NTNU - Trondheim
Norwegian University of

Science and Technology

Optimization of Energy Storage in
Buildings Based on Self-optimizing
Control

Vegard Skogstad

Chemical Engineering and Biotechnology

Submission date: June 2014

Supervisor: Sigurd Skogestad, IKP

Co-supervisor: Vinicius de Oliveira, IKP

Norwegian University of Science and Technology
Department of Chemical Engineering

Summary

A steadily increasing fraction of Europe’s electricity is generated by renewable and
less reliable energy sources. It is therefore necessary to find smart ways to store
excess energy until it is demanded. This could be achieved by using the energy
storage potential in the hot water tank. The heating of hot water tanks can be
improved by using a cost minimization strategy to make hot water tanks heat when
electricity price is low and conserve energy when price is high. This would both
provide economic benefits to the owner of the tank and, provided widespread use,
a more stable energy market.

This thesis considers the optimal operation of energy storage in buildings with
focus on the hot water tank. The objective has been to minimize operational cost
while still meeting the hot water demands of the end user. To achieve this, a hot
water tank system has been modeled using SIMULINK and MATLAB and a feedback
control structure implemented to stabilize the system. By using ideas from self-
optimizing control the cost function has been simplified to a form that makes it
solvable even with limited computation resources. The simplified problem has then
been solved using an MPC-solver. The resulting optimized case (Case II) has been
compared with a simple policy of heating for a set amount of hours at night (Case
IIT) and holding a constant temperature in the tank (Case I).

Based on the findings in this thesis, using optimization to find optimal energy
levels in the tank does not give any significant benefit over using a simple policy of
heating the tank at night. Though both cases are economically better than using a
constant temperature set point, the difference is not huge. Compared to holding a
constant temperature in the tank, Case II and Case III gave savings of 8.61% and
9.12% respectively. Actual implementation of the system could still be beneficial
in areas with more pronounced price variation. Further work should be focused on
improving the solver and verifying the closeness to optimality of the simplifications
that have been made.

Sammendrag

En stadig gkende andel av Europas elektrisitet generes av fornybare energikilder
som vind- og solkraft. Disse energikildene varier med vaerforhold og sesong i mye
stgrre grad enn fossile energikilder. Det er derfor ngdvendig & finne smarte mater
a lagre overskuddsenergi pa. Dette kan oppnas ved a bruke lagringspotensialet i
varmtvannstanken. Oppvarming av varmtvannstanker kan effektiviseres ved & min-
imere tankens driftskostnad. Da kan man oppna at varmtvannstankene varmes nar
strgmprisen er lav og sparer energi nar prisen er hgy. Dette ville gi bade direkte
pkonomiske fordeler til eieren av tanken og, forutsatt utbredt bruk, stabilisering av
energimarkedet.

Denne avhandlingen vurderer optimal drift av energilagring i bygninger med fokus
pa varmtvannstanken. Malet har vaert & redusere driftskostnadene og samtidig mote
sluttbrukerens forventninger. For a oppna dette, har varmtvannstank-systemet
blitt modellert i SIMULINK og MATLAB. Det har ogsa blitt implementert feedback-
regulering for a stabilisere systemet. Ved & bruke ideer fra selv-optimalisere kontroll
har kostnadsfunksjonen blitt forenklet til en form som gjgr det mulig & lgse minimer-
ingsproblemet selv med begrenset beregningskapasitet. Det forenklede problemet
har deretter blitt lgst ved bruk av MPC. Lgsningen (Case II) har blitt sammen-
liknet med en policy der tanken varmes i et fast tidsintervall hver natt (Case III)
og med & holde konstant temperatur i tanken (Case I).

Funnene i denne avhandlingen viser at a finne det optimale energinivaet i tanken
ikke gir noen vesentlig forbedring sammenliknet med & varme tanken i et fast
tidsintervall hver natt. Selv om begge tilfeller gir lavere driftskostnad enn & bruke
konstant tanktemperatur, er forskjellen liten. Sammenlignet med a holde konstant
tanktemperatur gir Case II og Case III besparelser pa henholdsvis 8,61% og 9, 12%.
A implementere systemet i praksis kan fortsatt vacre gunstig i omrader med stgrre
prisvariasjon. Videre arbeid bgr fokusere pa & forbedre lgseren og verifisere at
forenklingene som er gjort faktisk gir nesten-optimale resultater.

ii

Preface

This thesis was written as the final part of my M.Sc. in Chemical Engineering at
the Norwegian University of Science and Technology.

I would like to thank my supervisor, Professor Sigurd Skogestad for allowing me to
work on this project and for his patience when my results were not forthcoming. I
would also like to thank my co-supervisor Vinicius de Oliveira for supporting me
during my work with this thesis. When my simulation did not yield reasonable
results, he would always have a suggestion that pushed me in the right direction.
This thesis would have been impossible without the work of Emma Johansson.
Reading about her work on the same system gave me great insight into the prob-
lem, and using her controller tunings saved me a lot of time and work.

Finally, I would like to thank my fellow students at Chemical Engineering and

Biotechnology for making these five years an unforgettable time!

Declaration of Compliance

I declare that this is an independent work according to the exam regulations of
the Norwegian University of Science and Technology (NTNU).

gl bk

Vegard Skogstad
Trondheim, June 23, 2014

iii

iv

Contents

Summary i
Sammendrag ii
Preface iii
Table of Contents vii
List of Tables ix
List of Figures xi
Nomenclature x11
1 Introduction 1
1.1 Previous work 2
1.2 Thesis scope o v i e e 3
1.3 Thesis structureo e e e 3

2 Theory 5
2.1 Control theory 5
2.1.1 Modeling a dynamic system 5

2.1.2 Controlling a dynamic system 6

2.1.3 PID controllers 7

2.1.4 Optimal control 7

2.2 Pareto Optimization 9
2.2.1 Parcto optimality plot 10

3 Modeling 11
3.1 System descriptiono 11
3.2 State space representation 12
3.2.1 Constraints o e e 13

3.2.2 Finding the state derivativeso L.
3.3 Disturbance analysis o
3.3.1 Hot water demand, qpyp -+« « v v v e e e
3.3.2 Electricity price, p L
3.4 Controllers
3.5 Describing the system on an energy basis
3.6 Optimal control, simplifying the problem

4 Cases
4.1 Casel: Thebasecase
4.2 Case II: The optimized case
4.2.1 Modifying the optimization problem
4.3 Case III: The Two-phase Case
4.4 Variable analysis o
5 Implementation
5.1 Program structure Lo
5.2 SIMULINK model
6 Results
6.1 72-hour plots for cases I, IT& IIT
6.2 Resulting t, and J forcases L IT & IIT
6.3 Selection of optimal back-off 0L
6.4 Selection of two-phase policy
6.5 Effect of tank size on optimization results
6.6 Case II with known and average demand in predictor
7 Discussion
7.1 Evaluation of results
7.2 Model performance
7.2.1 Violation of temperature set points
722 Back-off
7.2.3 Size of the hot water tank
7.3 Assumptions and simplificationso L
7.3.1 Disturbances and parameters
7.3.2 Perfect control
7.3.3 Roughness of discretization
7.3.4 Moving prediction horizon
8 Conclusion
8.1 Further work
Bibliography
Appendices

23
23
23
23
24
25

27
27
28

31
31
35
36
38
39
41

43
43
43
44
44
44
45
45
46
46
46

49
49

51

53

vi

In-depth Derivations
A.1 Deriving %—? from the energy balance
A.2 Finding the flow out of the tank, qoye . - - - - -« . o o o . oL

Tables
B.1 Modeldata
B.2 Additional results

Main MATLAB Scripts

C.1 Running the SIMULINK model: main.m
C.2 Two-phase policies: simplec.m
C.3 Comparing tank sizes: sizing.m,
C.4 Finding optimal back-off: backoff.m
C.5 Calculating the new states: system.m

Generating Demand & Price Profiles

D.1 Forming a timeseries object: multiProfiles.m
D.2 Transforming price data: genPrice.m
D.3 Extracting price from database: genPriceHour.m
D.4 Making a daily demand profile: genProfile.m
D.5 Demand profile helper function 1: genProfile.m
D.6 Demand profile helper function 2: genProfile.m
D.7 Demand profile helper function 3: genProfile.m
D.8 Demand profile helper function 4: genProfile.m
D.9 Demand profile helper function 5: genProfile.m
D.10 Demand profile helper function 6: genProfile.m
D.11 Demand profile helper function 7: genProfile.m

MATLAB Support Functions

E.1 Storing files with simulation data: genTable.m
E.2 Finding average demand: historicProfile.m
E.3 Finding average price: historicPrice.m

55
55
57

59
59
61

63
63
72
73
74
75

7T
77
78
79
80
81
82
84
84
85
86
86

87
87
91
92

vii

viii

List of Tables

6.1 Resulting J and ¢, for Case I, ITand ITL. 35
6.2 The effect of tank volume on J for cases I, II & Case IIL. 39
6.3 The effect of volume on ¢, for Case I & Case IL. 40
B.1 Tuning parameters.o 59
B.2 Model parameters. 59
B.3 Disturbance values. oL 60
B.4 Input and output constraints. L. 60
B.5 [Initial and final conditions. 60
B.6 Comparison of two-phase policies. 61

ix

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

5.1

6.1
6.2
6.3
6.4
6.5
6.6

6.7
6.8
6.9

A dynamic system.
Closed-loop control of a dynamic system.
Pareto optimality plot.o oo

The hot water tank system.
The average demand for each hourly period
The average price for each hourly period
Price for each hourly period for the first four days of March
Control scheme for the hot water tank system.
System response to a constant hot water demand of 2.5//min

The hot water tank system modeled in SIMULINK.

State variables during three days simulation of Case I.
Inputs and disturbances during three days simulation of Case I. . . .
State variables during three days simulation of Case II..
State variables during three days simulation of Case III.
J for Case I, Case [T and Case III.
Pareto plot of the different back-off values, where each square repre-

sents a different solution. The solutions are all Pareto optimal. O.S.

signifies the selected solution.
Cost for Case II and Case III as a function of back-off.
t, for Case II and Case III as a function of back-off
Pareto plot of two-phase control cases.

6.10 Savings for different volumes with cases IT & IIT.
6.11 Case II with known and yearly hot water demand

xi

Nomenclature

Symbol Explanation Unit
A State matrix various
B Input matrix various
Cp Specific heat capacity kJ/kg,”C
C Disturbance matrix various
d Disturbance various
D Output matrix various
E Energy in the hot water tank kJ

G Transfer function various
H Enthalpy kJ

J Cost function €

K. Controller gain various
n number of time steps in prediction horizon -

N Length of prediction horizon sec

P Electricity price €/MWh
P Pressure Pascal
Q Heater duty kW
Gew Flow of cold water for mixing 1/min
Qa4 Energy demand kW
Ghw Flow of hot water to end user 1/min
Qin Flow of cold water into the tank 1/min
Qloss Heat loss to surroundings kW /h
Gout Flow of water out of the tank 1/min
t Time sec

T Tank temperature °C

Tew Cold water temperature °C

tend Simulation end point sec
Thuw,s Hot water temperature set point °C

Thw Hot water temperature °C

T Temperature set point °C

ty Time that T' < Ty, s hours
U Input various
U Internal energy kJ

Uy, Kinctic energy kJ

U, Potential anergy kJ

1% Volume

\% Volume set point |

Wi, Work from pressure difference kJ

W, Work from expansion of the control volume kJ

W Shaft work kJ

x State various

xii

Symbol Explanation Unit
J Output various
Ye Error to controller various
Ym Measured ouput various
Ys Output set point various
Greek sybols Explanation Unit
At Size of time step -
P Density kg/1
T Integral time sec

Abbreviation Explanation

BRIC Brazil, Russia, India & China

IMC Internal model control

IPCC Intergovernmental Panel on Climate Change

PID Proportional-integral-derivative

SIMC Simple IMC

O.S. Optimal solution

NVE Norwegian Water Resources & Energy Directorate

xiii

Xiv

Chapter

Introduction

Global energy demand is ever increasing, most recently thanks to growth in emerg-
ing markets and BRIC-countries. At the same time there is global agreement that
CO; emissions have to be decreased. [IPCC (Edenhofer et al., 2014) predicts that
global COs emissions from the energy supply sector alone will at least double by
2050. To avoid these predictions there needs to be a massive shift from oil based
energy to renewable resources. One of IPCC’s key proposals is to decarbonize
electricity generation. As of today 30 % of all electricity comes from nuclear and
renewable resources while the rest comes from carbon based sources. To increase
this to the targeted 80 % by 2050, large investments has to be made into renewable
resources like solar and wind power. There are several additional challenges with
these energy sources, the most important being their unpredictability. Neither
windmills nor solar panels are able to produce electricity with the consistency that
a coal factory or natural gas plant can. With an increased dependency on renewable
resources the energy market will become more volatile with weather trends greatly
impacting the total amount of electricity being produced. To facilitate investments
in renewable energy sources, solar and wind power have been heavily subsidized by
European governments, guaranteeing power companies a certain price regardless of
demand. In France electricity generated from wind turbines sells for 83 €/MWh,
demand or not, while nuclear energy sells for approximately 40€/MWh (Lerouge
and Atlan, 2013). This is not a sustainable long term solution, so it is necessary
to find ways to store excess energy until it is demanded.

One way to store energy that is available in almost every household, is in the do-
mestic hot water tank. Hot water tanks are essentially like large batteries, storing
energy in the form of hot water. If the heating of hot water tanks could happen
when the supply of electricity is high, and thus the price low, this would stabilize
the price and renewable energy sources would become more competitive. In this
thesis it is proposed to achieve this by using smart control systems and an econom-
ical optimization for the hot water tank. The tank should use energy when the
prices are low and conserve energy while prices are high, all while still providing

Chapter 1. Introduction

hot water to the end user. The novelty of this approach is that it should provide
direct economical benefits to the owner of the hot water tank, making distribution
of the system a lot easier. It would also provide an alternative way of stabilizing
a more volatile energy market; instead of focusing on shifting the supply of energy
to meet the demand, the demand is shifted to meet the supply.

Another advantage of smart control is that demand would decrease during the
hours that total energy usage is high, known as peak hours. Considering that
increasing peak hour demand is what makes new investments in electricity grid in-
frastructure necessary, decreasing peak demand could help postpone investments in
expensive infrastructure. This is important as total energy capacity in Norway has
been largely unchanged since 1989 (Doman, 2013). Several projects are planned in
the coming years that would severely strain the electricity grid, perhaps the biggest
among them being the electrification of Utsirahgyden (Olje- og energidepartementet,
2014). Official estimates indicate that investments into electricity infrastructure
alone will account for more than 1300 MNOK in 2013 (Olje- og energidepartementet,
2012), so the economical potential of postponing such investments is huge.

1.1 Previous work

Several other projects have looked into using hot water tanks to decrease the total
energy demand during peak hours. Integral Energy have been running a success-
ful program for domestic hot water control since 1995 (Charles River Associates,
2003). In the program customers give control of their hot water heater to Inte-
gral in return for cheaper electricity. The company uses their controlled hot water
heaters to decrease energy demand during peak hours, by heating at time slots
when energy is cheap. The general heating policy used by Integral was to heat
during the night and also add a small heating period during the day. Limiting
demand during peak hours have also been investigated by Ericson (2009), who
tested the effects of disconnecting domestic hot water heaters during peak hours
using a statistical model. Ericson found that this would cause a spike of energy
usage once the heaters were reconnected to the electricity grid. This "payback ef-
fect" might lead to simply shifting the total peak demand to a different time slot
instead of decreasing it, provided enough hot water heaters are disconnected at the
same time. Cycling the disconnection times was suggested to avoid this. Other
positive effects from disconnection was that the total energy consumption actually
decreased marginally.

This thesis is a direct continuation of the model proposed by de Oliveira et al.
(2013) and the results of Johansson (2013). Both have looked at the hot water
heating system from an economical optimization perspective. Johansson simulated
a hot water tank system and tested out several different combinations of heating
policies and control structures. The goal was to compare different cases and find
a simple structure that was close to optimal. The simulations were carried out for
one day at a time with promising results. It must be noted that there was put no
constraints on the temperature in the tank at the end of each day. The proposed
optimal solution therefore had a full tank and maximum temperature at the start

1.2 Thesis scope

of each day and an almost empty tank with the minimum allowed temperature at
the end. For all but one of the cases, reheating the tank for the next day of sim-
ulation was not taken into consideration. Johansson found that the cost could be
minimized by keeping the tank at maximum volume and changing the temperature
depending on price. For this case an additional cost factor was added to account
for reheating the tank. This gave savings in the range of 33.6-35.8 % compared to
the worst case (holding a constant maximum temperature and volume in the tank).
The mentioned case is however not practically implementable. This is because the
optimal temperature set points were found from running multiple simulations of
the same case with different set points and the same demand, then picking the best
one. In reality, future demand is not predictable, so being able to find optimal
set points for a specific demand profile in this way is not realistic. The controller
tunings found by Johansson was reused in this thesis, these are shown in Section
3.4.

1.2 Thesis scope

This thesis considers the optimal operation of energy storage in buildings with fo-
cus on the hot water tank, and is a continuation of the work of Johansson (2013).
The objective is to minimize the cost of operation while still meeting the hot water
demands of the end user. This was to be achieved using smart simplifications that
makes the optimization problem solvable even with limited computation resources.
The objective has been solved by modeling a hot water tank system in SIMULINK
and MATLAB and implementing a feedback control structure to stabilize the sys-
tem. By using ideas from self-optimizing control the minimization problem have
been simplified to be possible to solve even with limited computation resources.
The resulting optimized case (Case II) has been compared with a simple policy of
heating for a set amount of hours at night (Case III) and always heating as much
as possible (Case I). The effects of chosen back-off and tank size has also been
investigated.

1.3 Thesis structure

Theory and introduction of the concepts used in the rest of the thesis is shown
in Chapter 2, then follows a description of the system and model development in
Chapter 3. The different cases that have been simulated are described in Chapter
4 while Chapter 5 explains how these cases were implemented into MATLAB and
SIMULINK. The results are presented in Chapter 6 and discussed in Chapter 7.
At the end, conclusions and recommendations for further work are presented in
Chapter 8.

Chapter 1. Introduction

Chapter

Theory

2.1 Control theory

Control theory describes the behavior of dynamic systems and how to control them.
As an interdisciplinary field the terminology and use of symbols tends to vary
with the background of the author, so understanding the meaning behind each
abbreviation and symbol can be a daunting task for the uninitiated. For this
reason the amount of theory in this section is kept as small as possible. For a more
thorough look into control theory, see Seborg et al. (2003) or Foss et al. (2003).

2.1.1 Modeling a dynamic system

To understand control theory a general understanding of state space representa-
tion is required. A state space representation is a mathematical model of an actual
system. Here the behavior of the actual system is recreated using first order dif-
ferential equations and state variables. Any variable that has been determined to
significantly affect the system, and thus included in the model, is a state variable.
There are four types of state variables: System inputs, u, states, x, outputs, y,
and disturbances, d. All system described by a lincar continuous time system, can
be reduced to the state space representations shown in Eq. 2.1 (Ruscio, 2009).

x = Ax +Bu+ Cd (2.1)
y = Dx (2.2)

Where x is a vector containing the time derivatives of each state and A and B are
matrices whose composition are determined by the represented differential equa-
tion. C and D are selection matrices which describes how the input and states
affect the output. If the initial conditions are known the new state can be calcu-
lated using

Xit1 = Xj + X; At (23)

From Eq. 2.3 it follows that the outputs can be calculated at any point if:

Chapter 2. Theory

e The matrices A, B, C and D are known.
e The disturbances, inputs and initial conditions are available.

This allows for new system states, to be calculated as long as the input is known,
which leads to the general representation of a dynamic system shown in Fig. 2.1.
In the figure it has been assumed that all states are measured directly (C =1I).
This gives x =y.

d
1

Figure 2.1: A dynamic system with inputs u, disturbances d and outputs y.

2.1.2 Controlling a dynamic system

Eq. 2.1 implies that changes in the state y can be controlled by manipulating the
input u. It does however not take into account that disturbances also will change
the state. Which tends to destabilize the system if the change in inputs does not
counteract the change in disturbances. This is where a controller comes into play.
By manipulating the inputs in a smart way, a controller counteracts disturbances
and stabilizes the system.

Control theory distinguishes between two different control arrangements, closed-
loop (feedback) and open-loop (feed-forward) control. Open-loop control measures
the input and from this makes a control decision. Closed-loop control instead mea-
sures the output from the system and makes adjustment depending on how much
it differs from the wanted output. In this thesis closed-loop control is used. A
graphical representation of closed-loop control is shown in Fig. 2.2. Here . is the

d
Ys+ Ye Y
——(——{ Controller 4 System

Ym

Measurements

Figure 2.2: Closed-loop control of a dynamic system.

difference between the measured output y,,, and its set point ys. Based on the
error 7. that enters the Controller, the input u to the system changes. This is how

6

2.1 Control theory

the controller tries to keep the output at it’s set point(y = ys). If the output is
exactly equal to its set point the input from the controller would be left unchanged,
for all other states the controller would change the input depending on the size and
sign of the error. The difference between y,, and y is just measurement error, for
computer models the measurement error is 0.

2.1.3 PID controllers

PID controller is short for proportional-integral-derivative controller. The name
corresponds to the different parts of the controller, where each attempts to coun-
teract different errors. The proportional part corrects present error, the integral
part corrects past error, while the derivative part corrects for future errors. Some
controllers do without one or several of these corrective parts, the most common
is the PI controller, which does not correct for future errors. The controllers used
in this thesis are PI controllers, a PI controller works as shown in Eq. 2.4.

)= Ko (w2 [t e (r)ar (2.9

T

In control theory the Laplace transformation (Foss et al., 2003) of the above equa-
tion is commonly used instead,

G =K. (1 + i) . (2.5)

TS

The PI controller depends on two parameters, K. and 7;. The controllers can be
tuned by manipulating these parameters. Typical methods of obtaining good K.
and 7; values are: From an open loop step response, from closed loop using P-
control (Shamsuzzoha, 2013) or from obtaining first or second order models using
the half-rule and then applying SIMC tuning rules (Skogestad, 2003). For this
thesis, controller tunings found by Johansson (2013) were used.

2.1.4 Optimal control

The previous sections have dealt with disturbance rejection. In optimal control,
the goal is not only to limit the disturbance, but also to ensure effective input
usage. Typical objectives of optimal control would be to minimize costs while also
ensuring smooth operation. An example would be minimization of the cost J such
as

min J(u,d), (2.6)

u

while keeping within some constraints.The inputs u are typically manipulated in-
directly by adjusting the set point of feedback and feed-forward controllers. By
choosing clever set points the control goals can be achiecved while also ensuring
optimality. This is the basis of model predictive control(MPC) and the optimized
case described in Section 4.2.

Chapter 2. Theory

Model predictive control

MPC is a closed loop procedure based on repeatedly solving an optimization prob-
lem. Solving control problems using an optimization approach gives a set of optimal
inputs. Finding optimal inputs for a period into the future is not new, and has
been used well before MPC. Often these solutions tended to be poor for the later
inputs in the set, as disturbances or inaccuracies in the model had built up. The
state of the real system will at this point be radically different from what it was
modeled to be, and proposed optimal solutions for the modeled system is no longer
optimal in reality. This is where MPC excels. The defining feature of MPC is
that it is closed loop, which implies that it receives continuous feedback from the
system. The MPC uses this feedback to calculate a new set of optimal inputs for
the system. It will therefore solve an optimization problem repeatedly, with only
the first step of it’s proposed solutions ever getting implemented. A basic MPC
procedure as per Mayne et al. (2000) is shown in Algorithm 1. Intuitively finding a

Algorithm 1 MPC procedure.
1: fort =0, 1, 2,... do

2: Find the current state ;.

3: Solve a dynamic optimization problem on the prediction horizon
from t to t + N with x; as the initial condition.

4: Apply the first control move u; from the solution above.

5: end for

set of inputs far into the future and then just applying the first one might seem like
a waste of computing power, but in practice it is very powerful. Finding optimal
future inputs can be likened to giving the solver "vision". Even if the vision isn’t
perfect (due to inaccuracies in the model) it makes the solver take into account fu-
ture disturbances and not just what happens at that instant. The beauty of MPC
is that even though predictions towards the end of the horizon are not entirely
correct, the only implemented step is very often close to optimal.

The biggest differences among MPC solvers are the size and the discretization of
the prediction horizon. The prediction horizon is the set of time sections that the
optimizer finds solutions for. The simplest MPC solvers have uniformly sized time
sections, while more advanced MPC solvers tend to use small time sections at the
beginning of the prediction horizon and then gradually larger sections towards the
end. The motivation for this is to improve prediction that is actually going to
be used (the first one) at the cost of some loss of detail where the model is least
accurate. MPC solvers can have either a moving or shrinking horizon. A moving
horizon has a constant length, the horizon is called moving as it moves along with
the state, always a certain number of steps ahead of the current state. For contin-
uous systems a moving horizon is typically preferred. A shrinking horizon has a
constant end point. It is said to be shrinking as the size of the horizon shrinks as
time passes. Shrinking horizon is optimal for systems that should run for a specific
period before stopping.

2.2 Pareto Optimization

Self-optimizing control

Optimal control can be hard to achieve, but understanding the general concept
should not be difficult. Optimal control can be defined as

mgn J(u,d) = m&n J(uppe(d), d) = Jope(d). (2.7)
Simply put, an optimal solution has the inputs that minimizes J for the given
disturbances. These inputs are defined as optimal inputs uept (d), and the resulting
cost function is defined as the optimal cost J,,:(d). Finding the optimal inputs
is far from trivial for most cases. Systems with hard to predict disturbances are
particularly good candidates for self-optimizing control. Self-optimizing control is
simply finding system variables that gives feasible, near optimal operation from
being kept at a constant value. Good self-optimizing control is to a large extent
about engineering knowhow and can be achieved by:

o Using inputs to control the active constraints (Mayne et al., 2000) at optimal
operation.

e Remaining input should be used to keep a self-optimizing variable ¢ constant.
c should be relatively insensitive to disturbances.

Following these rules should give close to optimal operation. For complex systems
with several possible self-optimizing variables, Skogestad (2004) suggests that dif-
ferent alternatives can be compared using the loss function

Lu,d) = J(u,d) = Jop(d). (2.8)

Which gives an indication of how close to optimal each solution is.

One of the challenges for self-optimized control is that the set of active constraints
might change with the disturbances. We call this entering a new "active constraint
region" (Jacobsen, 2011). If the active constraints region changes, new variables
would have to be controlled, and the best choice of self-optimizing variable will
change as well. If this happens a new control structure or at least new set points
should be used.

2.2 Pareto Optimization

For complex problems the goal is often to achieve several things at once. Defining
if a solution is optimal can be difficult for such problems, as there might not exist
one solution that gives optimal results for both objectives. Cases such as these
have multiple Pareto optimal solutions. A Pareto optimal solution is defined as a
solution that can not be improved in one objective without decreasing the other
objective. All such solutions are said to be located along the Pareto optimal front
(Holene, 2013). A random Pareto optimal solution is not necessarily the best
solution for the problem, but the best solution is always among the Pareto optimal
solutions. In the end it comes down to how important each of the two objectives
are compared to the other.

Chapter 2. Theory

2.2.1 Pareto optimality plot

A Pareto optimality plot has the objectives along the axes and solutions represented
with their result for each objective along the axes. Given a problem with two
objectives that should be minimized, the solutions forming the lower left edges
of the solution space are the Pareto optimal solutions. An example of a Pareto
optimality plot is shown in Fig. 2.3, here the goal is to minimize lead emissions
while keeping down the costs.

1074

5

“T‘ 45 Interesting region |
o

% o o
80,
5 4 :
7 Feasible solutions
=
S o
<
g
S 35

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Unit cost [€]

Figure 2.3: Pareto optimality plot for minimization of lead emissions and unit cost.

In the plot all squares represents solutions and all filled squares Pareto optimal
solutions. Together the filled squares make up the Pareto optimal front which bor-
ders on the infeasible region. All of these are valid choices for a final solution, and
the plot does not necessarily favor a particular point. The final decision depends
on how heavily each objective is weighted.

10

Chapter

Modeling

Using the theoretical framework described in Section 2.1, a model of the system can
be made. Section 3.1 describes the system, and defines the different state variables.
Section 3.2.2 finds the differential equations governing the state, while Section 3.5
does the same on an energy basis. Section 3.3 describes the disturbances affecting
the system and their validity. The modeling and simulation of the system using
MATLAB and SIMULINK is described in Chapter 5 while all parameter and state
values are shown in Appendix B.

3.1 System description

The system of interest is a hot water tank. Hot water tanks are not complex
systems, and need not consist of more than a tank with inlet, outlet and a heater.
This makes it a great system for modeling as the mathematical approximation is
likely to be quite accurate. The hot water tank should be controlled in a way that
ensures hot water to the end user, and minimizes the cost J. The cost of operating
the hot water tank is defined as

J = /OthdT. (3.1)

Where p is the energy price and @ is the energy used by the tank heater.

A schematic of the hot water tank system is shown in Fig. 3.1. This particular hot
water tank has a somewhat unconventional design. Firstly the cold water enters
at the top of the tank and leaves out the bottom, while most tanks have cold
water entering at the bottom. This does not have any implications for the model
as our other unusual property, perfect mixing, makes the entering point of inlets
and outlets trivial. Cruickshank and Harrison (2010) found that perfect mixing
decreases the energy efficiency of the system, so this would definitely be a factor
for other processes.

11

Chapter 3. Modeling

Tew [C]
Gin [dm®/min)

K

T [C]

QW] V. [dm?]

D"'<<

Tew [C
Gout [dm3 /min] Gew [[dn]z3 /min]

hy

Thw [C]
Ghw [dm3 Jmin]

Figure 3.1: The hot water tank system.

The hot water tank system has cold water entering the tank with flow defined
as ¢;n, and T,,. Because of perfect mixing, there is no temperature gradient and
the tank temperature T is also the temperature out of the tank. The flow out of
the tank ¢+ is mixed with a cold water flow ¢., to give desired temperature to
the end user T},,,. It is assumed that control of g.,, is used to achieve this and that
the control is perfect. This gives one of the key assumptions in our model, Eq. 3.2.

Thw = Thaw,s (3.2)

The flow out of the system ¢y, is controlled by the end user, and will generally be
referred to as the hot water demand.

3.2 State space representation

A hot water tank has two tasks, to provide water, and to ensure that the water
provided holds the correct temperature. Keeping this in mind, the first choice of
states x for the system is rather intuitive: Volume of water V' and temperature T
in the tank. In addition to those two, the cost function J is selected as the final
state.

The states will have to be controlled using the valves available in Fig. 3.1. The

12

3.2 State space representation

valve controlling the flow of cold water to be mixed ¢, is already used to control
the outgoing temperature T}, while the flow of water out of the system qp,, is
controlled by the end user. Thus the only valves left to control our states are
the flow of cold water into the system ¢;, and the heater duty Q. This will be
sufficient as we do not want to try to control the cost directly (Skogestad, 2014).
J will therefore not be included in the outputs, y. Disturbances are everything
else entering or affecting the system that is not controlled. Putting this into state
space notation gives

v Ghw

_ _ |V _|@ _| P
x=|T y = [T] u= |:an:| d= R (3.3)

J T

The disturbances d are not immediately obvious just from looking at Fig. 3.1,
instead these are found from deriving the state derivatives, shown in Section 3.2.2.
As specified in Eq. 2.1 state derivatives for linear systems are functions of inputs,
disturbances and parameters. Thus, finding the state derivatives when inputs and
states are known will make the disturbances obvious.

3.2.1 Constraints

Both the outputs y and inputs u are constrained. The constraints on the ¢;, and Q
are due to physical limitations of the valve and heater. The constraints on V' and
T are there partly for safety reasons, such as making sure that the tank doesn’t
take in more liquid than it can hold, that water does not start boiling and that
the heating element always is covered by water. The other reason is simply to
meet control objectives, which is not possible if there is no water in the tank or
the tank temperature 7' is below the hot water temperature set point T}, s. Input
and output constraints are shown in Table B.4.

3.2.2 Finding the state derivatives

State derivatives show how the system states, in this case T, V and J, changes
with time. They are generally found from manipulating mass and energy balences.
Setting up the mass and energy balances gives Eqgs. 3.4 and 3.5.

d(pV)

— 7, — Pin4in — PoutYou 3.4
dt Pind PoutGout (3.4)
dH . .
E - Hin - Hout + Q - Qloss (35)

Here p is the density of a stream in kg/l and ¢ is the volumetric flow in I/s. Hip
and H,,; are the enthalpies of the streams in and out of the system in J/s. Q is the
duty delivered from the heater and Q;,ss is the loss of energy to the environment.

13

Chapter 3. Modeling

By assuming the density change with temperature to be negligible the mass balance
can be simplified to Eq.3.6.

dV
— {in ou 3.6
dt q Qout ()

The flow leaving the hot water tank, ¢..:, depends on the hot water demand and
the temperature of the tank. If the tank holds a high temperature, g,ut and ¢ey
will be roughly equally large. If T is low however, ¢,,+ Will be much larger than
(ew, t0 meet the desired hot water temperature of 50 °C. ¢, is a function of state
variables and has been derived in Appendix A.2. By inserting Eq. A.16 into Eq.
3.6 the volume derivative becomes

av Thw7s - Tcw

E = lin — qhw T _ Tcw (37)

The full derivation of the temperature balance from the energy balance in Eq.
3.5 is shown in Appendix A.1. It gives the temperature derivative
dT 1 Q - Qloss
— = — | in(Te, = T) + ———— 3.8
i v (T =T), (3.5
where ¢, is the specific heat capacity of water.
The final state derivative is the cost, which is found by differentiating Eq. 3.1.

Lappre (39
All of the state derivatives put into state space notation then gives
v i — o T
= T = | & (in(Tow = T) + 95202) | (3.10)
d pQ

3.3 Disturbance analysis

The disturbances affecting the system are quy, P, Thw,s and Te,, of which the
latter two are assumed to be constant. Technically constant disturbances could be
considered parameters, but as they are included as disturbances in the model they
will be in the thesis as well. The reasoning behind assuming T}, s to be constant,
is that the user would have some other cold water source to mix the water with if
a colder temperature was wanted. For T,,, there might be some scasonal changes,
but for a simulation running for one month the variation is likely to be negligible.
The two remaining disturbances are described in sections 3.3.1 and 3.3.2.

3.3.1 Hot water demand, ¢,

The hot water demand is controlled by the end user; the owner of the domestic hot
water tank. The hot water is used for task such as: Baths, showers, dishwasher

14

3.3 Disturbance analysis

and in smaller or larger bursts bursts for cooking or cleaning. The use of hot water
for one day in an average household was simulated by de Oliveira et al. (2013),
using controlled randomness to generate different profiles for each simulation. The
function getProfile.m and its subfunctions are shown in Appendix D and has not
been made or modified as part of this thesis.

By running the program repeatedly an average hot water demand profile could be
generated. The average hot water demand for each hour of the day is shown in
Fig. 3.2.

07 I

0.6 [|

0.5 -

0.4 -

0.3 |

0.2 -

Hot water demand [1/min]

0.1} -

02:00 [
03:00 |-

08:00 |-
09:00 |-
10:00 |-
11:00 |-
12:00 |-
13:00 |-
14:00 |-
15:00 |-
17:00 |-
18:00 |-
19:00 |-
20:00 |-
21:00 |-
22:00 |
23:00 |-
00:00 |-
01:00 |-

05:00
06:00 |
07:00 [

04:00

|

o
<
©
—
Time period

Figure 3.2: The average demand for each hourly period, as estimated from the result of
365 unique demand simulations.

3.3.2 Electricity price, p

Electricity price is strongly dependent on demand, and as such also varies according
to time of day and season. General price trends in Norway are low prices during
the night and higher during the day. There is generally a spike in price in the
morning and sometimes a spike in the evenings as well. The average electricity
price for each hourly slot is shown in Fig. 3.3.

In Norway the electricity market is regulated by the Norwegian Water Resources
and Energy Directorate (NVE). Together with national regulators in Estonia and
other Nordic countries they operate the energy trading market. NVE has granted
Nord Pool Spot a license to operate a marketplace for trade of electricity in the
Norwegian market (Lund, 2012). In its function as marketplace Nord Pool Spot
(2014) also provides some interesting public data. Among these electricity prices

15

Chapter 3. Modeling

=

~

W

°]

[}

o=

~

o8 N

>

o0

~

[eb}

=]

~
32 5
30\\\\\\\\\\\\\\\\\\\\\\\
DO ODODOD DO ODOODODODODOODODOD DO OO
SIS IR DRSS
WO OISO AN FLIO O~V ANNOHANM
OO0 OO A A A A A A A" "4/ A AN ANNOOOCO

Time period

Figure 3.3: The average price for each hourly period, from Nord Pool Spot prices for
the Trondheim area 2013. Nord Pool Spot (2014)

for every hour in the Nordic countries from 2011 and onwards and daily prices
dating back to 1996. The hourly price data from March 2013 is used to represent
the disturbance p in this thesis. The reasoning behind using this specific data set
is twofold. Firstly March 1st contains 2013’s highest energy price, which makes
it interesting as the model would have to work for high disturbances. Another
advantage is that higher price variations should give clearer results, as no price
variation would give the same cost no matter when heating takes place.

The choice of starting at 4:00 in the morning is based on giving reasonable initial
and final conditions. From figures 3.3 and 3.2 it can be seen that the price and
demand is generally lowest right around 4:00. Assuming that it is optimal for the
tank to be full and at maximum temperature at this time seems reasonable. By
choosing 4:00 as a starting point our initial and final condition is very likely to be
optimal, which strengthens the accuracy of our model. A look at the clectricity
price for the first four days of March is shown in Fig. 3.4.

From the plot it can be observed that prices vary quite a bit from day to day, but
still tends to follow the same pattern as seen in the average graph. Intuitively this
tells us that a simple policy based on heating the tank during the night could give
good results, which will be investigated in Section 4.3.

16

3.4 Controllers

[[
100 |- f
—— March 1.
—— March 2.
§ —— March 3.
—— March 4.
= 80 a
~
W
(&)
9
.a I
o 60 |- 5
&0
o
(]
<
€2
40 |- f
| |
OO O DO OO OO OO OO OO0 OO oO
SRR RLILRLRLRLILEeee2
1O O I~V O AN M FTLO OI~-~0VIHOO—ANMNO— AN M
OO OO OO OO A A A "4A A "A"A "4 AN AN ANNOOOO
Time period

Figure 3.4: Price for each hourly period for the first four days of March, from Nord Pool
Spot prices for the Trondheim area 2013 (Nord Pool Spot, 2014).

3.4 Controllers

The pairing of inputs as well as choice and tuning of controllers is selected to be the
same as proposed by Johansson (2013). This was done both to speed up the process
of recreating the model and to keep the systems consistent. The method used for
tuning the controller and the theory behind it will therefore not be presented here,
but can be found in the thesis of Johansson.

Feedback control with PI controllers was used to stabilize the system states T" and
V. The pairing of inputs with states was as would be expected;) was used to
control T" while ¢;,, controls V. The control scheme is depicted in Fig. 3.5. It has
been assumed that the valve controlling the flow of cold water ¢, is used to ensure
that Thy = Thw,s, and that this control is perfect. The two other controllers have
been tuned by Johansson, which found the tuning parameters shown in Table B.1.

17

Chapter 3. Modeling

Vs
i Ko
Qin, [dM3 /min] %
T
K; T [C]
ow V ()
g
< -

Tew |C]

Qout [dm3 /min] Gew [dm3 min]

A

Xﬂ T [C]
Qhiw [dm> /min]

Figure 3.5: Control scheme for the hot water tank system.

3.5 Describing the system on an energy basis

Describing the system on an energy basis is easier than using a temperature and
volume basis. It is rarely used for control as energy is hard to measure. In this
thesis the energy level in the tank will be used in Section 4.2. The energy in the
tank F is defined as

E = pc, V(T — Tew). (3.11)

The upper and lower bounds on energy follow from the bounds on T and V as

Ema:r - pcpvmaw(Tmaa: - Tcw): (312)

Emin - pcpvmin(Thw,s - Tcw)' (313)

18

3.6 Optimal control, simplifying the problem

The change of energy in the tank depends on heater duty @, energy lost due to
demand Q)4 and heat loss Qj,ss. Assuming negligible heat loss yields the modified
energy balance .

5 = Q@ (3.14)

Where Qg can be calculated from the energy in the hot water flow ¢, and is
defined as

Qd - Qhwcpp(Thw - Tcw)- (315)

3.6 Optimal control, simplifying the problem

The previous section has shown how the outputs and inputs have been paired
to achieve a stable system. It does not show how to control inputs to achieve
additional objectives, like minimizing the total cost J. In essence, controlling the
model optimally is all about finding a solution to the optimization problem in Eq.
3.16. ‘
min J(T.V) (3.16)
Subject to the constraints shown in Table B.4. Solving this problem by optimizing
the inputs requires resolving the problem very often to handle any new distur-
bances. This is why almost all cases of control optimization simplifies the problem
by finding optimal input set points and let regular controllers handle the distur-
bance rejection. Doing so lets us keep the controllers found in Section 3.4 and gives
the simplified problem
l’l;lin) J(Tsetv Vset)- (317)
Subject to the same constraints as in Eq. 3.16.
Solving an optimization problem with multiple variables is not fast, and so it would
be useful if the number of variables could be reduced by assuming one variable to
be a function of the other,
min f(z,y) ~ min f(z,y(z)), (3.18)
or by finding one variable to be close to optimal at some constant value, known as
a self-optimizing variable (Skogestad, 2004). The goal of self-optimizing control is
to find a variable that is insensitive to disturbances at the optimum. A good guess
for a slow moving variable for our system would be the volume while the tank is
fully filled. High volume means increcased resistance to disturbance, and it seems
intuitive that V' = V,,,.. would be an active constraint for periods when the price
is low, as the goal is to store as much possible energy as possible. Similarly when
the demand is high, as this would help resist disturbances. Overall it seems likely
that keeping V' = V,,,, would be a near optimal option for large sections of the
simulation.
If the demand is too high however, continuously filling the tank with cold water
would lead to the temperature falling below its constraint. If this happens the
flow of cold water into the tank must be closed until the temperature rises above

19

Chapter 3. Modeling

its set point. For cases where water volume reaches its minimum constraint the
temperature constraint would have to be abandoned and the volume of water kept
constant to ensure that water covers the heating element.

If the volume could be controlled as stated above, it could provide close to optimal
behavior to just optimize on the temperature. Putting this into logical statements
gives the rules that de Oliveira et al. (2013) proposed for near optimal behavior:

1. Manipulate gy, to keep V' = Vjp,q, while T' > Thy, s
2. Set ¢in, = 0 while T' = T}, s and V' > Vi,

3. Manipulate ¢;,, to keep V' = V.4, while T' < Ty s

mplementing this requires a control structure that changes with temperature. This
can be implemented in SIMULINK using the switch block object. The control struc-
ture will have two different modes of operation. The first mode is active for all
periods where T' < T, s, in this mode Vg = Vj;,4,. The second mode is active for
all states where T' < Th, s, here Vg = V.

What this accomplishes is changing the set points once the active constraint
region changes (Jacobsen, 2011). This way the self-optimized variable can remain

near optimal for new constraint regions. Fig. 3.6 shows how the system behaves
with a constant hot water demand of 2.51/min.

80 |

60 |

40 | \
20 |

200

[Temperature [’C]

Volume

—_ =

ot (e») ot

(e} (e} (e}
| | |

(@]
[en)
ot
=
—
ot
[\

25 3 35 4 45 5 55 6 65
Time [h]

Figure 3.6: System response to a constant hot water demand of 2.5]/min with param-
eters Vipgz = 200, Viin = 50 and Thy,,s = 90.

From Fig. 3.6 all three optimizing rules can be observed.
e In the first section V = V,,,4» as recommended from rule 1
e In the second section 7' = Th,, s as recommended from rule 2

o In the third section V' = V,,,;,, as recommended while T < T}, s in rule 3.

20

3.6 Optimal control, simplifying the problem

With implementation of this rule, described in Section 5 the optimization prob-
lem is reduced to Eq. 3.19.

min J(Tset)

Tset

Tmz‘n ST < Tmax (319)
sz‘n SV S Vmax

This will be the problem to be investigated in the case studies.

21

Chapter 3. Modeling

22

Chapter

Cases

4.1 Case I: The base case

In Section 3.6 logical control rules were used which simplified the optimization of
the system down to one variable: The temperature set point, Ts. The easiest way
to handle the variable is to keep it at a constant value which is what have be
done in Case I. Here the temperature set point is kept constant at the maximum
temperature, 90°C. The advantage of this method is that the temperature in the
tank is very unlikely to go below the minimum temperature constraint with the
disadvantage being that it is economically far from optimal. There is no adjustment
to the electricity price or planning ahead involved, which means that the energy
storage potential of the tank is not utilized.

Case I will mainly serve as a measuring stick for the more complex cases.

4.2 Case 1I: The optimized case

For Case II the temperature set point is going to be determined using model pre-
dictive control (MPC). The MPC controller finds a set of optimal temperature set
points by solving an optimization problem. The optimization problem being to
minimize the total cost, J for a 24 hour period subject to the constraints in Table
B.4. This problem is resolved for every hour of simulation using updated system
states. Theoretically this should give temperature set points that grants both a
stable system and low cost.

4.2.1 Modifying the optimization problem

The goal of any optimization problem is to maximize or minimize a function while
abiding system constraints. Here we want to minimize is the cost function J while
keeping the constraints specified in Table B.4. The cost function J is an integral

23

Chapter 4. Cases

containing the price p and heater duty). By discretizing the problem into 24 hour
long sections the minimization problem becomes
n
N
min = —, 4.1
flw) =3 Qv (4.1)

=0

where N is the size of the prediction horizon and n specifies the granularity of the
discretization both being 24 for our case. The only variable in the minimization
problem that the MPC controller can influence is @), which will be controlled using
the temperature set point, Tk.

To optimize on a temperature basis is difficult as the change in temperature is
not linear, see Eq. 3.8. A simplification would be to instead optimize the total
energy level in the tank. From Eq. 3.5 it can be seen that this will give a linear
problem, which would make optimizing really fast. Each new set point is calculated
using

or
=L + (Q - (Jhwcp/)(Thw - Tcw)-At (4'3)

Instead of using the temperature constraints the energy constraints listed in Egs.
3.5 and 3.5 must be used.

Several other assumptions must be made to make Eq. 4.2.1 implementable. The
unknown hot water temperature Tj,, must be assumed to be equal to its set point
Thw,s and the demand has to be replaced by a predicted demand. To predict the
demand hourly average demands from one year of simulations was found. This
average demand, gpw,qp Was then used to predict the next encrgy state.

For initial and final conditions it has been assumed that the tank is filled and
heated both at the beginning and at the end of simulation.

EO - Emax .
Eend - Emax (45)

Where I,,,, is defined in Eq. 3.5. The temperature set points could then be
extracted from the energy set points by assuming constant volume.

4.3 Case 1II: The Two-phase Case

It is of interest to find how Case II compares to a simpler heating policy. An
example of such a policy is to increase Ty to the maximum at 23:00 and keep it
constant at this level until 6:00 to take advantage of generally low prices in this time
period. The other hours of the day Ts would be at a minimum level to conserve
energy. This policy has two phases, the heating phase from 23:00-6:00 and the
conserving phase taking up the rest of the day. It will therefore be referred to as a
two-phase case.

24

4.4 Variable analysis

In order to find the best two-phase policy multiple cases with varying length of
heating phase and heating start time have been investigated. The best of the
simple cases, have been defined as Case III.

4.4 Variable analysis

In addition to comparing the cases, it is of interest to find out how some of the key
variables affects each case. A primary objective of the hot water tank is to always
be able to deliver water of sufficiently high temperature. To do so the temperature
in the tank must always be above or equal to the minimum temperature for the
hot water set point,

T > Thw,s- (46)

When the PI controller has a set point exactly equal to T}, s there will be quite
some violation of Eq. 4.4, as the temperature would be expected to be oscillating
around the set point. To decrease the time below the set point, and so the amount
of time violating the temperature constraint, back-off can be implemented. Adding
a back-off implies adding a buffer to the temperature set point. Instead of setting
the temperature set points at the exact value that is wanted, a safety margin is
incorporated.

Back-off = Constraint — Set point. (4.7)

If a constraint can be violated (soft constraint) the back-off only need to com-
pensate for measurement error. If not, (hard constraint) the back-off must also
compensate for dynamic controller error. With improved tuning back-off can be
reduced. This is referred to as "squeezing and shifting" as improved tuning squeezes
the variance, which allow for the set point to be shifted (Rawlings and Stewart,
2008). Implementation of back-up should be expected to reduce t, but increase J
as less volume is usable for control. By measuring ¢, and J for different amounts
of back-off, an optimal tradeoff between the two can be found.

It is also interesting to see how the size of the hot water tank relative to qn., af-
fects the results of simulation. With the assumption of Q0;,ss = 0 there will be no
increased loss of heat due to increased surface area of the tank, so a bigger tank
should be able to outperform smaller tanks for the optimized case. Both in terms
of disturbance rejection, as the disturbances do not scale with volume, and in terms
of smaller cost. For the base case the size of the tank size should not affect the
result, though the disturbance rejection should improve with tank size.

25

Chapter 4. Cases

26

Chapter

Implementation

The modeling of the physical system was carried out using SIMULINK and MATLAB.
SIMULINK is a block based simulation environment, that is fully integrated with
MATLAB, meaning code-snippets can be used to expand on the model. This is used
to run the optimization that estimates temperature set points for Case II.

5.1 Program structure

The program is built up to work with MATLAB as the running environment and
main.m as the primary program. The input argument inmode specifies which case
main.m should run. If the simulated case is Case I, the simulation is carried out as
shown in Algorithm 2. if it is Case II or Case III, the simulation is carried out as
shown in Algorithm 3.

Algorithm 2 Solution procedure for inmode= 1

1: main.m specifies initial conditions and tells SIMULINK to run until ¢t = t¢yq
2: SIMULINK runs model for given inputs and time, returns state variables
3: main.m saves the results to a .mat file

In addition to the hierarchy shown in algorithms 2 and 3, there is one layer
above the main.m function. These scripts changes one or several of the initial
conditions and calls main.m repeatedly. This has been used to test how the model
responds to changes in tank volume and back-off. It has also been used to find the
best two-phase heating policy. The scripts that do this are simplec.m, sizing.m
and bu.m
The function main.m, its incoming arguments and the programs that call it arc all
described in more detail in Appendix C. Here all MATLAB scripts and functions
used for the simulations are also supplied.

27

Chapter 5. Implementation

Algorithm 3 Solution procedure inmode= 2 or 3

1: main.m specifies initial conditions
2: fort =0, 1, 2,...tenqg do
3: main.m finds the next T using cither two-phase method or MPC

4: main.m tells the SIMULINK model to run for one hour with given conditions
5: SIMULINK runs model for given inputs and time, returns state variables

6: main.m updates conditions

7 t=t+1

8: end for

9: main.m saves the results to a .mat file

5.2 SIMULINK model

The mathematical system described in Chapter 3 was implemented in SIMULINK.
The finished model is shown in Fig. 5.1.

For each timestep in the model, the PI controllers determines the inputs u to
the system. Simultaneously the disturbances d are defined in MATLAB and im-
ported into SIMULINK in the block [profile]. The inputs and disturbances arc both
sent to the block [system.m|. Here the next state of the system is calculated from
solving Eq. 2.3, using the state derivatives found in Section 3.1. The measured
states y are then sent to their respective PI controllers, to calculate inputs for the
next timestep of the simulation. This cycle continues for each new timestep until
the end of the simulation. The simulation length is specified by main.m, and has
for this thesis been set to 30 days.

The rest of the model focuses on controlling the set points of the PI controllers
ys. In Section 3.6 it was described how self-optimizing control can reduce the
difficulty of the optimization problem. By using logical rules to control the set
point of the volume, the optimization problem was reduced to one variable the
temperature set point Ts. This left the volume set point Vs to be set according
to the value of the temperature. The logical rule is implemented using the block
[Switch], which has the temperature T and the two constraints V4, and Vi, as
input. The switch block adjusts Vi according to the rule shown in Algorithm 4.

Algorithm 4 Switch block rules

1 if T < The.s then
2 Vs - Vmin

3: else

4: Vts = Vma:c

5: end if

The only difference between the three cases are the incoming temperature set
point T, which is calculated in MATLAB and imported into SIMULINK in the block
[90].

28

5.2 SIMULINK model

uopoun4-s

1500 —

A

wesfs

seoueqInisip

a|yaud

L9]j04u0] Aid

JO)d [«

l1o4uod did

JO)Id

Jola K

s dwa|
s1

06

Youms ujw™ WNjoA

— g

< ko

< _|A| Xew™ Wn|oA
/\A o

Figure 5.1: The hot water tank system modeled in SIMULINK.

29

Chapter 5. Implementation

30

Chapter

Results

This chapter presents the results from simulations of the base case, the optimized
case and the two-phase case. For all state plots except Fig. 6.11, blue lines repre-
sent a state variable while orange lines represent a set point.

6.1 72-hour plots for cases I, II & III

This section shows how the implemented heating policies impacts the state for
the three first days of simulation. For Case I inputs and disturbances are also
included. This is to give the reader a general understanding of how the control
system responds to disturbances. Fig. 6.1 shows how the states develop during
the first three days of simulation for Case I, while Fig. 6.2 shows the inputs and
disturbances. The constant disturbances T¢,, and T}, s are not included. For Case
I1, its states and set points along with the evolution of the price are shown in Fig.
6.3. The very same variables have been plotted for Case III in Fig. 6.4.

31

Chapter 6. Results

“ ff¥

80

70

Temperature [C]

201

200.5
200 1’UL

Volume [l

T T T T
5 10 1

T T T
5 40 45 50 5

Time [h]

T T T T
5 20 25 30 3 5 60 65 70 75

Figure 6.1: Temperature and volume with set points in orange for Case I. The plots
show outputs from three days of simulation with the cost function included.

The volume set point is constant at 200/ with the state keeping tight to the set
point. Meanwhile the temperature has several deviations from its set point, with
the biggest disturbance happening at approximately 9 hours into the simulation.
When the temperature drops the volume tends to spike slightly just afterwards,
which typically indicates a small overshoot in the controller that refills the tank.

The hot water demand ¢y, and the flow into the tank ¢;,, appear almost identical
but there is a difference in scale along the y-axis for the two plots. The spike in
demand that caused the temperature in the tank to drop can be noticed after
approximately 9 hours. This spike also pushes the heater duty) to work at
maximum intensity for over two hours. There is no hot water demand when the
price is at its highest, but this is just a coincidence as the hot water demand is
randomly generated and do not correspond to a real date.

32

6.1 72-hour plots for cases I, IT & 111

Q [kJ/s]

in [1/min]

e o Ll L

W Ut L

100

Ghw [l/min]

80

60

p [€/MWh]

40

T T
0 65 70 75

I I
0 35 40 45 5
Time [h]

T T T T
5 10 15 2

T T
0 25 3 0 55 6

Figure 6.2: Inputs and disturbances during three days simulation of Case I.

Case II and Case III has apparent changes due to spikes in demand, leading
to a change in volume set point for Case II after 9 hours and case III after 70
hours. This is the expected response once the temperature drops below T}, s and
is described in Section 3.6.

33

Chapter 6. Results

o
L
S 80
+
<
g
g, 60
5
B 1
200
= 1
o 150
E
; 100
50
=]
; 100
~ |
3 80
© 60
2
EL 40 B [[[[[[

I I I I I I I
0 35 40 45 50 55 60 65 70 75
Time [h]

T T
5 10 15 20 25 3

Figure 6.3: Case Il Temperature and volume with their respective set points in orange.
The price function is also included.

)
g
= 80 |
)
o]
g
2. 60 |
5
T 200 Y ~—
o 150 |
g
E 100 |
50
=
100 |
& 80
w
o 60
S
a 407\ I I I I I

I I I I I I I
0 35 40 45 50 55 60 65 70 75
Time [h]

T T
5 10 15 20 25 3

Figure 6.4: Temperature and volume with set points in orange for Case III. The plots
show results from three days of simulation with the price function included.

34

6.2 Resulting t, and J for cases I, IT & III

6.2 Resulting t, and J for cases I, 11 & III

Two objectives are used to qualify the cases; the amount of time that the tank
temperature is below the minimum hot water temperature set point, t,, and the
final cost J. The evolution of J with time for each of the cases is shown in Fig.
6.8.

30
w
a 25|
el
=
S
2 20 |
&
2
s 15]
[¢5]
o,
g
g 10
g —— CQCase I
= 9 —— Case II -
S —— Case III
O | | | |
0 5 10 15 20 25 30

Back-off [°C]

Figure 6.5: The cost J as a function of time for Case I, Case Il and Case I1I.

Which shows that Case I has a noticeably higher cost than Case II and III, while
the latter two are hard to separate. The cost at the end of simulation for each case
is presented in tabular form in in Table: 6.1. Here the performance in terms of t,
for each case is also included. The cost for Case II is a fraction higher than for Case

Table 6.1: Resulting J and ¢, for Case I, I and III.

Objective | Case I Case II Case IIT
J 27.19 24.85 24.71
t, 0 4.56 6.62

III. Both Case II and III have violation of the temperature set point, with Case
ITI having some hours more. Case I has no temperature violation. The savings
compared to Case I are 8.61% and 9.12% for Case II and Case III, respectively.
This added up to a profit of profit of 2.34€ and 2.48 € for Case II and Case III.

35

Chapter 6. Results

6.3 Selection of optimal back-off

Case II and III were tested with different back-offs with particular weight put on
the results from Case II. The optimal back-off was determined by measuring the
two objectives t, and J. To To help decide between the different alternatives, a
Pareto optimality plot of the solutions was made. This is shown in Fig. 6.6. From
the plot it was decided to use a back-off of 3 °C, the selected solution is marked in
the figure as O.S.

25.1

25 |

Feasible solutions
24.9 -

Cost [€]

O.S.

24.8 :

24.7

4 6 8 10 12 14 16 18 20 22 24

Minimum temperature violation [h]

Figure 6.6: Pareto plot of the different back-off values, where each square represents
a different solution. The solutions are all Pareto optimal. O.S. signifies the selected
solution.

As all solutions are Pareto optimal, the choice of back-off is not self-evident.
This is discussed further in Chapter 7.
Cost as a function of back-off for both Case II and Case III is shown in Fig. 6.7,
while ¢, as a function of back-off is shown in Fig. 6.8. It can be observed that Case
IT is more affected by the change from no back-off to 1 °C of back-off, but that the
cases otherwise seem to perform rather similar. For both cases J increases with
back-off whilet, decreases. for the tested back-offs the improvement in ¢, from
increasing the back-off decreases after 3°C.

36

6.3 Selection of optimal back-off

26

25.5

25

Cost [€]

24.5

24

—— Case II
—— Case IIT

0 1 2 3 4 5 6 7 8 9
Back-off [Day]

Figure 6.7: Cost for Case Il and Case III as a function of back-off. Simulated for 30
days with a tank volume of 200I.

w
ot

30

25

20

15

10

Minimum temperature violation [h]
ot

—— Case II
—Case IIT | |

Back-off [*C]

Figure 6.8: Hours of T' < Tp,, s for Case II and Case III as a function of back-off.
Simulated for 30 days with a tank volume of 200!.

37

Chapter 6. Results

6.4 Selection of two-phase policy

The two-phase case used in the other sections was chosen after comparison of 24
different policies. The tested control policies were similar in that they all contained
two phases, a high temperature set point phase (heating phase) and a low temper-
ature set point phase (conserving phase). The simple control policies differed from
each other by the time spent in each phase and the starting time of the heating
phase. The starting time of the heating phase varied from 22:00 to 1:00 while the
length of the heating phase varied from 3-8 hours. Table B.6 shows the different
cases and their performance in terms of minimum temperature violation and cost
for thirty days of simulation with 3°C back-off.

To choose one policy to continue with from the cases, an Pareto optimality plot
was made, the plot is shown in Fig. 6.9. The plot shows three alternative Pareto

26 i

25.8 |- :
Interesting region

25.6 | . . .
Feasible solutions

25.4€ *

25.2 o O o 3

Cost [€]

25 O o |

24.8 0S. :/E'——”

24.6

Infeasible solutions

24.4

5 6 7 8 9

Minimum temperature violation [h]

Figure 6.9: Pareto plot of two-phase control cases, where each square represents a
heating policy. O.S. signifies the selected optimal solution.

optimal solutions, located in the lower left region. The solutions are all bordering
the infeasible region and within the interesting region. From these three the so-
lution with lowest cost was chosen, denoted as the optimal solution (O.S.) in the
plot. The chosen policy consisted of heating for six hours starting at 01:00, known
as policy 16 from Table B.6.

38

6.5 Effect of tank size on optimization results

6.5 Effect of tank size on optimization results

To investigate the effect of tank size all cases were simulated using different tank
volumes. In Table 6.2 the cost of each case for varying volumes is listed.

Table 6.2: The effect of tank volume on cost for Case I, Case II & Case III. A back-off
of 3 °C is used for both cases.

Volume | J Casel J Casell J Case III
800 27.3 24.26 23.36
400 27.2 24.39 23.51
250 27.2 24.64 24.28
200 27.19 24.85 24.71
150 27.18 25.22 25.18
100 27.18 25.07 23.69

The absolute cost generally decreases with volume for all but Case I, where the
cost increases. It can be seen that this trend does not hold true when tank volume
is 100! either, which gives lower costs than when tank volume is 150(. In Fig. 6.10
the savings compared to the cost of Case I is shown for cases IT and III.

4 |
3.8
3.6
3.4
3.2

3
2.8

Savings [€]

2.6
2.4

2.2 1

—— Case 11
—— Case 111

1.8
I I I I I I I I I I I I I
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Volume []]

Figure 6.10: Savings for different volumes using case 11 & III compared to Case 1.

The savings for both cases increase with volume, the exception being that sav-
ings are higher for a volume of 100/ than 150/. This is discussed further in Chapter
7.

The effect of tank size on t, is shown in Table 6.3.

39

Chapter 6. Results

Table 6.3: The effect of volume on hours spent violating the minimum temperature set
point for Case I & Case II. A back-off of 3 °C is used for both cases.

Volume | t, Case I t, Case Il ¢, Case III
800 0 0 0

400 0 4.3-1072 0.4
250 0 1.22 5.09
200 0 4.56 6.62
150 0.28 8.26 13.37
100 2.94 15.48 21.87

The t, decreases with volume for all cases. There is no temperature violation
for any of the cases with a tank volume of 8001.

40

6.6 Case II with known and average demand in predictor

6.6 Case II with known and average demand in
predictor

This section shows the difference between predicting the hourly demand based on
gnhw and yearly average data. The hourly demand based on ¢y, (known demand)
was used in the MPC-solver to find new optimal temperature set points. The results
was then compared with results from using yearly average data (yearly demand).
This resulted in J = 24.63 and t, = 4.81 using known demand, as opposed to
J = 24.85 and t, = 4.56 for the regular optimized case with yearly demand. A
plot showing how the temperature set points and average profiles differ is shown
in Fig. 6.11, where the real demand gy, is also included.

90

—] _'_|_I_L e —]
= 80 | 1 7
T 70 r B -l-n__] - i
E‘ [~
50 L ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
= 2
g
=
= 1 |
|- if ~
jw) o - N - | 1 —_r 1_.—__.———‘1‘_—" g o S
g 10 |
=
w5
Q
O |

T T T
5 10 15 20 2

I I
5 40 45 50 5
Time [h]

T T 1
5 30 3 5 60 65 70 75

Figure 6.11: Case II temperature set points and average hot water demand. The orange
lines represent data for a known average demand while blue lines represent yearly average
demand. The real demand is also included.

From the figure it can be seen that both average demands are flatter than ¢y,
but that the known average demand has more variation than the yearly average.

41

Chapter 6. Results

42

Chapter

Discussion

The goal of this project was to optimize on the hot water tank system and find
simplifications that made the problem solvable even with limited computing re-
sources. Balancing an easy computable solution with achieving sufficient accuracy
is not simple, as such the majority of this chapter will deal with analyzing the
accuracy of the results and the implications each simplification might have had on
the solution.

7.1 Evaluation of results

Overall Case II and Case III perform equally well; the slightly lower cost of Case
IIT cancelling out the lower temperature set point violation of Case II. The benefit
of Case II is that the solution is generalized and could work with any kind of
incoming price data. Also, if Case III came into widespread use, having the hot
water heaters all starting to heat at the same time would create a peak of demand
and increased price. If this came to pass a solution would be to cycle the start
and end points, and use some of the less optimal policies described in Section 6.4.
Even though both cases outperformed Case I, the profit of 2.48€ and 2.34 € for
one month was not very impressive. The saving of were significantly lower than
those found by Johansson (2013), who found savings roughly 3 times greater in
terms of percentage. Part of this could be because of the price data used, but the
difference seems too large for this to be the only factor.

7.2 Model performance
The model performs reasonably well for most simulated cases, but there are some

problems dealing with smaller tank sizes and large spikes in demand. This is due
to the models slow disturbance rejection when it comes to temperature. Because of

43

Chapter 7. Discussion

the simplification made in Section 3.6 that adjusts Vi depending on 7', the volume
will be kept at maximum until 7' < Tj,, s. This means that the inflow will not be
adjusted until this point, at which the tank will be fully filled and slow to regain
temperature. The system therefore has problems with keeping to its prescribed
temperature set points.

7.2.1 Violation of temperature set points

Both Case II and Case II has t, of over four hours. This is certainly more than
would be expected by most end users, and means that some compensation would
have to be made. As the typical compensation would be money, and the savings
are so low that almost no money is saved this almost disqualifies the solution by
itself. Decreasing t, by adding back-up was attempted. But even with significantly
improved results. It proved difficult to remove all of the hot water demand. It was
discovered that this was mostly caused by an outlier in the demand profile. As
changing the demand profile would essentially be “massaging the data” everything
was kept as is.

Part of the reason t,, is so large is due to the assumptions made in Section 3.6. The
assumption of maximum volume being near optimal for most situations, means
that the volume in the tank is at maximum once the temperature falls below the
set point. As the volume is as large as possible, reheating the water takes longer
time that it would have otherwise.

7.2.2 Back-off

The choice of back-off was made based on the Pareto optimality plot of Case II.
The reasoning behind using just Case II to decide the amount of back-off for both
Case II and Case III was as follows.

o If the optimal back-off was decided using Case II before the different simple
policies had been determined, the choice of back-off would affect the results
of the simple policies and the best policies for the given back-off could be
chosen.

o If back-off was to be determined based on Case III however. The best two-
phase policy would have to be determined before the optimal back-off. The
choice of policy would influence the optimal amount of back-off which again
would require finding a new optimal policy with the optimal back-off.

The choice of back-off was based on the high increase in cost that would be required
to reach reasonable levels of ¢, a choice of 3°C improved t, substantially without
sacrificing much in terms of savings.

7.2.3 Size of the hot water tank

The size of the hot water tank impacted the results as would be expected. Since
no heat loss had been assumed, the bigger tanks outperformed the smaller tanks

44

7.3 Assumptions and simplifications

particularly when it came to disturbance rejection. The savings for the biggest
tank (8001) was roughly twice as large as for the smallest well-behaved tank (1501).
Tanks with volume lower than 150/ did not work as expected. This reason for this
is discussed in Section 7.3.2.

For the larger tanks it should be noted that controller tunings might have an effect
on the result. Controller tunings are made based on the volume of the tank, so
once this changes the tunings are no longer optimal. This is probably why there
is any difference at all in results for the different sized tanks for Case I. Somewhat
surprising is the fact that Case III clearly outperformed Case II for high tank
volumes. This could be due to poor controller tunings affecting Case II more than
Case III as more adjustments are required for Case III.

7.3 Assumptions and simplifications

7.3.1 Disturbances and parameters

The two disturbances Tt,, and T}, s have been assumed to have constant values
during the simulation. Constant temperature of cold water seems reasonable as any
change would be very slow. If feed-forward control was used on g.w however, this
might cause problems. Assuming that T}, s does not change also seems reasonable
as long as qp, is mixed with a cold water stream at a later stage. This would
allow the user to control the water temperature. If the temperature set point did
change, that would not necessarily require big changes to the optimization of the
system. The constraint of T' > Tj,, s would have to change to T' > Thy s maz, While
Jew still would be used to achieve Thyy = Thy,s- Implementing this would require
big changes to the program that create the ¢, profile though, as the program
generates demand for a certain amount of 50 °C hot water.

Since the program generating the gy, profile is not part of the thesis, the accuracy of
the profiles it generates will not be thoroughly assessed. But it does seems prudent
to make some comments about how the objective of the program differ from the
objective of the thesis. The program is intended to generate a random demand
profile of a household. It is not intended to generate the demand profile for one
specific household. This difference is important as the variation between different
households is expected to be greater than the variation from day to day within one
household. Because of this the demand profile used in this thesis represents one
of a household where every day at midnight the house changes tenants and new
people move in. Obviously predicting the demand in such a house would be a lot
more difficult than the demand of a regular household. The effect of this might
not be that big however. In Section 6.6 it was proven that improving the predicted
demand did not majorly improve the cost.

The Price data would definitely affect the results, but the chosen values are not
uncommon compared to other months. The assumption of perfect knowledge of
the price is discussed at length in 7.3.3. The density of the water in and out of the
tank have been assumed constant at 1 kg/l, which is reasonable as the density of
liquid water does not vary that much with temperature. Constant heat capacity

45

Chapter 7. Discussion

of 4.19kJ/kg,°C is also unlikely to impact the results.

7.3.2 Perfect control

Assuming perfect control of ¢, implies that T}, = They,s. This assumption is fine
for most simulations, though not quite realistic. For simulations with high demand
spikes and low tank volume it does give problems. The flow out of the tank ¢,u¢
is adjusted by assuming that T}, = Thy,s. Therefore the outflow from the tank
will be adjusted to achieve this whether there is water left in the tank or not. This
will lead to much higher outflow than inflow and eventually negative volume in the
tank. During the simulation this only occurred for tank volumes where the tank
volume was 100/ or less. Negative volumes does make the tank very easy to heat
however, which is probably why the cost J decreases for these cases. If the system
was implemented in practice, this could be solved by adding some constraint on
the the outflow from the tank @Q,,;. Adding extra back-off to correct for dynamic
controller error of ¢.,, would also be a good idea.

7.3.3 Roughness of discretization

The optimization problem is solved once every hour, which compared to regular
MPC is quite slow. Usually MPC control updates set points on the scale of minutes,
so reoptimizing only once per hour might be a bit to simple. The key advantage
of only solving once per hour is speed, which is arguably the main objective of
our model. Increasing the fineness of the discretization would require solving the
problem more often and, assuming uniform time intervals, would make each opti-
mization problem bigger. In retrospect, the disadvantages could have been made
up for by using larger time intervals towards the end of the optimization. It also
seems like optimizing this rarely has created problems with ensuring that T" > T}, s
for the optimized case. This is because the predicted demand uses average values
to determine optimal set points, which makes it poor at predicting sudden spikes
of demand. When these spikes do happen the temperature will often drop below
the set point. For Case II with known demand profile using a finer discretization
could be useful. This would have led to better prediction of the demand, as spikes
that would otherwise come as a surprise to the solver would be noticeable. This
should give lower temperature violation.

7.3.4 Moving prediction horizon

It has been assumed that electricity price is known twenty-four hours in advance. In
reality that is not entirely true. Electricity price for the coming day is published by
Nord Pool Spot (2014) at midnight, but it does not change by the hour to provide
data twenty-four hours into the future. One obvious alternative would be to change
the MPC’s prediction horizon from moving to shrinking, and such have a solver
that only uses known price data. This would speed up the simulation because the
optimization problem gets shorter for each iteration, but increase errors due to end-
effects (the temperature and volume at the beginning and end of each day would

46

7.3 Assumptions and simplifications

have to be specified). The loss from optimality by specifying the temperature and
volume to be at a maximum at 4:00 would probably not be significant as the price
tends to always be very low in the preceding hours. If only known price data should
be used however, 24:00 would have to be the end point as this is where the price
data stops. Some sort of pseudo-optimal solution, using an estimated price for the
period from 24:00-4:00 and then updating it once real data was available might
have been interesting as well.

A small advantage of using a shrinking horizon would be the possibility to make
multiple single day ecvaluations instead of simulating all the days consccutively.
This would make it faster to test multiple days as the processor could run several
days in parallel, known as multithreading. The usefulness of this is limited to
testing purposes however; If the system was to be implemented it would not be
possible or necessary to optimize for more than one day because of lacking price
data. Overall using a shrinking prediction horizon seems very promising.

47

Chapter 7. Discussion

48

Chapter

Conclusion

The objective has been to minimize operational cost while still meeting the hot
water demands of the end user. To achieve this, a hot water tank system has
been modeled using SIMULINK and MATLAB and a feedback control structure im-
plemented to stabilize the system. By using ideas from self-optimizing control the
cost function has been simplified to a form that makes it solvable even with lim-
ited computation resources. The simplified problem has then been solved using
an MPC-solver. The resulting optimized casc (Case II) has been compared with a
simple policy of heating for a set amount of hours at night (Case III) and holding
a constant temperature in the tank (Case I). The mode works well and gives rea-
sonable results for all cases except those with very small tank volumes. Though
major simplifications to the optimization problem has been made Case II still gives
decent, but not spectacular results, in terms of savings and making sure the end
user always has hot water.

Based on the findings in this thesis, using MPC to find optimal tank energy
levels does not yield any significant benefit over using a simple policy of heating
the tank during the night. While both cases are improvements compared to having
constant tank temperature, the savings of 2.48 € and 2.34 € per month is not high
enough to recommend implementation. The proposed policies could still be useful
in areas with more pronounced price variation.

8.1 Further work

Several adjustments could be made to the solver of the optimization problem,
some that will improve computation time. An adjustment that need not affect
computation time is using a non-uniform prediction horizon. It also seems like a
major opportunity to simplify the optimization problem was missed by deciding to
use a moving horizon.

49

Chapter 8. Conclusion

The set of rules used for finding near optimal volume set points has not been verified
by comparing it to other cases. A simple way this could be tested is by adjusting
at which temperature the volume set point changes, currently T = T,,;,. If the
currently implemented “tipping point” gave the best results the set of rules would
be verified. If not, better rules could be found.

50

Bibliography

Cruickshank, C. A., Harrison, S. J., 10 2010. Heat loss characteristics for a typical
solar domestic hot water storage. Energy and buildings 42 (10), 1703-1710.

de Oliveira, V., Jaschke, J., Skogestad, S., 2013. Optimal operation of energy stor-
age in buildings; use of hot water systems. Tech. rep., NTNU, Norway, presented
at DYCLOPS Mumbai, December 2013.

Doman, L. E., 2013. The international energy outlook 2013. Tech. rep., U.S. Energy
Information Administration.

Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth,
K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen,
J., Schlémer, S., von Stechow, C., Zwickel, T., Minx, J., 2014. Summary for
policymakers, in: Climate change 2014, mitigation of climate change. Tech. rep.,
The Intergovernmental Panel on Climate Change.

Ericson, T., 2009. Direct load control of residential water heaters. Energy Policy
37 (9), 3502 — 3512.

Foss, B. A., Balchen, J. G., Andresen, T., 2003. Reguleringsteknikk, 5th Edition.
Wiley.

Holene, A. L., 6 2013. Performance and robustness of smith predictor control and
comparison with pid control. Master’s thesis, NTNU.

Jacobsen, M. G., 11 2011. Identifying active constraint regions for optimal opera-
tion of process plants. Ph.D. thesis, NTNU.

Johansson, E. M., 12 2013. Optimal operation of energy storage in buildings. Mas-
ter’s thesis, NTNU.

Lerouge, C., Atlan, N., 2013. Europcan energy markets observatory.

Lund, P. T. J., 6 2012. Annual report 2011; The Norwegian Energy Regulator.
Tech. Rep. 1, The Norwegian Water Resources and Energy Directorate.

51

Mayne, D., Rawlings, J., Rao, C., Scokaert, P., 2000. Constrained model predictive
control: Stability and optimality. Automatica 36 (6), 789 — 814.

Charles River Associates, 2003. Dm programs for integral energy, final report. Tech.
rep.

Nord Pool Spot, June 2014. Elspot prices 2013, hourly in EUR.
URL http://goo.gl/tVxJIS

Olje- og energidepartementet, 2012. Meld, st. 14 (2011/2012).

Olje- og energidepartementet, 2014. Press release nr. 026/14: Forslag om elektri-
fisering av utsirahgyden.

Rawlings, J. B., Stewart, B. T., 2008. Coordinating multiple optimization-based
controllers: New opportunities and challenges. Journal of Process Control 18 (9),
839 — 845.

Ruscio, D. D., 2009. System theory state space analysis and control theory. Tech.
rep., Hggskolen i Telemark.

Seborg, D. E., Edgar, T. F., Mellichamp, D. A., 9 2003. Process Dynamics &
Control, 2nd Edition. Wiley.

Shamsuzzoha, M., 10 2013. Simple analytic rules for model reduction and pid
controller design. Industrial & Engineering Chemistry Research (52), 12973—
12992.

Skogestad, S., 2003. Simple analytic rules for model reduction and pid controller
design. Journal of Process Control (13), 291-309.

Skogestad, S., 2004. Near-optimal operation by self-optimizing control: from pro-
cess control to marathon running and business systems. Computers and Chemical
Engineering (29), 127-137.

Skogestad, S., 3 2014. Control structure selection. Chapter for Springer Encyclo-
pedia on Control Systems.

52

Appendices

53

Appendix

In-depth Derivations

A.1 Deriving % from the energy balance

The generalized energy balance for a tank is shown in Eq. A.1.

dF i . . .)
i = Fin — Fout + Qior + W + Wy + Wy (A1)

Where F is the total energy inside the control volume, Es are energy streams and
Q+tot is the heat added to the system. The work terms Wy, W}, and Wy depend on
shaft work, pressure difference and expansion of the control volume respectively.
Shaft work is negligible and as both the volume and pressure is constant all the
work terms can be ignored. The total energy F consists of several smaller energy
terms, of which most can be ignored for this case. The expression is reduced to

E=U+U,+U,+ ..,

FE=U,

U=H+ /PdV—i— /VdP, (A.2)
U=H,

F~ H.

Where U is the internal energy, U;, the kinetic energy, U, the potential energy and
P is the pressure in the tank. Inserting this into Eq. A.1 gives Eq. A.3.

dH

= =H,, — H,, o A3
di t + Qo (A.3)

55

Which equals Eq. 3.5 if the Q¢ term is expanded. The enthalpies in Eq.A.3 can
be expressed as functions of temperature

H = pVep(T — Trey),
H’in - pinqincp(Tcw - Tref)7 (A4)

Hout - poutqoutcp(T - Tref)-

Assuming that the temperature and volume are the only non-constant variables,
inserting Eq. A.4 into the left hand side (LHS) of Eq. A.3 gives Eq. A.5.

dH
(LHS) = =
_ d(pcpV(T — Trey))
dt
AVT) dv
= pcy (0 ETref> (A.5)

dv dr
= pcp <%(T —Trey) + EV)

dT
= PCp <q2n(T - Tref) — Qout (T - Tref) + EV>

Here the expression for % from Eq. 3.6 has been used. Inserting Eq. A.4 into the
right hand side (RHS) of Eq. A.3 gives

(RHS) = My, — Hous + Q — Qioss,

(A.6)
= pCp (Gin(Tew — Trep) = Gout (T — Trey)) + Q — Qioss-

The expressions for the (LHS) and (RHS) are then inserted back into Eq. A.3.
Which gives Eq. A.7 as the g,,: terms cancel each other out.

(LHS) = (RHS)

dH . .
Y, = Hz - Hou - 0ss
it He-O (A7)
dT
PCp (an(T - Tref) + Ev> = pPCp (Qin(Tcw - Tref)) + Q - CJloss

From this point on, only moving terms around is needed to yield the final temper-
ature balance

dT - 0ss
EV"F(]in(T_Tref):(Jin(Tcw_Tref)‘F%»
P
A8
T Qe Qe O
at Vv Gin\Lew PCp '

56

A.2 Finding the flow out of the tank, ¢,

From Fig. 3.1 it is apparent that the mass and temperature balances over the
mixing point of q.,, and gyt are

Ghw = Gew + Gout; (Ag)

Gew Qout
Thy = ————Te + ——T. A.10
v qew + Gout o qew + Gout ()

By assuming that T}, = Thay,s, there are only two unknown variables left: g, and
Gout- Solving Eq. A.10 for ¢., and inserting the resulting expression into Eq. A.9
gives an expression for quy:.

Thw,sch + Thw,sqout = QewTew + GoutT (All)
Jew (Thw,s - Tcw) — QOut(T - Thw,s) (A12)
T — Thw s
cw — You —— A.13
q q tThw,s T ()
Inserting ., into A.9 gives
T — Thw s
ou 1 ’ - w A.14
R (A14)
T-T,
(o dew A5
q t(Thw,s — Tcw) dn (A.15)
Thw s Tcw
out — Yhw : . A.16
dout = 4n T—T.., ()

57

58

Appendix

Tables

This appendix contains tables that were deemed to large to insert into the main
report. It also contains all the values for parameters, constrains, disturbances and
initial conditions described in Chapter 3 and implemented in Chapter 5.

B.1 Model data

Tuning and model parameters are shown in tables B.1 and B.2. The disturbances
and constraints are shown in tables B.3 and B.4, respectively. Initial and final
conditions for Case II is shown in Table B.5.

Table B.1: Tuning parameters.

Tuning parameters Explanation Value
K, Temperature controller gain 3
Ti1 Temperature controller integral time 80
Ko Volume controller gain 0.21
Tio Volume controller integral time 80

Table B.2: Model parameters.

Parameter Explanation Value Units
Qross Heat loss from the tank 0 kW

P Density of water 1 kg /1
Cp Heat capacity of water 419 kJ/kg°C

59

Table B.3: Disturbance values.

Disturbances Explanation Value Units
Tew Temperature of cold water 5 °C
Thw,s Hot water temperature set point 50 °C

P Electricity price varies €/MWh
Qhw Hot water demand varies 1/min

Table B.4: Input and output constraints.

Constraints Explanation Value Units
Trin Minimum temperature in the tank 50 °C
Trax Maximum temperature in the tank 90 °C
Vinin Minimum water volume in the tank 50 |
Viaz Maximum water volume in the tank 200 1
Gin,min Minimum volumetric inlet flow 0 1/min
Gin,maz Maximum volumetric inlet flow 10 1/min
Qmin Minimum heater duty 0 kW
Qmaz Maximum heater duty 5 kW

Table B.5: Initial and final conditions.

Initial conditions Explanation Value Units
Vo Volume at the start of simulation 200 |
To Temperature at the start of simulation 90 °C
Vend Volume at the end of simulation 200 1

Tend Temperature at the end of simulation 90 °C

B.2 Additional results

Table B.6 shows the results from simulating the different two-phase policies in
Section 6.4. Length specifies the length of the heating phase and starting time the
time of day the heating phase starts.

Table B.6: Comparison of two-phase policies.

Policy | Starting time Length Temperature violation Cost
1 22 3 9.57 25.93
2 23 3 10.93 25.38
3 0 3 9.3 25.17
4 1 3 9.76 24.83
5 22 4 9.8 25.93
6 23 4 10.93 25.37
7 0 4 9.71 25.15
8 1 4 9.24 24.82
9 22 5 10.48 25.91
10 23 5 10.75 25.35
11 0 5 9.97 25.14
12 1 5 8.9 24.72
13 22 6 9.98 25.89
14 23 6 10.63 25.34
15 0 6 8.21 25.03
16 1 6 6.62 24.71
17 22 7 8.85 25.87
18 23 7 7.92 25.22
19 0 7 6.39 25.02
20 1 7 5.91 24.96
21 22 8 7.36 25.76
22 23 8 7.47 25.21
23 0 8 6.05 25.27
24 1 8 4.34 25.41

61

62

Appendix

Main MATLAB Scripts

This Appendix contains the scripts that define the initial conditions and run
the SIMULINK simulation. It contains three scripts, sizing.m, simplec.m and
backoff.m, and the functions main.m and system.m.

main.m contains the majority of coding and is where the simulation is initialized.
It takes input arguments from the three scripts, and will be called repeatedly with
different arguments. In the case of sizing.m the changing input argument is the
maximum volume of the tank, for simplec.m different two-phase policies and for
backoff .m different amounts of back-off. The two-phase policies are received as a
binary lists, which instructs the controllers which hours to keep the temperature in
the tank at maximum (heating phase) and which hours to keep it as low as possible
(conserving phase).

system.m is the coding behind the block [system] in the SIMULINK model. This is
were differential equations for the states are calculated and the new system state
found.

C.1 Running the SIMULINK model: main.m

This is the main function, it initializes SIMULINK variables and calls the model.
The function has five arguments, all being optional: inmode, involume, inplot,
inmatrix and inbo. The inplot variable controls whether or not to plot the re-
sults in MATLAB, while the rest of the arguments impact the results of the function.
inmode controls which case to run, the options being: Case I, Case, II and Case 11
which correspond to inmode having a value of 1, 2 and 3 respectively. As previously
stated, the main function is generally called repeatedly by scripts with varying argu-
ments. The varying arguments are involume, inmatrixand inbo. which modifies
the maximum volume of the tank, the two-phase policy or the back-off.

main.m is a long function as it contains three different cases and each case has
optional plotting and storage of data to .mat files. The first part of the function

63

is focused on initializing the variables that are to be used by SIMULINK. After
initializing the variables the program splits to deal with the three different cases.
These are separated using a switch statement. The program returns two variables,
the cost J_end, and the temperature violation T_violation.

Listing C.1: Initializing and running the SIMULINK model.

function [T_violation,J_end] = main (inmode, involume, inplot, inmatrix, inbo)
main.m runs the simulink model hwtank.mdl with different temperature
set points and starting conditions.

Function arguments:

inmode: Which case to simulate: {1 = constant set point case,

2 = optimized case,

3 = two-phase case}
involume: The maximum volume of water contained in the tank
inplot: Whether to plot state profiles (1) or not (0)
inmatrix: Contains the two phase policy, only matters if mode = 3
inbo: The back-off, (back off = set point-constraint) defines

how far away from the constraint the smallest set points are

Function output:

A° A° o° o o° ® o® o0 0 o0 A A oO° A° oO° o° o° o

T violation: The number of hours that T<T_hws in the simulation

J_end: The total cost at the end of simulation
9900
V00000000V O0VOVOVOVO0OOVOVOVOOVOVOOVOWOOOVOOOOWOOOVOOOOOOOOOOOOOOOOOOOWOOOOOWOOOOOOOOMOOOOOOOOOO™©
simdays = 3; %controls the amount of days to simulate for.

%$Default arguments:
%$Reads the function arguments. If not specified the defualt args are used
mode = 1; V_max = 200; ploton=0; backoff=0;
rulemn=[1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,17;
if nargin > 0, mode = inmode;end
if nargin > 1, V_max = involume;end
if nargin > 2, ploton = inplot;end
if nargin > 3
if isempty (inmatrix)
% 1if the matrix is empty the default one should be used
else
rulem = inmatrix; % otherwise use the incoming matrix instead
end
end;
if nargin > 4, backoff = inbo;end

warning off
%clc

$clear all
close all

%% Initializing

global par

par.c_p = 4.19; % heat capacity of water [kJ/ (kgC)]
par.rho = 1; % density of water [kg/1l]
par.Q _loss = 0; % loss of heat from the tank

64

%$disturbances and set point limitations

T _hws = 50; % Temperature wanted on the hot water reaching the user
T _cw = 5; % Temperature of the cold water
T_smax = 90; % Maximum tepmperature set point
T _smin = T_hwst+backoff; % adjusts minimum temperature set point
V_min = 50; % minimum water in the tank

%$V_max 1s defined on line 24
totfailures = [];

Ekfailures = [];

Eendy= [];

$simulation parameters (initial conditions)

T s = T_smax; $For base case
par.V = V_max; $volume starting point
par.T = T_smax; $Temperature starting point

%Controller tunings

Kcl = 3; gain for controller of volume

Kc2 = 0.21; gain for controller of temperature

taul = 1/80; Really 80 but simulink uses tuning paramer I=1/tau_i in its
tau2 = 1/80; PI controllers.

$input limitations

o o° oo o

g_in_min = 0; % dm"3/min
g _in_max = 10;% dm"3/min
Q_min = 0; % kJ/s
Q_max = 5; % kJ/s

Generating the demand/price and the setpoints:

In general we prefer to load a pregenerated profiles (longprofile)

to ensure that we get comparable results for all experiments.

For the hot water setpoint T_hws and cold water temperature T_cw a
constant value is wanted. These are created using the "ext" variable.
The electricity price are loaded from a price.csv file.

° o° o° o° o P o° oP

°

test=load ('langprofil.mat"');

a = test.testlong; %contains the pregrnerated demand and price profiles
profile.time=(a.time'+0.167) *3600;
ext = ones (length(a.time),1); % used to extend the constant set points

%Generating variable containing all disturbances for the given period:
profile.signals.values = [a.flow, T hws.xext, T _cw.xext, a.pricel;

[)

simlength = 24xsimdays; % number of hours to simulate for

% Load pregenerated average energy demand and average price profiles,
% this is just used in case II:
av.demand = csvread('average.csv',0,0,[0,0,23,0]); $ gq_hw, dm"3/min
predictedprice = getPriceHour(4,1,4,31); % 31 because we need the full
% prediction horizon at the end of the 30th day too
switch mode
case 1 % CONSTANT TEMPERATURE CASE, T_s = T_smax

T_s =T_smax; % constant max set point

o)

% Define the matrices used to store state variables

65

ptime_base=[]; %changing time from seconds to hours.

sp_base=[]; extracting setpoints
y_base=[]; % T, V and modified cost fx
d_base=[]; % disturbances

u_base=[]; % inputs

mdl = 'hwtank.mdl';

load_system(mdl) ;

set_param('hwtank/Temp_s', 'Value', num2str(T_s));

outl = sim(mdl, 'SrcWorkspace', 'current', 'StopTime’,
(num2str (3600xsimlength)), 'SaveFinalState', 'on', .
'LoadInitialState', 'off', 'SaveCompleteFinalSimState',
'on', 'FinalStateName', 'xFinal');

$update the state variables

ptime_base=[outl.get ('time')/3600]; %$time from seconds to hours.
sp_base=[outl.get ('sp')]; S%extracting setpoints
y_base=[outl.get ('v")]1; T, V and modified cost fx
d_base=[outl.get ('d")]; disturbances

o® o° oP

u_base=[outl.get ('u')]; inputs
if ploton
figure (3)

subplot (311)

plot (ptime_base,d_base(:,1))
set (gca, 'FontSize', 14)

title ('Hot water demand')
ylabel ('g o_u_t, dm"3/min')
hold on

subplot (312)

plot (ptime_base,u_base(:,2), 'red")
set (gca, 'FontSize', 14)

ylabel('g i_n, dm"3/min'")

hold on

subplot (313)
plot (ptime_base,y_base(:,1))
set (gca, 'FontSize', 14)
ylabel ('V, dm"3")

end

% If a 30 day simulation, save the data points to .mat file
if simdays == 30 && backoff
if exist(['_datasetsV',num2str (V_max),'.mat'], " 'file'")
save (['_datasetsV',num2str (V_max)], 'ptime_base', ...
'sp_base','y_base', 'd_base', 'u_base', '-append') ;
else
save (['_datasetsV',num2str (V_max)], 'ptime_base', ...
'sp_base', 'y _base','d_base', 'u_base');
end
end

% Variables for calculating T_violation and J_end
listlength= length(y_base(:,2));
yvar = y_base;
case 2 % OPTIMIZED CASE, T_s = changing according to predictor

$Bounds
Emax = par.rho*par.c_p*V_maxx* (T_smax - T_cw) %kJs

Emin = par.rhoxpar.c_p*V_min% (T_hws - T_cw); %$kJ
EO = Emax; % intial condition
Omax = Q_max;
$plotting
if ploton
figure(1); % start the MPC-plot (must be done outside loop)
end
%$Make lists to store state variables
ptime_optim=[]; %changing time from seconds to hours.
sp_optim=[]; %extracting setpoints
y_optim=[]; $ T, V and modified cost fx
d_optim=[]; % disturbances
u_optim=[]; % inputs

%$% iteration
for i=l:simlength
Ns=24; % size of horizon (in sample times)

j = 1i;
while j>24
Jj= j-24
end
% shifting the average demand and price function
Qdemand = [av.demand(j:Ns);av.demand(l:j-1)]x* (par.rho...
xpar.c_p* (T_hws -T_cw))/60 ;% kJ/s
prices = [predictedprice(i:Ns+(i-1))];
$startposition for both price and demand depends on time of day
dT = 3600; % sampling time of lhour

%% formulating the optimization problem

constraints=[]; % vector containing all constraints
Qk=sdpvar (Ns,1l); % decision variables as a vector of size Ns
Tri=tril (ones (Ns,Ns),0);

%state trajectory: Equivalent to computing Ek+1=Ek+ (Qk—-Qdk) xdT
%$k=0...Ns

Ek=Trix (Qk*dT-Qdemand*dT) +EO0;

%$update the constraints

constraints=constraints+set (Emin<=Ek<=Emax) ;
constraints=constraints+set (Ek (end) ==Emax) ;
constraints=constraints+set (0<=Qk<=Qmax) ;

[

cost=prices'xQk+dT; % cost function, what we want to opt!!

%% solve optimization
opts = sdpsettings('solver', 'sedumi', 'sedumi.numtol',le-3);
opts.verbose = 0;
tic
sol=solvesdp (constraints, cost,opts) %$solving the "MPC"
toc
if sol.problem == 0
$filler, don't need to do anything if it works
else % stop if the solver doesnt find a solution

67

display ('Hmm, something went wrong!');
sol.info
yvalmiperror (sol.problem)
end
cost=double (cost) %the results from the optimization
Qv=double (Qk) ;
Ev=double (Ek) ;

$%Transform from energy set points to temperature set point
Ts=double (Ev/ (par.rho*par.c_p+*par.V)+ T_cw);

$Modify result if reccomended set points breaks constraints
if Ts(1l) > T_smax

T_s = T_smax
elseif Ts(l)< T_smin
T s = T_smin

else
T s = Ts (1)

end
Volume = par.V $ for bug testing purposes

%$% Simulate with set point

mdl = 'hwtank.mdl';
load_system(mdl) ;
if 1 == 1

$Simulate until end of step. Save state.

set_param('hwtank/Temp_s', 'Value', num2str(T_s));

out3 = sim(mdl, 'SrcWorkspace', 'current', 'StopTime',
(num2str (dT* (i+4))), 'SaveFinalState', 'on',
'LoadInitialState', 'off',
'SaveCompleteFinalSimState', 'on', ...
'FinalStateName', 'xFinal');

[)

y_step = out3.get('y'); % the y variable (T,V and cost)

else
%$Load SimState and run until end of step.
%The start time value must remain unchanged.
set_param('hwtank/Temp_s', 'Value', num2str(T_s));
xFinal = out3.get ('xFinal');
out3= sim(mdl, 'SrcWorkspace', 'current', 'StopTime',
num2str (dT= (1+4)), 'SaveFinalState', 'on',

'LoadInitialState', 'on', 'InitialState', '"xXFinal', ...

'SaveCompleteFinalSimState', 'on', ...
'FinalStateName', 'xFinal');
y_step = out3.get('y'); % the y variable (T,V and cost)
end
% extracting initial conditions for next iter.

Tnew = y_step(end,2);

Vnew = y_step(end, 1);

Enew = Vnewx*par.rhoxpar.c_px (Tnew —-T_cw);
EO = Enew;

par.V = Vnew;

[

% scale, so Ek stays within the interval [0 1]
Ev=(Ev-Emin) / (Emax—-Emin)

if ploton

subplot (411)

stairs ((1+(i-1) :Ns+(i-1)),Ev)

68

xlabel ('Time,h')
ylabel ('Energy level')
hold on

subplot (412)

stairs ((1:Ns),Qv)
ylabel ('Heat power')
xlabel ('Time,h'")

subplot (413)

stairs ((1+i:Ns+1i),prices, 'Color', [i/simlength 0 117)

xlabel ('Time,h")

ylabel ('Energy prices')

hold on

subplot (414)

stairs ((1+(i-2) :Ns+(i-2)),Ts, 'Color', [i1/simlength 0 11])

xlabel ('Time,h'")

ylabel ('Teperature setpoint')

hold on
end
%$changing time from seconds to hours.
ptime_optim=[ptime_optim; (out3.get ('time')/3600)1;
sp_optim=[sp_optim;out3.get ('sp')]; %$extracting setpoints
y_optim=[y_optim;out3.get ('v')1; T, V and modified cost fx
d_optim=[d_optim;out3.get ('d')]; % disturbances
u_optim=[u_optim;out3.get('u')]; % inputs

o\

end

if ploton

figure (2)

subplot (611)

plot (ptime_optim, sp_optim(:,1), 'green', ...
ptime_optim, y_optim(:,1))

set (gca, 'FontSize', 14)

title('Model implementation ')

ylabel ('V, dm”"3")

subplot (612)

plot (ptime_optim,u_optim(:,2), 'red")
set (gca, 'FontSize', 14)

ylabel('g i_n, dm"3/min'")

hold on

subplot (613)

plot (ptime_optim, sp_optim(:,2), 'green’,
ptime_optim,y_optim(:,2))

set (gca, 'FontSize', 14)

ylabel ('T, "oC')

hold on

subplot (614)

plot (ptime_optim,u_optim(:,1), 'red")
set (gca, 'FontSize', 14)

ylabel ('Q, kW')

hold on

subplot (615)

plot (ptime_optim,d_optim(:,4))
set (gca, 'FontSize', 14)

ylabel ('P, EUR/kWh')

hold on

subplot (616)

plot (ptime_optim,y_optim(:,3))
set (gca, 'FontSize', 14)

ylabel ('J, EUR')

% hold on

figure (3)

subplot (311)

plot (ptime_optim,d_optim(:,1))
set (gca, 'FontSize', 14)

title ('Hot water demand')
ylabel ('g o _u_t, dm"3/min')
hold on

subplot (312)

plot (ptime_optim,u_optim(:,2), 'red")
set (gca, 'FontSize', 14)

ylabel ('g i n, dm”"3/min'")

hold on

subplot (313)

plot (ptime_optim,y_optim(:,1))
set (gca, 'FontSize', 14)

ylabel ('V, dm"3")

end
if simdays == 30 && backoff
if exist(['_datasetsV',num2str (V_max),'.mat'], 'file')
save (['_datasetsV',num2str (V_max)], 'ptime_optim', ...
'sp_optim', 'y_optim', 'd_optim', 'u_optim', '-append’);
else
save (['_datasetsV',num2str (V_max)], 'ptime_optim', ...
'sp_optim','y_optim', 'd_optim', 'u_optim');
end
end
T_s = 90; % return simulink file to original condition
set_param('hwtank/Temp_s', 'Value', num2str(T_s));

%$%Calculating the final cost and temperature violation
listlength= length(y_optim(:,2)); %length of dataset
yvar=y_optim;

case 3 %$%Two phase case, T_s = either max or min
$plotting

ptime_sim=][
sp_sim=[];

%$changing time from seconds to hours.

]

12
extracting setpoints
T

y_sim=[]; % T, V and modified cost fx
d_sim=[]; % disturbances
u_sim=[]; % inputs

70

oo
0o

for

end

o)

s V

iteration
i=l:simlength
Ns=24; % size of horizon (in sample times)
j = 1i; % the hour of the day
while j>24
j= j-24;
end
if rulem(j)== % determening the course of action
T_s= T_smax;
else
T_s = T_smin;
end
$Running the Simulink model
mdl = 'hwtank.mdl';
load_system(mdl) ;
if i == 1 % if the very first step of simulation..
$Simulate until end of step and save the final state:
set_param('hwtank/Temp_s', 'Value', num2str(T_s));
out3 = sim(mdl, 'SrcWorkspace', 'current', 'StopTime',
(num2str ((i+4)«3600)), 'SaveFinalState', 'on',
'LoadInitialState', 'off',
'SaveCompleteFinalSimState', 'on', ...
'FinalStateName', 'xFinal');
else
%$Load the SimState and run for an additional step.
%$The start time value must remain constant
set_param('hwtank/Temp_s', 'Value', num2str(T_s));
xFinal = out3.get ('xFinal');
out3 = sim(mdl, 'SrcWorkspace', 'current', 'StopTime'’,
num2str ((i+4) «3600), 'SaveFinalState', 'on',
'LoadInitialState', 'on', 'InitialState', 'xFinal',...
'SaveCompleteFinalSimState', 'on', ...
'FinalStateName', 'xFinal');
end
$update the state variables after each simulation
ptime_sim=[ptime_sim; (out3.get ('time') /3600)]; % sec to hours

sp_sim=[sp_sim;out3.get ('sp')]; % extracting setpoints
y_sim=[y_sim;out3.get ('yv")1; % T, V and modified cost fx
d_sim=[d_sim;out3.get ('d")]; % disturbances
u_sim=[u_sim;out3.get ('u')]; % inputs

ariables for calculating T violation and J_end

listlength= length(y_sim(:,2));

yva

r=y_sim;

%$saving 1f serious

if

end

simdays == 30 && backoff && isempty (inmatrix)

if exist(['_datasetsV',num2str(V_max),'.mat'],'file")
save (['_datasetsV',num2str (V_max)], 'ptime_sim', ...
'sp_sim','y_sim', 'd_sim', 'u_sim', '-append') ;

else
save (['_datasetsV',num2str(V_max)], 'ptime_sim', ...
'sp_sim','y_sim','d_sim', 'u_sim');

end

71

otherwise % you tried to run a case that didn't exist
error (['"Mode = ',num2str (mode), ...
'. The only implemented modes are 1,2 and 3.'])

end

%$%calculating the temperature violation and total cost.
n = 0;
for k=1:1listlength

if yvar(k,2) < 50

n=n+1;
end

end

T_violation= (n/listlength)*simlength % hours of violation
J_end = yvar (end, 3) % EUR
T_s = T_smax; % return simulink file to original condition
set_param('hwtank/Temp_s', 'Value', num2str(T_s));

end

C.2 Two-phase policies: simplec.m

This script generates several different two-phase policies and then runs main.m for
each one. The resulting cost and violation of temperature set point is stored in a
.mat file. The policies are represented by 1 x 24-arrays containing zeros and ones.
The integers in the arrays are interpreted as hourly temperature set points, with
zero signifying Ts = T 4, and one signifying Ts = T paq-

Listing C.2: Comparing the performance of different two-phase policies.

000000000000000000000000

%$%%%%%%% Testing different simple control rules $%%%%%%5%%%%%%5%5%%%5%5%%%5%%%%
runs main.m with different simple control structures. The control

o
o
o
o
o
o
o

structures all have two phases, the heating phase and the conservation
phase. In the heating phase the temperature set point is maximized,
in the conservation phase the temperature set point is minimized.
The different control structures differ by when the heating phase starts
and for how long it lasts.
Key variables:

o 0% o° o o° o° o° o° o° oP

€, how many hours to have max tempemrature set point
s=1, which hour to start maximizing the temperature set point
emlist, the binary vector that contains 24-hour temp set points
lc
bo=0;
rmat = []; % the results matrix
for t=3:8 % number of hours spent in heating phase
for s=[23,24,1,2] % hour to start increasing T s (+1!)
emlist=zeros(1,24); % defining the emlist vector
t_temp = t; % counting var. hours left of heating phase
if s>22 % 1f heating start is before midnight. (24-1=23)
if s==23
emlist (23) = 1; % modify list to reflect heating phase

72

emlist (24) = 1;

t_temp = t_temp-2; % update count
else

emlist (24) = 1;

t_temp = t_temp -1

end
end
if s>1 && s<22 % adjusting start and endpoints of while loop
startp=s-1;
t_temp=t_temp+(s-1);
else
startp= 0;
end;

[)

while t_temp> startp % If still hours left of phase: modify list
emlist (t_temp) = 1;
t_temp = t_temp-1;
end
emlist = [emlist(5:end),emlist(1:4)]; % start profile at 4.00AM
[T_violation,J_end]l=main(3,200,0,emlist,bo);%find T_viol and J_end
rmat = [rmat; [T_violation,J_end,s-1,t,emlist]];%save result to mat
end
end

[)

% Naming of the saved file

if bo >0
name = ['cstructures', 'BO',num2str (bo)];
else
name = ['cstructuresl'];
end
save (name, "rmat ') % save restult to .mat file

C.3 Comparing tank sizes: sizing.m

This script runs calls the main.m function for several different volumes and modes.
The resulting J;,; and t, for each mode and volume are stored in a .mat file.

000

%$%%%%% Testing different tank sizes $%5%%%5%%5%5%%5%5%5%5%5%5%5%%5%5%%%5%5%5%5%5%%%5%5%%%5%5%%%
This program runs main.m with different volumes and mode

o

S
the resulting minimum temperature-violation and cost in a .mat-file.

o° oo o

bo = 0; % back-off
vlist = [800,400,250,200,150,100,60]"'; % Volumes to be compared
modes = [1,2,3]; % Cases to be compared
Tresult = zeros(length(vlist),max (modes)); % empty result matrix
Jresult = zeros(length(vlist),max (modes));

for i=1l:length(vlist) % run main.m for all volumes and modes

for j=modes
[Tresult (i, j),Jresult (i, j)] = main(j,vlist(i),1,[],bo);
end
end

73

%% naming the saved file

if bo >0

addon = ['_BO',num2str (bo)];
else

addon = '';
end;
temp = num2str (modes) ; % turn modes into list
name = ['_TJ data_V',num2str (min(vlist)),'-', num2str (max(vlist)),

' m',temp(l:3:end),addon];

save (name, 'Tresult', 'Jresult', 'vlist') % save restult to .mat file

C.4 Finding optimal back-off: backoff.m

This script is built based on sizing.m and works the same way. The only major
difference is that here volume is kept constant while different back-offs are tested
for each mode. To save simulation time Case I is left out of the for-loop. This is
because Case I is unaffected by back-off, and would yield the same result for each
iteration.

Listing C.4: Simulating cases with different amount of back-off.

o
o
o
o
o

%$%%%%% Testing different amounts of back-off $%%%%%%%%%%%%%5%%%%%%%%5%%5%%%%
This program runs main.m with different back-off and stores the

resulting T violation and J.

o
o
o
o
o

o0 od° oo

volume = 200;

bolList = [9,7,5,3,1,0]"'; % Cases to be compared
Tresult = zeros(length (bolList),3);

Jresult = zeros (length (boList),3);

% The base case is unaffected by back-off. We don't want to
[varl,var2]= main(1l,volume, 0, [],boList (1)); % ..repeat the simulation
for i=1:1length (boList)
Tresult (i, 1) = varl; % assigning the precalculated T_viol
Jresult (i,1) = var2; % ditto for cost
for j=[2, 3] % for the other cases, run main with all back-offs
[Tresult (i, j),Jresult (i, j)] = main(j,volume, 0, [],boList (i));
end

end

%% naming the saved file
temp = num2str (modes); % lists are turned to strings with spaces first,
temp2 = num2str (boList'); % ..then the spaces are ignored using (1l:3:end)
name = ['_TJ data_V', num2str (200),'_m',temp(l:3:end),'_BO', ...

temp2 (l:3:end)];
save (name, 'Tresult', "Jresult', '"boList"') % save restult to .mat file

74

C.5 Calculating the new states: system.m

This program contains the coding behind the block [system] in the SIMULINK model.
This is were differential equations for the states are calculated and the new sys-
tem state found, but it is also were the initial conditions is implemented into the
SIMULINK model. system.m is an s-function, depending on the flag it receives from
SIMULINK it executes a different procedure.

Listing C.5: Initializing the problem and calculating the new states.

function [sys,x0,str,ts] = system(t,x,u, flaqg)

This S—-function is based on a genral example written by Vinicius de
Oliveira.

S—functions store all the information behind a simulink block and
therefore behaves differently appearing on the flag sent from

Simulink. At first the function will be called to initialize the number
of outputs/inputs/states that the block should have. (flag = 0)

Then Simulink will call the function with different flags to find the
derivatives and the updataed states. (flag = 1 and 3 respectively)
switch flag

o o° o° o o o° o° oP

[o)

% Initialization

case O
global par Load par for updated initial conditions
sys [3, Number of continuous states

Number of discrete states

Number of outputs—-NUMBER OF CVS
Number of inputs (to the block)
reserved must be zero

0,
3,
6,
0,
0
1

direct feedthrough flag

o0 o d° P o° o° o° oP

4
1g number of sample times

SINITIAL CONDITIONS FOR THE STATES

x0 = [par.V, par.T, 0];

str = [1;

ts = [0 0]; % sample time: [period, offset]
case 1

global par

% Model parameters

c_p = par.c_p; Sheat capacity of water

rho = par.rho; $density of water

Q_loss = par.Q_loss; %$loss of heat from the tank

Extract information from Simulink model

o oo

inputs
0] = u(l); $ kW
g in = u(2)/60; % 1/min to 1/s
g hw = u(3)/60; $ 1/min to 1/s
T _hws = u(4); % degrees celcius
T cw = u(d); % degrees celcius
P = u(6)/1000; $EUR/MWh to EUR/kWh

75

end

o\

States

vV = x(1);
T = x(2);
J = x(3); % not used in any of the formulas

o)

% Differential equations

dxdt (1) = g_in - g _hw/ (1+((T-T_hws)/(T_hws-T_cw))); $[1/s]
dxdt (2) = (1/V)*(g_in* (T_cw-T) + (Q-Q_loss)/ (rhoxc_p)); $[C/s]
dxdt (3) = (p*Q)/3.6e3; % [EUR/s]
% divided by 3600 to transform from [EUR/h] to [EUR/s]
sys = dxdt;
case 2 % Discrete state update
sys = []; % do nothing
case 3
B === OUTPUTS———————————~—
%all the states are outputs in this case - it could be subset
SysS=X;
case 9 % Terminate
sys = []; % do nothing
otherwise
error (['unhandled flag = ',num2str(flag)l);

76

Appendix

Generating Demand & Price
Profiles

The price p and hot water demand ¢, are disturbances in the hot water tank
system. This chapter contains the functions that makes the demand and price
profiles used for the simulations. The price profile is made by reading a database

file containing the electricity price for every hour of 2013 in the Trondheim re-
gion(Nord Pool Spot, 2014). The hot water demand profile is generated by genProfile.m
using several support functions. Both genProfile.m and the accompanying scven
support functions are part of earlier inquiries into hot water tank heaters at the De-
partment of Chemical Engineering. They are written by de Oliveira et al. (2013),

and not part of the thesis work. They are still included in here as they are a
necessity to reproduce any of the results.

D.1 Forming a timeseries object: multiProfiles.m

This function calls two other functions, genPrice.m and genProfile.m. The re-
turned arrays are used to generate a timeseries object. This object is then saved to
ensure that the same timeseries object is used for all of the main cases. Running
the script again with the same input would provide new data, as genProfile.m is
controlled randomized.

Listing D.1: Combining two disturbances into a timeseries object.

function multi = multiProfiles (starttime, startday, startmonth,totdays)
%1l: Calls the getPrice function to find the electricity price

%2: Calls the getProfile function multiple times to get profiles for
% several days. Combines these into one flow object.

%1:
days.price= getPrice (starttime, startday,startmonth, totdays)

7

%2
days.flow = [];

days.time = [];
for i=1:1:totdays+l % +1 here to get 24-hour multpile data. Compensates for
day = getProfile() %...the hours missed on first day due to "starttime"
if i == % 1f days.time doesn't have values days.time (end) won't work
days.time = [days.time, day.time (starttimex60:end)]
days.flow = [days.flow; day.flow(starttimex60:end)]
else if i == totdays+1l % don't want to run all day if last day

days.time [days.time, day.time (2:starttimex60)+days.time (end)]
days.flow [days.flow; day.flow(2:starttimex60)]
else if one of the regular days, extract data for entire day

days.time = [days.time, day.time (2:end)+days.time (end)]

oo |l

days.flow = [days.flow; day.flow(2:end)]
end

end

multi = days

end

D.2 Transforming price data: genPrice.m

This function reads a database file containing electricity prices for 2013. The
function’s starting point is specified in the function arguments with date and hour
along with how many days to collect data from. It transforms the price data to a
form which can be easily incorporated into a timeseries object.

Listing D.2: Transforming price data from database files.

function pr = getPrice(starthour, startday, startmonth, days)
Imports price.csv then extracts the 24 hour price estimate for a given
number of days.

Arguments:

% starthour = delay from 00:00 to start reading data for first date

% startday = day of the month to start reading data

% startmonth = month to start reading data

% days = number of days to extract profiles from

$Output :

% pr = electricity price profile for the given dates

ele

dayspermonth= [O,31,28,31,30,31,30,31,31,30,31,30,31]; % 0 for siplicity
datalength = (24xdays) 8 % 24 datapoints per day
startp = starthour + 24« ((sum(dayspermonth (l:startmonth))) + startday-1);
endp = startp + datalength;

having 0 as the first entry in dayspermonth simplifies the startp-

csv_data = csvread('price.csv',startp,0, [startp,0,endp-1,01]);

bar = ones (60,1); % used to trasnform data from hours to minutes
pr = csv_data(l); % adding start point (used in timeseries)
for i=1:1:datalength; % transforming to same time scale as other data

78

temp = csv_data (i) .xbar;
pr = [pr; templ;

end

end

D.3 Extracting price from database: genPriceHour.m

This function reads a database file starting and stopping at points specified in the
function arguments. It transfers the data untouched, as opposed to genPrice.m.

Listing D.3: Extracting price data from database files.

function pr = getPrice(starthour, startday, startmonth, days)
Imports price.csv then extracts the 24 hour price estimate for a given
number of days.

Arguments:

% starthour = delay from 00:00 to start reading data for first date

% startday = day of the month to start reading data

% startmonth = month to start reading data

% days = number of days to extract profiles from

$Output:

% pr = electricity price profile for the given dates

clc

dayspermonth= [O,31,28,31,30,31,30,31,31,30,31,30,31]; % 0 for siplicity
datalength = (24xdays) g % 24 datapoints per day
startp = starthour + 24« ((sum(dayspermonth (l:startmonth))) + startday-1);
endp = startp + datalength;

having 0 as the first entry in dayspermonth simplifies the startp-
formula.

S
°
o
°

csv_data = csvread('price.csv',startp,0, [startp,0,endp-1,01]);

bar = ones (60,1); % used to trasnform data from hours to minutes
pr = csv_datal(l); % adding start point (used in timeseries)
for i=1:1:datalength; % transforming to same time scale as other data
temp = csv_data (i) .*bar;
pr = [pr; temp];
end
end

79

D.4 Making a daily demand profile: genProfile.m

This function and the remaining functions of Appendix D is not part of the thesis
work, and are included uncommented and unaltered.

Listing D.4: Estimating daily hot water demand.

function day=getProfile

dist=prob_dist_shower;

shower_dist = make_prob_table (dist);
prob_dist_small_medium

small medium_dist = make_prob_table(dist);
prob_dist_bath

bath_dist = make_prob_table (dist);

day.time = 0:1/60:24; % CHANGED FROM 24 TO 24-1/60!!!
day.flow zeros (length (day.time), 1) ;

flow types, number of incidents/day

o o

short, 28
% medium, 12
bath, .143

o o°

shower, 2

% generate a normal day
average_inc_pr_day = 40;

inc_today = ceil (average_inc_pr_day + 4xrand);

inc_dist = [28,12,.143,2];
inc_dist = inc_dist./sum(inc_dist);
inc_prob = cumsum(inc_dist);
inc_dist_today = [0,0,0,0];
for i = l:inc_today
index = find(inc_prob > rand,1l);
inc_dist_today (index) = inc_dist_today (index) + 1;
end

disp(inc_dist_today)

for 1 = 1:4
number_of_ inc_today = inc_dist_today (i);
switch i
case 1
mean_flow = 1;
std_flow = .05;

mean_duration = 1;
std_duration = .05;
time_dist = small_medium_dist;

80

case 2

mean_flow = 6;

std_flow = 1;

mean_duration = 1;

std_duration = .05;

time_dist = small_medium_dist;
case 3

mean_flow = 14;

std_flow = 2;
mean_duration = 10;
std_duration = 2;
time_dist = bath_dist;
case 4
mean_flow = 8;
std_flow = 1;
mean_duration = 5;
std_duration = 2;
time_dist = shower_dist;
end;

if number_of_inc_today > 0;
for n = l:number_of_inc_today
$hour of the usage
time = time_of_ usage (time_dist);
flow mean_flow + std_flowxrandn; $%1/m
flow max (flow, 0) ;
duration = mean_duration + ceil (std_duration*randn); %min
duration=duration/60; % [now in hours]
day.flow((day.time >= time & day.time <=time+duration))=flow;

end
end

end
% stairs(day.time,day.flow)

D.5 Demand profile helper function 1: genProfile.m

Listing D.5: Estimating daily hot water demand.

%$This function inserts new time intervals in betweem two demand peaks.
%$There will be one new interval for every 2h. Vectors timstart, duration
%and flows must have the same length

function [timesvec, flowsvec] = getTimeIntervals(timestart, duration , flowys,

finaltime)

% One extra phase every 1lh
interval=1;
timesvec=[0];
for i=1l:length (timestart)-1
timesvec=[timesvec timestart (i) timestart (i)+duration(i)];

81

deltatime= (timestart (i+1)-timesvec (end)) ;
inbetweenPhases=ceil (deltatime/ (interval*3600)) ;
inbetweentimes=linspace (timesvec (end), timestart (i+1), inbetweenPhases);
timesvec=[timesvec inbetweentimes (2:end-1) 18

end

timesvec=[timesvec timestart (end) timestart (end)+duration(end)];
deltatime=(finaltime-timesvec (end)) ;
inbetweenPhases=ceil (deltatime/ (interval*3600)) ;
inbetweentimes=linspace (timesvec (end), finaltime, inbetweenPhases) ;

timesvec=[timesvec inbetweentimes (2:end)];

flowsvec=zeros (length (timesvec)-1,1);

for i=1:length (flowsvec)

if ismember (timesvec (i), timestart)

[~, array_position] = min(abs(timesvec (i) -timestart));
flowsvec (i)=flows (array_position);
end

end

end

D.6 Demand profile helper function 2: genProfile.m

Listing D.6: Estimating daily hot water demand.

function [duration_vec, flow_vec,timestart_vec]l=getProfileDetails

dist=prob_dist_shower;

shower_dist = make_prob_table (dist);
prob_dist_small_medium

small_medium_dist = make_prob_table(dist);
prob_dist_bath

bath_dist = make_prob_table (dist);

day.time = 0:1/60:24;
day.flow zeros (length (day.time), 1) ;

o\

flow types, number of incidents/day
short, 28
medium, 12

o oo

82

bath, .143
shower, 2

o oo

[

% generate a normal day
average_inc_pr_day = 20;

inc_today = ceil (average_inc_pr_day + 4+*rand);

inc_dist = [28,12,.143,2];
inc_dist = inc_dist./sum(inc_dist);
inc_prob = cumsum(inc_dist);
inc_dist_today = [0,0,0,01;
duration_vec=[];
flow_vec=[];
timestart_vec=[];
for i = 1l:inc_today
index = find(inc_prob > rand,1);
inc_dist_today(index) = inc_dist_today (index)
end

disp(inc_dist_today)

for 1 = 1:4
number_of_ inc_today = inc_dist_today (i);
switch i
case 1
mean_flow = 1;
std_flow = .05;

mean_duration = 1;

std_duration = .05;

time_dist = small_medium_dist;
case 2

mean_flow = 6;
std_flow = 1;

mean_duration = 1;

std_duration = .05;

time_dist = small_medium_dist;
case 3

mean_flow = 14;
std_flow = 2;
mean_duration = 10;
std_duration = 2;
time_dist = bath_dist;
case 4
mean_flow = 8;
std_flow = 1;
mean_duration = 5;
std_duration = 2;
time_dist = shower_dist;
end;

if number of_inc_today > 0;

83

for n = l:number_of_inc_today

$hour of the usage

time = time_of_ usage (time_dist); %[h]

flow mean_flow + std_flowxrandn; $%1/m
flow max (flow, 0) ;
duration = mean_duration + ceil (std_duration*randn); S%min
duration=duration/60; % [now in hours]
duration_vec=[duration_vec durationx3600]; %[in seconds]
flow _vec=[flow_vec flow];
timestart_vec=[timestart_vec timex3600];

end
end

end
timestart_vec=sort (timestart_vec)

[)

% stairs(day.time,day.flow)

D.7 Demand profile helper function 3: genProfile.m

Listing D.7: Estimating daily hot water demand.

function dist = make_prob_table (dist)

%$ensuring probabillity sum to one
total_prob = trapz(dist.t,dist.p);
dist.p = dist.p/total_prob;
% interpolates the date one minute scale
inter p.t = 0:1/60:24;
inter_p.p = zeros(length(inter p.t),1);
for i = l:length(inter_p.t)
inter_p.p (i) = interpl(dist.t,dist.p,inter_p.t(i));
end
% calulating the probability minute by minute
% descrete probabillity
inter_p.P = zeros(length(inter_p.t)-1,1);
for i = 1l:length(inter_p.t)-1
inter p.P (i) = trapz(inter_p.t(i:i+l),inter_p.p(i:1i+1));
end

dist.prob_table.p cumsum (inter_p.P);
dist.prob_table.t = inter p.t;

end

D.8 Demand profile helper function 4: genProfile.m

84

Listing D.8: Estimating daily hot water demand.

D.9 Demand profile helper function 5: genProfile.m

Listing D.9: Estimating daily hot water demand.

function dist=prob_dist_shower
dist.t = [

0 J o U O

o L5
.25
.15
.02
.02
- 09
.09
.02
.02

85

D.10

Demand profile helper function 6: genProfile.m

Listing D.10: Estimating daily hot water demand.

D.11

Demand profile helper function 7: genProfile.m

Listing D.11: Estimating daily hot water demand.

function time = time_of_usage (dist)

time_index
time = dist.prob_table.t (time_index) ;

end

= find(dist.prob_table.p > rand, 1);

86

1

Appendix v

MATLAB Support Functions

This chapter contains the MATLAB functions that deal with extracting data from
databases and transforming them to a form that makes them well suited for plots
or tables.

E.1 Storing files with simulation data: genTable.m

This program takes data from the .mat files, arranges it in tables and writes these
tables to .dat files compatible with the pgfplots package. These files serve as basis
for plots and tables used in this thesis. This ensures that plots and tables in the
report are always up to date. If the .mat files are not available in the folder, it is
necessary to run all of the cases at least once before running genTable.m, otherwise
data that are attempted to be extracted in the script will not exist.

Listing E.1: Storing workspace data to files.

o

This script takes data from stored .mat files and turns it into tables,
thus the .mat file need to be available in 'folder' before this

script is ran. The tables are written to files using writetable ()

The generated tables are used in pgfplot commands through the thesis.
If anything in the simulation changes, this program just has to be ran
once to update all plots in the thesis.

o

o® o o o

folder ='C:\Users\Vegard\Dropbox\Master\latex\fig\table\"';

d = 'delimiter';
% Generate 24 hour data points. The date is just there to comply with
% ..pgfplot standards. (requires full date) The hour is all that matters.
twentyfour = []; % 24-hour array. To contain strings, starting at 4.00
for i=4:27
if i >9 % strings contained in array must have same length.
if 1 >24 $ if above 24 we want to start at 01.00 again
twentyfour=[twentyfour; ['{2009-08-19 0',int2str (i-24),':00}"'11;
else

87

twentyfour=[twentyfour; ['{2009-08-18 ', int2str (i) ,':00}'11;

end
elseif i<=9 % adding an additional 0 to keep strings same length.
twentyfour = [twentyfour; ['{2009-08-18 0',int2str (i) ,':00}'11;

end
end

%Average demand and price table

av.price = csvread('average.csv',0,1,[0,1,23,1]); $ P, EUR/MWh
av.demand = csvread('average.csv',0,0,[0,0,23,0]); % g_hw, dm”3/min
historicav = table (twentyfour,av.demand, av.price, ...

'VariableNames', {'Time' 'Demand' 'Price'});

writetable (historicav, fullfile (folder, 'average.dat'),d, "\t")

%$Current demand and price table

test=load ('langprofil.mat');

a = test.testlong;

currentdem = table(a.time' +0.0167,a.flow,a.price, ... % g_out, dm”3/min
'VariableNames', {'Time' 'Demand' 'Price'});

writetable (currentdem, fullfile (folder, 'pricedemand.dat'),d, "\t")

%$Price and average price
weekdata = getPriceHour(4,1,4,7); % get one week of price data
pricecompTbl = table (twentyfour, weekdata(l:24),weekdata(25:48),
weekdata (49:72),weekdata (73:96) ,weekdata (97:120),
weekdata (121:144) ,weekdata (145:168), av.price);
writetable (pricecompTbl, fullfile (folder, 'pricecomp.dat'),d, "\t")

$Back-off
p='C:\Users\Vegard\Dropbox\Master\MATLAB_TJ_data_Vv200_ml123_B0975310.mat"';
bo=load (p, 'Tresult', 'Jresult', 'boList');
boTbl = table(bo.bolList, bo.Tresult(:,1),bo.Tresult (:,2),...
bo.Tresult (:,3),bo.Jresult (:,1),bo.Jresult (:,2),bo.Jresult (:,3), ...
'VariableNames', ...
{'Backoff' 'Tmodel' 'Tmode2' 'Tmode3' 'Jmodel'
"IJmode2' 'Jmode3' });
writetable (boTbl, fullfile (folder, 'bo.dat'"),d, "\t ")

%$Simple control rules

simplec=load ('C:\Users\Vegard\Dropbox\Master\MATLAB\cstructuresBO3.mat"', ...
'rmat"');

htable = (l:numberofelements (simplec.rmat(:,1)));

simplecTbl = table (htable', simplec.rmat(:,3), simplec.rmat (:,4),...
simplec.rmat (:,1),simplec.rmat (:,2), 'VariableNames', ...
{'"Case' 'startime' 'length' 'T_violation' 'J_end' });

writetable (simplecTbl, fullfile (folder, 'simplec.dat'),d, "\t")

$Just the simple control rules with s=1

newtable =[];
for i=1l:numberofelements (htable)
Stemp =[]

if simplec.rmat (i,3) ==
newtable=[newtable;simplec.rmat (i,1:4)1;
end

88

end
simplec2Tbl = table (newtable(:,1), newtable(:,2),...
newtable (:,3), newtable(:,4), 'VariableNames', ...
{'T_violation' 'J end' 'startime' 'length' }) s
writetable (simplec2Tbl, fullfile (folder, "simplec2.dat'),d, '\t")

%$Sizing
path='C:\Users\Vegard\Dropbox\Master\MATLAB_TJ_data_V60-800_ml23_BO3';
sizeBO=load (path, 'Tresult', "Jresult', 'vlist');
addCostTbl =table(sizeBO.vlist (1:6), sizeBO.Jresult (l:6,1)-...
sizeBO.Jresult (1:6,2),sizeBO.Jresult (1:6,1)—...
sizeBO.Jresult (1:6,3), 'VariableNames', ...
{'Volume', 'addCostOpt', 'addCostSim'})
writetable (addCostTbl, fullfile (folder, "addCost.dat'),d, "\t ")
%$no deldta
sizeCostTbl =table(sizeBO.vlist (1:6), sizeBO.Jresult(l:6,1),...
sizeBO.Jresult (1:6,2),sizeBO.Jresult (1:6,3), 'VariableNames"', ...
{'Volume', 'Jb','Jo"', 'Jt'})
writetable (sizeCostTbl, fullfile (folder, 'sizeCost.dat"'),d, "\t")

addTviolTbl = table(sizeBO.vlist (l1:6), sizeBO.Tresult (1:6,1),...
sizeBO.Tresult (1:6,2),sizeBO.Tresult (1:6,3), 'VariableNames', ...
{'Volume', 'TviolBase', 'TviolOpt', 'TviolSim'})
writetable (addTviolTbl, fullfile (folder, 'addTviol.dat"'),d, "\t")

%Effect of BO on sizing
path2='C:\Users\Vegard\Dropbox\Master\MATLAB_TJ_data_v60-800_ml123"';
size=load (path2, 'Tresult', 'Jresult', 'vliist');
%Add statement here checking if the two incoming volume lists are the same
if sizeBO.vlist ~= size.vlist, raise.error('The vlists nonidentical!'); end
% create the table for temp-violation with and without BO
BuTempTbl = table(size.vlist(l:6), sizeBO.Tresult(l:6,2)-...
sizeBO.Tresult (1:6,1), ...
size.Tresult (1:6,2)-size.Tresult(1:6,1), ...
sizeBO.Tresult (1:6,2)-sizeBO.Tresult (1l:6,1)—...
(size.Tresult (1:6,2)-size.Tresult(1:6,1)), ...
sizeBO.Tresult (1:6,3)-sizeBO.Tresult (1:6,1), ...
size.Tresult (1:6,3)-size.Tresult(1:6,1),...
sizeBO.Tresult (1:6,3)-sizeBO.Tresult (1l:6,1)—-...
(size.Tresult(1:6,3)-size.Tresult(1l:6,1)), 'VariableNames', ...
{'Volume', 'addTempOptBO', 'addTempOpt ', 'deltaTempOptBO', . ..
'addTempSimBO', 'addTempSim', 'deltaTempSimBO' })
% create the table for cost with and without BO
BuCostTbl = table(size.vlist(1:6), sizeBO.Jresult (1:6,1)—...
sizeBO.Jresult (1:6,2), ...
size.Jresult (1:6,1)-size.Jresult(1:6,2), ...
sizeBO.Jresult (1:6,1)-sizeBO.Jresult (1:6,2)—...
(size.Jresult (1:6,1)-size.Jresult (1:6,2)), ...
sizeBO.Jresult (1:6,1)-sizeBO.Jresult (1:6,3),...
size.Jresult (1:6,1)-size.Jresult(1:6,3), ...
sizeBO.Jresult (1:6,1)-sizeBO.Jresult (1:6,3)—...
(size.Jresult (l1:6,1)-size.Jresult (1:6,3)), 'VariableNames"', ...
{'Volume', 'addCostOptBO', 'addCostOpt"', 'deltaCostOptRBO', . ..
'addCostSimBO', 'addCostSim', 'deltaCostSimBO"'})

89

writetable (BuTempTbl, fullfile (folder, 'TviolBO.dat"'),d, "\t")
writetable (BuCostTbl, fullfile (folder, 'CostBO.dat"'),d, "\t")

%% Making 3 day plots

std = load('C:\Users\Vegard\Dropbox\Master\MATLAB_ _datasetsv200.mat');
length=51552+288%2; %3 days in simulation points (32 steps? (96)*3)
step = 96%96%288

baseTbl = table (std.ptime_base (l:step:length), ...
std.y_base(l:step:length,2), ...
std.sp_base (l:step:length,2),std.y_base(l:step:length,1l), ...
std.sp_base (l:step:length,1l),std.y_base(l:step:length,3), ...
std.d_base(l:step:length,4),std.d_base(l:step:length,1), ...
std.u_base(l:step:length,1l),std.u_base(l:step:length,2), ...
'VariableNames', {'time' 'T' 'T_s' 'V' 'V_s' 'J_tot' 'price'...

'q hw' 'Q' 'g in'});
writetable (baseTbl, fullfile (folder, "base3.dat"'),d, "\t")

Soptim case

optimTbl = table(std.ptime_optim(l:step:length), ...
std.y_optim(l:step:length,2), ...
std.sp_optim(l:step:length,2),std.y_optim(l:step:length,1), ...
std.sp_optim(l:step:length,1l),std.d_optim(l:step:length,4), ...
'VariableNames', {'time' 'T' 'T_s' 'V' 'V_s' 'price'});

writetable (optimTbl, fullfile (folder, 'optim3.dat'),d, "\t ")

%two phase case

twophaseTbl = table (std.ptime_sim(l:step:length), ...
std.y_sim(l:step:length,2), ...
std.sp_sim(l:step:length,2),std.y_sim(l:step:length,1), ...
std.sp_sim(l:step:length,1),std.d_sim(l:step:length,4), ...
'VariableNames', {'time' 'T' 'T_s' 'V' 'V_s' 'price'});

writetable (twophaseTbl, fullfile (folder, 'twophase3.dat'),d, "\t"');

%known demand
%plotting the results of known and average demand optimization
kno = load('C:\Users\Vegard\Dropbox\Master\MATLAB_ _pdatasetsV200.mat");
knownTbl = table (kno.ptime_optim2 (l:step:length), ...
kno.sp_optim2 (l:step:length,2), ...
std.sp_optim(l:step:length,2),std.d_optim(l:step:length,4), ...
std.d_optim(l:step:length,1l), 'VariableNames', ...
{"time' 'T_sk' 'T_sa' 'price' 'g hw'});
writetable (knownTbl, fullfile (folder, 'stdVsknown3.dat'),d, "\t');

%plotting average hourly demand for three days
time2=[4:1:75]";

averagedemand =[av.demand; av.demand; av.demand];
%plotting known hourly demand for three days

actualdemand = [];

for i=1:72
temrep = a.flow((60*(i-1)+1): (60x1i));
actualdemand=[actualdemand; sum(a.flow((60* (i-1)+1): (60%i)))/60];

90

end
knownTbl2 = table(time2, averagedemand, actualdemand, 'VariableNames', ...
{'"time2' 'h_avdemand' 'h_actualdemand'});

writetable (knownTbl2, fullfile (folder, 'stdVsknown3b.dat'),d, "\t ")

step=2880

%% Plotting total cost and table

%$plotting cost functions for 30 days

lenthirty = 515521;

CostyTbl = table(std.ptime_base (l:step:lenthirty) /24, ...
std.y_base(l:step:lenthirty,3), ...
std.y_optim(l:step:lenthirty,3), ...
std.y_sim(l:step:lenthirty,3), ...

'VariableNames', {'time' 'J base' 'J_optim' 'J_sim'})
writetable (CostyTbl, fullfile (folder, 'dplot.dat'),d, "\t");
$plotting cost at the end of simulation
Var =['{$ J $}'; '"{St_vsS}'];

Jbase= [sizeBO.Jresult (4,1);sizeBO.Tresult (4,1)];

Joptim= [sizeBO.Jresult (4,2);sizeBO.Tresult (4,2)];

Jsim=[sizeBO.Jresult (4, 3);sizeBO.Tresult (4,3)1];

CostxTbl = table (Var, Jbase, Joptim, Jsim, ...

'VariableNames', {'Objective' 'J base' 'J optim' 'J _sim'})
writetable (CostxTbl, fullfile (folder, 'Jtab.dat"'),d, "\t")

% switch block

step=>5

pathswitch="'C:\Users\Vegard\Dropbox\Master\MATLAB\switchplot"';

iz=load (pathswitch);

swstart=1;

switchTbl=table (iz.ptime_base (swstart:step:end)-iz.ptime_base (swstart), ...
iz.y_base (swstart:step:end,1l),iz.sp_base(swstart:step:end, 1), ...
iz.y_base (swstart:step:end, 2),1iz.sp_base(swstart:step:end,2), ...
'VariableNames', {'time' 'V' 'Vs' 'T' 'Ts'})

writetable (switchTbl, fullfile (folder, 'Switch.dat"'),d, "\t")

E.2 Finding average demand: historicProfile.m
This function calls getProfile.m a specified number of times, saving the average

demand for each one-hour slot of the day. It then calculates an average demand
for each hour by combining the generated profiles.

Listing E.2: Estimating average demand for each one-hour slot.

Generates demand estiates for n days. Finds the average demand within

o o

each hourly slot from the n estimates.
function averageDemand = historicProfile (n)

temp = [];

for j=1:n
rprofile = getProfile(); % generate a new demand profile
shortprofile = rprofile.flow(2:end); % removing the starting point
bar = [1]; % generate temporary matrix

91

for i=1:1:24 % turn minute by minute data into horly averages
tempy = sum(shortprofile((i-1)*60+1 : 60+ (i-1)%60)/60);
% finds the average response from: (sum of minute responses) /60
bar=[bar, tempy]; % saves the hourly response

end

temp = [temp; bar]; % append new hourly data set to temp matrix

end

ad = sum(temp) /n $add up hourly datasets and divide by days
averageDemand= [ad(5:end),ad(1:4)] $time shifted to start at 4.00 AM

E.3 Finding average price: historicPrice.m
This function extracts all the electricity price data from 2012, groups data points

from the same time slots together and calculates an average price for each one-hour
period of the day.

Listing E.3: Finding average price for each one-hour slot.

%$finds average price per hourly slot from one year of price data
function avPrice = historicPrice

fulldata = csvread('price.csv',0,0,[0,0,8759,01); %$read price data
temp = zeros ([365,24]); % create empty matrix for hourly datasets

for j=1:days
for i=1:1:24

o

for each hourly period per day

temp (j,1) = fulldata(24*(j-1)+i);% append data to hourly slot
end
end
ad = sum(temp) ./365; % divide sum by days to get average
avPrice = [ad(5:end),ad(1:4)]; % time shifted to start at 4.00 AM

92

