Optimal operation of energy storage in buildings: The use of hot water system

Emma Johansson
Supervisors: Sigurd Skogestad and Vinicius de Oliveira

Agenda

- Project description
- Work done
- Model validation
- Further work

Project description

- Optimal operation of energy storage in buildings with focus on the optimization of an electrical water heating system.
- Objective is to minimize the energy cost of heating the water
- Main complications: Electricity price and future demand
- Goal: To propose, implement and compare different simple policies that result in near-optimal operation of the system.

 NTNU - Trondheim
 Norwegian University of

Science and Technology

Proposed policies

- Should be robust in some to-be-defines sense (e.g. must be feasible for at least 95% of the cases)
- Should result in significant savings compared to trivial solution
- Should be simple to implement in practice.

Process flow scheme

Dynamic model:

$$\frac{dV}{dt} = q_{in} - q_{out}$$

$$\frac{dT}{dt} = \frac{1}{V}[q_{in}(T_{in} - T) + \frac{Q}{\rho c_p}]$$

Model assumptions

- qhw and Thws controlled directly by the consumer
- Perfect control when feasible

Perfect control:
$$T_{hw} = T_{hw,s}$$
 and $q_{hw} = q_{hw,s}$

else
$$T < T_{hw,s}$$
 and $q_{hw} = q_{hw,s}$

Model equation

$$rac{dx}{dt} = f(x, u, d)$$

Definition of the state, input and disturbance vectors.

$$x = egin{bmatrix} V \ T \end{bmatrix}, u = egin{bmatrix} Q \ q_{in} \end{bmatrix}, d = egin{bmatrix} q_{hw} \ T_{hw,s} \ T_{in} \ p \end{bmatrix}$$

Model validation

PID controller

$$p(t) = p + K_c(e(t) + \frac{1}{\tau_I} \int_0^t e(t*) dt + \tau_D \frac{de(t)}{dt})$$

$$G(s) = K_p(1 + rac{1}{ au_I s} + au_D s)$$

NTNU – Trondheim Norwegian University of Science and Technology

Demand profile

Randomly generated demand profiles from MATLAB script, qhw.

Electricity Price

 On-off peak price

Time varying price

Implementing a switch

Price threshold, p_B

Defining set-points for the temperature at the switch

$$T_{set} = egin{cases} ext{if } p > p_B ext{ then } T_{set} = T_{max} \ ext{if } p \leq p_B ext{ then } T_{set} = T_{buffer} \ \end{cases}$$
 $T_{set} = egin{cases} ext{if } p > p_B ext{ then } V_{set} = V_{max} \ ext{if } p \leq p_B ext{ then } V_{set} = V_{max} \end{cases}$

Results

 Switching between set-points as the price is higher or lower than the price threshold P_B.

(b) Friday

Weekly average

PB average from previous week

Average from previous day

Average current day

 Comparing the total cost with different boundaries, also assuming the electricity price for the current day is known, and the average of this day can be used.

No boundary?

 The lowest price threshold resulted in the lowest cos, what are the result with no boundary?

No boundary?

- T_{start} = 90 °C, low total cost.
- T_{start} = 65 °C, higher total cost.

Cost function

- Original cost function: $J(t) = \int_0^t p(t)Q(t)dt$
- Implementing a penalty into the cost function:

$$\begin{split} J &= \int\limits_{t_0}^{\infty} p(t)Q\mathrm{d}t + \int\limits_{t_0}^{\infty} p*(T)Q_{demand}\mathrm{d}t \\ p*(T) &= \begin{cases} 0 & \text{if } T \geq T_{hw,s} \\ p_1*(T_{hw,s}-T)^2 + p_2*(T_{hw,s}-T) & \text{if } T < T_{hw,s} \end{cases} \end{split}$$

Further work

- Optimization problem: min J(PB, Tbuffer)
 - Decision variables: PB and Tbuffer

Finding the optimal PB and Tbuffer which provides the lowest total cost.

Simulate for longer periodes and generalizing the simulation

Find near optimal policies

