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Abstract

Even for simple distillation systems with only two columns, the control problem
can be significant. This project provides an initial outline of a systematic pro-
cedure for finding the optimal control structure, through identification of active
constraint regions and self-optimizing variables.

The procedure is used to study a system of two distillation columns in sequence
in order to find the optimal control structure. To achieve optimal control, the
active constraints have to be identified and controlled tightly. Which constraints
that are active depend on the external conditions. This project has mapped how
the active constraints change following variations in the steam price and feed
flow.

Two of the active constraint regions were studied further. A rigorous steady
state analysis was conducted to find variables, which when controlled to constant
value, keep the operation close to optimal. Variables with such properties are said
to be self-optimizing. Controlled variables consisting of single measurements
and measurement combinations have been investigated. In a constraint region
with low energy price, controlling a tray temperature in the top part of the second
column was found to be optimal. In a second region studied, where only the
product specification of the valuable product is active, three tray temperatures
that would keep the system close to optimum were identified.
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Sammendrag

Selv for relativt små systemer, for eksempel et system av to destillasjonskolonner
koblet i serie, kan kontrollproblemet være komplisert. Dette prosjektet skisserer
en generell prosedyre for å finne den optimale kontrollstrukturen. Prosedyren
prøver å finne den optimale kontrollstrukturen gjennom å identifisere aktive be-
grensningsregioner og selvoptimaliserende variable.

I denne hovedoppgaven har optimal kontrollstruktur av to destillasjonskolonner i
serie blitt studert. For å oppnå optimal kontroll, må de aktive kontrollvariablene
i systemet bli identifisert og kontrollert stramt. Hvilke kontrollvariable som er
aktive, avhenger av ytre betingelser. Dette prosjektet har kartlagt hvordan de
aktive variablene endres mot variasjoner i damppris og fødestrøm.

To av de aktive begrensningsregionene er studert videre. En grunding analyse
ble gjennomført med systemet i stasjonær tilstand, for å finne variabler, som ved
konstant verdi, vil drive systemet mot optimaltilstanden. Variabler med disse
egenskapene sies å være selvoptimaliserende. Både kontrollvariabler bestående
av en enkelt måling og kombinasjoner av målinger, har blitt vurdert. I begrens-
ingsregionen med billig damp, ble det funnet optimalt å styre en trinntemperatur
i den øvre delen av kolonne to. I den andre regionen som ble studert, var kun
produktspesifikasjonen til det verdifulle produktet aktivt. Tre trinntemperaturer
som vil holde systemet nært det optimale punktet ble identifisert.
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Chapter 1

Introduction

Distillation is one of the most frequently used separation techniques in chemical

industry [1]. In many cases distillation is a highly energy demanding process,

and low energy consumption depends on optimal operation. Optimizing a distil-

lation column deals with the state of the process that best fit a given set of criteria

for optimal operation. When the system is exposed to a disturbance, the state of

the system changes. How the system responds, depends on the control structure

of the system. If the system drifts far from the optimal point, re-optimization is

needed. The objective of this thesis is to identify a control structure that keeps

the system close to the optimal point when exposed to disturbances, without the

need to re-optimize.

The control structure of a system is highly important for optimal plant operation.

A control structure problem deals with selecting the appropriate controlled vari-

ables and pairing them with variables that can be manipulated. Numerous studies

have been done in this field, but few have approached the problem in a systematic

fashion. The plantwide control procedure by Skogestad [2] gives a mathematical

framework to the problem, and a mathematical approach is necessary in order to

1



2 1.1. Aim of the thesis

identify the optimal structure in every case. Based on the mathematical frame-

work one searches for the controlled variables that drive the system to the new

optimal state when the system is exposed to disturbances. The loss is calculated

by minimizing the change of a cost function. This approach to control design is

well described by Larson and Skogestad [2].

1.1 Aim of the thesis

To separate three components, two distillation columns are needed. The optimal

control of two distillation columns in sequence with the use of self-optimizing

control, was discussed by Magnus Jacobsen as part of his PhD thesis [3]. In the

present project the work of Jacobsen has been used as a basis for further studying

the optimal control of two distillation column in sequence.

The aim of this thesis has been to formulate the outline of a procedure to find

the primary controlled variables, and use this to study control for a system of

two distillations column in sequence. Key questions are, i) how to identify active

constraint regions and ii) how to find self-optimizing controlled variables. The

first task was to identify a map of how the set of active constraints change as

a function of feed flow and steam price. Two of the constraint regions were

studied further in order to find variables that when kept constant, maintain the

system close to the optimal point. In addition to study controlled variables based

on single measurements, the benefit of using multiple measurement has been

considered.

2



Chapter 2

Theoretical background

This chapter presents the theoretical background for work done in this thesis. Op-

timization problems are first defined mathematically, followed by a brief intro-

duction to distillation. The principles behind active constraints, self-optimizing

control and plant-wide control are explained. Methods for finding self-optimizing

variables, including the "exact local method", are described towards the end.

2.1 Optimization

The problem of finding the optimal operation of a chemical plant can be struc-

tured mathematically as a constraint optimization problem. The aim is to mini-

mize the cost function, J, within the boundaries of the system. From a practical

point of view, the constraints can be product specifications, safety standards or

physical limitations. This is mathematically expressed as:

3



4 2.2. Distillation theory

min
x,u

J(x,u,d)

subject to ci(x,u,d)≤ 0, i ∈ I

ci(x,u,d) = 0, i ∈ ε

(2.1.1)

Where J denotes the cost function and c denotes the constraints. Usually, the

set of equality constraints includes the process model while the set of inequality

constraints includes the operational constraints.

2.2 Distillation theory

Distillation is a common separation technique in chemical industry. The method

utilizes the fact that for a liquid-vapor mixture at equilibrium, the lightest of two

components has a higher concentration in the vapor than in the liquid. Each

separation event of vapor and liquid approaching equilibrium, is called a flash.

Distillation can be described as a counter-current multistage flash. From each

tray in the column the vapor flows to the tray above, while the liquid flows to the

tray below. By repeated separation of the vapor and liquid the mixture becomes

increasingly purer. The basic principle in a distillation column is illustrated in

figure 2.2.1.

The relationship between the vapor composition, y, and the liquid composition,

x, is given by the equilibrium curve. The equilibrium curve in a multicomponent

system with constant relative volatility, α , is given by equation 2.2.1, where i

is the component number, and k refers to component with the highest boiling

point [5].

yi =
αikxi

1+∑
k−1
j=1(α jk−1)x j

(2.2.1)

4



2.3. Constraint curve and and active constraint regions 5

Figure 2.2.1: A distillation column modeled as a sequence of connected equilibrium
stages. The light gray is the vapor phase, V , and the dark is the liquid
phase, L. Where, y, denotes the composition in the vapor and, x, denotes
the composition in the liquid [4].

2.3 Constraint curve and and active constraint regions

A constraint is said to be active if the constraint variable in the optimal state of

the system has the same value as the constraint. Identifying active constraints

and finding the active constraint regions are important parts of the search for

optimal plant operation. As the terms "constraint curve" and "active constraint

region" are not trivial, they need to be defined. The definition is given below [3]:

Definition 1 Constraint curve:

The constraint curve corresponding to a constraint, c, is the line separating the

region where c is optimally active from the region where c is optimally inactive.

5



6 2.4. Plantwide control by time scale separation

Definition 2 Active constraint region:

The active constraint region is defined as the part of the disturbance space that is

bounded by constraint curves, and thus have the same set of active constraints.

2.4 Plantwide control by time scale separation

The control system of a chemical plant can be hierarchically decomposed into

several layers, each operating at different time scales. Typically, the layers

include scheduling (weeks), site-wide optimization (days), local optimization

(hours), supervisory control (minutes) and stabilizing and regulatory control

(seconds) [6]. The higher layers control the layers below by providing the set-

points to the subsequent layer. A sketch of a typical control hierarchy of a chem-

ical plant is given in figure 2.4.1

When the system is exposed to disturbances, the lower layers operating on a

shorter time scale would be the first to respond, trying to correct the system.

The better the lower layers are to drive the system to the new optimal state,

the more optimal would the whole structure be, as the system would spend less

time in a non-optimal state. The core principles of self-optimizing control is to

find controlled variables in the supervisory control layer, that drives the system

to the new optimum when the system is exposed to disturbances, without the

need for re-optimization. Variables that have these characteristics are called self-

optimizing variables.

2.4.1 Self-optimizing variables

For a system to be fully specified, it is necessary to control as many variables as

there are degrees of freedom. From an economic point of view it is always best

to keep the system at the active constraints (for definition of active constraints

6



2.4. Plantwide control by time scale separation 7

Figure 2.4.1: Typical control hierarchy of a chemical plant by time scale deviation [6].

see section 2.3). After controlling all the active constraints, the question be-

comes; what more to control? The preferred solution would be to find variables

or combination of variables that, when held constant, maintains the systems at

its most profitable state. These "magic" variables is by Skogestad et al. called

7



8 2.4. Plantwide control by time scale separation

self-optimizing variables, with the following definition [6]:

"Self-optimizing control is when acceptable operation under all

conditions is achieved with constant setpoints for the controlled vari-

ables."

Essentially, the task is to find controlled variables, that minimizes the loss when

the system is exposed disturbances. The loss is here defined as the difference

between the cost when the system is controlled and the cost at its optimal state:

L(u,d) = J(u,d)− J(uopt ,d∗) (2.4.1)

The simplest search for self-optimizing variables is trial and error, i.e. picking

a controlled variable and looking at the loss when the system is exposed to a

disturbance. This method is called direct evaluation of loss. Figure 2.4.2 gives

an illustration of the loss, while keeping the input, u, constant at u = uopt,d∗ , for

a typical cost function.

Figure 2.4.2: Illustration of loss while keeping the input, u, constant at u = uopt,d∗ and
exposing the system to a disturbance, d, [7].

8



2.4. Plantwide control by time scale separation 9

The selection of controlled variables, c, from the measurements, y, can be done

using a selection matrix, H:

c = Hy (2.4.2)

A simplified sketch of the control problem using the selection matrix, H, is

shown i figure 2.4.3.

Figure 2.4.3: Control structure diagram, when selection the controlled variables, c, from
the measurements, y, with a selection matrix, H. d denotes disturbances
and n denotes the implementation error.

In a controlled system the input values, u, are regulated in order to keep the

controlled variables, c, constant at there set-points, cs. The magnitude of the loss

depends on the controlled variables selected. Figure 2.4.4 illustrates the loss as

a consequence of a disturbance, where either of the two controlled variables, c1,

or, c2, are kept constant.

9



10 2.4. Plantwide control by time scale separation

Figure 2.4.4: Illustration of loss while controlling c1 or c2 at there optimal values in
d∗ [6].

2.4.2 Exact local method

A more practical approach to search for the controlled variables is given by the

"exact local method" as it includes measurements and implementation errors [8].

The objective is here to find the linear combination of measurements that would

give the smallest loss. The exact local method is based on applying the following

assumptions:

• Steady state cost, J(u,d)

• Quadratic cost approximation

• A linear model

The cost function is approximated by a Taylor expansion, neglecting higher than

second order terms:

J(u,d) = J(u∗,db∗)+ [J∗u J∗d ]

[
∆u

∆d

]
+1/2

[
∆u

∆d

]T [
J∗uu J∗ud

J∗uu J∗dd

][
∆u

∆d

]
(2.4.3)

10



2.4. Plantwide control by time scale separation 11

Here ∆u = u− u∗ and ∆d = d − d∗ are deviations from the optimum, where

the optimal nominal values are marked with an asterisk. Ju and Jd are the first

derivatives of the cost function. As the function is approximated around the

optimal point, first order derivatives would be zero. To simplify notation further,

the optimal point is shifted such that the nominal point (u∗, d∗) is zero. The same

is done for the measurement, y, in the following paragraph.

A linear steady state model of the effect of the input, u, and disturbances, d, and

the measurements, y, is assumed. The linear relationship becomes:

y = Gyu+Gy
dd (2.4.4)

Here Gy and Gy
d are transfer functions from the input variables, u, and the distur-

bances, d, to the measurement, y. At steady state the transfer function is reduced

to the steady state gain.

As for direct evaluation the goal of the "exact local method" is to find the se-

lection matrix, H, that would minimize the loss. Usually, there are more than

one disturbance. As the various disturbances might move the system in different

directions, the magnitude of the disturbance and measurement errors, when cal-

culating the loss, needs to be further defined. Two possibilities are considered,

called "worst case" and "average loss".

• Worst case loss is the loss when the combined normalization vectors for

disturbances and measurement errors have 2-norm less than 1.∣∣∣∣∣
∣∣∣∣∣
[

d

ny

]∣∣∣∣∣
∣∣∣∣∣
2

≤ 1 (2.4.5)

• Average loss is the loss when the disturbance and the measurement errors

11



12 2.4. Plantwide control by time scale separation

are assumed to be normal distributed.[
d

ny

]
∈ N(0,1) (2.4.6)

Based on these definitions, expressions for the worst case and average loss can

be derived. The expressions are given below as a function of H:

Lwc =
1
2

σ̄(M)2 (2.4.7)

Lavg =
1
2
||M||2F (2.4.8)

Where

M(H) = J1/2
uu (HGy)−1HY (2.4.9)

and

Y =
[
FWd Wny

]
(2.4.10)

Here σ̄ denotes the maximum singular value of the matrix, M, and ||M||F denotes

the Frobenius norm. The matrix, F , is the optimal sensitivity, defined as:

F =
∂yopt

∂d
(2.4.11)

The optimal sensitivity, F , can be obtained directly from the definition or by

using equation 2.4.12.

F =−GyJy
uuJud +Gy

d (2.4.12)

12



2.5. Degrees of freedom 13

For a full H, meaning that there are no restrictions on the structure of H, there

exists an analytical expression for H that minimizes J [7]. The expression is

given in equation 2.4.13.

HT = (YY T )−1Gy(GyT
(YY T )−1GY )−1J1/2

uu (2.4.13)

2.5 Degrees of freedom

The degrees of freedom in a system is the number of variables that can vary

independently [9]. A distillation column has a total of 3 degrees of freedom if the

feed is fixed. Usually, pressure is controlled to a constant value, leaving 2 degrees

of freedom. Connecting two distillation columns with pressure controlled, would

give 2 degrees of freedom from each column, leaving the system with a total of

4 degrees of freedom.

2.6 Mathematical tools

All the coding in this thesis has been done in Matlab. The built-in solver for non-

linear constraint problems "fmincon.m" was used to optimize the model. "fmin-

con.m" attempts to find the constraint minimum of a scalar function using an

iterative solver. There are 4 possible solvers integrated in Matlab.

• trust-region-reflective

• active-set

• interior-point

• sqp

13



14 2.7. The "branch and bound" algorithm

The "sqp" algorithm was found to work well, and it is used in all the optimiza-

tions in the present project. ’sqp’ satisfies bounds at all iterations and has the

ability to recover from infeasible results. A selection the script developed in this

project is presented in Appendix C.

2.7 The "branch and bound" algorithm

The selection of controlled variables from possible measurements, using the "ex-

act local method", has been implemented in a branch and bound algorithm by

Kariwala and Cao [10]. In their work scripts developed in Matlab were used to

search for optimal controlled variables by minimizing the average loss or worst

case loss. The average loss calculated in the algorithm is different from the av-

erage loss using equation 2.4.8.

Lavg,uni f orm =
1

6(ny +nd)
||M||2F (2.7.1)

Kariwala and Cao assumes a uniform distribution of disturbances ,d, and input

variables, u, resulting in the following expression for average loss. Compared to

the average loss in equation 2.4.8, the loss in equation 2.7.1 is scaled by a factor

of 1/(3 ∗ (ny + nd)). As it is only a scaling factor separating the two equations,

the optimal controlled variables would be the same for the two methods. In the

present project the average loss from the "branch and bound" algorithm is scaled

such that it matches the average loss in equation 2.4.8.

14



Chapter 3

A systematic procedure to search
for the primary controlled vari-
ables

Finding good primary controlled variables is an important step in the search for

optimal plant operation, and it is one of the main steps in plantwide design, as

described in section 2.4. In this chapter a systematic procedure for finding the

primary controlled variables in a chemical plant is outlined. The procedure is

based on the plantwide control method by Skogestad [11], and attempts to find

the primary controlled variables, that from a steady state point of view, would

give the smallest loss.

The procedure can be divided into two main parts. The first part it to find the

active constraint regions. According to Skogestad [6] it is always best to control

the active constrains. The second part is to find good self-optimizing variables for

the remaining degrees of freedom. Active constraint regions and self-optimizing

variables are described in section 2.3 and section 2.4.1, respectively.

15



16 3.1. Initial steps

In the subsequent chapters, chapter 4 and chapter 5, this procedure is used to

study optimal control for a system of two distillations columns in sequence.

The main steps in the procedure are illustrated in a flow diagram in figure 3.0.1.

3.1 Initial steps

There are four main initial steps that need to be carried out before the search for

the active constraint regions can begin. These are:

• Define the cost function and the constraints

• Develop a mathematical model

• Identify the degrees of freedom in the system

• Identify important disturbances

The sequence of these four initial steps are irrelevant is not important.

3.1.1 Defining the cost function

The problem has to be structured mathematically as a constraint optimization

problem according to equation 2.1.1. The cost function in the optimization prob-

lem measures the quality of the control structure and provides the decision crite-

ria in the search for the optimal controlled variables. Typically, the objective is

economically motivated. The optimum is thus the state that is most profitable in

economic terms. Mathematically the cost, J, would be negative with respect to

the profit, P (C =−P). Only variables that affects the steady state of the system

should be included in the cost function. A typical cost function is the sum of

utilities and feed, subtracted the income from the products.

16



3.1. Initial steps 17

Figure 3.0.1: Main steps in a general procedure to search for the optimal primary con-
trolled variables.

In an ideal approach the cost of the whole plant should be included. However, in

17



18 3.1. Initial steps

most cases this would be to complex, and the task should be divided into smaller

subproblems.

3.1.2 Developing a mathematical model

Any optimization is depending on a reliable mathematical description of the sys-

tem model. The search for the primary controlled variables that is outlined in this

procedure assumes a steady state model of the system. The "exact local method"

would in addition require the model to be linearized around the nominal point

studied.

3.1.3 Identifying the degrees of freedom

The degrees of freedom are the number of variables that can be specified or con-

trolled independently. For the system to be fully defined, the number of primary

controlled variables has to be equal to the number of degrees of freedom.

3.1.4 Identifying important disturbances

Disturbances are uncontrolled variables that effect the state of the system. The

control structure should be developed such that the system is kept at optimum

when exposed to disturbances. Usually the disturbances are associated to the

feed into the system, but also changes in active constraints should be handled

as disturbances. When searching for the primary controlled variables, all distur-

bances that affect the cost function should be considered.

18



3.2. Finding the active constraint regions 19

3.2 Finding the active constraint regions

In order to control the process at optimum, the active constraints have to be iden-

tified and controlled tightly at the constraint value. To achieve this it is necessary

to know when the active constraints change, such that the control structure can

be adjusted to the new constraint region. A map of how the active constraint

regions change should be found. For a full understanding of the system, the ac-

tive constraint regions would have to be explored for all possible disturbances.

Each different disturbance would add another dimension to the active constraint

region map.

3.3 Searching for self-optimizing variables

When the active constraint regions have been found, the system should be studied

to identify additional controlled variables that would keep the state of the system

close to optimum. In general, each point in the disturbance space should be

studied individually. A point in the disturbance space studied is here referred to

as a nominal point.

The goal of this part is to find the set of controlled variables that gives the least

loss when exposed to disturbances. The simplest approach is to iterate through all

available sets of controlled variables. The user would specify a set of controlled

variables and evaluate the loss when the system is exposed to disturbances. Each

controlled variable consists of either a single measurement or a combination of

measurements at there optimum value in the normal point.

There are several possible methods to evaluated loss [12]. The loss could for

instance be evaluated using "local direct evaluation", "global direct evaluation"

or the "exact local method". While the global direct evaluation need a rigorous

model, the "local direct evaluation" can be applied to either a rigorous model or

19



20 3.3. Searching for self-optimizing variables

a linearized model. For the "exact local method" on the other hand, a linearized

model is a prerequisite. Figure 3.3.1 shows the various methods to calculate loss

when a set of controlled variables are specified.

Figure 3.3.1: Methods to calculate loss when controlling a set of variables and exposing
the system to disturbances. The controlled variables are selected from
available measurements, either single measurement or a combination of
measurements.

Even in small systems the number of possible controlled variables could be very

large. This is especially pronounced if measurement combinations are used. To

20



3.4. Other considerations 21

reduce the number of evaluations, engineering insight could be used.

If the model is linearized, each evaluation of loss would use very little compu-

tational power. This would enable the user to search through a large number

of possible controlled variables in a short time. Kariwala and Cao [10] have

shown that the computational time could be further reduced using a "branch and

bound" algorithm. The algorithm speeds up the process by reducing the number

of evaluations needed to find the controlled variable that results in the smallest

loss when exposed to disturbances.

3.4 Other considerations

The selection of controlled variables should not be based on minimization of

loss alone [6]. The controlled variables should in addition be easy to measure

and control accurately. A process that is difficult to control would spend longer

time away from set-point, and maybe even be unstable. An offset form the set-

point usually imply a loss. Keeping the process at the set-point is a prerequisite

for the evaluation of loss analysis.

In cases with more than one controlled variable should the selected variables not

be closely related [6], i.e. not control two tray temperatures next to each other

in a distillation column. Indirectly would this requirement usually imply that

the controlled variables are spread out in the process. Spreading the controlled

variables may have positive effects as avoiding drift, and stabilizing all part of

the process.
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Chapter 4

Active constraint regions for a sys-
tem of two distillation columns in
sequence

A system of two distillation columns in sequence was studied, with reference to

the PhD thesis of Jackobsen [3]. In order to identify the optimal control struc-

ture, the active constraint regions were mapped, and the map was subsequently

compared with the one found by Jacobsen [3]. Optimal control structure in two

of the regions was explored further in order to find self-optimizing variables, see

chapter 5.

4.1 Model

The system studied consists of two distillation columns in sequence, separating

three components A, B and C, where A is the most and C the least volatile com-

ponent. The column model is based on a steady-state version of the Column A
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24 4.1. Model

model [13]. Both columns have 41 trays (stages) with feed entering at tray 21.

The relative volatility, α , is assumed to be constant. The column uses a total

condenser, meaning that all the vapor leaving the top tray is condensed. The bot-

tom flow from column 1 is used as feed for the second column. A sketch of the

model is shown in figure 4.1.1.

Figure 4.1.1: Illustration of two distillation columns in sequence.

4.1.1 Tray temperature estimation

The boiling temperature of a mixture is a function of the composition [4]. The

temperature on each tray is estimated using the function:

T = Tb,A− (Tb,A−Tb,B)xB− (Tb,A−Tb,C)xC (4.1.1)

Where Tb,A,Tb,B,Tb,C are the boiling points of the pure components. Their values

are given in table 4.1.1
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4.2. The optimization problem 25

Table 4.1.1: Boiling point of the pure components in the modeled system.

Tb,A 100◦C
Tb,B 70◦C
Tb,C 30◦C

4.2 The optimization problem

The system is studied to find how the optimal operation varies with disturbance.

The optimal point is defined by the state of the system that minimizes the cost

function within the constraints. The cost function in this case comprises the sum

of the feed, the re-boiled power and the condenser power, subtracted the income

from the three product flows. The condenser power is assumed to be cost free.

It is also assumed that the vapor flows are restricted by a maximum value, as a

real column has an finite diameter. The respective concentrations of the three

product flows are being restricted to a minimum purity of 95%. A mathematical

description of the optimization problem is given in equation 4.2.1.

min
u

J(u,d) = pFF + pV (V1 +V2)− pAD1− pBD2− pCB2

subject to xA ≥ xA,min

xB ≥ xB,min

xC ≥ xC,min

V1 ≤V1,max

V2 ≤V2,max

(4.2.1)

The system has a total of 4 degrees of freedom when feed is regarded as a dis-

turbance. With 4 independent system variables specified, all other variables are

given by the chemical properties, the component mass balances and the energy
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26 4.2. The optimization problem

balances.

The parameter values used in the optimization are presented in table 4.2.1. The

values are the same as those used by Jacobsen [3].

Table 4.2.1: Parameter values

Parameters Values Units

F Variable mol/s
αAC 2
αBC 1.5
zF [0.4 0.2 0.4]T molfrac.
qF 1
pF 1 $/mol
pV Variable $/mol
pA 1 $/mol
pB 2 $/mol
pC 1 $/mol

Constraints

xA,min 0.95 molfrac.
xB,min 0.95 molfrac.
xC,min 0.95 molfrac.
V1,max 4.008 mol/s
V1,max 2.405 mol/s

4.2.1 Possible number of active constraint regions

An active constraint region is defined as an area in the disturbance space which

has the same combination of active constrains, see section 2.3.

According to Jacobsen [3] the maximum number of active constraints regions

are 2nc . Where nc is the number of constraints. All possible combinations are

presented in Table 4.2.2. In a real system, not all active constraint regions exist.
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4.2. The optimization problem 27

If the constraints are independent, the number of active constraints could never

exceed the degrees of freedom. As the system has 4 degrees of freedom, a con-

straint region where all 5 constraints are active would never occur (number 32

in table 4.2.2). In addition, the product specification of the valuable product is

nearly always active. The valuable product in this case is the distillate from col-

umn 2, having the specification xB,min. With this in mind, there are 32-16-1=15

possible active constraint regions left. This mean that there are 15 regions that

are both feasible and have xb active.

Generally, if the number of independent constraints, nc, is smaller or equal to the

degrees of freedom, the number of possible constraint regions would be limited

by the number of constraints. In this case the number of possible active con-

straint regions would be 2nc . On the other hand, if the number of constraints

are larger than the degrees of freedom, the degrees of freedom would be limit-

ing. The number of possible constraint regions would then be reduced by the

number of combinations that have more active constraints then there are degrees

of freedom. A general expression for possible number of active constraint re-

gions is presented in equation 4.2.2. The equation requires the constraint lines

not to cross each other more than ones. Without this requirement the number of

possible active constraint regions would be unlimited.

nregions =


2nc if nc ≤ nd.o. f .

2nc−
nc

∑
i=ndo f +1

(nc
i

)
if nc > nd.o. f .

(4.2.2)

In equation 4.2.2,
(nc

i

)
denotes the binomial coefficient.

4.2.2 Active constraint regions in the disturbance space

The system is studied to identify how the set of active constraints changes as a

function of the feed, F , and steam price, pV , at optimum. The constraint region

27



28 4.2. The optimization problem

Table 4.2.2: All combinations of active constraints

Number V1 V2 XA XB XC Region name

1
2 XC
3 XB I
4 XB XC
5 XA
6 XA XC
7 XA XB II
8 XA XB XC IV
9 V2
10 V2 XC
11 V2 XB
12 V2 XB XC
13 V2 XA
14 V2 XA XC
15 V2 XA XB
16 V2 XA XB XC
17 V1
18 V1 XC
19 V1 XB III
20 V1 XB XC
21 V1 XA
22 V1 XA XC
23 V1 XA XB V
24 V1 XA XB XC VII
25 V1 V2
26 V1 V2 XC
27 V1 V2 XB VI
28 V1 V2 XB XC
29 V1 V2 XA
30 V1 V2 XA XC
31 V1 V2 XA XB VIII
32 V1 V2 XA XB XC Infeasible

map is found by systematically changing the feed and the steam price and opti-

mizing the system at each point. A grid of 150 points in each direction is used.

The constraint region map is presented in figure 4.2.1.
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Figure 4.2.1: Active constraint regions map of two columns in sequence. The colored
lines mark the border between the case when the constraint is optimally
active or optimally inactive, respectively.

Numerical values for one optimization in each region are given in table 4.2.3.

Most values are in accordance with Jacobsen [3]. In region VI, however, there is

a discrepancy for the simulation value of XA,D1 and XB,D1, respectively, when the

feed is set to 1.4 mol/s and the steam price is set to 0.01 $/s. Their values are

written in red text.
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Table 4.2.3: Optimal values for selected data

Region I II III IV V VI VII VIII IX

Column 1
F 1.350 1.400 1.400 1.400 1.470 1.400 1.450 1.480 1.400
pV 0.030 0.100 0.025 0.025 0.100 0.010 0.180 0.010 0.160
V1 3.853 3.870 4.008 4.008 4.008 4.008 4.008 4.008 3.892
L1 3.300 3.290 3.436 3.436 3.400 3.437 3.408 3.396 3.312
D1 0.553 0.580 0.572 0.572 0.608 0.571 0.601 0.612 0.580
B1 0.797 0.820 0.828 0.828 0.862 0.829 0.850 0.868 0.820
XA,D1 0.960 0.950 0.961 0.961 0.950 0.962 0.950 0.950 0.950
XB,D1 0.041 0.050 0.039 0.039 0.050 0.038 0.050 0.050 0.050
XC,D1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
XA,B1 0.012 0.011 0.012 0.012 0.012 0.013 0.011 0.013 0.011
XB,B1 0.311 0.306 0.311 0.311 0.306 0.312 0.306 0.306 0.306
XC,B1 0.678 0.683 0.677 0.677 0.682 0.676 0.683 0.682 0.683
Column 2
V2 2.205 2.015 2.345 2.345 2.218 2.405 2.006 2.405 1.911
L2 1.952 1.771 2.081 2.081 1.959 2.140 1.764 2.137 1.678
D2 0.253 0.243 0.264 0.264 0.258 0.265 0.242 0.268 0.233
B2 0.544 0.577 0.564 0.564 0.604 0.563 0.608 0.600 0.587
XA,D2 0.038 0.038 0.038 0.038 0.041 0.039 0.039 0.041 0.038
XB,D2 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950
XC,D2 0.013 0.012 0.012 0.012 0.009 0.011 0.011 0.009 0.012
XA,B2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
XB,B2 0.014 0.035 0.012 0.012 0.030 0.011 0.050 0.018 0.050
XC,B2 0.986 0.965 0.988 0.988 0.970 0.989 0.950 0.982 0.950

J [$/s] -0.071 0.345 -0.105 -0.105 0.364 -0.201 0.841 -0.204 0.695
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4.3 Discussion of the constraint region map

The constraint region map was found by optimizing the system in a grid over the

whole disturbance space. This approach to mapping the active constraint regions

requires substantial computational power, and is correspondingly time consum-

ing. However, the time needed, is substantially reduced if one uses the solution

in one point as initial guess for the neighboring point. This procedure will also

increase the robustness and ensure that the algorithm would find a solution for

every feasible point. Even with this procedure, however, the computational time

would be long.

The computer used approximately six hours to calculate the active constraint

map in figure 4.2.1. The calculation was conducted on a Dell, Latitude E6400

with Windows 7, Intelr Core™2 Duo P9500 processor (2.53GHz). The number

of points evaluated when creating the map was 150 · 150 = 22500. This give

an average of approximately 1 second per evaluation. For large systems it is

expected that each evaluation would take substantially more time. If the active

constraint region should be mapped in 3 disturbance dimensions, the number of

evaluations needed with a grid of 150 would be 1503 = 3.4 ·106, translating into

a computational time of approximately 6 houres · 150 = 37.5 days. With this

extensive time consumption this method is probable impractical, calling for the

development of smarter algorithms that would reduce the time for each evalua-

tion and the number of evaluations needed. The use of faster computer languages

might of course also be considered.
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Chapter 5

Case study: Self optimizing vari-
ables in region I and VI

In each active constraint region there is a unique set of constraints which are

active at optimum [3] . To keep the system at optimum, all the active constraints

have to be controlled tightly. Two columns in sequence have a total of 4 degrees

of freedom (assuming that the pressure is controlled to a constant value and thus

not included). When the active constraints are controlled, the degrees of freedom

are reduced by the number of active constraints. In this chapter, region I and VI

are studied to find what further variables to control, using the remaining degrees

of freedom, in order to keep the process operation close to optimal.

According to Skogestad [6], the controlled variables should have the following

characteristics:

• Their optimal value should be insensitive to disturbances.

• They should be easy to measure and control.

• Their value should be sensitive to changes in the manipulated variable.
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34 5.1. Potential variables to control

• For cases with two or more controlled variables, the selected variables

should not be closely correlated.

The goal is to find variables, that when kept constant, maintain the system at its

optimum state when exposed to disturbances.

5.1 Potential variables to control

In this modeled system there are over a hundred potential variables which might

be controlled, either as single variable or as a combination of variables. These

include:

• 41 tray temperatures and compositions

• 8 flows: D1,B1,V1,L1,D2,B2,V2,L2

The variable to be controlled has to be connected with one of the variables

amenable to manipulation, which in this case are the flow variables only:

• 7 flows: D1,V1,L1,D2,B2,V2,L2

In this project only LV column structure is considered. LV structure denotes the

case where the flows L and V , are used to manipulate the primary controlled vari-

ables. Causing the level in the reflux drum and the re-boiler drum to be controlled

by the flows D and B, respectively. The primary controlled variables denote the

controlled variables that eliminate the steady-state degrees of freedom.

5.2 Disturbances considered

All uncontrolled variables should be considered as disturbances. In this system,

the feed is the only uncontrolled variable effecting the system, thus assumed

to be the source of the dominating disturbances. Examples include changes in
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5.3. Case 1: Selection of controlled variables in constraint region VI 35

feed flow, feed concentration and liquid vapor fraction. Variations in a tightly

controlled active constraint could also be regarded as a disturbance. To reduce

the complexity of the optimization problem, only three disturbances have been

considered:

Table 5.2.1: Disturbances considered

Disturbance

Feed flow
Feed composition: zFA at the expence of zFB

Feed composition: zFB at the expence of zFC

5.3 Case 1: Selection of controlled variables in constraint
region VI

In region VI, both vapor constraints V1 and V2 are active. In addition the concen-

tration constraint on the valuable product xb is active. The system has 4 degrees

of freedom. As 3 of these are active, and therefore being controlled, there are

1 degree of freedom left. The region is first studied in order to find the bound-

aries to infeasibility. This calculation is done to better understand the behavior

of the region. Assessment of the region boundaries is followed by a direct evalu-

ation of the loss, focusing on the variables in table 5.2.1. Finally, the system was

linearized and studied further using the "exact local method".

5.3.1 The boundaries of the region with respect to the reflux L1

When V1, V2 and XB are controlled to there constraint values, there is only 1 de-

gree of freedom left. The value of this last degree of freedom has to be such that

it is possible to keep the system within the boundaries of the allowed values of
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36 5.3. Case 1: Selection of controlled variables in constraint region VI

the two non-active constraints. Within the set of possibly manipulated variables,

only L1 and D1 are realistic choices to eliminate the last degree of freedom. From

the mass balance it follows that V +(1-q)F=D1+L1. As V1 is fixed and active and

q=1 (liquid feed only), the change in V1 has to be negative to the change in L1,

hence dL=−dV . Thus, if the limitation of one variable is found, the other is

given by the mass balance.

By increasing and decreasing the reflux L1 it is found that the system is limited at

both ends. When L1 is reduced, the top product get less pure. If L1 is reduced too

far, however, the composition constraint on the top product of column 1 would

be breached. On the other hand, if L1 is increased too much, it would not be pos-

sible to keep the bottom product of column 2 within the product specifications:

When the reflux L1 increases, the amount of component A (the most volatile)

in the bottom product increases. To satisfy the specification of the top product

of column 2, the reflux of this column must increase. At one point the reflux

has increase so much that is no longer possible to keep both the top and the bot-

tom products simultaneously within the desired product specifications. In figure

5.3.1, the values of the constraint variables XA and XC are plotted as a function

of the reflux L1.

Furthermore, the highest and the lowest possible reflux, L1, was plotted as a

function of the feed flow. Here, the highest and lowest value correspond to a

situation where either the constraint on xC or xA is active, respectively. The

graph is shown in figure 5.3.2 together with the optimal reflux L1.

Describing how L1 changes when a variable is controlled might give a good

indication of what variables would be useful for controlling the system. The

ideal variable should be such that L1 is kept at the optimal line. The value of L1

as a function of the feed flow when a selected tray temperature is controlled to

a constant value, is presented in figure 5.3.3. Correspondingly, the value of L1

as a function of the feed flow when L1, L1/F and D1/F , respectively, are kept

constant, is presented in figure 5.3.4.
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Figure 5.3.1: Values of product specifications as a function of the reflux L1 in constraint
region VI.
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Figure 5.3.4: The value of L1 when flow related variables are kept constant.

The value, L1, when controlling the temperature at tray 10, is reasonably close
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5.3. Case 1: Selection of controlled variables in constraint region VI 39

to the optimal line, indicating that this would be a good controlled variable for

disturbances in feed, see figure 5.3.3. Figure 5.3.4 shows that keeping, L1, or the

ratio, L1/F , constant, would lead to large loss and quickly move the system into

the infeasible area.

5.3.2 Direct evaluation of loss

The loss when the system is exposed to a disturbance can be readily evaluated

when a single variable is controlled to a constant value. Several possible candi-

dates were held constant at their optimal values at the nominal point. The result-

ing loss when the system is exposed to selected disturbances is shown in table

5.3.1. The re-optimized value of the controlled variable candidates are presented

in table 5.3.2.
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Table 5.3.1: Table of loss for selected controlled variable candidates

Controlled variable F = 1.41 F = 1.39 zF = zF = zF = zF = Average
Candidates 0.39] 0.41] 0.40] 0.40]
[10−3$/s] 0.21, 0.19, 0.19, 0.21,

0.40] 0.40] 0.41] 0.39]

Variables from column 1
L1 Inf 0.0850 0.2695 Inf 0.0176 0.2805 Inf
D1 Inf 1.8425 Inf Inf 0.1520 0.2805 Inf
xA,b1 0.0028 0.0023 0.0148 0.0374 0.4029 0.2587 0.1198
xA,d1 0.4422 0.2197 0.3997 0.2591 0.6611 3.2566 0.8731
Tbtm,col1 0.0643 0.0453 Inf Inf Inf Inf Inf
T10col1 0.0378 0.0285 0.0315 0.0159 0.6059 0.3816 0.1835
T20,col1 0.1728 0.1055 5.9639 1.0073 0.0011 0.0025 1.2088
T30,col1 0.3004 0.1641 1.4796 0.6025 0.6636 3.3786 1.0981
Ttop,col1 0.4424 0.2198 0.3992 0.2589 0.6608 3.2535 0.8724
Optimal tray from column1 10 10 9 9 21 21
T 1opt 0.0378 0.0285 0.0016 0.000 0.0000 0.0002
D1/F Inf 1.8425 Inf Inf 0.1520 0.2805 Inf
L1/F Inf 0.0850 0.2695 Inf 0.0176 0.2805 Inf
L1/D1 Inf 0.5164 1.7265 Inf 0.0937 0.2805 Inf
Variables from column 2
Tbtm,col2 0.0203 0.0181 0.2124 0.1382 0.0333 0.0328 0.0758
T10,col2 0.0127 0.0115 0.2193 0.1413 0.0797 0.0856 0.0917
T20,col2 0.0012 0.0012 0.2297 0.1481 0.2873 0.3547 0.1704
T30,col2 0.0000 0.0000 0.0051 0.0030 0.0213 0.0256 0.0092
Ttop,col2 0.0002 0.0002 0.0577 0.0393 0.0001 0.0000 0.0162
Optimal tray from column 2 26 27 28 28 41 41
Topt ,col2 0.0000 0.0000 0.0002 0.0000 0.0513 0.0393 0.0151
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5.3. Case 1: Selection of controlled variables in constraint region VI 41

Table 5.3.2: Optimal values for the controlled variable candidates

CV Nominal F = F = zF = zF = zF = zF =
candidates 1.41 1.39 0.39] 0.41] 0.40] 0.40]

0.21, 0.19, 0.19, 0.21,
0.40] 0.40] 0.41] 0.39]

L1 3.437 3.432 3.442 3.451 3.423 3.438 3.435
D1 0.5714 0.5765 0.5664 0.5575 0.5854 0.5703 0.5727
xA,b1 0.01255 0.01249 0.01261 0.01269 0.01234 0.01192 0.01318
xA,d1 0.9618 0.9603 0.9633 0.9602 0.9633 0.9646 0.9588
Tbtm,col1 89.77 89.80 89.75 89.43 90.13 90.28 89.27
T10,col1 72.57 72.66 72.48 72.65 72.51 72.90 72.25
T20,col1 59.96 60.09 59.82 60.44 59.49 59.97 59.94
T30,col1 39.96 40.18 39.74 40.41 39.53 39.46 40.47
Ttop,col1 31.53 31.59 31.47 31.59 31.47 31.42 31.65
D1/F 0.4082 0.4089 0.4075 0.3982 0.4182 0.4074 0.4090
L1/F 2.455 2.434 2.476 2.465 2.445 2.456 2.454
L1/D1 6.014 5.952 6.076 6.189 5.846 6.028 5.999
Tbtm,col2 99.68 99.67 99.69 99.64 99.71 99.69 99.66
T10,col2 97.23 97.16 97.30 96.95 97.49 97.41 97.04
T20,col2 90.71 90.68 90.74 90.32 91.10 91.22 90.19
T30,col2 77.78 77.79 77.77 77.91 77.67 78.08 77.50
Ttop,col2 68.76 68.76 68.75 68.82 68.70 68.76 68.76

The direct evaluation of loss indicates that the bottom composition of column

1, XA,b1, or a tray temperature in the top part of column 2, would be both be

good variables to control. The loss is small when exposed to the disturbances

considered and the re-optimized value remains close to the nominal value.

The table of loss shows clearly that controlling any of the flows, L1 or D1 directly,

should be avoided. This is also the case for controlling a ratio between the flows,

D1/F , L1/F or L1/D1. The loss is large and the system would quickly become

infeasible. In the infeasible region there is no solution to the system that would

satisfy all constrains.

41



42 5.3. Case 1: Selection of controlled variables in constraint region VI

5.3.3 Global direct evaluation of loss controlling a tray in column 1

Distillation is not a linear process, thus the loss when a system is exposed to a

disturbance would not vary linearly. To better understand the behavior of the

modeled system in this project, the loss when exposed to disturbances in feed

flow or feed concentration was calculated over a wide span of the disturbance.

The loss when varying the feed flow, and controlling each tray temperature in-

dividually at their nominal optimum is shown in figure 5.3.6. Correspondingly,

the loss when varying feed composition (of either component A over B, or com-

ponent B over C), while controlling tray temperature , is plotted in figure 5.3.7

and 5.3.6, respectively. In all cases the nominal point refers to a feed flow of 1.4

mol/s and a steam price of 0.01 $/mol.
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Figure 5.3.5: Loss when controlling a tray temperature and varying the feed flow to the
first column. The white area outside the "red line" is infeasible [$/s].
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Figure 5.3.6: Loss when controlling a tray temperature and varying the feed concen-
tration of component A at the expense of component B. The white area
outside the "red line" is infeasible[$/s].

5.3.4 Discussion of global evaluation of loss

The global direct evaluation of loss reveals that for disturbances in the feed flow

it is less important which tray temperature being controlled (figure 5.3.5). Tray

10 gives the smallest loss, but its value is not significantly worse than the loss

when controlling the least optimal tray temperature. To respond correctly to a

disturbance in feed composition, on the other hand, the tray should be selected

with care. For a disturbance in feed concentration of component A at the expense

of component B, controlling the temperature around tray 9, would give close to

zero loss. All other tray temperatures lead to significant loss and quickly brings

the system into the infeasible region when the disturbance increases. Disturbance
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Figure 5.3.7: Loss when controlling a tray temperature and varying the feed concen-
tration of component B at the expense of component C. The white area
outside the "red line" is infeasible. The solver had convergence problems
at the right side of the plot [$/s].

in the feed concentration of component B at the expense of component C behaves

similarly. To get the smallest loss in this case, the temperature of tray 20 or below

should be controlled. As there are no tray that would give a small loss for these

three disturbances, a combination of measurements might be necessary.

5.3.5 Global direct evaluation of loss controlling selected variables
from both columns

The loss when controlling the variable candidates from table 5.3.2 was plotted

over a wide range of the feed flow disturbance. This provides a more visual
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5.3. Case 1: Selection of controlled variables in constraint region VI 45

picture of which controlled variables that give a small loss. The loss following

disturbance in feed flow for column 1 and column 2, respectively, is plotted in

figure 5.3.8 and figure 5.3.9.
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Figure 5.3.8: The loss as a function of the feed flow when controlling a variable in
column 1 at its nominal optimum. The nominal feed value is 1.4 mol/s
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Figure 5.3.9: The loss as a function of the feed flow when controlling a variable in
column 2 at its nominal optimum. The nominal feed value is 1.4 mol/s.

5.3.6 Gain and optimal sensitivity in constraint region VI

Controlling tray temperature is a common way of controlling a distillation col-

umn. According to Skogestad [1] the gain should be large and the optimal sen-

sitivity to disturbances small. The gain and the sensitivity in constraint region

VI have been calculated when the feed is at 1.4 mol/s and the steam price is

0.01 $/mol, using finite differences. The reflux in column 1, L1, was used as

the manipulated variable, assessing disturbances in feed and feed composition

according to table 5.2.1. The temperature process gain with respect to the input

variables and the disturbances is shown in figure 5.3.10. The optimal sensitivity,

F , was found for the same nominal point and is shown in figure 5.3.11.
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Figure 5.3.10: Process and disturbance gain in the point when feed= 1.4 mol/s and
steam price= 0.01 $/mol. The top figures show the process gain with
respect to tray temperature for column 1 (left) and column 2 (right). The
bottom figures show the disturbance gain with respect tray temperature
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5.3.7 The "Exact local method" with single measurement as con-
trolled variable

The model was linearized using finite differences (Appendix A) and the "exact

local method" 2.4.2 was used to find the single tray temperature that, when ex-

posed to disturbance, would give ether the smallest average loss or worst case

loss. Measurement and implementation errors have been included. To speed up

the process a "branch and bound" algorithm developed by Kariwala and Cao [10],

was used to search for the optimal tray temperature. The magnitude of the ex-

pected disturbance and the noise in the measured variables used in the optimiza-

tion, are given in table 5.3.3.

Table 5.3.3: Magnitude of expected disturbance and noise

Expected disturbance

Feed 0.01 mol/s
zFA at the expense of zFB 0.01
zFA at the expense of zFC 0.01

Noise in measured variable

Tray temperature 0.5◦C
Tray concentration 0.01◦C

When a single controlled variable is to be selected, the matrix, M, in the defini-

tions of worst case as well as average loss (equation 2.4.5 and 2.4.6), would be

reduced to a vector. For a vector, the maximum singular value and the Frobenius

norm have the same value. Thus, the worst case loss and the average loss would

be the same.

The "exact local method" was used to find the single tray temperature that, when

controlled, would give the minimum worst case loss. The predominating distur-

bances are assumed to be changes in feed flow or feed composition. Changes

in the feed concentration ratio between either component A and B or B and C,
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50 5.3. Case 1: Selection of controlled variables in constraint region VI

were considered. The loss from the "exact local method", when controlling a

temperature in column 1 or column 2, are presented in figure 5.3.12 and 5.3.13,

respectively.
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Figure 5.3.12: Loss when controlling a tray temperature in column 1, based on "exact
local method".

The optimal tray temperature to control in column 1 or column 2, based on the

"exact local method", are presented in table 5.3.4.

Table 5.3.4: Optimally controlled tray when calculating average- and worst case loss

Optimal loss Controlled tray Average-/worst case loss [$/s]

Tray from column 1 13 1.17 ·10−3

Tray from column 2, 29 9.35 ·10−4
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Figure 5.3.13: Loss when controlling a tray temperature in column 2, based on "exact
local method".

5.3.8 Combinations of tray temperature measurements

In many cases combinations of measurements to control a variable might lead to

smaller loss than using a single measurement. The "branch and bound" algorithm

from Kariwala and Cao [10], was used to find the optimal combination of tray

temperatures selected from either of the two columns separately. The algorithm

calculates the optimal subset of measurements based on either the worst case or

the average loss criteria. As only a single controlled variable is to be found, the

worst case and the average loss would be the same (see section 5.3.7). Figure

5.3.14 shows the lowest possible loss when controlling a specified number of

tray temperatures. The corresponding optimal tray and the respective value of
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52 5.3. Case 1: Selection of controlled variables in constraint region VI

loss are presented in table 5.3.5, when only trays from column 1 are selected,

and in table 5.3.5, when only trays from column 2 are selected.
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Figure 5.3.14: Lowest loss when controlling a specified numbers of tray temperatures
for either column 1 or column 2, respectively.

5.3.9 Discussion measurement combinations

The "exact local method" shows that the use of combination of measurements

would give a substantial reduction of loss in the case when only temperatures

from the first column were selected. Controlling a combination of the three best

tray temperatures would reduce the loss by approximately 50% of the loss when

controlling the temperature in the single best tray. However, even with a com-

bination of 10 measurements, using a single tray in the top part of the second

column would be substantially better.
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Table 5.3.5: Optimal tray combinations selected from column 1, based on exact local
method

ny Optimal trays to control Worst case-/
average loss

[10−3$/s]

1 13 1.1775
2 12 13 0.7817
3 10 11 31 0.5964
4 10 11 12 32 0.5059
5 9 10 11 12 31 0.4577
6 8 9 10 11 31 32 0.4155
7 8 9 10 11 31 32 33 0.3894
8 7 8 9 10 11 31 32 33 0.3660
9 6 7 8 9 10 11 31 32 33 0.3498
10 6 7 8 9 10 11 31 32 33 34 0.3343

Table 5.3.6: Optimal tray combinations selected from column 2, based on exact local
method

ny Optimal trays to control Worst case-/
average loss

[10−3$/s]

1 29 0.0938
2 29 30 0.0624
3 29 30 31 0.0515
4 29 30 31 32 0.0461
5 29 30 31 32 33 0.0432
6 28 29 30 31 32 33 0.0408
7 28 29 30 31 32 33 34 0.0394
8 10 28 29 30 31 32 33 34 0.0385
9 11 21 28 29 30 31 32 33 34 0.0372
10 10 11 21 28 29 30 31 32 33 34 0.0362

5.3.10 Direct evaluations of loss for combinations of tray tempera-
tures

The loss was calculated when controlling the optimal combination of tray tem-

peratures from table 5.3.5 and table 5.3.6, and exposing the system to the three
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54 5.3. Case 1: Selection of controlled variables in constraint region VI

disturbances in table 5.2.1 individuality. The results for either column 1 or col-

umn 2, are presented in table 5.3.7 and table 5.3.8, respectively.

Table 5.3.7: Table of loss when controlling the optimal combination of tray tempera-
tures from table 5.3.5

ny F = 1.41 F = 1.39 zF = zF = zF = zF = Average
0.39] 0.41] 0.40] 0.40] [10−3$/s]
0.21, 0.19, 0.19, 0.21,
0.40] 0.40] 0.41] 0.39]

1 0.0435 0.0323 0.2770 0.1568 0.1520 0.1338 0.1326
2 0.0419 0.0312 0.2210 0.1282 0.1899 0.1600 0.1287
3 0.0813 0.0564 0.1926 0.1156 0.0308 0.0246 0.0836
4 0.0743 0.0521 0.1907 0.1146 0.0466 0.0384 0.0861
5 0.0748 0.0525 0.1683 0.1011 0.0596 0.0486 0.0842
6 0.0928 0.0634 0.1371 0.0831 0.0377 0.0277 0.0736
7 0.0882 0.0606 0.1397 0.0852 0.0440 0.0330 0.0751
8 0.1029 0.0693 0.1154 0.0700 0.0341 0.0234 0.0692
9 0.1086 0.0727 0.0976 0.0586 0.0382 0.0256 0.0669
10 0.1128 0.0751 0.0951 0.0573 0.0323 0.0207 0.0655

Table 5.3.8: Table of loss when controlling the optimal combination of tray tempera-
tures from from table 5.3.6

ny F = 1.41 F = 1.39 zF = zF = zF = zF = Average
0.39] 0.41] 0.40] 0.40] [10−3$/s]
0.21, 0.19, 0.19, 0.21,
0.40] 0.40] 0.41] 0.39]

1 0.0002 0.0001 0.0194 0.0100 0.2824 0.3405 0.1088
2 0.0002 0.0002 0.0328 0.0182 0.2475 0.2977 0.0994
3 0.0003 0.0002 0.0473 0.0273 0.2192 0.2629 0.0929
4 0.0003 0.0003 0.0611 0.0361 0.1973 0.2361 0.0885
5 0.0004 0.0003 0.0730 0.0437 0.1812 0.2163 0.0858
6 0.0003 0.0003 0.0560 0.0326 0.2055 0.2456 0.0900
7 0.0004 0.0003 0.0645 0.0380 0.1930 0.2301 0.0877
8 0.0000 0.0000 0.0413 0.0248 0.2001 0.2377 0.0840
9 0.0000 0.0000 0.0557 0.0357 0.1623 0.1920 0.0743
10 0.0000 0.0000 0.0422 0.0282 0.1584 0.1866 0.0692
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Table 5.3.7 and table 5.3.8 present the loss when exposing the system to the

disturbances individually and controlling a tray temperature combination. This

shows how much the loss is reduced, for the individual disturbances, when

adding extra measurements. In addition it can be seen that a disturbance in zFA

at the expense of zFB, is the major source of loss, when controlling a combina-

tion of temperatures from the first column. Disturbance in zFB at the expense of

zFC is the major source of loss when controlling a combination of trays from the

second column.
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5.4 Case 2: Selection of controlled variables in constraint
region I

In active constraint region I, only the concentration constraint of the valuable

product is active. Thus, there are 3 degrees of freedom that must be controlled.

The input gain, the disturbance gain and the optimal sensitivity, F,were all de-

termined for the nominal point when feed were set to 1.35 mol/s and the steam

price were 0.03 $/mol. The gain is shown in figure 5.4.1 and the sensitivity

in figure 5.4.2. Reflux to column 1, L1, and the two boil-ups, V1 and V2, were

chosen as manipulated variables.

5.4.1 Optimal control using single temperature measurements

The "exact local method" implemented in a "branch and bound" algorithm, de-

scribed in section 2.7 was used to search for the temperature measurements that

would give the least loss when exposed to a disturbance in the feed flow of 0.01

mol/s and a disturbance in the feed composition of 0.01 mol f raction. The mea-

surement error for the tray temperatures was assumed to be ± 0.5◦C. The input

values were presented previously in table 5.3.3. The set of tray temperatures that

in this case gives the smallest loss is presented in table 5.4.1.

Table 5.4.1: Tray numbers for optimal control of the system in region I according to
average loss and worst case loss calculations

Optimal temperature control Column 1 Column 2 Loss

Average loss 32 12, 30 1.10 ·10−3

Worst case loss 33 8, 27 2.77 ·10−4
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Figure 5.4.1: Process and disturbance gain in the point when feed= 1.35 mol/s and
the steam price= 0.03 $/mol. The top figures shows the process gain
with respect to tray temperature for either column 1 (left) and column 2
(right). The bottom figures show the disturbance gain with respect tray
temperature in column 1 (left) and column 2 (right)

5.4.2 Discussion optimal control in constraint region I

In section I it was found to be optimal to control one tray in the top part of

the first column and simultaneously two trays in the section column. The trays

found were all located approximately halfway between the feed tray and the top

or bottom of the column, respectively. By comparing the location of the trays

in figure 5.4.1 and figure 5.4.2, the optimal tray seem to be located in areas

that has a good trade-off between high gain and low optimal sensitivity. This is
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Figure 5.4.2: The optimal sensitivity with respect all temperature for either of the two
columns. The three considered disturbances are i) feed flow, ii) feed com-
position change between component A and B and iii) feed composition
change between composition B and C

.

accordance with Skogestad [1], suggesting that the gain of the optimal controlled

variable should be high and the optimal sensitivity small.
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Chapter 6

Discussion

In this section the results described chapter 3, chapter 4 and chapter 5 are ex-

plained and discussed. The discussion follows the natural progression of the

work , starting with the systematic procedure used to find the primary controlled

variables (chapter 3). This is followed by a discussion of the active constraint

region (chapter 4) map and two case studies (5).

6.1 Systematic procedure

The systematic procedure outlined in chapter 3, presents the major steps in the

process of finding the optimal control structure. I should be possible to imple-

ment the procedure in an atomized computer program. The scripts developed in

this project cover the core part of such a program, although some of the scripts

are case specific. The scrips are presented in appendix C. The code developed

to find the active constraint region map and the code concerning the "exact lo-

cal model" can handle any model, but the script used to linearize the model is

unfortunately limited to the three disturbances presented in table 5.2.1.
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6.2 Active constraint regions

The active constraint region map was found by optimizing the system over a grid

covering the whole disturbance space. As previously stated, this is very com-

putationally demanding. A major advantage is that it is independent of human

intervention. In addition the algorithm can run of the problem in parallel, thus

take advantage of an increasing number of cores in modern CPU’s.

Jacobsen proposed a method for finding a constraint region map but required

manual considerations to reduce the number of optimization calculations. For

example, he argues that if the region border (which is part of the constraint curve)

is independent of one of the disturbances considered, that part of the line would

be straight, and can be defined by two points only. Such assumptions reduce the

number of optimization calculations, but requires substantial human intervention

and is vulnerable to human error.

The active constrain region map found in the present project, figure 4.2.1, was

compared to the map found by Jacobsen. The two maps are identical except for

the border between region V and VII, and between II and V. Jacobsen approx-

imates these borders with straight lines, while the analyses done in the present

project has found the borders to be curved. The constraint map found by Ja-

cobsen are presented in figure 6.2.1. The colors on the border lines refer to the

different constraints.

It should be noted that the system considered in the present thesis is fairy simple.

For larger systems the number of constraints and the computational time for each

optimizations would be substantially higher. As previously mentioned, the grid

algorithm used in this thesis would be to slow to be used in practice for more

complex systems. This calls for the development of faster algorithms.
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Figure 6.2.1: Active constraint region map for two columns found by Jacobsen [3]. The
colors of the border lines refer to the different constraints.

6.3 Case studies

Constraint region VI was studied in detail to find good self-optimizing variables

to control the remaining degrees of freedom. The two main approaches were

the "direct evaluation of loss" and the "exact local method". The system was in

some cases also studied over a selected segment in the disturbance space ("global

direct evaluation"). All approaches indicate that the best alternative would be to

control a single tray temperature in the top part of the second column. This would

keep the system close to optimum and the loss would be insignificant. From

figure 5.3.10 and figure 5.3.11 it can be seen that optimal sensitivity is small

while the the steady state gain is large. This is in accordance with Skogestad [1],

stating that the optimal sensitivity should be small and that the gain from the

manipulated to the controlled variables should be large.

In section VI, only reflux, L1, and distillate flow, D2, in the first column, are
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62 6.3. Case studies

in practice the only variables amenable to manipulation. The substantial physi-

cal distance between the manipulated variables and the location of the possible

controlled variable would make the response slow and control difficult. Thus, if

a tray in the top of the second column should be used a direct coupling would

make the control slow and hard to use in practice. However, this problem could

be overcome using a cascade. Figure 6.3.1 show a outline of how this could be

implemented.

Figure 6.3.1: Proposed control structure for controlling a tray temperature in the top
part of the second column by manipulating the reflux in column 1. The
temperature in the second column is arranged in cascade with a local tem-
perature loop in column 1.

Furthermore, the direct evaluation of loss indicated that also the concentration

of component A in the bottom of the first column would be a good controlled

variable.

As both steam flows are controlled at their maximum value, the steam cost would

be constant. Thus the cost function can be reduced too the income from the three

product flows. The price of the flows D1 and B1, are both 1 $/mol, and the price

of the valuable product D2 is 2 $/mol. When the product specification of the

valuable product is fixed, and the price of D1 and B1 is identical, the optimum
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6.3. Case studies 63

would be when the flow D2 is at its maximum value. D2 would be at maximum

when the ratio between component A and C in top of the second column are

constant. This ratio is highly dependent on the temperature in the top part of the

second column as well as on the concentration of A leaving the first column. This

wold would explain way these two variables were found to be good controlled

variables.

6.3.1 Use of combination measurements

The "exact local method" shows that the use of combination of measurements

would give a substantial reduction of loss in the case where only temperatures

from the first column were selected. Controlling a combination of the three best

tray temperatures would reduce the loss by 50 % as compared to controlling the

temperature in the single best tray. However, even when a combination of 10

measurements in the first column, a single tray measurement in the top part of

the second column would be substantially better.
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Chapter 7

Conclusion

Two distillation columns in sequence were studied in order to identify the op-

timal control structure. A map of how the active constraint regions changes to

variations in the steam price and the feed flow was found. The resulting map was

close to the map found by Jacobsen [3], but showed some differences associated

with constraint region borders.

Two of the regions were studied further in order to find self-optimizing variables.

Both "direct evaluation of loss" and the "exact local method" were used to search

for the controlled variables the would give the least loss. In the region with low

energy cost, region VI, both methods found that controlling a tray in the top

part of the second column would be the best choice if a single tray temperature

should be controlled. Alternatively, the "direct evaluation of loss" indicated that

the bottom concentration of component A would would be a good controlled

variable.

In the other region considered (region I), the "exact local method" was used to

find the best set of three tray temperatures, selected from both columns, with

respect to loss. The tray temperatures seemed to be located in areas with a good
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trade-off between high gain and low optimal sensitivity, figure 5.4.1 and 5.4.2.

A systematic procedure to find the optimal control structure is outlined in the

thesis. The procedure is designed to illustrate the main steps needed to develop

a automated computer program for this part to column optimization.

7.1 Suggestions for future work

The present thesis address two topics. One concerns the optimization of two dis-

tillation columns in sequence and the other how to design a systematic procedure

to find the optimal control structure.

The study of two distillation column has been limited to certain aspect of the

problem. First, the active constraint region map has been found for only two dis-

turbances. For a full understanding of the system, the active constraint regions

should be found in all disturbance dimensions. Second, only three disturbances

have been considered in the search for primary controlled variables. More distur-

bances should be considered. It should also be explored how the optimal primary

controlled variables change within a constraint region and identify the optimal

structure in other constraint regions.

In the thesis the active constraint regions are found by optimizing over a grid

in the disturbance space. This approach needs substantial computational power.

More efficient algorithms have to be developed before the active constraint re-

gion map can be found for a more complex system. An effort should also be

made to develop algorithms for finding the primary controlled variables that

gives the least loss within the boundaries of acceptable controllability.

In an active constraint region it is optimal to control the active constraints. To

achieve this, the control structure needs to be changed when moving into another

region. Further study should be conducted to develop methods for detecting

when the system has made such change.
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It is desirable to have as simple control structure as possible. It might be possible

to find a control structure that give acceptable loss over several disturbance re-

gions. This could be studied using any of the methods to calculate loss addressed

in this thesis.
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Appendix A

Linearizion of the model using fi-
nite differences

The model was linearized around a nominal point. The linear relationship be-

tween the input, u, and output, y, is given by the matrix:

G =
dy
du

=

∣∣∣∣∣∣∣∣∣∣

∂y1
∂u1

∂y1
∂u2

· · · ∂y1
∂un

∂y2
∂u2

∂y2
∂u2

· · · ∂y2
∂un

...
...

. . .
...

∂ym
∂u1

∂ym
∂u2

· · · ∂ym
∂un

∣∣∣∣∣∣∣∣∣∣
(A.0.1)

Similarly, the linear relationship between the disturbance, d, and the output, y, is

given by the matrix:
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Gd =
dy
dd

=

∣∣∣∣∣∣∣∣∣∣

∂y1
∂d1

∂y1
∂d2

· · · ∂y1
∂dn

∂y2
∂d2

∂y2
∂d2

· · · ∂y2
∂dn

...
...

. . .
...

∂ym
∂d1

∂ym
∂d2

· · · ∂ym
∂dn

∣∣∣∣∣∣∣∣∣∣
(A.0.2)

The second derivative of the cost function with respect to inputs ,Juu (given by

equation A.0.3) and the second derivative of the cost function with respect to

input and disturbance, Jud (given by A.0.4) where found by calculating either

forward or backward differences. The general expressions for approximating the

second derivative using forward and backward differences are given in equation

A.0.5 and equation A.0.6, respectively [14].

Juu =
∂ 2J

∂u∂u
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ 2J
∂u1∂u2

∂ 2J
∂u1∂u2

· · · ∂ 2J
∂u1∂un

∂ 2J
∂u2∂u2

∂ 2J
∂u2∂u2

· · · ∂ 2J
∂u2∂un

...
...

. . .
...

∂ 2J
∂un∂u2

∂ 2J
∂un∂u2

· · · ∂ 2J
∂um∂un

∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.0.3)

Jud =
∂ 2J

∂u∂d
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ 2J
∂u1∂d2

∂ 2J
∂u1∂d2

· · · ∂ 2J
∂u1∂dn

∂ 2J
∂u2∂d2

∂ 2J
∂u2∂d2

· · · ∂ 2J
∂u2∂dn

...
...

. . .
...

∂ 2J
∂un∂d2

∂ 2J
∂un∂d2

· · · ∂ 2J
∂um∂dn

∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.0.4)

∂ 2 f
∂xi∂x j

=
f (x+hiei +h je j)− f (x+hiei)− f (x+h je j)+ f (x)

hih j
(A.0.5)
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∂ 2 f
∂xi∂x j

=
f (x−hiei−h je j)− f (x−hiei)− f (x−h je j)+ f (x)

hih j
(A.0.6)

It turned out to difficult to find accurate values for the second derivatives Juu and

Jud , see section B.2.
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Appendix B

Validation of the linearizion

B.1 Optimal sensitivity

The optimal sensitivity of the output with respect to the disturbance, F , may be

found directly by perturbing the disturbance or using equation B.1.1.

F =−FyJ−1
uu Jud +Gy

d (B.1.1)

The optimal sensitivity found by linearizing the model by finite differences and

using equation B.1.1, was compared to the optimal sensitivity found by perturb-

ing the system directly. The comparison was done in order to validate the nu-

merical accuracy of the linearizion. The optimal sensitivity in the nominal point

studied in region VI and I are given in figure B.1.1 and B.1.2, respectively. The

individual points marked by dots were calculated using equation B.1.1, and the

solid lines were calculated directly by perturbing the disturbances.
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Figure B.1.1: The optimal sensitivity of the temperature with respect to three distur-
bances in contraint region IV. The individual points marked by dots were
calculated using equation B.1.1, and the solid lines were calculated di-
rectly by perturbing the disturbances
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Figure B.1.2: The optimal sensitivity of the temperature with respect to three distur-
bances in contraint region I. The individual points marked by dots were
calculated using equation B.1.1, and the solid lines were calculated di-
rectly by perturbing the disturbances

B.2 Validating Juu and Jud in region I

Numerical values for the derivatives Juu and Jud turned out to be difficult. For-

ward and backward differences were compared to validate the values. Numeric
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values for Juu and Jud calculated using forward and backward differences, in the

nominal point in region I, are given below.

Juu f orward =

 251.4575 −256.9479 −4.0768

−256.9479 262.6072 4.1746

−4.0768 4.1746 0.1630

 (B.2.1)

Juubackwards =

 248.8970 −256.9845 −4.0602

−256.9845 265.3887 4.1928

−4.0602 4.1928 0.1630

 (B.2.2)

Jud f orward =

 128.9938 332.2961 33.8723

−131.9673 −339.4311 −34.8896

−2.2638 −4.8811 −0.7721

 (B.2.3)

Judbackwards =

 128.0086 328.2654 33.6873

−132.3138 −338.8721 −35.0375

−2.2594 −4.8522 −0.7717

 (B.2.4)
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Appendix C

Matlab scripts

This chapter present the most relevant Matlab scripts used in the project. An

overview of the scripts used in the thesis shown in table C.0.1. All scripts pre-

sented in the table are given in the subsequent sections except "linerize.m" and

"Fmat.m"
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Table C.0.1: Overview of the scripts used in the thesis

Script name Description

Active constraint region map
constraintplot.m Finds the active constraint region maps
binary.m Marks the active set as a binary number
Direct evaluation
brute_force.m Direct evaluation of loss
global_direct_evaluation.m Global direct evaluation of loss
Exact local method
Run_exact_local_metod.m Uses the "exact local method" to find the optimal

combination of measurements
exact_local_method.m Calculates the matrix H based on the

analytical expression of the "exact local
method".

Model
multiCP_ColumnA_ext.m Steady state model of column A
Temp.m Approximates temperature based on composition
nonlcon.m Nonlinear constraints in the system
init_nominal.m Initial condition to the model and optimization
Gain and optimal sensitivity
linerize.m Calculates Gy, Gy

d , Juu and Jud

Fmat.m Calculates the optimal sensitivity by direct pertur-
bation

C.1 Search for the active constraint region active con-
straint region

The script "constraintplot.m" attempts to find the active constraint region map

by optimizing in a grid over the specified disturbance space. The function "bi-

nary.m" mark the active set as a binary number.
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constraintplot.m

1 %% constraintplot.m

2 % Summary: Finds the active contraint regions in a

3 % userspesified disturbance space. Defalt is

4 % Feed vs price of steam.

5 %

6 % The disturbance space is found by optimise

7 % in all point i a grid of the disturace space.

8 % The active set each point is marked by a

9 % binary number.

10 %

11 % author: Tor Anders Marvik

12 % organization: Department of Chemical Engineering, NTNU, Norway

13 % contact: torandma@stud.ntnu.no

14 % started Oktober 2012

15

16 clc

17 clear all

18

19 %Intial values

20 init_nominal % Initial values

21 load('xopt_F14_pV001') % Load nominal optimum

22 x0=xopt; % Initial guess

23

24 %Nominal point

25 par.F=1.4;

26 price.steam=0.01;

27

28 % Calculating optimal point

29 par.flag=0; % No control

30 par.actset=[]; % No active constraints

31

32 [x_opt,fval_opt,exitflag]=fmincon(@(x) costfunction(...

33 x,price,par),x0,[],[],[],[],lb,ub,@(X)nonlcon(...

34 X, par),options);
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35 [Toptcol1,Toptcol2] = Temp(x_opt,par);

36 Topt=[Toptcol1;Toptcol2]; % Optimal temperatures

37

38 % Solver options

39 options = optimset('TolFun',10e−6,'TolCon',10e−6,...
40 'MaxFunEvals',5e3,'Display','off','Algorithm',...

41 'sqp','Diagnostics','off');

42

43 %constraints

44 tol=1e−6; % Tolerance from constraint

45

46 % Resolution on x and y axis

47 n_x=20; % Resolution on the x axsis

48 n_y=20; % Resolution on the y axsis

49

50 % Choose disturbance space

51 x_grid=linspace(1.35,1.495,n_x);% Grid disturbance on x axis

52 y_grid=linspace(0.01,0.19,n_y); % Grid disturbance on y axis

53

54 %Solver conditions

55 par.flag=0; % No control=0, Xcont=1,...

56 par.actset=[]; % No controlled active const.

57

58 %Init matrices

59 val=zeros(n_x*n_y,9); % Init [bin exitflag fval,x,y]

60 fval_mat=zeros(n_x*n_y,2); % Init const value matrix

61 x_mat=zeros(n_x*n_y,2*par.NV+8);% init x data matrix

62

63 exitflag=1; % Convergence flag

64 k=0; % Count progression

65 time=0; % Monitor time

66

67 for i=1:n_x % Loop x axis

68 par.F=x_grid(i); % Variable x axis

69

70 for j=1:n_y % Loop Y axis

71 tic % start time
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72 k=k+1; % point number

73

74 price.steam=y_grid(j); % Variable X axis

75

76 %run fmincon

77 [x,fval,exitflag]=fmincon(@(x)costfunction(...

78 x,price,par),x0,[],[],[],[],lb,ub,...

79 @(X)nonlcon(X,par),options);

80

81 % Constraint valus at optimum

82 c=[x(par.NV+2),x(2*par.NV+6),x(par.NT),...

83 x(par.NV+4+2*par.NT),x(par.NV+4+2*par.NT+1)];

84

85 if exitflag == 1 % Warm start

86 x0=x;

87 end

88

89 bin= binary(c,c_s,tol); % Marke active set as bin num

90

91 val(k,:)=[bin,exitflag,fval,y_grid(1,j),x_grid(i)];

92

93 % Monitor progression

94 disp([k , val(k,:),toc])

95 time=time+toc;

96

97 %save date for other functions

98 x_mat(k,:)=x';

99 fval_mat(k,:)=fval;

100 points(i,j,:)=[x;fval;x_grid(i);y_grid(j);exitflag];

101

102 end

103 end

104

105 % save data for other funtions

106 data.n_x=n_x;

107 data.n_y=n_y;

108 data.val=val;
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109 data.x_mat=x_mat;

110 data.fval_mat=x_mat;

111

112 time; % Total time

113

114 % Plot contourplot

115 figure(1)

116 hold on

117

118 contour(x_grid,y_grid(1,:),reshape(val(:,1),n_x,n_y),[1],...

119 'Color', rbg('Orange'),'LineWidth',2);

120 contour(x_grid,y_grid(1,:),reshape(val(:,2),n_x,n_y),[1],...

121 'Color', rbg('Blue'),'LineWidth',1);

122 contour(x_grid,y_grid(1,:),reshape(val(:,3),n_x,n_y),[1],...

123 'Color', rbg('Red'),'LineWidth',2);

124 contour(x_grid,y_grid(1,:),reshape(val(:,4),n_x,n_y),[1],...

125 'Color', rbg('Purple'),'LineWidth',2);

126 contour(x_grid,y_grid(1,:),reshape(val(:,5),n_x,n_y),[1],...

127 'Color', rbg('Green'),'LineWidth',2);

binary.m

1 function [bin] = binary (c,c_s,tol)

2 %% binary.m

3 % Summary: Compare the state of the system with the

4 % constraints c_s and mark the active set a

5 % binary number.

6 % author: Tor Anders Marvik

7 % organization: Department of Chemical Engineering, NTNU,

8 % contact: torandma@stud.ntnu.no

9 % Input c : constrait variable at optimal poit

10 % c_s : constraint values

11 % tol : Toleranse, active constr. if c−c_s <tol

12 % Output bin : Binary number that marks the active set
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13

14

15 bin=zeros(1,5);

16

17 for i=1:5

18 if abs(c(i)−c_s(i))<tol
19 bin(i)=1;

20 end

21 end

22

23 end

C.2 Self optimizing variables

C.2.1 Direct evaluation

brute_force.m

1 %% brute_force.m

2 % Summary: Direct evalutaion of loss for a selection of

3 % variables held

4 % constant

5 % author: Tor Anders Marvik

6 % organization: Department of Chemical Engineering, NTNU, Norway

7 % contact: torandma@stud.ntnu.no

8 % requires: matlab

9 % version: 1.0

10 % todo 1.0: Debugging "There is allways a second bug"

11 % started Oktober 2013

12 %%

13

14
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15 init_nominal % initial values for the optimization

16 load('xopt_F14_pV001')

17 % −−−−−−−−−−−−−−−− Optimize in nominal point −−−−−−−−−−−−−−−−−
18 par.actset=[]; % No active constraints

19 par.flag=0; % No control

20 [x_opt,fval_opt,exitflag]=fmincon(@(x) ...

21 costfunction(x,price,par),x0,[],[],[],[],...

22 lb,ub,@(X)nonlcon(X,par),options);

23 [Toptcol1,Toptcol2] = Temp(x_opt,par);

24 T_opt=[Toptcol1;Toptcol2];

25 x0=x_opt;

26

27 % −−−−−−−−−−−−− Initial loss vectors −−−−−−−−−−−−−−−−−−−−−−−−
28 Loss_T=zeros(1,41); % Loss vektor, temp from col1 const.

29 Loss_T_col2=zeros(1,41);% Loss vektor, temp from col2 const.

30 Loss_x=zeros(1,4); % Loss vektor, a variable in x const.

31 Loss_F=zeros(1,2); % Loss vektor when a ratio with F const.

32 Loss_comb=zeros(1,1); % Loss when L1/D1 constant

33

34 %−−−−−−−−−−−−−−− Insert the disturbance−−−−−−−−−−−−−−−−−−−−−−−
35 k=1; % For global direct evaluation

36 par.F=1.4;

37 par.zF=[0.4 0.2 4]';

38 par.qF=1.0;

39 price.pD1=1.0;

40

41 %−−−−−−−−−−−−−−−− Reoptimize−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 par.actset=[]; % no active constraints

43 par.flag=0;

44 [x_reopt,fval_reopt,exitflag]=fmincon(@(x)...

45 costfunction(x,price,par),x0,[],[],[],[],...

46 lb,ub,@(X)nonlcon(X,par),options);

47

48 [Treoptcol1,Treoptcol2] = Temp(x_reopt,par);

49

50 % −−−−−−−−− Calculation the loss −−−−−−−−−−−−−−−−−−−−−−−−−−−−
51 % Flag = 1: x() controlled

88



C.2. Self optimizing variables 89

52 % Flag = 2: A temperature in column 1 controlled

53 % Flag = 3 x1()/x2() controlled

54 % Flag = 4 x()/F() controlled

55

56 par.flag=1; %Keeping variable in x constant

57 par.actset=[]; % No active constraints

58

59 index_x=[ par.NV+1;... % L1 % coordinate in x for CV used

60 par.NV+3;... % D1

61 1;... % xb_A

62 41]; % xd_A

63

64 for i=1:length(index_x)

65 par.index_u=index_x(i);

66 par.dof=x_opt(par.index_u); % s.p. for the CV

67 [x,fval,exitflag]=fmincon(@(x)costfunction(x,price,par),...

68 x0,[],[],[],[],lb,ub,@(X)nonlcon(X,par),options);

69 if exitflag<0 % no solutions found?

70 Loss_x(k,i)=inf

71 else

72 Loss_x(k,i)=fval−fval_reopt(k,:) % The loss

73 end

74 end

75

76 par.flag=2; % Keeping variable in T constant

77 par.actset=[]; % No active constraints

78

79 index_T=1:41;

80 for i=[1,10,20,30,41]

81 par.index_u=index_T(i);

82 par.dof=T_opt(par.index_u); % s.p. for the CV

83 [x,fval,exitflag]=fmincon(@(x)costfunction(x,price,par),...

84 x0,[],[],[],[],lb,ub,@(X)nonlcon(X,par),options);

85 if exitflag<0 % no solutions found

86 Loss_T(k,i)=inf

87 else

88 Loss_T(k,i)=fval−fval_reopt(k,:) % The loss
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89 end

90 end

91

92 par.flag=3; % Keeping variable in T constant

93 par.actset=[]; % No active constraints

94 index_comb=[ par.NV+1,par.NV+3 ]; % [L1 D1]

95

96 for i=1:size(index_comb,1)

97 par.index_u=index_comb(i,:);

98 par.dof=x_opt(par.index_u(1))/x_opt(par.index_u(2));

99 [x,fval,exitflag]=fmincon(@(x)costfunction(x,price,par),...

100 x0,[],[],[],[],lb,ub,@(X)nonlcon(X,par),options);

101 if exitflag<0 % no solutions found?

102 Loss_comb(k,i)=inf

103 else

104 Loss_comb(k,i)=fval−fval_reopt(k,:) % The loss

105 end

106 end

107

108 par.flag=4; %Keeping variable in T constant

109 par.actset=[]; % no active constraints

110 index_F= [par.NV+3;... % D1/F

111 par.NV+1]; % L1/F

112

113 for i=1:length(index_F)

114 par.index_u=index_F(i);

115 par.dof=x_opt(par.index_u)/par.F; % s.p. for the CV

116 [x,fval,exitflag]=fmincon(@(x)costfunction(x,price,par),...

117 x0,[],[],[],[],lb,ub,@(X)nonlcon(X,par),options);

118 if exitflag<0 % no solutions found, infeasible?

119 Loss_F(k,i)=inf

120 else

121 Loss_F(k,i)=fval−fval_reopt(k,:) % The loss

122 end

123 end

124

125 % Temperature column 2
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126 par.flag=2; % Keeping variable in T constant

127 par.actset=[]; % No active constraints

128

129 index_T=1:41;

130 for i=1:41

131 par.index_u=index_T(i)+41;

132 par.dof=T_opt(par.index_u);

133 [x,fval,exitflag]=fmincon(@(x)costfunction(x,price,par),...

134 x0,[],[],[],[],lb,ub,@(X)nonlcon(X,par),options);

135 if exitflag<0 % no solutions found

136 Loss_T_col2(k,i)=inf

137 else

138 Loss_T_col2(k,i)=fval−fval_reopt(k,:) % The loss

139 end

140 end

141

142

143 % Selected loss velues [Loss*1000]

144 Loss_selction=[Loss_x(1,:)';Loss_T([1,10,20,30,41])';...

145 Loss_F';Loss_comb';Loss_T_col2([1,10,20,30,41])']*1000

146

147 %Reoptimised cv values

148 CV_opt=[x_reopt(index_x);Treoptcol1([1,10,20,30,41]);...

149 x_reopt(par.NV+3)/par.F;x_reopt(par.NV+1)/par.F;...

150 x_reopt(par.NV+1)/x_reopt(par.NV+3);...

151 Treoptcol2([1,10,20,30,41])]

C.2.2 Global direct evaluation of loss

controlled_line.m

1 %% controlled_line.m

2 % Summary: The script calcualtes a loss when controlling

3 % the system and increasing and decreasing a
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4 % disturbance from nominal

5 % author: Tor Anders Marvik

6 % organization: Department of Chemical Engineering, NTNU, Norway

7 % contact: torandma@stud.ntnu.no

8

9 clc

10 clear all

11

12 init_nominal % initial values

13

14 %Nominal point

15 par.F=1.4;

16 price.steam=0.01;

17

18 %calculating nominal optimum

19 par.flag=0; % No control

20 par.actset=[]; % No active constraints

21

22 [x_opt,fval_opt,exitflag]=fmincon(@(x) costfunction(...

23 x,price,par),x0,[],[],[],[],lb,ub,@(...

24 X)nonlcon(X, par),options);

25 [Toptcol1,Toptcol2] = Temp(x_opt,par);

26 T_opt=[Toptcol1;Toptcol2]; % Temperature at optimum

27

28 zF=[]; % Initiate compostition vector

29 F=[]; % Initiate feed vektor

30

31

32 par.flag=2; %0= no cont., 1 = cont. varaible in x, 2 = cont. T

33 par.actset=[1;2;4]; % Index of active constraints

34 par.index_u=41+41; % Index controlled varaible

35 par.dof=T_opt(par.index_u);

36

37 i=1;

38 exitflag=1;

39 while par.F>1.35 && exitflag>=0

40 par.F=par.F−0.001; % disturbance step
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41

42 %calculate optimum

43 par.actset=[];

44 par.flag=0; % No control

45 [x_reopt(:,i),fval_reopt(i),exitflag]=fmincon(@(x)...

46 costfunction(x,price,par), x0,[],[],[],[],...

47 lb,ub,@(X)nonlcon(X, par),options);

48

49 %calculate controlled

50 par.actset=[1;2;4]; % index of active constraints

51 par.flag=2;

52 [x(:,i),fval(i),exitflag]=fmincon(@(x) ...

53 costfunction(x,price,par),x0,[],[],[],[],...

54 lb,ub,@(X)nonlcon(X, par),options);

55 exitflag

56

57 zF(:,i)=par.zF;

58 F(i)=par.F

59 steam(i)=price.steam;

60 x0=x(:,i);

61 i=i+1;

62 end

63

64 F=fliplr(F);

65 zF=fliplr(zF);

66 x=fliplr(x);

67 fval=fliplr(fval);

68 steam=fliplr(steam);

69 x_reopt=fliplr(x_reopt);

70 fval_reopt=fliplr(fval_reopt);

71

72 %reset initial conditoins

73 par.dof=T_opt(par.index_u);

74 exitflag=1;

75 par.F=1.4;

76 par.zF=[0.4,0.2,0.4]';

77 price.steam=0.01;
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78

79 while par.F<1.5 && exitflag>=0

80 par.F=par.F+0.001; % disturbance step

81

82 %calculate optimum

83 par.flag=0; % no control

84 par.actset=[];

85 [x_reopt(:,i),fval_reopt(i),exitflag]=fmincon(@(x)...

86 costfunction(x,price,par),x0,[],[],[],[],...

87 lb,ub,@(X)nonlcon(X, par),options);

88

89 %calculate controlled

90 par.flag=2;

91 par.actset=[1;2;4]; % index of active constraints

92 [x(:,i),fval(i),exitflag]=fmincon(@(x)...

93 costfunction(x,price,par), x0,[],[],[],[],...

94 lb,ub,@(X)nonlcon(X, par),options);

95

96 zF(:,i)=par.zF;

97 F(i)=par.F

98 steam(i)=price.steam;

99 x0=x(:,i);

100 i=i+1;

101 end

102

103

104 F=F(2:end−1); %first and last element is infeasible

105 zF=zF(:,2:end−1); %first and last element is infeasible

106 x=x(:,2:end−1); %first and last element is infeasible

107 fval=fval(2:end−1);
108 x_reopt=x_reopt(:,2:end−1);
109 fval_reopt=fval_reopt(2:end−1);
110 steam=steam(2:end−1);
111 Loss=fval−fval_reopt;
112

113

114 %save()
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C.2.3 The "exact local method"

Run_exact_local_metod.m

1

2 % Summary: Linerize the model and find the optimal

3 % control variables base on exact local methode.

4 % author: Tor Anders Marvik

5 % organization: Department of Chemical Engineering, NTNU,

6 % contact: torandma@stud.ntnu.no

7

8 init_nominal; % Initialize nominal conditoions

9

10 % Initial point

11 Feed=1.35; % Nominal feed

12 steam=0.03; % Nominal steam price

13

14 % Active set

15 actset=[4]; % set of active constraints [V1,V2, x_A, x_B, X_C]

16 index_u=[par.NV+1;par.NV+2;2*par.NV+6]; % Index of MV's in x

17

18 du=[0.00001]; % Pertubation step in manipulated variables

19 dd=[0.00001]; % Pertubation step in disturbances

20

21 % Linerize model

22 [G1,Gd,Juu,Jud,exitflag]=linerize(...

23 index_u,actset,du,dd,Feed,steam);

24

25 % Measurement and implementation error

26 Wd=diag([0.01,;0.01;0.01]);% Magnitude of expected disturbance

27 Wn=diag(ones(82,1)*0.5); % Meassurement error ny*ny

28

29 % Run a version of the brance and bound:

30 % − Single meassurements: b3av or b3wc

31 % − Combinations of meassurements: pb3av or pb3av
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32

33 % Running b3av and b3wc

34 G_comb=[G1.dTcol1du;G1.dTcol2du]; % Process model

35 Gd1=[Gd.dTcol1dd;Gd.dTcol2dd]; % Disturbance model

36

37 [B,sset,ops,ctime,flag]=b3av(G_comb,Gd1,Wd,Wn,...

38 Juu.av,Jud.av,inf,200);

39 % An error in the algotithm causes infeasible

40 % values with loss −inf to be sorted fist in B

41 % and sset: Fist feasible values given by:

42 k=1;

43 while B(k)<0

44 k=k+1;

45 end

46 B=B(k:end,:);

47 sset=sset(k:end,:);

48

49 % Use exact local methode directly −−−−−−−−−−−−−−−−−−−−
50

51 [H,loss_av,loss_wc,loss_av_cao,loss_wc_cao]=...

52 exact_local_method(sset(1,:),G_comb,Gd1,Wd,Wn,Juu.av,Jud.av);

exact_local_method.m

1 %% exact_local_methode.m

2 % Summary: The script calculate H matrix and loss using

3 % the analytic soultion to the exact local methode.

4 % The H matrixgives the optimal combinations of

5 % mesurement to be controlled with the measurement

6 % and implementation error considered.

7 %

8 % author: Tor Anders Marvik

9 % org.: Department of Chemical Engineering, NTNU, Norway

10 % contact: torandma@stud.ntnu.no

96



C.2. Self optimizing variables 97

11 % started Oktober 2012

12

13

14 function [H,loss_av,loss_wc,loss_av_cao,loss_wc_cao]=...

15 exact_local_method(sset,G_comb,Gd1,Wd,Wn,Juu,Jud)

16

17 %select a subset of G1,Gd,Juu,Jud

18 G1_ss=G_comb(sset(1,:),:);

19 Gd_ss=Gd1(sset(1,:),:);

20 Wd_ss=Wd; % Magnitude disturbance

21 Wn_ss=Wn(sset(1,:),sset(1,:)); % Weighting of the noise

22

23 ny=length(sset); % Number of meassurements

24 nd=3; % Number of disturbances

25 F_ss=−G1_ss*(Juu)^−1*Jud+Gd_ss;
26 Y=[F_ss*Wd_ss' Wn_ss];

27

28 H=(inv(Y*Y')*G1_ss*inv(G1_ss'*inv(Y*Y')*G1_ss)*sqrtm(Juu))';

29

30 %Loss

31 M=sqrtm(Juu)*inv(H*G1_ss)*H*Y;

32 loss_wc=0.5*svds(M,1)^2 ;

33 loss_av=0.5*norm(M,'fro')^2;

34

35 %worst case loss alternative

36 G=G1_ss*inv(sqrtm(Juu));

37 Y2=Y*Y';

38 X=chol(Y2)'\G;

39 lambda=eig(X'*X);

40 Loss_wc2=0.5./min(lambda);

41

42 %average loss alternative, uniform distribution

43 G=G1_ss*inv(sqrtm(Juu));

44 Y2=Y*Y';

45 X=chol(Y2)'\G;

46 lambda=eig(X'*X);

47 loss_wc_cao=0.5./min(lambda);
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48

49 G2=G*G';

50 [R,f]=chol(G2);

51 X=R'\Y;

52 lambda=sum(sum(X.*X));

53 loss_av_cao=sort(lambda/(6*(size(Wd,2)+1)));

54

55 end

C.3 The model

The model is a steady state version of column A [15], handling multiple compo-

nents.

The script multiCP_ColumnA_ext.m is a model of a single column. The model

is implemented in the optimization problem as nonlinear equality constraints in

the script nonlcon.m. The tray temperatures are given by the function Temp.m

and the initial condition is provided by init_nominal.m

C.3.1 Steady state model of column A

multiCP_ColumnA_ext.m

1 function [ residue] = multiCP_ColumnA_ext( X,par )

2 %

3 % This is a nonlinear steady state model of a

4 % multicomponent distillation column with

5 % NT−1 theoretical stages including a reboiler

6 % (stage 1) plus a total condenser ("stage" NT).

7 %

8 % Model assumptions:
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9 %

10 % Two components (binary separation);

11 % Constant relative volatility;

12 % No vapor holdup;

13 % One feed and two products;

14 % Constant molar flows (same vapor flow on all

15 % stages);

16 % Total condenser

17 %

18 % The model is based on column A in Skogestad and

19 % Postlethwaite (1996). The model has NT*NC states.

20 %

21 % Inputs: x − states, the NT*NC compositions

22 % reboiler/bottom stage as x(1,i) and condenser

23 % as x(NT,i).

24 % par.LT − reflux L,

25 % par.VB − boilup V,

26 % par.D − top or distillate product flow D,

27 % par.B − bottom product flow B,

28 % par.F − feed rate F,

29 % par.zF − feed composition, zF.

30 % par.qF − feed liquid fraction, qF.

31 % par.NT − number of stages, NT.

32 % par.NF − location of feed stage, NF.

33 % par.alpha − relative volatilities, alpha.

34 % par.NC − number of components,NC.

35 %

36 % Outputs: [residue] = f(x), residue=0 if x is a solution of

37 % the system of nonlinear equations

38

39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40

41 % Inputs and disturbances

42 LT = par.LT; % Reflux

43 VB = par.VB; % Boilup

44 D = par.D; % Distillate

45 B = par.B; % Bottoms
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46

47 F = par.F; % Feedrate

48 zF = par.zF; % Feed composition

49 qF = par.qF; % Feed liquid fraction

50

51 NT = par.NT; % Number of stages

52 NF = par.NF; % Location of feed stage

53 alpha = par.alpha; % Relative volatility

54 NC = par.NC; % Number of components

55

56 %Preallocation

57 %y=ones(NT−1,NC−1);
58 dMxdt = ones(NT,NC−1);
59 dMdt = ones(2,1);

60 x=X(1:NT*(NC−1));
61 x=reshape(x,NT,NC−1);
62 % THE MODEL

63

64 % Vapor−liquid equilibria

65 y = (x*diag(alpha(1:NC−1)))./((x*(alpha(1:NC−1) − 1) + 1)*...

66 ones(1,NC−1));
67 % −−−−−−−−−−−−−−−−−−−−Column−−−−−−−−−−−−−−−−−−−−−−−−−−
68 %

69 % Component balances

70 % =============================================

71 % Reboiler (assumed to be an equilibrium stage)

72 i = 1:NC−1;
73 dMxdt(1,i)= (LT+qF*F)*x(2,i) − VB*y(1,i) − B*x(1,i);

74 % Stripping section trays

75 j=2:NF−1;
76 dMxdt(j,i)= (LT+qF*F)*x(j+1,i) − (LT+qF*F)*x(j,i) +...

77 VB*y(j−1,i) − VB*y(j,i);

78 % Feed tray

79 dMxdt(NF,i)= LT*x(NF+1,i) − (LT+qF*F)*x(NF,i) + ...

80 VB*y(NF−1,i) − (VB+(1−qF)*F)*y(NF,i) + F*zF(i)';

81 % Enrichment section trays

82 j=NF+1:NT−1;
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83 dMxdt(j,i)= (LT)*x(j+1,i) − LT*x(j,i) + (VB+(1−qF)*F)*y(j−1,i)...
84 −(VB+(1−qF)*F)*y(j,i);
85 % Total condenser (no equilibrium stage)

86 dMxdt(NT,i)= (VB+(1−qF)*F)*y(NT−1,i) − LT*x(NT,i) − D*x(NT,i);

87 %===============================================

88 % Mass balances

89 %===============================================

90 % Reboiler

91 dMdt(1) = LT+qF*F − VB − B;

92 % Condenser

93 dMdt(2) = VB+(1−qF)*F − LT − D;

94 % ==============================================

95 % Summation Balances

96 % ==============================================

97 Xs=reshape(X,NT,NC);

98 sumXs=1−Xs*ones(NC,1);
99 %

100 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
101 %

102 %

103 % Output

104 residue=[dMxdt(:); dMdt; sumXs(:)];

C.3.2 Temperature estimator

1 function [Tcol1,Tcol2] = Temp(x,par)

2 %% Temp.m

3 % Summary:

4 % Tray temperature estimator for column 1 and column 2

5 % The temperature is based on a linear relation between the

6 % boiling points of the pure components.

7 %

8 % Boiling point assumtions

9 % Tb_A=30 *C
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10 % Tb_B=70 *C

11 % Tb_C=100 *C

12 %

13 % author: Tor Anders Marvik

14 % organization: Department of Chemical Engineering, NTNU

15 % contact: torandma@stud.ntnu.no

16 % input x : condition vektor

17 % par : Parameter struct

18 % Output Tcol1 : Tray temperature vektor column 1

19 % Tcol2 : Tray temperature vektor column 2

20

21 % Temperature function

22 T=@(x)100−x(:,2)*(100−70)−x(:,1)*(100−30);
23

24 % Tray compositoin matrices

25 xcol1=[x(1:par.NT),...

26 x(par.NT+1:2*par.NT),...

27 x(2*par.NT+1:3*par.NT)];

28 xcol2=[x(par.NV+5:par.NV+4+par.NT),...

29 x(par.NV+5+par.NT:par.NV+4+2*par.NT),...

30 x(par.NV+5+2*par.NT:par.NV+4+3*par.NT)];

31

32 Tcol1=T(xcol1); % Tray temperatures column 1

33 Tcol2=T(xcol2); % Tray temperatures column 2

34

35

36 end

C.3.3 The nonlinear constraints

1 function [ c, ceq ] = nonlcon( x, par )

2

3 c=[]; %inequality constraints

4
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5 par1=par; %reseting struct parameters for col1

6 par2=par; %reseting struct parameters for col1

7

8 %column 1

9 par1.F=par.F;

10 par1.zF=par.zF;

11 par1.LT=x(par.NV+1);

12 par1.VB=x(par.NV+2);

13 par1.D=x(par.NV+3);

14 par1.B=x(par.NV+4);

15 ceq_col1=multiCP_ColumnA_ext(x(1:par.NV),par1);

16

17 %column 2

18 par2.F=x(par.NV+4);

19 par2.zF=x([1,par.NT+1,2*par.NT+1]);

20 par2.LT=x(par.NV*2+4+1);

21 par2.VB=x(par.NV*2+4+2);

22 par2.D= x(par.NV*2+4+3);

23 par2.B= x(par.NV*2+4+4);

24 ceq_col2=multiCP_ColumnA_ext(x(par.NV+5:par.NV*2+4),par2);

25

26 %active constraints

27 act(1)=x(par.NV+2)−4.008;% % Max vapour flow col1

28 act(2)=x(2*par.NV+6)−2.405; % Max vapour flow col2

29 act(3)=x(par.NT)−0.95; % Min comp A top col1

30 act(4)=x(par.NV+4+2*par.NT)−0.95; % Min comp B top col2

31 act(5)=x(par.NV+4+2*par.NT+1)−0.95; % Min comp C btm col2

32 active=act(par.actset)'; % Set of acitive const.

33

34

35 if par.flag==0; % No control

36 ceq=[ceq_col1;ceq_col2;active];

37 else % With control

38

39

40 dof=par.dof; % Setpoint contr. var.

41
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42 %value in x vektor controlled

43 if par.flag==1

44 res_dof=x(par.index_u)−dof;
45 ceq=[ceq_col1;ceq_col2;active;res_dof];

46 end

47

48 %Tray temp controlled controlled

49 if par.flag==2

50 [Tcol1,Tcol2] = Temp(x,par);

51 T=[Tcol1;Tcol2];

52 res_dof=T(par.index_u)−dof;
53 ceq=[ceq_col1;ceq_col2;active;res_dof];

54 end

55

56 %x()/x() controlled

57 if par.flag==3

58 res_dof=x(par.index_u(1, 1))/x(par.index_u(1,2))−dof;
59 ceq=[ceq_col1;ceq_col2;active;res_dof];

60 end

61

62 %x()/F() controlled

63 if par.flag==4

64 res_dof=(x(par.index_u)/par.F)−dof;
65 ceq=[ceq_col1;ceq_col2;active;res_dof];

66 end

67

68 %c= H * T controlled

69 if par.flag==5;

70 [Tcol1,Tcol2] = Temp(x,par);

71 T=[Tcol1;Tcol2];

72 res_dof=par.H*T(par.index_u)−dof;
73 ceq=[ceq_col1;ceq_col2;active;res_dof];

74 end

75

76 end

77 end
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C.3.4 Initial condition for a nominal point

1 % Initial conditions for the optimization problem

2 % defalt nominal point is F=1.4 and steam 0.01

3

4 %This script contains inital values

5

6 %intial values

7 par.F=1.4; % Feed flow rate

8 par.zF=[0.4 0.2 0.4]'; % Feed composition

9 par.qF=1.0; % Feed liquid fraction

10 par.NC=3; % Number of components

11 par.NT=41; % Number of trays

12 par.NF=21; % Feed tray number

13 par.alpha=[2 1.5 1]'; % Relative volatility

14

15 %Prices for the cost funciton

16 price.pF1=1; % Feed price col. 1

17 price.pD1=1; % Top product price col. 1

18 price.pD2=2; % Top product price col. 2

19 price.pB2=1; % Btm product price col. 2

20 price.steam=0.01; % vapour cost

21

22 %Number of decision variables

23 par.NV=par.NT*par.NC; % Number cons. decition var

24

25 %Define the constraint limits

26 V1max=4.008; % Max vapour flow col1

27 V2max=2.405; % Max vapour flow col2

28 Xd1Amin=0.95; % Min comp A top col1

29 Xd2Bmin=0.95; % Min comp B top col2

30 Xb2Cmin=0.95; % Max vapour flow col2

31

32

33 c_s=[V1max V2max Xd1Amin Xd2Bmin Xb2Cmin]; %constraints

34
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35 %Initial Values

36 x0_col1=[ linspace(0.01,0.99,par.NT)';

37 linspace(0.39,0.005,par.NT)';

38 linspace(0.6,0.005,par.NT)';

39 par.F/2;

40 par.F/2;

41 par.F/2;

42 par.F/2] ;

43 x0_col2=[ linspace(0.00,0.00,par.NT)';

44 linspace(0.01,0.99,par.NT)';

45 linspace(0.99,0.01,par.NT)';

46 par.F/4;

47 par.F/4;

48 par.F/4;

49 par.F/4] ;

50

51 x0=[x0_col1;x0_col2];

52

53

54 %Define the lower and upper bounds

55 lb_col1=zeros((par.NV+4),1);

56 ub_col1=[ones(par.NV,1); [20 20 20 20]'];

57 lb_col2=zeros((par.NV+4),1);

58 ub_col2=[ones(par.NV,1); [20 20 20 20]'];

59

60

61 %Define constraints through lower and upper bounds

62 lb_col1(par.NT)=Xd1Amin; % Min comp A top col1

63 lb_col2(2*par.NT)=Xd2Bmin; % Min comp B top col2

64 lb_col2(2*par.NT+1)=Xb2Cmin; % Min comp C btm col2

65 ub_col1(par.NV+2)=V1max; % Max vapour flow col1

66 ub_col2(par.NV+2)=V2max; % Max vapour flow col2

67

68 lb=[lb_col1;lb_col2 ]; % Lower bounds

69 ub=[ub_col1;ub_col2 ]; % Upper bounds

70

71
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72 %fmincon options

73 options = optimset('TolFun',10e−8,'TolCon',10e−8,...
74 'MaxFunEvals',1e4,'Display','off','Algorithm',...

75 'sqp','Diagnostics','off');

76

77

78 T=@(x)100−x(:,2)*(100−70)−x(:,1)*(100−30); % Temp. estimator
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