due to maintenance cost and equipment replace-
ment are substantial. Some production facilities are using a "slug catcher" to cope
with the oscillating mass flow. One of the disadvantages of using a slug catcher at
the production facility is the large size and buffer volume necessary to handle both
the violent flow volumes and - velocities.2 The main goal in production industries
is to maximize the production rate, while still maintaining system stability.

An automatic control system is necessary to ensure a stable and steady flow -
also known as a Flow Assurance system. The main concept of flow assurance is to
ensure a successful - and economical flow from reservoir to point of interest. The
financial losses due to a failure in the flow assurance system may be enormous.
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Free Hanging 
Catenary

Lazy Wave Steep Wave 

Lazy-S Steep-S Plaint Wave

Figure 1.2: Exemplified common used flexible riser configurations.4

There are several approaches to cope with inflow disturbance and plant changes,
but they are not very robust.5

1.2 Previous work

A simplified four-state model describing the cyclic slug flow was previously de-
veloped by Jahanshahi and Skogestad 6 . This model describes the system with
a relative good match with few tuning parameters. The four-state equations are
presented in Equations (1.1a)-(1.1d). The model is simplified in terms of only two
phases; namely liquid, and gas. The liquid phase is calculated with the properties
of water.

dmg,p

dt
= wg,in − wg,r (1.1a)

dml,p

dt
= wl,in − wl,r (1.1b)

dmg,r

dt
= wg,r − αw (1.1c)

dml,r

dt
= wl,r − (1− α)w (1.1d)



4 Introduction

Were:
mg,p: mass of gas in pipeline
ml,p: mass of liquid in pipeline
mg,r: mass of gas in riser
ml,r: mass of liquid in riser
α: gas mass fraction

The flow rates of gas, wg,r, and liquid, wl,r, from the pipeline to the riser
are determined by a pressure drop across the riser-base where they are described
by virtual valve equations. The outlet mixture flow rate, w, is determined by
the percentage opening of the top-side choke valve, Z. The flow rates and actual
gas mass fraction, α are previously presented by Jahanshahi and Skogestad 6 . A
linearized form of this model will be the basis for the control design throughout
this thesis.

An illustrative presentation of the states with reference to experimental config-
uration set up is presented in Figure 1.3.

wg,in 

wl,in 

w

Ps

Lr

Prt

Z

Prb

w

wl,r

g,r

P

θ 

in 

Figure 1.3: A schematic presentation of the notation of states as described in Equation
(1.1). Illustrative graphics from previous work of Jahanshahi et al. 5

1.2.1 Controllability

Automatic control using the top-side choke valve, Z, can eliminate severe slugging,
but increases the back pressure and decreases the production rate. Control of
the choke valve in combinations with pressure measurements is the recommended
solution to prevent severe slugging flow conditions at offshore oilfields.5

With the inlet pressure, Pin as measurement variable, Jahanshahi et al. 5 found
the critical opening at the top-side choke valve to be Z∗ = 15%. This implies that
a valve opening Z > 15% results in unstable, oscillating system without closed-
loop control. A experimental bifurcating plot with data from Jahanshahi and



1.3. Optimal controller 5

Skogestad 7 is presented in Figure 1.4. This plot describes the oscillating max/min
pressure (solid line), and the static gain of the system (dashed line) with respect to
given valve opening, Z. The gain of the system is described as k = dy/du = dPin/dZ .
This implies a inverse response in which a reduced set point pressure, Pin, leads to
a larger topside valve opening, Z, to maintain constant system gain.

Topside valve opening, Z (%)
0 10 20 30 40 50 60 70 80 90 100

P
re

s
s
u

re
 [

K
P

a
]

10

15

20

25

30

35

40

45

50

Steady-State
Max/Min

Figure 1.4: Bifurcating plot with experimental data obtained from Jahanshahi and Skoges-
tad 7 A valve opening, Z, larger than 15% causes the inlet pressure, Pin (see Figure 1.3)
to oscillate between the solid lines describing the maximum and minimum pressure. The
dashed line is the static system gain at steady-state.

1.3 Optimal controller

1.3.1 Proporional-Integral-Derivative controller

The Proportional-integral-derivative (PID) is generally based on minimizing a cer-
tain error between desired operating point, and the actual process output.

The PI and PID controllers are the most widely used controller in the industries.
The PID controllers are superior in combination of performance and robustness,
with respect to its relative simplicity. PID controller is often represented as the
fundamental component, integrated into more sophisticated control schemes - such
as adaptive systems and Model Predictive Control (MPC).8 A filter part may
be added to the controller to prevent rapid randomized noise from entering to the
controller and alter the output. This is known as a Proportional-integral-derivative-
filter (PIDF) controller.9 The optimal PIDF controller with a valve opening of Z =
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30% as nominal operating condition, was found by Jahanshahi and Skogestad 7 , and
is presented in Table 1.1. A description of a PIDF controller is defined in Equation
(1.2a) and (1.2b) in two different structures.

u(t) = Kc

(
e(t) + 1

τi

t∫
0

e(s)ds+ τdė(t)
τd

η ė(t) + 1

)
, Standard form (1.2a)

u(t) = Kce(t) +Ki

t∫
0

e(s)ds+Kd
ė(t)

τf ė(t) + 1 , Parallel form (1.2b)

were: e = ys − y = r− y, and τf = τd

η . The standard form of the PIDF controller
defines a filter coefficient, η = τd/τf

, which defines the location of the pole in the
derivative filter.10

Kcstd
= Kcpar

, τistd
=
Kcpar

Ki
, τdstd

= Kd

Kcpar

, τfpar
=

Kd/Kcpar

η
(1.3)

Transformation of parameters from Ideal - (1.2a) to parallel PID form (1.2b) are
described in Equation (1.3).

Table 1.1: Optimal PIDF controller with respect to all parameters found by Jahanshahi
and Skogestad 7 .

Standard form Kc τi τd η

−3.09 1.9 60.4 15.1

Parallel form Kc Ki Kd τf
−3.09 −1.62 −187 4

1.3.2 Linear-Quadratic-Regulator

The LQR design problem is to design a controller such that a cost function, J is
minimized in terms of weight factors in reference to controller output, and speed of
system response.11 A state space representation is used upon designing the LQR
controller. The Linear-Quadratic-Regulator (LQR) is one of the most commonly
used control design within aerospace.12 Previous work has shown that the LQR
controller may outperform the general PID with certain system dynamics.13,14
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With all the states available for measure, the LQR design generally gives good
performance with good stability margins. One of the main reasons for the Linear-
Quadratic-Regulator attractiveness within the industrial application, is the guar-
anteed frequency properties with a minimum gain margin of [−6,∞], and phase
margin of at least 60°.15 The general cost function of LQR design is presented in
Equation (1.4).11

JLQR =
∞∫

0

xTQx+ uTRu dt (1.4)

were the penalty factor Q ∈ Rn×n and R ∈ Rm×m are symmetric positive-definite
matrices. The purpose of the cost function is to minimize the "energy" of both the
controlled output and the control signal. The tuning parameters; Q and R, weights
the cost function in terms of state or control output, respectively.

In cases were the states are not available for feedback, a dynamic compensator
is required to predict the states - also known as observing design. The physical
states are then estimated with use of the actual measured variable, and the states
are indirectly calculated in combination with an adequate model representation.
When a optimal controller (LQR) is combined with an optimal state estimator
(Kalman filter), the control design is referred to as a Linear-Quadratic-Gaussian
(LQG) problem.

In order to prevent degradation of frequency domain properties, such as gain
-, phase and delay margins of the design with state estimation, a recovery design
is required. The recovery is known as Loop-Transfer-Recovery. A combination of
both state estimation and a frequency domain recovery is referred to as Linear-
Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR). The Kalman filter
is then no longer recognized as an optimal state estimator, but a dynamic com-
pensator/observer tuned for optimal robustness and performance.15 The observer
gain is, in other words, not optimized for noisy measurements, but with respect to
optimal Loop-Transfer-Recovery (LTR).

1.4 Adaptive control

An optimal controller is designed and linearized around a certain operation con-
ditions. The performance of this controller is expected to be robust and stable
in presence of disturbance within these conditions. If the operating conditions
are changed, the uncertainties will change, which implies that the system baseline
controller will deteriorate from the optimal closed-loop performance. The main
objective of the adaptive controller is to maintain consistent performance of the
closed-loop system in presence of uncertainties and disturbances.



8 Introduction

1.4.1 Self-tuning

Self-tuning differs from adaptive on the basis of that an adaptive is on-line at
all time. Self-tuning is more an one-time event adjustment after a certain plant
stimulus. A set point change followed by a controller retune is considered a one-
time event - unless the system is continuously exciting the process plant in order
to retune. This distinction is, however, debated, but the proposed definition above
is consistent throughout this thesis.

1.4.2 Reference model based adaption (MRAC)

The main idea of Model Reference Adaptive Controller is to specify the desired
performance of a command-tracking system. This would eventually define the ideal
response of the system output due to external commands. The ideal reference model
design should represent the actual system sufficient enough to be used as a reference
to measure and control the physical states. In other words an "explicit model
following"-system. In essence, a Model Reference Adaptive Controller (MRAC)
system exert a command or a set point, and drives both the plant and reference
model towards desired trajectories. The difference between the actual plant and the
reference model defines the tracking error, which is actively used in the adaptive
laws for correction. The MRAC design requires the adaptive laws to preserve
closed-loop stability. This could be described by Lyapunov stability theorem.

Lyapunov stability theorem defines how an energy-like function, a so-called
Lyapunov function, changes over time. The energy-like function contributes to a
conclusion whether the system is stable without solving the differential equation.
Stability of a dynamic system can be addressed as the trajectories of the system
under small perturbations of the initial conditions over an infinite time interval.
The notion of stability requires that the continuity property hold infinitely in time.
Lyapunov stability is illustrated with Figure 1.5. In this figure the solution of
an arbitrary differential equation is defined as x(t;x0), with the initial condition
x(t0) = x0. This solution is unique and exists on a finite open-ended interval
[t0, T ). The changed system property due to initial values can be described as
follows: Given any positive constant ε > 0 there exists a sufficiently small positive
constant δ > 0. For all perturbed initial conditions (x0 + ∆x0) were |∆x0| ≤ δ.
The corresponding perturbed solution x(t;x0 + ∆x0) deviates from the original
system by no more than ε. In other words, ||x(t;x0 + ∆x0) − x(t;x0)|| ≤ ε ∀
(t0 ≤ t < T ). This is further demonstrated in Figure 1.5, were the red line
illustrates the perturbed initial conditions and are within the 2ε-strip. Lyapunov
stability requires the system to orbit within some given boundary, marked as a
dashed line in Figure 1.5.16
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x (t,  x 0)
x (t,  x 0 + ∆x 0)

x 0

x 0 + ∆x 0

Figure 1.5: Lyapunov Stability illustrated: Continuity of system solutions with respect to
initial conditions. The red line illustrates the system trajectories with perturbed initial
conditions were it is, per definition, stable as long as the trajectory stays within the ε
boundary marked in dashed lines.15

1.5 Digital signal filtering

A digital filter is a system which performs mathematical operations on continuous
or sampled, discrete-time signals to reduce or amplify certain conditional frequency
range. The mathematical representation of the filter is determining the behavior of
the filter. In control theory the signal obtained from the system may be influenced
by high frequent noise in which a low frequency-pass filter is required to present
a smoother form of the signal. The low-pass filter passes signals with a frequency
lower than a certain frequency cutoff, which eliminates the high frequency. A
low-pass filter is often used with discrete data containing high frequent noise, in
combination with PID/PD-controller. The derivative part in the controller may
greatly amplify the short-term signal fluctuations without the filter.17 The low-pass
filter enables the interpretation of the signal to represent the signal fluctuations
more accurate and improves the subsequent calculations.18





Chapter 2

Aims and Objectives

Severe slugging has a negative impact on the operation of offshore production
facilities which may, in the worst cases, cause a plant shutdown. Control systems
available today are not robust and tend to become unstable over time, as a result
of inflow disturbances or plant dynamic changes. Automatic control using the
top-side choke valve can eliminate severe slugging, but increases the back pressure
and decreases the production rate. The economical benefit of a high production
rate combined with an open-loop unstable system at large choke valve opening
reveals an area, which need to be optimized and driven to its maximum. An
optimal controller is designed and linearized around a certain operation conditions.
The performance of this controller is expected to be robust and stable in presence
of disturbance within these conditions. If the operating conditions are altered,
the uncertainties will change, which implies that the system baseline controller
will deteriorate from the optimal closed-loop performance. The main objective
with an adaptive controller is to increase the robustness and restore the closed-
loop performance while operating under unknown uncertainties, and thus drive the
system toward a higher production rate. This was the motivational fundament
behind this thesis.

2.1 Specific objectives

The aim is to find a simple and robust adaptive system to mitigate the cyclic
slug flow. One self-tuning method, and two different model reference adaptive
controllers will be investigated. This work is a continuation of previous research
by Jahanshahi et al. 5 on the slugging rig installed at NTNU, with the simplified

11
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four-state model. This model is used to evaluate both the system behavior and the
estimated adaptive controller. The control structure throughout this thesis will be
pressure measurement at pipeline inlet to control the topside choke valve. This
control structure has by previous work shown to be controllable.19 To the authors
knowledge, there has not been conducted any previous adaptive experiments using
a Single Input Single Output in comparison between optimal PID and LQG/LTR
on the slugging rig.

Adaptive systems will be step-wise implemented with increasing complexity
in both simulation and experimentally. First step is a self-tuning system that
will be presented and implemented experimentally, followed by a scalar reference
model implemented simulative and experimentally. Both methods will be in use
of an optimal tuned PIDF as a baseline controller. Further on, a more compli-
cated adaptive system will be presented and implemented both in simulations and
experimental. The baseline controller in this adaptive system will include an opti-
mal LQR-controller in combination with Loop-Transfer-Recovery. Common to all
adaptive approaches is that only one measurement will be available to regulate the
system. Stability margins of an optimal tuned PIDF controller to LQR followed
by LTR without adaptation will also be investigated.



Chapter 3

Methods

Implementation and comparison of one self-tuning method, and two types of adap-
tive systems - with increasing complexity was evaluated. The adaptive systems
was simulated before they were implemented into the actual process. The adap-
tive concepts based on reference models in this thesis are inspired by Lavretsky
and Wise 15 and their extensive work within the field of aerospace. The matlab
models are modified from De Oliveira et al. 20 previous work with Multiple Inputs
Multiple Outputs (MIMO) on the severe slugging problem.

3.1 Experimental slugging setup

The experiments where performed on a laboratory for anti-slug control at the
Chemical Engineering Department of NTNU. A schematic presentation of the ex-
perimental setup of the slug rig is presented in Figure 3.1. The pipeline and the
riser are made from flexible pipes with 2cm inner diameter. The length of the
pipeline is 4m with 15° incline angle. The height of riser is 3m. A buffer tank is
installed to simulate the effect of a long pipe with the same volume, such that the
total pipe length would be about 70m.

In Figure 3.1 the buffer pressure (P1) is used as measured variable with the top
side choke valve as input for control. A controller system in form of a Proportional-
integral-derivative(PID) - or a Linear-Quadratic-Regulator(LQR) controller is cou-
pled with pressure data. This implies a Single Input Single Output (SISO) system,
leaving one degree of freedom for control. An illustration of the control scheme is
presented in Figure 3.2. In this figure the pressure control, PC, sends the signal to
a pressure transmitter, PT , which is used as direct input to the controller. In this

13
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case noted as a PID. The measurement frequency is limited to, fs = 10Hz. The
pressure within the separator after the topside choke valve is nominally constant
at atmospheric pressure. The feed into the pipeline is assumed to be at a constant
flow rate of 4 L

min of water, and 4.5 L
min of air.

Pump

Buffer

Tank

Water

Reservoir

Seperator

Air to atm.

Mixing Point

safety valve

P1

Pipeline

Riser

Top-side

Valve

Water Recycle

FT water

FT air

P3

P4

P2

Figure 3.1: Experimental slug model setup at NTNU. Measured variable is in this figure
P1, and the controlled variable is the topside choke valve at top of riser. Buffer tank is
installed to simulate the effect of a long pipe, such that the total pipe length would be about
70m. Figure obtained by previous work conducted by Jahanshahi and Skogestad 7

Reservoir

Well

PC

PT

Topside 
Valve

PID

Wellhead 
Valve

Riser base

Riser

Separator

Figure 3.2: Illustration of a SISO system with pressure control at well top, and topside
choke valve as controlled variable.
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3.2 Simulation model

3.2.1 Theoretical backround

The four state model used for simulation were developed by Jahanshahi et al. 5 .
This model was used to map the relationship between system gain, poles and
zeros, with respect to valve opening. A state space linearized at a valve opening
of Z = 30% was used to determine the state controllability and through design of
MRACs, based on previously optimal control design at these operation conditions.

A system is controllable if the controllability matrix C has full row rank. That
is the largest possible number of linearly independent rows in a matrix.21

C =
[
B AB A2B . . . An−1B

]
(3.1)

were n is the number of states.
The simulation was performed using matlab and Simulink.

3.3 Self-tuning based on response slope

3.3.1 Theoretical design

The system response after a set point change may be used to calculate the time
constant. This self-tuning system is based on using the estimated closed-loop time
constant, τc, to update the controller. In order to determine the closed-loop time
constant, a simple general method was implemented. The closed-loop time constant
was calculated with an induced excitation of the system. The maximum slope in
a step response of the system was used to estimate the time constant. This is a
well known procedure, but are known to only be valid for a first order plus time
delay systems.22 This evaluation is thus a first order approximation of the slugging
system.

An example of this technique can easily be explained with an arbitrary fourth-
order system described as G(s) = 1

(s+1)4 . A step response to this system is pre-
sented in Figure 3.3(a).

The time constant, τ , gain, k, and delay, θ can be estimated with use of Equation
(3.2)-(3.5).

k = y(t + ∆t)− y(0)
∆u (3.2)

τ = |y(t + ∆t)− y(0)|
max(∆y) (3.3)

θ = t(i)− |y(i)− y(0)|
max(∆y) (3.4)
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(a) Step response of u = 1, of an arbitrary
fourth order system described as G(s) =

1
(s+1)4 marked in blue. The red line marks
the tangent to max(∆y). Blue dashed line
marks the time constant, τ .
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(b) Comparison of a fourth order model
(dashed red line) described as G(s) =

1
(s+1)4 , and a approximated first order
model plus time delay (solid blue line) with
gain, k = 0.9989, time constant, τ =
4.4588s, and delay, θ = 1.4254.

Figure 3.3: Induced set point change to a fourth order model. Open loop time constant,
τ , gain, k and delay, θ are estimated using the slope of the response. The fourth order
system is compared with the estimated parameters with actual system response, G(s).

were the u is the set point command, i is the index of maximum slope and is
calculated as expressed in Equation (3.5).

i =
{
j : max∆y(j)

∆t(j)

}
(3.5)

From Figure 3.3(a), the system gain was calculated to be, k = 0.9989, time
constant, τ = 4.4588s, and delay, θ = 1.4254. A comparison of the actual fourth
order system, and the approximated system equation is presented in Figure 3.3(b).

The goal is to drive the system toward the desired closed-loop time constant.
A desired time constant is chosen as a reference to the self-tuning system. The
difference in the desired - and estimated closed-loop time constant τc, is used to
update the controller gain, as described in Equation (3.6). A combination of Equa-
tion (3.6) and (3.7) is referred to as the self-tuning law for this system with respect
to gain.

Kcnew = κ Kcold
(3.6)

Were κ is a case criterion and is defined in Equation (3.7). Kcold
is the optimal

PIDF controller gain as derived by Jahanshahi et al. 23 . The process is iterative,
thus the next tuning procedure the Kcold

represents the previous gain.
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κ =

1, if |τc − τdes| ≤ 1.
γ(τc − τdes), otherwise.

(3.7)

Were γ is a tuning parameter. The case criterion is defined to reduce the aggres-
siveness of the self-tuning system.

A simple approach to update the integral part was inspired by Jahanshahi 19 .
A new integral time or integral gain are estimated as described in Equation (3.8).

τI = τInom

(
Z̄

Znom

)
, KI = KInom

(
Z̄

Znom

)
(3.8)

were τI is the integral time, Ki is the integral gain. τInom and KInom is the integral
time and integral gain at nominal operating point (Table 1.1), respectively. Z̄ is
the mean valve opening and Znom is the valve opening at nominal operating point.

This proposed method uses a factor, based on the mean valve opening, Z̄ and
valve opening at nominal operating point, Znom, to update the controller. The
integral time or - gain is recalculated as the mean valve opening is changing. A
recalculation of the integral part in either forms impacts the controller characteris-
tics differently. The transformation from Ideal - (1.2a) to parallel PID form (1.2b)
is described in Equation (1.3).

The measurement output from the slugging system consists of high frequent
noise. The noise poses complications with respect to calculations of the new closed-
loop time constant without proper filtering. An example of the high frequent noise
is presented in Figure 3.4. In this figure a certain area is further zoomed in to
magnify the high frequent noise. Unstable and irrelevant regions in this example,
at start and end, is excluded with purpose.
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Zoomed area of plot

Figure 3.4: Illustrative example of high frequent noise in measurement output. Unstable
region (200 < t < 1300) is excluded with purpose. Meta figure is the given zoomed callout.
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Digital signal filtering

A Butterworth filter is commonly used in digital signal processing. The filter is
designed to maximize the flatness of the pass band in the frequency response.24 A
normalized representation of an analog Butterworth filter is presented in Equation
(3.9).

H(jω)H(−jω) = |H(jω)| = 1√
1 +

(
ω
ωc

)2n
(3.9)

were n is the number of filter poles, ω is the angular frequency [rad/s], ω = 2πf ,
were f is the temporal frequency [Hz].

A second order, n = 2, Butterworth filter with a cut off frequency, ωc = 1rad/s

becomes:
|H(jω)| = 1√

1 + ω4
= 1√

(1− ω2)2 + (
√

2ω)2
(3.10)

The complex conjugate of Equation (3.10) is presented in Equation (3.11).

H(jω) = 1
(1− ω2) + (

√
2ω)j

= 1
−ω2 +

√
2ωj + 1

(3.11)

A transformation of the filter represented in the frequency domain into the s-
domain is performed by replacing ω with s/j . A second order Butterworth filter
represented in the s-domain is presented in Equation (3.12).

H(s) = 1
s2 +

√
2s+ 1

(3.12)

In Equation (3.10), the cut off frequency of the filter is presented with a nor-
malized cut off frequency at 1rad/s. The filter can be designed for any cut-off fre-
quencies with a substitution of the Laplace operator, s, replaced with s = s

ωc
.25.

The general form of the Butterworth filter in s-domain for a given cut off frequency
is presented in Equation (3.13).

H(s) = ω2
c

s2 + s
√

2ωc + ω2
c

(3.13)

The transformation of the filter from continuously s-domain to the discrete
z-domain requires bilinear transformation.26 This transformation involves digital-
izing an analogue filter which maps the s-plane poles and zeros into the z-plane, and
are designed to preserve the frequency characteristics. A mathematical description
of bilinear transformation is presented in Equation (3.14). During mapping the
entire jω axis is mapped onto the unit circle in the z-plane. The left-half s-plane
is mapped inside the unit circle, and the right-half s-plane is mapped outside the
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unit circle. This implies that the stable poles from s-planes are located inside the
unit circle in the z-domain.

s = 2
T

1− z−1

1 + z−1 (3.14)

were T is the sampling period
A combination of Equation (3.12) and (3.14) gives a second order digital But-

terworth filter.

3.3.2 Implementation

As the new controller parameters, Kc, Ki and τi, are obtained, they was used,
both separately and in combination to update the optimal PIDF controller in both
standard, and parallel form to observe their different influence on the system. A
schematic illustration of the self-tuning system is presented in Figure 3.5.

r +
C(s) G(s)

y

H(z)

−

Self − tuning
law

yf

τdes

Cold(s) Cnew(s)

Figure 3.5: Block scheme of the self-tuning system. The controller is presented as C(s),
system dynamics as G(s) and a discrete low-pass filter is presented as H(z). Desired
closed-loop time constant is annotated as τdes and filtered signal is annotated as yf .

Matlab was used to calculate the proper poles and zeros for a second order
Butterworth filter with a normalized cut off frequency of 0.02. The poles and zeros
are describing in the filter as presented in Equation (3.15). This representation of
the filter is also known as a finite impulse response filter in discrete form.27

H(z) =
(
9.447× 10−4) (

z + 1
)2

z2 − 1.911z + 0.915 (3.15)

A pole-zero plot with the corresponding poles and zeros describing the filter is
presented in Figure 3.6.
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Figure 3.6: Location of poles and zeros in the applied discrete Butterworth filter. Zeros
= [−1,−1], and Poles = [0.9556 + 0.0425i, 0.9556− 0.0425i].

Experimental

At nominal operating point, the closed-loop time constant, τc was estimated to
3 seconds. This was used as the reference time constant, τdes, through further
calculations. The valve opening at nominal operating point with optimal PIDF
controller (Table 1.1), was in previous studies found to be Znom = 30%7. The
tuning parameter was defined as γ = 1, during experimental runs.

3.4 Scalar reference model adaptive system

3.4.1 Theoretical design

The intention of this model is to design an adaptive controller which includes a
feedback - and a feed forward term based a first order reference model, in addition
to the baseline controller. The concept and derivation of the adaptive laws in this
section are adapted from Lavretsky and Wise 15 .

Consider a Linear Time-invariant (LTI) system described by

ẋ = Ax+B
(
u−ΘTΦu(x)

)
(3.16a)

y = Cx (3.16b)

where Θ is an unknown constant, and Φu is a regressor related to the baseline con-
troller ubl. The regressor vector has to satisfy the Lipschitz continuous condition.15
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An assumption of C = Inx×nx implies that the system state is the measurable out-
put y = x.

and, similarly, a reference system described by

ẋref = Arefxref +Brefrcmd (3.17a)
yref = Crefxref (3.17b)

Combining Equation (3.16a) and (3.17a), a control solution can be formulated
as:

u =
(Aref −A

B

)
x+

(Bref
B

)
rcmd + ΘTΦu(x) (3.18)

Were a feedback term, feed forward term and baseline controller term can be de-
scribed as presented in Equation (3.19), respectively.

Kx =
(Aref −A

B

)
, Kr =

(Bref
B

)
, Ku = ΘT (3.19)

Since the system parameters is unknown, the ideal controller gains, Kx, Kr and
Ku, has to estimated instead of computed directly. Which implies that Equation
(3.18) boils down to:

u = K̂xx+ K̂rrcmd + K̂uΦu(x) (3.20)

were Kx,Kr and Ku in this case, represents the estimated feedback gain, feed
forward gain and baseline controller gain, respectively.

With Equation (3.18) describing the controller output, the reference model in
Equation (3.17a), can be rewritten with unknowns as:

ẋref = (A+B ·Kx)︸ ︷︷ ︸
Aref

xref + (B ·Kr)︸ ︷︷ ︸
Bref

rcmd (3.21)

with gain estimation error described as:

∆Kx = K̂x −Kx (3.22a)

∆Kr = K̂r −Kr (3.22b)

∆Ku = K̂u −Ku (3.22c)

With Equation (3.22) and Equation (3.21), the closed-loop system can be rewrit-
ten into the following form:
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ẋref = (A+B ·Kx)︸ ︷︷ ︸
Aref

x+ (B ·Kr)︸ ︷︷ ︸
Bref

r

+B(∆Kxx+ ∆Krrcmd + ∆KuΦu(x))
(3.23)

Error dynamics can be described by a subtraction of Equation (3.21) from
Equation (3.23)

ė = Arefe+B(∆Kxx+ ∆Krrcmd + ∆KuΦu(x)) (3.24)

In Equation (3.24), there are four error signals in which (1) is the process
error e, (2) is the feedback gain estimation error Kx, (3) is the feed forward gain
estimation error, Kr and (4) is the baseline controller estimation error, Ku. The
adaptive goal is to use the gains (K̂x, K̂r, K̂u) as tuning parameters, such that all
these four errors converge to zero, both globally and asymptotically. To solve the
problem, a Lyapunov candidate function (also known as energy function), must be
defined. This function represents the total "kinetic energy" of all accumulated error
in the system.

V (e,∆Kx,∆Kr,∆Ku) = e2

2 + |B|2γx
∆K2

x + |B|2γr
∆K2

r + |B|2γu
∆K2

u (3.25)

The Lyapunov candidate function described in Equation (3.25) represents a weighted
sum of squares of all the errors in the system. The positive scalars weights
(γp, γr, γu) will eventually become adaption rate constants. A differentiated Lya-
punov function with respect to time can be calculated,

V̇ (e,∆Kx,∆Kr,∆Ku) = eė+ |B|
γx

∆Kx
˙̂
Kx + |B|

γr
∆Kr

˙̂
Kr

+ |B|
γu

∆Ku
˙̂
Ku

(3.26)

The differentiated function described in Equation (3.26), is the system "power"
with respect to changes. A substitution of Equation (3.24) into (3.26), describes
the trajectories of the error dynamics with respect to time.

V̇ (e,∆Kx,∆Kr) =Arefe2 + e ·B(∆Kxx+ ∆Krrcmd)

+ |B|
γp

∆Kx
˙̂
Kx + |B|

γr
∆Kr

˙̂
Kr + |B|

γu
∆Ku

˙̂
Ku

(3.27)
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A rearrangement of Equation (3.27) yields:

V̇ (e,∆Kx,∆Kr) = Arefe
2 + ∆Kx|B|

(
sgn(B) · x · e+

˙̂
Kx

γx

)
+ ∆Kr|B|

(
sgn(b) · rcmd · e+

˙̂
Kr

γr

)
+ ∆Ku|B|

(
sgn(B) · Φu(x) · e+

˙̂
Ku

γu

)
(3.28)

As the goal is to achieve Lyapunov stability, it is desirable that the energy
function described in Equation (3.28) dissipates in time. In other words, V̇ ≤ 0.
It requires that V̇ is non-positive, when evaluated along the system trajectories.
This can be achieved if the adaptive laws are selected as following:

˙̂
Kx = −γx · x · e · sgn(B) (3.29a)

˙̂
Kr = −γr · rcmd · e · sgn(B) (3.29b)

˙̂
Ku = −γr · Φu(x) · e · sgn(B) (3.29c)

As a result of the Equation (3.29), the second and the third term in Equation
(3.28) disappears. Which results in

V̇ (e,∆Kx,∆Kr) = Arefe
2 ≤ 0 (3.30)

A consequence of Equation (3.30) the system "kinetic energy", V, is decreasing
function of time, thus Lyapunov stable.

By assumption of satisfaction of Lipschitz continuous condition with respect
to the baseline controller , Φu(x) = ubl, the final adaptive laws is rewritten as
presented in Equation (3.31). The baseline controller is the optimal PIDF controller
designed by Jahanshahi and Skogestad 7 with its respective parameters presented
in Table 1.1.

∂K̂x

∂t
= ˙̂
Kx = −γxx(y − yref ) · sgn(B) (3.31a)

∂K̂r

∂t
= ˙̂
Kr = −γrr(y − yref ) · sgn(B) (3.31b)
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∂K̂u

∂t
= ˙̂
Ku = −γuubl(y − yref ) · sgn(B) (3.31c)

were γx, γr and γu are tuning parameters in form of rate of adaption. The
integration of Kx,Kr and Ku are put on hold, if the controlled variable, the valve
opening, is saturated.

With the integrated adaptive laws from Equation (3.31), the adaptive controller
output is described in Equation (3.32).

uad = γs

(
K̂x(y − y0) + K̂r(r − r0) + K̂u(u− u0)

)
(3.32)

were y0, r0 and u0 are the pressure, set point and controller output at nominal
operating point, respectively. A scaling factor, γs, is introduced to prevent satu-
ration of the system. This was considered as an additional tuning parameter. A
linear valve equation was implemented in the design of the model developed by
Jahanshahi and Skogestad 6 . With the controller linearized around Z = 30%, it is
obvious that u0 = 30. This leads to (u−u0) = ubl, were ubl represents the baseline
controller output. The final controller output is presented in Equation (3.33).

u = ubl + uad (3.33)

were ubl is defined in Equation (1.2) with optimal PIDF controller from Table 1.1.

3.4.2 Implementation

A reference model was implemented as a open-loop first order model as presented
in Equation (3.34).

Gref (s) = 1
τdess+ 1 (3.34)

At nominal operating point, the desired time constant, τc was estimated to
3 seconds. This was used as the reference time constant, τdes, through further
calculations. The tuning parameters γx, γr, γu and γs was determined using a trial
and error approach. The result of the adaptive system was compared against the
optimal controller, without the adaptive part activated.

The adaptive system based on scalar reference model was implemented as pre-
sented in Figure 3.7.
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Gref (s)
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laws
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Error

Figure 3.7: Block scheme presentation of the scalar reference adaptive system. In this
figure the ubl represents the optimal PIDF controller, C(s), output, and uad is the adaptive
controller output as described in Equation (3.32). The slug process is labeled, G(s) and
reference model is labeled Gref (s).

Simulation

The tuning parameters, γx, γr and γu, was in simulation observed to have large
impact with respect to the stability. Minor changes led to large oscillations. The
most optimal tuning parameters were found to be as presented in Equation (3.35).

γx = 1, γr = 1
γu = 1, γs = 1

(3.35)

Experimental

As the experimental measurement data was highly influenced by randomized noise,
the tuning parameter γs was observed to be critical. The optimal tuning parameters
were found to be as presented in Equation (3.36).

γx = 0.5, γr = 1.7
γu = 0.07, γs = 0.07

(3.36)

The adaptive system was compared against experiments with a fixed controller.
That is with the adaptive part disabled.

3.5 Augmented state observer-like reference model

3.5.1 Theoretical design

As the pressure is not actually explicitly describing neither of the states, the states
will be estimated using an observing design. The measured output is extended to
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include the integrated error between the physical pressure and observing pressure,
in addition to the physical pressure. The state space is hence manipulated to
include the integrated error, with respect to set point, as an extra input variable.

Consider a LTI system described by

ẋp = Apxp +Bpu (3.37a)

y = Cpxp +Dpu (3.37b)

were Dp is zero due to absence of feed forward in the system.
with error dynamics described by Equation (3.38).

e = r − y = r − Cpxp (3.38)

and feedback control described by Equation (3.39).

u = K · x (3.39)

were u can be differentiated with respect to time.

u̇ = K · ẋ = K(Apxp +Bpu) (3.40)

By augmenting the system dynamics to include output tracking error, the extended
system can be described as presented in Equation (3.41).[

ėI

ẋp

]
︸ ︷︷ ︸

˙̃
x

=
[

0m×m −Cp
0np×m Ap

]
︸ ︷︷ ︸

Ã

[
eI

xp

]
︸ ︷︷ ︸
x̃

+
[

0m×m
Bp

]
︸ ︷︷ ︸

B̃

u+
[
Im×m

0np×m

]
︸ ︷︷ ︸
Bcmd

r (3.41)

were eI is the integrated error dynamics and consequently ėI = e. The correspond-
ing output vector as presented in Equation (3.42).

ỹ =
[

1 0m×np

0m×m Cp

]
︸ ︷︷ ︸

C̃

[
eI

xp

]
︸ ︷︷ ︸
x̃

(3.42)

The four-state slug model is consistent of a system state vector of xp ∈ R4, and
control input vector u ∈ R1 it follows that y = Cpxp ∈ R1. The augmented system
size as presented in Equation (3.43).

Ã ∈ Rn×n, B̃ ∈ Rn×m, B̃cmd ∈ Rn×m, C̃ ∈ R(m+1)×n (3.43)

Were the number of states, np = 4, number of inputs, m = 1 and the extended
system dimension as, n = np +m = 5.
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Linear Quadratic Regulator

The general cost function of LQR design is presented in Equation (3.44).11

JLQR =
∞∫

0

xTQx+ uTRu dt (3.44)

were the penalty factor Q ∈ Rn×n and R ∈ Rm×m are symmetric positive-definite
matrices, as defined in Equation (3.45)

Q =
[

q 0m×np

0np×np
0np×m

]
, R =

[
Im×m

]
(3.45)

The goal is to design the gain matrix to follow set point commands without
use of large gains. With R = 1, the selected Q is penalizing the error state, e, in
Equation (3.41). The element position q in Q is in other words the penalty scalar
factor with respect to the error.

A minimization of, JLQR, Equation (1.4) can be rewritten as:28

ÃTX +XÃ−XB̃R−1B̃TX +Q = 0 (3.46)

were X is an unknown symmetric matrix
The minimized cost function in form of Equation (1.4) rewritten into Equation
(3.46) is also known as the Algebraic Riccati Equation (ARE).

From this equation, the optimal LQR control policy is described in Equation
(3.47), with the Loop Transfer Function Matrix (LTFM) described in Equation
(3.48)

uLQR = −R−1B̃TX︸ ︷︷ ︸
KLQR

x̃ = −KLQR x̃ (3.47)

LLQR(s) = KLQR(sI − Ã)−1B̃ (3.48)

The reference model is defined in Equation (3.49).

Aref = Ã− B̃KLQR, Bref =
[
0m×np

1
]T
,

Cref = C̃, Dref = 0
(3.49)

Linear Quadratic Gaussian with Loop Transfer Recovery

As the physical pressure was available for measurement during state estimation,
a Loop-Transfer-Recovery was implemented to recover the desired performance as
predicted by LQR.
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Consider the following LTI augmented system model as:

ẋ = Ãx+ B̃u+ w (3.50a)

y = C̃x+ v (3.50b)

were w and v are zero by mean, uncorrelated random Gaussian noise.
The estimated state is designed by using Kalman filter state estimator:

˙̂x = Ãx̂+ B̃u+ Lv(y − ŷ) (3.51)

were ŷ is the output estimate, and Lv ∈ Rn×m is the Kalman gain, and is defined
by

Lv = Pf C̃
TR−1

0 (3.52)

With the estimated state described in Equation (3.51) and the Kalman gain
described in Equation (3.52), the steady-state error covariance, Pf = E

{
xxT

}
, can

be solved by using the ARE in form of Equation (3.53).

ÃTPf + Pf Ã− Pf C̃R−1
0 C̃TPf +Q0 = 0 (3.53)

were Q0 and R0 ∈ R are the process - and measurement noise covariance matrix
from Equation (3.52), respectively. Using the estimated state x̂ and the solution
of the LQR minimization, KLQR, the optimal controller with observer gain, Lv,
is formed. The estimation of the optimal control output is described in Equation
(3.54),

uLQG/LTR = −KLQRx̂ (3.54)

with the LTFM described in Equation (3.55).

LLQG(s) = KLQR(sI − Ã+ B̃Kc + LvC̃)−1LvC̃(sI − Ã)−1B̃ (3.55)

A block scheme describing the combination of LQR controller and a Kalman filter
state estimator is presented in Figure 3.8.

By observing the Loop Transfer Function Matrix in Equation (3.55), it is ob-
vious that the dynamic compensator, Lv, alters the frequency domain of the LQG
system. The recovery design is performed using the Lavretsky method.15

New covariance matrices was defined to tune the process - and measurement
noise, using a positive scalar v.

Qv = Q0 +
(v + 1

v

)
B̄B̄T (3.56)
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ŷ

x̂+ ˙̂x
+

B
+

Control

u

Plant

Figure 3.8: Block scheme in state space representation of LQG adaptive system with
Kalman filter state estimator as integral control estimated feedback as described in Equa-
tion (3.51). w and v are zero by mean, uncorrelated random Gaussian noise.

Rv =
( v

v + 1

)
R0 (3.57)

Were v > 0 is a common scalar tuning parameter chosen during design, and
B̄ =

[
B̃ X

]
. The extended "squared-up" matrix, B̄, is formed to have its column

rank equal to the row rank of C̃, such that C̃B̄ becomes invertible. That is B̄ ∈
Rn×(m+1). The corresponding extended system C̃(sI − Ã)−1B̄ has a minimum
phase, in other words no transmission zeros in the Right-half plane (RHP). This
known as the "squaring-up" part of the Lavretsky method. The added column is
fictitious in form of pseudo-inputs of the system and do not represent any physical
inputs of the system.29 A substitution of Equation (3.56) and (3.57) into the generic
ARE (Equation 3.58) the extended ARE emerges and is presented in Equation
(3.59).

ÃTPf + Pf Ã− Pf C̃R−1
v C̃TPf +Qv = 0 (3.58)

ÃTPv + PvÃ−
(

1 + 1
v

)
PvC̃

TR−1
0 C̃Pv +Q0 +

(
1 + 1

v

)
B̄B̄T = 0 (3.59)
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The observer gain is calculated as presented in Equation (3.60).

Lv = PvC̃
TR−1

v (3.60)

The observer system model designed from reference model (Equation 3.49) and
optimal observer gain is defined in Equation (3.61).

Aob = Aref − LvC̃, Bob =
[
Bref Lv

]
,

Cob = C̃, Dob = 0
(3.61)

Singular value decomposition is used to describe the "gain" and direction through
the system, and is calculated as described in Equation (3.62).

B̄T C̃TR
−1/2
0 = UΣV (3.62)

The factorized vectors, U and V are used to compose a orthonormal matrix, W ,
as described in Equation (3.63)

W =
(
U · V

)T
(3.63)

In this equation the singular value decomposition in Equation (3.62) gives a or-
thonormal matrix W ∈ Rm×m, in such that the error dynamics almost becomes
Strictly Positive Real (SPR), as long as the tuning parameter, v, is sufficiently
small.15.

A scaling factor based on B and controller dynamics is presented in Equation
(3.64). This factor was used to scale the observer error.

F = R
−1/2
0 WS (3.64)

We assume the numbers of inputs are less than number of outputs.
Were is S is chosen as:15

S =
[
Im×m 0(p−m)×m

]
(3.65)

were p = 2 represents the number of outputs as pressure and integrated error.
The adaptive laws are chosen as presented in Equation (3.66).

K̇p = γpΦx(x̂)
(
y − yref

)
· F (3.66a)

K̇u = γuΦu(ubl)
(
y − yref

)
· F (3.66b)

were γp and γu are tuning parameters in form of rate of adaption. The regressor
vectors, Φx and Φu, has to satisfy the Lipschitz continuous condition.15
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To ensure that the adaptive laws do not exceed the limitation of the controllers,
certain boundaries have to be defined.

K̇pproj
= Proj(K̇p,Θmax) (3.67a)

K̇uproj
= Proj(K̇u,Θmax) (3.67b)

The Projection operator presented in Equation (3.67), is designed to make sure
K̇p and K̇u stays within a certain boundary Θmax. This imposes that the adaptive
laws stays smoothly uniformly bounded in time. This operator is further described
by Pomet and Praly 30 , and accompanied by matlab code presented in Appendix
B.4.

Kp = max(−Θmax,min(Θmax,Kp)) (3.68a)

Ku = max(−Θmax,min(Θmax,Ku)) (3.68b)

If the Projection operator fails, the adaptive laws, K̇p and K̇u, could get out of
its boundary, Θmax. To prevent a projection failure a limiting criterion is defined,
and are presented in Equation (3.68). This is implemented in order to make sure
the controller gains stays within the boundaries, −Θmax < Kp/u < Θmax in a more
static matter after integration.

uad = −KT
p Φx(x̂)−KT

u Φu(ubl) (3.69)

The final controller output is presented in Equation (3.70).

u = ubl + uad (3.70)

were ubl is defined in Equation (3.54).

Dead-Zone Modification

To enforce the robustness of adaptive laws in presence of process noise the adapta-
tion should be stopped when the norm of the tracking error becomes smaller than
some value, ε.

µ =

1, if ||e|| > εmin.

0, if ||e|| ≤ εmin.
(3.71)
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were εmin represents a signal-to-noise boundary, obtained by observation of the
absolute scaled error between reference model and actual process, |(y− yref )| · |F |.

The disadvantage of using Equation (3.71) is the immediate transition between
adaption laws being active or non active. A smoother modulation of the dead-
zone boundary is presented in Equation (3.72).31 An illustrative example of the
dead-zone modulation is presented in Figure 3.9.

µ(||e||) = max

(
0,min

(
1, ||e|| − δεmin(1− δ)εmin

))
(3.72)

were δ is the transition range factor from the εmin boundary.
The adaptive laws presented in Equation (3.66) are thus be modified to

K̇p = γp µ Φx(x̂) (y − yref ) · F (3.73a)

K̇u = γu µ Φu(ubl) (y − yref ) · F (3.73b)

The regressor vectors, Φx and Φu, are chosen as defined in Equation (3.74).

Φx(x̂) = Cobsx̂, Φu(ubl) = ubl (3.74)

The adaptive laws with dead-zone modification are further projected as previ-
ously described.

ǫminδǫmin

µ

||e||

1

0

Figure 3.9: Illustrative example of the dead-zone modulation as described in Equation
(3.72).
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3.5.2 Implementation

A Luenberger-observer form was implemented as described in Equation (3.75).

˙̂x = Ax̂+Bu+ Lv(ym − ŷ) (3.75)

were x̂ is the estimated state by observation, Lv is the correction term as a function
of the estimation error, also known as the observer gain.

The augmented matrices linearized at nominal operating condition with Z =
30% are presented in Equation (3.76)-(3.77).

Ã = 1.0× 103



0 −3.9200 −0.0060 0 0
0 −0.0001 0.0000 0.0036 0.0000
0 −0.0451 −0.0095 2.5640 0.0036
0 0.0001 −0.0001 −0.0086 −0.0000
0 0.0451 0.0171 −6.1178 −0.0082


(3.76)

B̃ =



0
0
0

−3.01× 10−6

−2.22× 10−3


, C̃ = 1.0× 103



0.001 0
0 3.920
0 0.006
0 0
0 0



T

(3.77)

The observer-based system was implemented as presented in Figure 3.10.
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−+

ŷ ey

−
+

Figure 3.10: Simplified block scheme of observer-based adaptive system.
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The optimized LQR controller was designed as described in Equation (3.78).

Q =



q 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, R = 1 (3.78)

were q is the penalty scalar parameter with respect to state error. The performance
and robustness the controller with respect to q was characterized by delay margin,
settling time, controller usage and frequency roll-off for the system.

LQG/LTR

In the design of the Kalman filter the measurement noise covariance, R0, were
chosen as

R0 =
[

2 0
0 2

]
(3.79)

The right and left singular matrix, U and V were defined as

U = 1, V =
[

1 0
0 1

]
(3.80)

Which resulted in the orthonormal matrix,

W =
[

1 0
0 1

]
(3.81)

With S chosen as
S =

[
1 0

]
(3.82)

The scaling factor F, is presented in Equation (3.83).

F =
[
−0.7071 0

]T
(3.83)

The squared up matrix were chosen using uniformly distributed random num-
bers with a variance of 10−4 and a mean of 5 × 10−3. This matrix were kept
constant through all tuning optimization procedures, in order to keep each simu-
lation comparable.

B̄ =
[

0.0110 0.0084 0.0080 0.0095 0.0092
0.0086 0.0106 0.0124 0.0092 0.0093

]T
(3.84)
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The performance and robustness the Loop-Transfer-Recovery with respect to v
was characterized by Robustness, Performance and Stability (RPS) analysis.

The optimal Linear-Quadratic-Gaussian with Loop-Transfer-Recovery was de-
signed with penalty factor qLQR = 10 and tuning scalar vLTR = 100.

Simulation

The apparent optimal tuning parameters representing the rate of adaption are
presented in Equation (3.85). The simulated adaptive system was compared to a
fixed LQG/LTR controller.

γp = 1000, γu = 100
Θmax = 10

(3.85)

Experimental

As the experimental measurements are influenced by randomized noise, the dead-
zone, ε, was by observation of the scaled error (|F |·|ŷ−y|) found to be approximately
ε = 0.0016. The following tuning parameters representing the rate of adaption are
presented in Equation (3.86). The experimental adaptive system was compared to
a fixed LQG/LTR controller.

γp = 0.05, γu = 0.005
Θmax = 10, εmin = 0.0016

(3.86)

The adaptive system was compared against experiments with a fixed controller
using LQG/LTR. That is with the adaptive part disabled.
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3.6 Supervisory adaptation

A supervisor control is the administrative part of the adaptive control system. The
supervisory system does all the decision-making while detecting any potential mal-
functioning of the adaptive controller, and if any necessary action can be performed
to maintain stability. The supervisory control can be used to quickly adjust the op-
eration conditions, such as set point. If the controlled variables are saturated, the
adaptive controller is inoperable, hence the system stability would be difficult to
regain. A change of controller gain may not be applicable to the current operating
condition, while oscillating.32

The supervisory system determines the stability in two separate design forms.
One in which measures the Integrated Absolute Error (IAE) between set point and
actual system state, and one in which uses the period of oscillation to determine
whether the system is stable or not. Previous work conducted by De Oliveira
et al. 20 uses a supervisor system as described, and will be, in this thesis, only used
to determine the current stability condition.

(1) - Integrated Absolute Error:
Integrated Absolute Error is a performance test of the system. The performance
is calculated by integrating the absolute error between set point, and the physical
state over time. If the IAE exceeds a certain boundary, ε, the system is defined as
unstable. The IAE is calculated as presented in Equation (3.87), with the boundary
concept defined in Equation (3.88) .

IAE =
t∫

0

|r − y|dt (3.87)

unstable =

1, if IAE ≥ ε.
0, otherwise.

(3.88)

Were ε is some value obtained by trial and error.

(2) - Signal frequency: period of oscillation:
Cross-correlation may be used to measure the frequency of the signal. This dis-
tance/displacement is defined as the period of oscillation.

The distance between the peaks are used in comparison with another segment
window. If the frequency is decreasing the system are moving towards instability.
Set point must be changed upwards in order to regain stability. If the frequency
is increasing the system is controlled with a too aggressive controller gain. Set
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point must be changed downwards to counteract. The adaptive system should be
temporary turned off if the system is flagged as unstable, or if the control gain is
too high. An illustration of the concept of cross-correlation is presented in Figure
3.11. In this figure the ordinary signal (blue) is shifted (red) and matched with an
equal length signal from previous segment window (dashed line). The frequency is
increasing, which implies that the system is moving towards unstable conditions.

Time [s]

0 20 40 60 80 100 120 140 160 180 200

A
m

p
lit

u
d

e

16

18

20

22

24

26

28

30

Phase shift

Segment Window

Normal

Shifted

Figure 3.11: Cross-correlation for an arbitrary signal. The normal signal (blue) is shifted
(red) and matched with an equal length signal from previous segment window (dashed line)
to determine stability.

3.7 Evaluation of stability and robustness limitations

There are several ways to determine the RPS of a closed-loop system. The most
common approaches to determine the stability is to calculate the Gain margin
(GM), phase margin (PM), delay margin (DM). The stability margins measures
how close a stable-closed loop system is to instability before actually closing the
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loop. The margins are calculates as described in Equation (3.89).

GML = 1
|L(jωL180)| Lower Gain Margin (3.89a)

PM = ∠L(jωc) + 180° Phase Margin (3.89b)

θmax = PM

ωc
Delay Margin (3.89c)

Were ωL180 is the smallest phase crossover frequency at 180° and ωc is the gain
crossover frequency at 1 magnitude.

Lower Gain margin describes the gain factor the loop gain, |L(jω)| may be de-
creased before the closed-loop system becomes unstable. As there is more than one
phase crossover frequency for unstable systems, the lower gain margin will be the
critical gain margin. Phase margin describes the maximum phase lag the closed-
loop system may be shifted before the system becomes unstable. Delay margin
is the maximum allowed time delay before the closed-loop is at the borderline to
instability.

Sensitivity and robustness, on the other hand, may be characterized by the sensi-
tivity peak (Mt) and complementary sensitivity peak (Ms). The peak represents
the maximum value of the frequency response or sensitivity norm, || • ||∞. A small
Ms benefits feedback stability or set-point tracking, while a small Mt benefits sen-
sitivity to process noise.21 These benefits, however, are not possible simultaneously
as for a SISO: S(s) + T (s) = 1. The maximum peaks of the sensitivity and com-
plementary sensitivity are defined as presented in Equation (3.90).

Ms = ||S||∞ = max
ω
|S| , Mt = ||T ||∞ = max

ω
|T | (3.90)

Were S and T are described in Equation (3.91).

S = 1
1 +GC

, T = GC

1 +GC
(3.91)

Were G is the process dynamics, and C is the controller.
The sensitivity peak, Mt are often smaller than the complimentary sensitivity

peak,MS for stable processes, and oppositely for unstable processes.21 The slugging
system is an unstable system, which implies that the expected sensitivity will be
shifted towards Mt > Ms.

The system RPS analysis will be relative to a linearized operating point with
valve opening, Z = 30%.
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Results

All experiments were conducted with a run time of either 45 or 60 minutes, with
set point intervals as presented in Table 4.1. Run time and set points in simulations
and experiments are not equal, and can not be directly compared. The optimal
PIDF controller derived by Jahanshahi et al. 23 was used as baseline controller for
the self-tuning system and the adaptive system based on scalar reference model.
The adaptive system using an observer-like model was implemented with Linear-
Quadratic-Gaussian with Loop-Transfer-Recovery as the baseline controller. All
experiments were conducted under equal operating conditions, except for the self-
tuning system results.

Table 4.1: Experimental set point changes numbered with its respective value at given time.

Set point (N) Set point [kPa] Time [sec]
(45 min run)

Time [sec]
(60 min run)

1 24.0 0 0
2 23.0 675 900
3 22.0 1013 1350
4 21.5 1350 1800
5 21.0 1688 2250
7 20.5 2025 2700
8 20.0 2362 3150

39



40 Results

4.1 Controllability and System dynamics with the four
state model

The four state matlab model previously developed by Jahanshahi and Skogestad 6 .
Only one pressure measurement, P1 (Figure 3.1) was available throughout the
simulations. The model was also used to create a state space linearization with a
valve opening of 30%. This linearized state space was used to design and evaluate
the state controllability, stability and performance of PIDF and LQG/LTR.

The relationship between system gain and to valve opening, Z, is plotted in
Figure 4.1. This figure illustrates the rapid change of the system gain with respect
to valve opening. A pole-zero plot with respect to the valve opening is presented
in Figure 4.2.
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Figure 4.1: Plot of simulated system gain, K, with respect to valve opening, Z, and buffer
pressure, P1 as noted in Figure 3.1.

The state controllability matrix is presented in Equation (4.1).

C =


0 0 −0.0003 0.0155
0 −0.0156 0.4088 −6.1177
0 0 0.0003 −0.0241

−0.0022 0.0366 −0.8723 11.9907

 (4.1)

The state controllability matrix, C, has a full row rank of 4, thus equal to the
number of states.

The open-loop dynamics with optimal PIDF controller was plotted using Bode.
The result is presented in Figure 4.3. The Robustness, Performance and Stability
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Figure 4.2: Location of RHP-Poles (×) and Zeros (•) of the open-loop system with buffer
pressure, P1, measurement with respect to valve openings, Z, selected by colorbar.

(RPS) analysis for this system has a Lower Gain margin of 0.36, Phase margin of
65.34°, Delay margin of 1.90s, ||S||∞ : 1.03 and ||T ||∞ : 1.57.
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Figure 4.3: Bode plot of open-loop system linearized with a valve opening of 30% with
an optimal PIDF controller. Lower Gain Margin: 0.36, Phase Margin: 65.34°, Delay
Margin: 1.90, ||S||∞ : 1.03 and ||T ||∞ : 1.57.

The results generated with the four state model illustrated the challenges re-
garding controlling the closed-loop. Poles are located in the RHP and system gain
increases asymptotically towards zero.
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4.2 Self-tuning system based on response slope

All self-tuning experiments had a run time of 60 minutes in total with the optimal
PIDF as baseline controller. The set point changes are identical for all experiments,
and are presented in Table 4.1. A reference run with constant controller parameters,
hence no adaptation, is presented in Figure 4.4. This figure covers both the pressure
in upper figure, and the valve opening in the lower figure. This is the reference
for comparison for the results with adaption enabled. The controller was updated
using following approaches:

1. Standard form: Update Kp

2. Standard form: Update Kp and τi

3. Parallel form: Update Kp

4. Parallel form: Update Kp and Ki
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Figure 4.4: Experimental data with fixed gain with optimal PIDF. Black dashed line marks
the controller activation. In upper figure: subsea pressure with set point pressure (red
dashed line) from Table 4.1. In lower figure: Valve opening, 0 ≤ Z ≤ 100, with respect to
set point changes. Oscillatory slugging at set point, r = 21.0kPa.

The implementation of the self-tuning system based on slope response, required
filtering to estimate new controller parameters.
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Butterworth filter

A second order, n = 2, Butterworth filter with a normalized cut off frequency at,
ω = 0.02, was applied to the pressure measurement in order to simplify the estimate
of the closed loop time constant, τc. The effect of the digital filter is presented in
Figure 4.5. In this figure the blue line is the actual measured signal, with the red
line demonstrating the effect of the applied digital filter. Meta figure is a zoomed
callout of an area containing a given set point change.
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Figure 4.5: Experimental data: Pressure measurment with filtering (red solid line), and
without filtering (blue solid line).

The most effective tuning system were found to be the approach updating the
controller with new Kp and τi in standard form. This extended the stable valve
opening from 42% to around 60%. The results of this experiment is presented in
Figure 4.6. There were, however, minor differences between updating τi or not, but
nevertheless better. Additional results are presented in Appendix A. The desired
time constant τdes were estimated through experiments to be 3 seconds. The tuning
parameter, γ, were in all experiments set to γ = 1.

The new controller updated in standard form with its respective parameters are
presented in Figure 4.7.



44 Results

Time [s]
0 500 1000 1500 2000 2500 3000 3500

P
 [
k
p
a
]

10

15

20

25

30

35

40

Time [s]
0 500 1000 1500 2000 2500 3000 3500

V
a
lv

e
 o

p
e
n
in

g
, 
Z

 (
%

)

0

20

40

60

80

100

Figure 4.6: Experimental data with self-tuning system updating Kp and τi using optimal
PIDF controller in standard form (Equation 1.2a). Black dashed line marks the controller
activation. In upper figure: subsea pressure with set point pressure (red dashed line) from
Table 4.1. In lower figure: Valve opening, 0 ≤ Z ≤ 100, with respect to set point changes.
Oscillatory slugging at set point, r = 20.0kPa. The updated gain and integral time is
presented in Figure 4.7.
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4.3 Adaptive system based on scalar reference model

4.3.1 Simulation

The adaptive system based on scalar reference model was simulated using the
optimal PIDF controller as baseline. Simulative run with fixed controller, hence
no adaptation was conducted for proper comparison. This result is presented in
Figure 4.8.
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Figure 4.8: Simulated data with fixed PIDF controller, hence no adaptation.

With use of trail and error, the proper tuning parameters during simulations
were found to be γx = γr = γu = γs = 1. These parameters extended the stable
valve opening from 37% to around 65%. The simulated result is presented in Figure
4.9.

The calculated adaptive gains during simulation used in the adaptive laws are
presented in Figure 4.10.
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Figure 4.9: Simulations of the adaptive system based on scalar reference model. Tuning
parameters used during simulation were γx = 1, γr = 1, γu = 1, and γs = 1.
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Figure 4.10: Adaptive system based on simulated scalar reference model. Tuning parame-
ters used during simulation were γx = 1, γr = 1, γu = 1, and γs = 1.
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4.3.2 Experimental

All the experimental results are presented in a run time of 45 minutes in total. The
set point changes are identical for all experiments, and are presented in Table 4.1.
Experimental run with fixed PIDF controller, hence no adaptation was conducted
for proper comparison. This result is presented in Figure 4.11.
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Figure 4.11: Experimental data with fixed PIDF controller, hence no adaptation. Black
dashed line marks the controller activation. Oscillatory slugging at set point, r = 21.0kPa.

The adaptive tuning parameters were found to be γx = 0.5, γr = 1.7, γu =
0.07, and γs = 0.07 by trial and error. These parameters extended the stable
experimental valve opening from 58% to around 72%. The experimental result of
the adaptive system based on scalar reference model is presented in Figure 4.12.

The calculated adaptive gains used in the adaptive laws are presented in Figure
4.13.
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Figure 4.12: Experimental results with adaptive system based on scalar reference model.
Black dashed line marks the controller activation. Oscillatory slugging at set point, r =
20.5kPa. Tuning parameters used during experiment were γx = 0.5, γr = 1.7, γu = 0.07,
and γs = 0.07.
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Figure 4.13: Experimental results with adaptive gains based on scalar reference model.
Tuning parameters used during the experiment run were γx = 0.5, γr = 1.7, γu = 0.07,
and γs = 0.07.
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4.4 Adaptive system based on augmented state observer
reference model

The state space was extended to include the integrated error as a fictitious physical
state. The LQR controller was designed, followed by Loop-Transfer-Recovery using
a dynamic observing model. Delay margin, settling time and maximum controller
output was calculated in order to determine the robustness and performance of the
optimal LQR controller with respect to a scalar penalty parameter q. The results
of the effect of q to the design of LQR is presented in Figure 4.14.
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Figure 4.14: Relationship between Delay Margin, Settling Time and Maximum controller
output with respect to tuning parameter, q, for optimal controller, LQR.

The stability of the LQR-controller corresponding to the effect of tuning pa-
rameter, q, was identified using Bode plot. The results are presented in Figure
4.15, with the corresponding stability margins and robustness analysis presented
in Table 4.2.
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Figure 4.15: Bode plot of open-loop dynamics with optimal LQR controller, with tuning
factor set to q = 1, q = 10, q = 100 and q = 1000.

Table 4.2: Robustness, Performance and Stability (RPS) analysis with respect to tuning
scalar q for the optimal quadratic controller LQR.

q 1 10 100 1000

Lower Gain Margin 0.46 0.40 0.33 0.26
Phase Margin (°) 60.14 60.42 60.95 61.77
Delay Margin (s) 2.24 1.72 1.23 0.83

||S||∞ 1.00 1.00 1.00 1.00
||T ||∞ 1.87 1.74 1.63 1.52

The optimal quadratic controller, LQR, were calculated to be as presented in
Equation (4.2), using the scalar penalty factors q = 10, and R = 1.

KLQR = 104
[
−5.2409 −0.0583 −1.3856 −0.0257 0.0003

]
(4.2)

With the calculated gain matrix the corresponding open-loop transfer function,
LLQR, was obtained and is described in Equation (4.3).

LLQR(s) =
0.45484

(
1 + 1.036(7.714s) + (7.714s)2

)
s
(

1− 1.143(6.645s) + (6.645s)2
) (4.3)
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The stability of the LQG/LTR-controller with respect to tuning parameter, v,
and constant qLQR = 10, was observed using Bode plot. The result is presented in
Figure 4.16, with the corresponding stability margins presented in Table 4.3.
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Figure 4.16: Bode plot of optimal LQG/LTR controller, with varying tuning factor v = 1,
v = 10, and v = 100. Penalty factor qLQR = 10 is constant for all v.

Table 4.3: Robustness, Performance and Stability (RPS) analysis with respect to tuning
scalar v for the optimal controller LQG/LTR with constant qLQR = 10.

v 1 10 100

Lower Gain Margin 0.403 0.404 0.405
Phase Margin (°) 59.36 59.01 58.95
Delay Margin (s) 1.68 1.675 1.67

||S||∞ 1.03 1.03 1.03
||T ||∞ 1.75 1.75 1.75

The observer gain was calculated to be as presented in Equation (4.4), with a
penalty parameter, qLQR = 10, tuning parameter v = 100. Process - and measure-

ment covariance defined as Q0 = Q and R0 =
[

2 0
0 2

]
, respectively.

Lv =
[

0.0109 0.4678 −0.0054 9.1545 −0.9589
−0.0002 −0.0041 0.0002 −0.1701 2.4593

]T
(4.4)
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A comparison of the increased robustness between LQR and LQG/LTR is pre-
sented in Figure 4.17. In this figure the Linear-Quadratic-Regulator controller
is plotted in comparison to the effect of Loop-Transfer-Recovery. These con-
trollers was designed with a penalty parameter, qLQR = 10, and tuning parameter
vLTR = 100.
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Figure 4.17: Comparison of Bode plot with optimal controller LQR and LQG/LTR, with
tuning parameters qLQR = 10 and vLT R = 100.

A comparison of the robustness and performance of PIDF, LQR and LQG/LTR
in terms of sensitivity and complementary sensitivity is presented in Figure 4.18.
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Figure 4.18: Bode magnitude of optimal PIDF, LQR and LQG/LTR controller. In upper
figure: Sensitivity, S. In lower figure: Complementary Sensitivity, T . Tuning parameters
are qLQR = 10 and vLT R = 100.
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4.4.1 Simulations

The adaptive system based on observer-like reference model was simulated using
LQG/LTR controller as baseline. Simulative run with fixed controller, hence no
adaptation was conducted for proper comparison. This result is presented in Figure
4.19.
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Figure 4.19: Simulated data with fixed Linear-Quadratic-Gaussian with Loop-Transfer-
Recovery controller, hence no adaptation.

With use of trail and error, the proper tuning parameters were found to be
γp = 1000, γu = 100 and Θmax = 10. These parameters extended the stable valve
opening from 47% up to 90%, during simulations. The result is presented in Figure
4.20.

The calculated adaptive gains during simulation used in the adaptive law are
presented in Figure 4.21.

The absolute error between observing model and process model is presented in
Figure 4.22.
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Figure 4.20: Simulations of observer-like reference model with use of LQG/LTR adap-
tive system. Tuning parameters used during simulations were γp = 1000, γu = 100 and
Θmax = 10.
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Figure 4.21: Change of adaptive gains using observer-like reference model with LQG/LTR
adaptive system, during simulation. The presented adaptive gains is in reference to Figure
4.20. In upper figure: Adaptive gain with respect to baseline controller usage, Ku. In lower
figure: Adaptive gain with respect to observed system states, Kp. Tuning parameters used
during the simulation were γp = 1000, γu = 100 and Θmax = 10.
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Figure 4.22: Simulated data showing the scaled absolute error between observing model
and process model. Each "bumps" represents the error between the actual system and the
observing model at a given set point change. Each peak represents a set point change in
which the adaptive laws are adapting to.
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4.4.2 Experimental

All the experimental results are presented in a run time of 45 minutes in total.
The set point changes are identical for all experiments, and are presented in Table
4.1. Experimental run with fixed LQG/LTR controller, hence no adaptation was
conducted for proper comparison. This result is presented in Figure 4.23. The
dead-zone boundary was determined by comparison of the scaled absolute output
error between observing model and system output.
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Figure 4.23: Experimental data with fixed LQG/LTR controller, hence no adaptation.
Black dashed line marks the controller activation. Oscillatory slugging at set point, r =
21.0kPa.

The dead-zone were found to be εmin = 0.0016, by observation of the scaled
absolute error between observing model and process model. This value was chosen
to prevent the adaptive system to adapt to the large amount of noise differences
between the actual process, and the observer model. The result illustrating the
dead-zone is presented in Figure 4.24.

The experimental adaptive tuning parameters were found to be γp = 0.05, γu =
0.005 and Θmax = 10 by trial and error. These parameters curtailed the stable
experimental valve opening from 57% to around 56%. The experimental result is
presented in Figure 4.25.

The calculated adaptive gains during the experiment used in the adaptive laws
are presented in Figure 4.26.
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Figure 4.24: Experimental data for scaled absolute error between Observing model and
actual model. Note the lack of obvious "bumps" compared to the simulated data presented
in Figure (4.22). The presented error is in reference to Figure 4.23. At t ≈ 1700s the
system goes completly unstable and both adaptive gains and the controller saturates.
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Figure 4.25: Experimental data with LQG/LTR adaptation enabled. Black dashed line
marks the controller activation. Oscillatory slugging at set point, r = 21.0kPa. Tuning
parameters used during experiment were γp = 0.05, γu = 0.005 and Θmax = 10.
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Figure 4.26: Change of adaptive gains using observer-like reference model with LQG/LTR
adaptive system, during experiment. The presented adaptive gains is in reference to Figure
4.25. In upper figure: Adaptive gain with respect to baseline controller usage, Ku. In lower
figure: Adaptive gain with respect to observed system states, Kp. Tuning parameters used
during the experiment run were γp = 0.05, γu = 0.005 and Θmax = 10.





Chapter 5

Discussion

Anti-slug control using the top-side choke valve in combination with buffer pressure
measurement is an unstable system, but nonetheless controllable. The system gain
increases asymptotically towards zero, with increased valve opening. This implies
that the preservation of system stability will be difficult and in a nonlinear relation-
ship with the valve opening. Previous work conducted by De Oliveira et al. 20 has
shown that an adaptive anti-slug controller using the top-side choke valve can be
driven to toward its operational limit using observer-like Model Reference Adaptive
Controller (MRAC). This adaptive system is, however, based on measurements of
both the buffer pressure, and pressure at top of the riser pipeline - along with a
supervisor system.

The aim in this thesis was to investigate simple, yet robust adaptive system
be integrated into the severe slugging system based on only one physical measure-
ment, namely the buffer pressure. A large part of this thesis is based on previous
work by Lavretsky and Wise 15 , who uses their adaptive systems within aerospace.
This thesis is thus partly demonstrating how this may be applied within chemical
engineering as well.

The economical perspective of a voluminous mass transportation emphasizes
the importance of a stable large valve opening. The stable valve opening is a
better representation of the controller performance, compared to the evaluation of
a low set point operation. This is based on an unknown ideal set point, which
are dependent on current operating conditions. This illustrates the necessity of a
supervising system as previously described. The supervisory control can be used to
quickly adjust the operation conditions, such as set point. If the controlled variables
are saturated, the adaptive controller will be inoperable, hence the system stability
will be difficult to regain. A supervising system will in addition reduce the required
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human interaction.
All experiments had to be ran on the same day to eliminate operating condition

differences. This is valid for all experiments, except the self-tuning system. This
implies that a direct comparison of the self-tuning design in reference to the adap-
tive designs are not completely valid. Results presented from simulations should
not be directly compared to the experimental results either. The experimental
system is highly influenced by randomized noise, and the rather unknown persis-
tent accuracy of the four state model. Measurement noise in the system appears
due to turbulence flow in rather thin pipelines. This alters the measurement. The
simulative results were only used as "proof-of-concept" and to indicate how the ex-
periment should be tuned and optimized. The goal was to design a robust adaptive
system on the experimental rig. Fine-tuning in simulations were therefore given a
low priority.

All experiments ended in instability were the magnitude of the controller gain
eventually was too low based on the span of the valve opening compared to a
fixed controller at nominal operating conditions. With increasing valve opening,
the controller gain must decrease to counteract the nonlinearity. The outcome
of a controller with a too low gain was evidently instability. This implies that
the adaptive systems are not compensating enough to keep the system stable at
its critical operating point. The Lyapunov stability criterion requires the system
to orbit within some given boundary, and thus close to system equilibrium. This
seems to be a too strong requirement in the experimental system with its increasing
degree of unknown disturbances at decreasing operating pressure.

5.1 Simplified four-state model simulation

The mapped relationship between system gain and valve opening shows that the
system gain increases asymptotically towards zero, with increased valve opening.
This implies that the preservation of system stability will be difficult and in a
nonlinear relationship with the valve opening.

The pole-zero plot reveals the poles in the Right-half plane. As the valve open-
ing increases, the poles move further into the complex plane, which implies that
the system stability are more challenging to maintain.

5.2 Self-tuning system based on response slope

As the self-tuning system is considered a one-time event in terms of a set point
change, the system was dependent on flawless calculations. A consequence of a
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miscalculation would result in instability, with no point of return without a su-
pervising system or human interaction. The performance of this system basically
depends on the performance of the filter. As the filter induces a nonlinear phase
shift, the signal is altered, thus the response slope. This could have been improved
by use of a Savitzky-Golay filter. This filter is known to increase the signal-to-noise
ratio with limited distortion of the signal.33 The self-tuning system has to assume
that any response it observes is a result of the induced excitation, and the result
may easily be confused with high frequent oscillations that interacts with the mea-
surements. As the noise was a critical factor, the system was implemented directly
into the experimental rig without simulations.

The optimal PIDF controller was updated in both standard - and parallel form.
A combination of Kp and τi updated in standard form was shown to be the most
effective approach. There were, however, minor differences between updating τi or
not, but nevertheless better.

One advantage with the self-tuning system is that an operator may more easily
supervise the re-tuned controller before its applied. The necessary security check
is simpler in periodic tuning, compared to continuously updated adaptive gains.
One major disadvantage, on the other hand, is that the adaptive part can not be
disabled, since the PIDF controller is being updated rather than used as a baseline.

The application of this system was shown to be rather impractical. The calcu-
lated controller was often miscalculated, which resulted in instability. This may be
due to the filtering or the approximation of a first order system.22

5.3 Adaptive system based on scalar reference model

The adaptive system based on a scalar reference model is to some degree easy to
implement. This is practical in situations were the system state space matrices, A
and B, are unknown. The only necessary information is the knowledge of control
effectiveness, sign of B. The output vector y is, however, assumed to be the
system state upon design. This is generally the case with PID-controller, were its
driven by the error between set point and actual process output. The adaptive
parameters K̂x, K̂r and K̂u are not guaranteed to converge to their true unknown
values, Kx,Kr and Ku. These parameters are only guaranteed to remain uniformly
bounded in time. Sufficient conditions for parameter convergence are known as
persistency of excitation.15,34

The first order open-loop reference model with a desired time delay, τdes = 3,
were proven to be capable of driving the adaptive system towards a larger valve
opening compared to the fixed controller during experiments. Both simulative re-
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sults and experimental results presented a stable valve opening up to 65% and 72%
respectively. In comparison of the adaptive gains in simulation and experimental,
it was observed that all gains were following the same pattern, until the system got
unstable and saturated.

The optimal PIDF controller was used as baseline during adaptation. It would
be interesting to observe the effect of an LQR as the baseline controller, in combi-
nations with scalar reference model.

5.4 Adaptive system based on observer-like reference
model

The popularity of these methods is due to the guaranteed properties, such as closed-
loop stability and robustness to uncertainties. This is, however, based on if and
how accurate the physical states are actually measured. The observer-like model
is highly dependent on a accurate model representation of the physical system.

The integrated error was included into the system state vector by augmentation
of the state space. The integrated error was thus interpreted as an additional state.
This was proven to be effective in terms of following tracking commands. The
adaptive system with observer-like reference model is the most complex adaptive
system evaluated in this thesis. The optimal LQR controller with Loop-Transfer-
Recovery involved solving a complex cost function along with a state observing
design. This is not as intuitive as the common known PID.

As a result of Loop-Transfer-Recovery the frequency roll-off was indubitable
improved, thus improving the robustness of the controller. The LTR was able
to recover the gain -, phase - and delay margin as designed by the LQR. With
increased penalty parameter qLQR the settling time improved, while delay margin
receded and maximum controller output increased. This illustrates that a certain
trade-off has to be taken into account while designing the optimal control system.

Simulative results presents outstanding adaptive performance with a stable
valve opening up top 90%, while experimental results gave a stable valve open-
ing of mediocre 56%. The absolute error from observing model and actual output
(|ŷ − y|), is clearly illustrating the necessary transients for adaptation. The noise
from the experimental system conceals the necessary transients. The absolute out-
put error is mostly influenced with randomized noise error. The dead-zone is not
improving the adaptive process enough. In the scalar system, the output is di-
rectly compared to the reference model - hence not using a observing state. The
experimental adaptive controller output were close to zero with the given tuning
parameters. If the tuning parameters were to be increased, the adaptive contribu-
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tion was too overwhelming and thereby resulted in instability. Previous research
conducted by Jahanshahi 19 found that a Luenberger observer-like reference model
was not robust using the buffer pressure, P1. This observer was designed with
optimal state estimator, instead of optimal Loop-Transfer-Recovery as evaluated
in this thesis. The results are, nevertheless, the same. The conclusion to instabil-
ity problems was believed to be due to the chain of integrating sections from the
buffer pressure to top pressure, P2 as noted in Figure 3.1. The adaptive laws for
the observer model requires more measurable variables than output variables.15

The observing model was designed on a "fabricated" measurable variable (the in-
tegrated error). This may also be a reason for the nonviable observing reference
model. This is supported by previous work by De Oliveira et al. 20 , which are
successfully adapting the same rig using two physical measurement, in addition to
the integrated error. These physical measurements involves the buffer pressure, P1

in addition to top pressure, P2 and drives the maximum stable valve opening to
around 78%.

The experimental results comparing fixed control PIDF and LQG/LTR, i.e.
adaptation disabled, showed minor performance differences. This is supported by
their respective Bode and sensitivity plots. There were small differences in terms of
stability margins, robustness and performance. The PIDF was, nevertheless, better
in terms of stability and performance compared to LQG/LTR. The complementary
sensitivity was greater than the sensitivity for all control systems. That is ||T ||∞
> ||S||∞. This is often observed in unstable processes, and implies that the system
will be more fragile to process noise on behalf of better set-point tracking.21





Chapter 6

Conclusion

Offshore production using pipeline-riser system are experiencing cyclic flow insta-
bility due to its pipeline configuration where a liquid blockage occurs at the lowest
point, followed by accumulation of gas at its highest point. The accumulation of
gas in the pipeline will eventually reach its maximum and violently burst out. This
cyclic flow instability has been referred to as severe slugging. The aim in this the-
sis was to investigate simple, yet robust adaptive systems to be integrated into the
slugging rig. Three types of adaptive systems were evaluated in order to increase
the robustness of an already existing optimal anti-slug control system. One self-
tuning approach, and two Model Reference Adaptive Controllers (MRAC) - with
increasing complexity.

The three types of control systems investigated was an optimal PIDF previ-
ously presented by Jahanshahi and Skogestad 7 , and a Linear-Quadratic-Regulator
followed by Loop-Transfer-Recovery. The stability margins with respect to each
control system are presented in Table 6.1. The complementary sensitivity was
greater than the sensitivity for all control systems. That is ||T ||∞ > ||S||∞. The
experimental results comparing fixed PIDF and LQG/LTR, i.e. adaptation dis-
abled, showed minor performance differences. The PIDF was, nevertheless, better
in terms of stability and performance compared to LQG/LTR.

The adaptive results in this thesis were evident. There was a clear difference
between self-tuning and the adaptive systems, in which the scalar reference model
outperformed the others. The self-tuning system was based on updating the con-
troller using the slope after system excitation, along with a desired closed-loop
constant. Its main drawback was that a miscalculation would result in instability
with no point of return. This could be a result of improper filtering or the assump-
tion of a first-order system. The performance of the self-tuning was more based on
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Table 6.1: Robustness, Performance and Stability analysis with respect to investigated
controllers.

Controller GML PM (°) DM (s) ||S||∞ ||T ||∞

PIDF 0.36 65.34 1.90 1.03 1.57
LQR 0.40 60.42 1.72 1.00 1.74

LQG/LTR 0.405 58.95 1.67 1.03 1.75

luck, rather than consistent stability. The observer-like reference model adaptive
system was not efficient enough using only one measurement. This may be due
to the large noise, which alters the error between the observing model and the
actual process. This is supported by the results in simulation, and previous work
conducted by De Oliveira et al. 20 were multiple measurements was used. They
achieved a maximum stable valve opening up to around 78%. Detailed comparison
of each system evaluated in this thesis are presented in Table 6.2.

Table 6.2: Comparison of investigated adaptive systems and fixed controllers with Inte-
grated Absolute Error, maximum stable valve opening and lowest stable operating pressure.

Adaptive law IAE
Max stable

valve opening (%)
Lowest stable
pressure [KPa]

Slope based∗ 3156 60 20.5
Fixed PIDF∗ 6035 42 21.5

Scalar MRAC 3887 72 21.0
Observer MRAC 5130 56 21.5
Fixed PIDF 5525 58 21.5
Fixed LQG/LTR 5586 57 21.5

* Slope based self-tuning system was updated using standard form with both Kp and τI .
The asterisked entries were not ran under the same conditions as the scalar and

LQG/LTR, and are therefore not fully representative in comparison.

This thesis have illustrated both the necessity of optimal adaptive control, and
the challenges involved by maintaining consistent closed loop-performance in pres-
ence of uncertainties and disturbances.
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6.1 Future work

In the future it would be interesting to investigate the effect of the scalar reference
model with a optimal LQR controller as baseline. A supervising system should
also be implemented into the scalar reference model adaptive system. A reason-
able presentation of the results using a supervising system would be to use a mean
valve opening throughout the whole experiment.

Pressure reading at other locations should also be investigated with both scalar ref-
erence model and Linear-Quadratic-Gaussian with Loop-Transfer-Recovery. Pre-
vious research shows contrasting controllability issues.19 For the sake of complete-
ness, all experiments should be run with equal operating conditions.

The flow rate feed into the pipeline was kept constant during all simulations and
experiments. Low pressurized oil reservoirs and more dense liquid fractions are
more prone to instabilities, and should be investigated with the scalar reference
model adaptive system to map robustness differences.
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Appendix A

Additional results for self-tuning
system
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Figure A.1: Adaptive gain with optimal PIDF in standard form (Equation 1.2a) controller
linearized around Z∗ = 30%. Black dashed line marks the controller activation. In upper
figure: subsea pressure with set point pressure (red dashed line) from Table 4.1. In lower
figure: Valve opening, 0 ≤ Z ≤ 100, with respect to set point changes. Oscillatory slugging
at set point, r = 20.0kPa. The updated gain is presented in Figure A.4

75



76 Additional results for self-tuning system

Time [s]
0 500 1000 1500 2000 2500 3000 3500

P
 [
k
p
a
]

10

15

20

25

30

35

40

Time [s]
0 500 1000 1500 2000 2500 3000 3500

V
a
lv

e
 o

p
e
n
in

g
, 
Z

 (
%

)

0

20

40

60

80

100

Figure A.2: Adaptive gain with optimal PIDF in parallel form (Equation 1.2b) controller
linearized around Z∗ = 30%. Black dashed line marks the controller activation. In upper
figure: subsea pressure with set point pressure (red dashed line) from Table 4.1. In lower
figure: Valve opening, 0 ≤ Z ≤ 100, with respect to set point changes. Oscillatory slugging
at set point, r = 20.0kPa. The updated gain is presented in Figure A.5
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Figure A.3: Adaptive gain and Ki with optimal PIDF in parallel form (Equation 1.2b)
controller linearized around Z∗ = 30%. Black dashed line marks the controller activation.
In upper figure: subsea pressure with set point pressure (red dashed line) from Table 4.1.
In lower figure: Valve opening, 0 ≤ Z ≤ 100, with respect to set point changes. Oscillatory
slugging at set point, r = 20.0kPa. The updated gain and Ki is presented in Figure A.6
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Figure A.4: Change of controller parameters, Kp, τi and τd during adaptation with tuning
parameter γ = 1 and τdes = 3. The controller was updated in standard form. Table 4.1
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Figure A.5: Change of controller parameters, Kp,Ki and Kd during adaptation with
tuning parameter γ = 1 and τdes = 3. The controller was updated in parallel form. Table
4.1 presents the actual set points with respect to actual set point change number. Note that
the parameters are scaled, that is ∆Kp = Kp,0−Kp,#
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Figure A.6: Change of controller parameters, Kp,Ki and Kd during adaptation with
tuning parameter γ = 1 and τdes = 3. The controller was updated in parallel form. Table
4.1 presents the actual set points with respect to actual set point change number. Note that
the parameters are scaled, that is ∆Kp = Kp,0−Kp,#
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Matlab scripts

B.1 Simplified four state model

This model can be found online from previous research published by Jahanshahi 19 .

B.2 Tune PID with use of set point response

Listing B.1: tunePID.m
1 function [ controller, log ] = getTuningParam(data2, SYS, stepinfo, ...

tk, log)

2 % Calculate new PIDF controller based on step response

3 % Input: Measurement data, Previous controller, Step data, run ...

time, logging

4 % Output: New controller, and log data

5 %

6 % Author: Adrian Finvold

7 %

8

9

10 Ts = data2.Ts; %Sampling time

11 ystart = stepinfo.ystart;

12 stepindx = stepinfo.index;

13 z_crit = 30;

14 piddata = pidstd(SYS);

15 piddata_par = pid(SYS);

16

17 Kp_prev = piddata.Kp;

18 Taui_prev = piddata.Ti;
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19

20 Ki_prev = piddata_par.Ki;

21 Kd_prev = piddata_par.Kd;

22 Tf_prev = piddata_par.Tf;

23

24

25 gamma = 1; %Tuning factor

26 tau_des = 3; % Desired closed loop constant

27 t_back = 2; % seconds back after step

28 t_forw = 8; % seconds forward after step

29

30 %% First agenda: Find new controller gain

31 y = data2.yf(1,ystart:tk*10);

32 % get the recommended order and cutoff for high pass

33

34 [b,a] = butter(2,0.02);

35 y_f2 = filter(b,a,y);

36

37 % Crop signal to desired step area

38 y_fitted = y_f2(stepindx-ystart-(t_back*10):(stepindx-ystart+(t_forw...

*10)));

39 t_new = data2.t(stepindx-ystart-(t_back*10):(stepindx-ystart+(t_forw...

*10)));

40

41 % Calculate step response

42 du=stepinfo.size; % Stepsize

43 %gain=(y_fitted(end)-y_fitted(1))/du;

44 dy=diff(y_fitted);

45 dt=diff(t_new);

46 [maxdy,I]=max(abs(dy)./dt);

47 time_constant=abs(y_fitted(end)-y_fitted(1))/maxdy;

48 %time_delay=t_new(I)-abs(y_fitted(I)-y_fitted(1))/maxdy;

49

50

51 % Calculate Tuning parameters

52 tau_diff = abs(tau_des-time_constant);

53

54 if (tau_diff ≤ 1) % If time constant is lower than desired, do not ...

change gain

55 alpha = 1;

56 else alpha = gamma *(time_constant-tau_des);

57 end

58

59 tempgain = alpha * Kp_prev; % Temporary gain

60 if tempgain > Kp_prev % If new calculated gain is lower than old ...

gain

61 Kp_new = Kp_prev; % Use same gain as previous

62 else
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63 Kp_new = alpha * Kp_prev;

64 end

65

66

67 ydata.ystart = stepinfo.ystart;

68 ydata.tk = tk;

69 ydata.y = y;

70 ydata.yfiltered = y_f2;

71 ydata.ycropped = y_fitted;

72 ydata.tcropped = t_new;

73 ydata.order = n;

74 ydata.cutoff = Wc;

75 ydata.dy = dy;

76 ydata.tau_des = tau_des;

77 ydata.tau_diff = tau_diff;

78 ydata.timeconst = time_constant;

79 ydata.k_0 = stepinfo.Kp_0;

80 ydata.prevgain = Kp_prev;

81 ydata.tempgain = tempgain;

82 ydata.newgain = Kp_new;

83

84

85 %% Second agenda: Find new integral time based on

86 % Tau_i = Tau_i,old * mean(Z)/Z,old

87

88 % Skip first setpoint change

89

90 z = data2.yf(8,ystart:tk*10);

91

92 % Crop signal to desired step area

93 steps = find(diff(data2.r));

94 stepinfo.index;

95 thisstep = find(steps==stepinfo.index);

96

97 if stepinfo.index == steps(1)

98 z_cropped = z(1:stepindx-ystart);

99 t_cropped = data2.t(1:stepindx-ystart);

100 else

101 z_cropped = z(steps(thisstep-1)-ystart:steps(thisstep)-ystart);

102 t_cropped = data2.t(steps(thisstep-1)-ystart:steps(thisstep)-ystart)...

;

103 end

104

105 [b,a] = butter(1,0.01);

106 zfiltered = filter(b,a,z_cropped);

107

108 % Get mean valve opening

109
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110 zmean = mean(zfiltered(200:end)); % Skip 200steps first based on ...

filterslope at startup

111

112 % Get old integral time

113

114 taui_0 = stepinfo.taui_0;

115 Ki_0 = stepinfo.Ki_0;

116 taui_new = taui_0 * zmean/z_crit; % Tau_i = Tau_i,old * mean(Z)/Z,...

old

117 Ki_new = Ki_0 * zmean/z_crit;

118

119 if taui_new < Taui_prev

120 taui_new = Taui_prev;

121 end

122

123 zdata.z = z;

124 zdata.zcropped = z_cropped;

125 zdata.tcropped = t_cropped;

126 zdata.zfiltered = zfiltered;

127 zdata.mean = zmean;

128 zdata.taui0 = taui_0;

129 zdata.taui_prev = Taui_prev;

130 zdata.tauinew = taui_new;

131

132 %% Export new PID-controller

133 pid_new = pidstd(Kp_new,piddata.Ti,piddata.Td,piddata.N) % Serial ...

form ny Kp

134 %pid_new = pidstd(Kp_new,taui_new,piddata.Td,piddata.N) % Serial ...

form ny taui

135 %pid_new = pid(Kp_new, Ki_prev, Kd_prev, Tf_prev) % Paralell form ...

fixed taui

136 %pid_new = pid(Kp_new, Ki_new, Kd_prev, Tf_prev) % Paralell form ...

ny Ki

137 %pid_new = pid(Kp_new, (piddata_par.Ki/taui_new), Kd_prev, Tf_prev) ...

%Feilen: Ki = (piddata.Ki/taui_new) = Kp,old / taui^2

138 %pid_new = pidstd(piddata.Kp,piddata.Ti,piddata.Td,piddata.N) % ...

Fixed controller

139 controller = ss(pid_new);

140

141 log.Kp(end+1) = pidstd(controller).Kp;

142 log.Taui(end+1) = pidstd(controller).Ti;

143 log.Taud(end+1) = pidstd(controller).Td;

144 log.N(end+1) = pidstd(controller).N;

145

146 log.Ki(end+1) = pid(controller).Ki;

147 log.Kd(end+1) = pid(controller).Kd;

148 log.Tf(end+1) = pid(controller).Tf;

149
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150

151 %% Finish up by print and save

152

153 % Save tuning info

154 filename = strcat('partialresult-',num2str(tk),'.mat');

155 save(filename,'stepinfo','controller','SYS','data2','zdata','ydata',...

'log');

156

157 end

B.3 Tune PID with use of LQR-LQG/LTR

Listing B.2: DesignAdaptiveControl.m
1 % Calculate the LQR - LQG/LTR controller based on system state space

2 %

3 % Author: Vinicius de Oliveira & Adrian Finvold

4 %

5

6 clc

7 clear all

8 close all

9

10 s=tf('s');

11

12 aux=open('state-space.mat'); %30% opening

13 sys_ss=aux.sys;

14

15 %Open loop plant dynamics

16 Ap=sys_ss.a;

17 Bp=sys_ss.b(:,1);

18 Cm=sys_ss.c(1,:);

19 Cr=sys_ss.c(1,:);

20 Dp=sys_ss.d(1:1);

21 I=eye(size(Ap));

22 % G=minreal(sys_ss.c(1,:)*inv(s*I-sys_ss.a)*sys_ss.b);

23

24

25 nx=length(Ap);

26 ny=size(Cm,1);

27 nu=size(Bp,2);

28

29 %augmenting the system to get integral action

30 Aaug=[zeros(1,1) -Cr; zeros(nx,1) Ap];

31 Baug=[Dp;Bp];
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32 Bcmd=[1 zeros(1,nx)]';

33 %Assuming that P_bottom and P_top are measured or estimated ...

elsewhere

34 Caug=[1 zeros(1,nx); zeros(ny,1) Cm];

35 Daug=[Dp;0];

36

37

38

39 %% step 1: design a LQR controller to obtain desired robustness ...

properties

40

41 %Tuning constant for the reference model: higher is faster

42 q_i=10;

43

44 Q=diag([1 0 0 0 0]);

45 Q(1)=q_i*Q(1);

46 R=1*eye(1,1);

47

48 Klqr=lqr(Aaug,Baug,Q,R); % Quadratic cost controller: Feedback ...

gain

49 I=eye(size(Aaug));

50

51 Llqr=minreal(Klqr*inv(s*I-Aaug)*Baug); % G_ref: Reference model

52

53 %reference system

54 Aref=Aaug-Baug*Klqr;

55 Bref=[1 zeros(1,nx)]';

56 Cref=Caug; % ?

57

58 Ccl=[-Klqr; %ym

59 -Cref; %ucontrol

60 -Klqr*Aref %udot

61 ];

62

63 Mcl=ss(Aref,Bref,Ccl,0);

64 [Gm,Pm,Wgm,Wpm] = margin(Llqr);

65 auxmargin=allmargin(Llqr);

66

67 [yall,t]=step(Mcl);

68 y=yall(:,1);

69 u=yall(:,end-1);

70 udot=yall(:,end);

71

72

73 figure(1)

74 plot(t,y);

75 ylabel('dP, Kpa')

76 xlabel('Time, s')
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77

78 figure(2)

79 plot(t,u);

80 ylabel('Input, %')

81 xlabel('Time, s')

82

83 %%

84

85

86 %reference system

87 Aref=Aaug-Baug*Klqr;

88 Bref=[zeros(1,nx) 1]';

89 Cref=Caug;

90

91 %reference model

92 Mcl=ss(Aref,Bref,Cref,0);

93

94

95

96 %% observer design -squaring up stage

97 % Bsqr=10+20*rand(5,2);

98 Bsqr=5e-4*[21.9498 17.1921

99 16.7062 21.1664

100 15.9845 24.8509

101 19.0519 18.4867

102 18.4529 18.5871

103 ];

104

105 sys_aug=ss(Aaug,Bsqr,Caug,0);

106 display('-----zeros original coordinates----')

107 zervec = tzero(minreal(sys_aug))

108 if zervec>0

109 error('transmission zeros must be stable')

110 end

111

112 %%Compute Kalman gain

113 Q0=Q(1:end,1:end);

114 R0=2*eye(size(Caug,1));

115

116 % vvec=logspace(-2,1.5,10);

117 v=100; % Tuning parameter LQG/LTR

118

119 Qv=Q0+(v+1)/v*Bsqr*(Bsqr');

120

121 Rv=v/(v+1)*R0;

122

123 %========using ricatti equation======

124 [Lv,Pv] = lqe(Aaug,eye(size(Aaug)),Caug,Qv,Rv);
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125

126 % LTR Controller

127 Ac = Aref-Lv*Caug;

128 Bc1 = Lv;

129 Bc2=Bref;

130 Cc = -Klqr;

131 Dc1 = [0. 0. ];

132 Dc2 = 0.;

133

134 %SS model of loop gain at the plant input

135 Ain = [ Aaug 0.*Baug*Cc; Bc1*Caug Ac];

136 Bin = [ Baug; Bc1*Daug];

137 Cin = -[ Dc1*Caug Cc];%change sign for loop gain

138 Din = -[ Dc1*Daug];

139

140 Lltr = minreal(ss(Ain,Bin,Cin,Din));

141 wrange=logspace(-5,2,200);

142

143 % write closed loop observer LTI model

144 Aob=Aref-Lv*Caug;

145 Bob=[Bref Lv];

146 %outputs estimation error: ey=Cxest-ym

147 Cob=[Caug];

148 Dob=[zeros(ny+1,1) -eye(ny+1)];

149 sysobserver=balred(ss(Aob,Bob,Cob,Dob),5);

150 sysobserver.InputName={'ref','P1','Integral error'};

151 sysobserver.OutputName={'e1','e2'};

152

153 syscontrol = ss(Aob, Bob, -Klqr, 0);

154

155 auxmarginLTR=allmargin(Lltr);

156 [yallLTR,tLTR,xLTR]=step(sysobserver);

157 yLTR=yallLTR(:,1);

158 uLTR=yallLTR(:,end-1);

159 udot=yallLTR(:,end);

160

161 figure

162 bode(Llqr,Lltr,wrange)

163 drawnow

164 grid on

165 hold on

166 legend('LQR','LTR')

167

168 %Closed loop reference model eigenvalues

169 eig(Aob)

170

171

172 %constants for the adaptive law
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173 S=[1 0];

174 auxM=Baug'*Caug'*R0^(-0.5);

175 [U,Sig,V]=svd(auxM);

176 W=(U*V)';

177 F=R0^(-0.5)*W*S';

178

179

180 %save('adaptive_system4States', 'Klqr', 'sysobserver','F','...

syscontrol','Aref','Bref','Cref');

181 %% Simulate controller against Esmaeils NonLinear model

182 AdaptOn=1;

183 callNonLinearSim

B.4 Projection Operator

Listing B.3: Projector.m
1 % Projector Operator x_dot=Proj(x,y). Ensures that x remain inside ...

some

2 % bounds in a smooth way.

3 %

4 % x: n-by-m matrix of parameters

5 % y: n-by-m matrix of time derivatives of the parameters

6 % xmax: bound for parameter x.

7 %

8 % Author: Vinicius de Oliveira

9 %

10 function projected=Proj(x,y,xmax)

11

12

13 [n,m]=size(x);

14 if n6=size(y,1)|| m6=size(y,2)

15 error('par and par_deriv must have the same dimensions')

16 end

17

18

19 %convex function that define the convex sets for the projection ...

operator

20 %domain: f(x)≤0 -> omega_0; f(x)≤1 -> omega_1

21 f=@(theta,epsp,thetamax)( ((1+epsp)*norm(theta)^2-thetamax^2)/(epsp*...

thetamax^2));

22

23 %grandient of f wrt par

24 fgrad=@(theta,epsp,thetamax)( 2*(1+epsp)/(epsp*thetamax)*theta);

25
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26 Gamma=eye(n);

27

28 %projection tolerance

29 epsproj=0.1;

30

31 %do the projection columnwise

32 for i=1:m

33

34 fgradj=fgrad(x(:,i),epsproj,xmax);

35 fj=f(x(:,i),epsproj,xmax);

36

37 if fj>0 && y(:,i)'*fgradj>0

38 projected(:,i)=y(:,i)-Gamma*fgradj*(fgradj)'/((fgradj)'*...

Gamma*fgradj)*y(:,i)*fj;

39 else

40 projected(:,i)=y(:,i);

41 end

42

43 end

B.5 Check for instability with cross-correlation

Listing B.4: check_instability.m
1 %% This function checks in real-time if the system is getting ...

unstable.

2 % Uses cross-correlation function and FFT

3 %

4 % INPUTS:

5 % OUTPUT: flag=1 -> instability detected; flag=0 -> normal operation

6 % flag=0.5 -> unsure, wait longer, dont change setpoints

7 % flag=2 -> too high gain

8 %

9 % Author: Vinicius de Oliveira

10 %

11 function [flag] = check_instability_v2(y,ysp,Ts,k)

12

13 % instability checked every dT [s]

14 dT=10;

15 kcheck=round(dT/Ts);

16

17 %size of the window [s]

18 h=1.0*60;

19 kd = round(h/Ts);

20
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21 flag=0;

22

23 powerhist=[];

24 %checks every kcheck samples

25 if(mod(k,kcheck)==0)

26 % if true

27

28 for j=1:3

29

30 if(k≤kd*j)

31 datawindow = y(:,1:k);

32 errorvec=ysp(:,1:k)-datawindow;

33

34 else

35 datawindow = y(:,k-(j-1)*kcheck-kd:k-(j-1)*kcheck);

36 errorvec=ysp(:,k-(j-1)*kcheck-kd:k-(j-1)*kcheck)-...

datawindow;

37 end

38

39 %removes DC componente so that we don't mistakenly detect a ...

0 freq peak

40 datawindow=datawindow-mean(datawindow);

41

42 [testcross,lags]=xcorr(datawindow);

43 [pks,locs] = findpeaks(testcross,'SORTSTR','descend');

44

45 if length(pks)<2

46 pks=pks(1);

47 locs=locs(1);

48 distancepeaks=abs(lags(locs(1)));

49 else

50 pks=pks(1:2);

51 locs=locs(1:2);

52 distancepeaks=abs(lags(locs(2)));

53 end

54

55 [ powerpeak,freqpeak ] = getPowerPeak( datawindow );

56

57 if j==1

58 %

59 t=linspace(0,dT,length(errorvec));

60 IAE=trapz(t,abs(errorvec));

61 meanerror=abs(mean(errorvec));

62 distancepeaksLast=distancepeaks/100;

63 freqpeakLast=freqpeak;

64

65 %

66 end



90 Matlab scripts

67

68 powerhist=[powerpeak powerhist];

69

70 end

71

72 %if both numbers are positive, we have two subsequent increase ...

in

73 %amplitude

74 increase= diff(powerhist);

75 auxincr=sign(increase);

76 numincrease=sum(auxincr(auxincr>0)) ;

77

78 %second order derivative

79 secondincrease=sign(diff(increase));

80

81 % meanerror

82 % IAE

83 % distancepeaksLast

84 % numincrease

85 % secondincrease

86

87 %checks if the distance between peaks of the cross-correlation ...

is

88 %inside some bound -> this distance is the period of oscillation

89 % major problem/disturbance

90 % if IAE≥30

91 % flag=100;

92

93 %if frequency of peak is too high, gain is too big for given

94 %conditions

95 if freqpeakLast≥0.2 && powerhist(end)≥3

96 flag=2;

97

98 elseif (distancepeaksLast≥2.0 && distancepeaksLast≤6)&& ...

numincrease==2 && secondincrease≥0 || IAE≥10

99 flag=1;

100

101 % wait longer to see what happens

102 elseif (distancepeaksLast≥1.7 && distancepeaksLast≤6)|| (...

meanerror≥0.05)

103 flag=0.5;

104

105 %stable

106 else

107

108 flag=0;

109

110 end
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111

112

113

114 else

115 %not checked

116 flag=-1;

117 % majorproblem=-1;

118

119 end

B.6 Check for instability using Integrated Absolute Error

Listing B.5: double_check_instability.m
1 %% This function checks in real-time if it is safe to change ...

setpoint

2 % Uses ISE

3 %

4 % INPUTS:

5 % OUTPUT: flag=100 -> problem detected; flag=0 -> normal operation

6 %

7 % Author: Vinicius de Oliveira

8 %

9

10 function [flag] = double_check_instability(y,sp,Ts,k)

11

12

13 %size of the window [s]

14 h=30;

15 kd = round(h/Ts);

16 %checks every dT seconds

17 dT=5;

18 kcheck=round(dT/Ts);

19

20 if(mod(k,kcheck)==0)

21 % if true

22

23 if(k≤kd)

24 errorwindow = y(:,1:k)-sp(:,1:k);

25 else

26 % size(y(:,k-kd:k))

27 % size(sp(:,k-kd:k))

28 errorwindow = y(:,k-kd:k)-sp(:,k-kd:k);

29 end

30 t=linspace(0,h,length(errorwindow));
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31

32 IAE=trapz(t,abs(errorwindow))

33 % meanerr=abs(mean(errorwindow));

34

35 if IAE≥40

36 flag=100;

37 else

38 flag=0;

39 end

40

41 else

42 flag=-1;

43

44 end

45

46

47

48

49 end

B.7 Estimate frequency of peak

Listing B.6: get_Power_peak.m
1 % Get frequency of peaks

2 % Input: vector

3 % Output: Peak magnitude and frequency

4 %

5 % Author: Vinicius de Oliveira

6 %

7 function [ powerpeak,freqpeak ] = getPowerPeak( yvec )

8 L=length(yvec);

9 Ts=0.1;

10 Fs=1/Ts;

11 NFFT = 2^nextpow2(L);

12 Y = fft(yvec,NFFT)/L;

13 Y=Y(1:NFFT/2+1);

14 psdx=100*((1/(Fs)).*abs(Y));

15 psdx(2:end-1) = 2*psdx(2:end-1);

16 freq=Fs/2*linspace(0,1,NFFT/2+1);

17

18

19 [powerpeak,indexmax]=max(psdx);

20 freqpeak=freq(indexmax);

21
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22 end


	Abstract
	Sammendrag
	Contents
	List of Figures
	List of Tables
	Introduction
	Severe slugging in flow line-riser systems
	Previous work
	Controllability

	Optimal controller
	Proporional-Integral-Derivative controller
	Linear-Quadratic-Regulator

	Adaptive control
	Self-tuning
	Reference model based adaption (MRAC)

	Digital signal filtering

	Aims and Objectives
	Specific objectives

	Methods
	Experimental slugging setup
	Simulation model
	Theoretical backround

	Self-tuning based on response slope
	Theoretical design
	Implementation

	Scalar reference model adaptive system
	Theoretical design
	Implementation

	Augmented state observer-like reference model
	Theoretical design
	Implementation

	Supervisory adaptation
	Evaluation of stability and robustness limitations

	Results
	Controllability and System dynamics with the four state model
	Self-tuning system based on response slope
	Adaptive system based on scalar reference model
	Simulation
	Experimental

	Adaptive system based on augmented state observer reference model
	Simulations
	Experimental


	Discussion
	Simplified four-state model simulation
	Self-tuning system based on response slope
	Adaptive system based on scalar reference model
	Adaptive system based on observer-like reference model

	Conclusion
	Future work

	Bibliography
	Appendices
	Additional results for self-tuning system
	Matlab scripts
	Simplified four state model
	Tune PID with use of set point response
	Tune PID with use of LQR-LQG/LTR
	Projection Operator
	Check for instability with cross-correlation
	Check for instability using Integrated Absolute Error
	Estimate frequency of peak


