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Abstract

The purpose of this thesis was to determine the optimal setpoints for a pH
neutralization process in three stages. A strong acid is to be neutralized
by adding a strong base (reagent) in a series of three mixing tanks. The
setpoints for the outlet concentration of each tank have to be selected such
that the outlet concentration of the last times always satisfies the specifica-
tion 0± 10−6 mol/l excess H+. The critical issue is that we can never have
a negative reagent flow rate.

We considered a worst-case scenario where all disturbances occur at the
same time. The disturbances can be positive or negative, so we first had
to determine the worst-case combination of signs. Then several cases with
different setpoints were tested by invoking the disturbance combinations in
a nonlinear Simulink model to obtain the maximum deviation from the set-
point in each tank. We also checked whether the reagent flow saturated or
not.

This "wild guess" approach turned out to be very time consuming and not
very iterative. A set of setpoints that would satisfy the specification for the
last tank was not found. The best result was a deviation of 2.19 · 10−6.
However, it became clear that the setpoint for Tank 2 must not be too low,
as this leads to saturation of the reagent flow rate qr to Tank 3. A better
approach would be to develop a model that could simulate a number of
cases without changing the parameters for each case manually, and at the
same time check whether qr saturates or not.
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Chapter 1

Introduction

Faanes and Skogestad[1] have investigated control related design issues for
neutralization plants, where a strong acid is neutralized by adding a strong
base (from now on denoted reagent) in a series of mixing tanks. The aim
of their work has been to give recommendations for the number of tanks
and tank sizes. How to select the setpoints for the pH of the outlet stream
from each tank is also discussed briefly, but there are not given any specific
directions. The paper only states that "In conclusion, it is preferable to
choose the setpoints as close as possible, but such that we never get negative
reagent flow". The main objective of this thesis has been to determine what
the setpoints of each tank should be.

1.1 Case study

The process that is studied is a plant where a strong acid with pH = −1 is
to be neutralized by adding a reagent with pH = 15. The product specifi-
cation is pH = 7 ± 1. Faanes and Skogestad[1] have found that the lowest
cost is obtained when using three tanks, and they recommend identical tank
sizes with a total volume of 2V0, where for 3 tanks, V0 = 40.7 m3.

The volume of each tank is thus:

Vi = 2 · 40.7 m3

3 = 27.1333 m3 = 27133.3 l (1.1)
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1 Introduction

A simplified process flowsheet is shown in Figure 1.1.

Figure 1.1: Flowsheet of the pH neutralization process
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1.2. Assumptions

1.2 Assumptions

Faanes and Skogestad[1] follow Walsh[2] and assume that the overall effec-
tive delay in each tank is θ = 10 s.

They also conclude that it is optimal to have identical controllers, pro-
vided that there are no restrictions on the controller. With PI control there
may be a small benefit in having different volumes, but this benefit is most
likely too small to offset the practical advantages of having identical units.

We assume constant tank volumes. This is a reasonable assumption, as
we can imagine that we have overflow tanks.

We also neglect changes in the outlet flow rates of each tank. Faanes and
Skogestad[1] explains this with "Often we may assume that the level con-
troller is very slow, which leads to q′i ≈ 0." q′i denotes the deviation from
the nominal value of qi, e.g. the disturbance in qi.

1.3 Disturbances

We are considering four disturbances to Tank 1: The concentration and flow
rate of the feed stream, and the concentration and flow rate of the reagent.
In tank 2 and 3, the concentration disturbance is equal to the deviation
from the setpoint in the previous tank. Since we are neglecting changes in
the outlet flow rate of each tank, there will be no disturbances in the inlet
flow rate to Tank 2 and 3, but disturbances in the reagent concentration
and flow rate will be considered.

3



1 Introduction

Generally, for Tank i, we have the following disturbances:

di =



dcin,i(s)

dqin,i(s)

dcr,i(s)

dqr,d,i(s)


(1.2)

Where dqin,i = 0 for i = 2 and i = 3.

We are considering as disturbances a ±50% change in the inlet concentration
and flow rate to Tank 1, and a ±10% change in the reagent concentration
and reagent flow rate to all tanks.
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Chapter 2

Tank model

A linear and a nonlinear model of the tank system are presented in the
following sections. It is important to note that the linearized model is in
terms of deviation variables, while the nonlinear model is not. E.g. in the
linear model we will work with variables such as c′in1, which denotes the
deviation from the nominal value, while in the nonlinear model we use the
actual values cin1 and so on.

It is convenient to derive a model in terms of excess H+ concentration
(See Appendix A), such that we define:

c = cH+ − cOH− = 10−pH − 10−14+pH (2.1)

We thus have, for the inlet stream, that pH = −1 corresponds to cin,1 ≈ 10
mol/l, and for the reagent, pH = 15 corresponds to cr ≈ −10 mol/l.

The product specification, e.g. the outlet concentration in Tank 3, is pH =
7± 1, which corresponds to:

c3 ≈ 0± 10−6 mol/l (2.2)

5



2 Tank model

2.1 Nonlinear model

The mixing process for each tank is described by the total and component
mass balances, which are derived in Appendix B. A description of the sym-
bols is given in Table 2.1.

Component mass balance:

dci
dt

= 1
Vi

[(cin,i − ci)qin,i + (cr,i − ci)qr,i] (2.3)

Total mass balance:
dVi
dt

= qin,i + qr,i − qi (2.4)

Table 2.1: Symbol list

Symbol Description Unit
i Tank number -
Vi Tank volume l
cin,i Inlet concentration mol/l
qin,i Inlet flow rate l/s
cr,i Reagent concentration mol/l
qr,i Reagent flow rate l/s
ci Outlet concentration mol/l
qi Outlet flow rate l/s

2.2 Linearized model

Linearization of the component mass balance (Eq. 2.3) around the steady-
state nominal point (c∗i , c∗in,i, c∗r,i, q∗i q∗in,i, q∗r,i) and Laplace transform yields
(See Appendix C for the derivation):

c′i(s) = 1
(V

∗
i
q∗
i

)s+ 1

[
q∗in,i
q∗i

c′in,i(s) +
c∗in,i − c∗i

q∗i
q′in,i(s) +

q∗r,i
q∗i
c′r,i(s) +

c∗r,i − c∗i
q∗i

q′r,i(s)
]
e−θs

(2.5)
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2.2. Linearized model

Where c′i(s), c′in,i(s), q′in,i(s), c′r,i(s) and q′r,i(s) are deviation variables:

c′i(s) = ci(s)− c∗i (s) (2.6)

A description of the symbols is given in Table 2.2.

Table 2.2: Symbol list

Symbol Description Unit
i Tank number -
V ∗i Nominal tank volume l
c∗in,i Inlet concentration, nominal value mol/l
c′in,i Inlet concentration, deviation from nominal value mol/l
q∗in,i Inlet flow rate, nominal value l/s
q′in,i Inlet flow rate, deviation from nominal value mol/l
c∗r,i Reagent concentration, nominal value l/s
c′r,i Reagent concentration, deviation from nominal value l/s
q∗r,i Reagent flow rate, nominal value l/s
q′r,i Reagent flow rate, deviation from nominal value l/s
c∗i Outlet concentration, nominal value mol/l
c′i Outlet concentration, deviation from nominal value mol/l
q∗i Outlet flow rate, nominal value l/s
θ Overall effective time delay s

In each tank, the flow rate of base, qr is used to adjust the concentration in
the outlet stream from the tank. But qr may also be considered a distur-
bance, as there are uncertainties associated with the valve. Thus, we have
that:

q′r,i(s) = q′ri,u(s) + q′ri,d(s) (2.7)

Where u′i(s) = q′ri,u is determined by the controller, and q′ri,d is the distur-
bance term. We then have that:

c′i(s) = 1
(V

∗
i
q∗
i

)s+ 1
[
kd,idi(s) + kiu

′
i(s)

]
e−θs =

[
Gd(s)di(s) +Gi(s)u′i(s)

]
e−θs

(2.8)
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2 Tank model

Where the steady-state gains for different disturbances are:

kd,i =



kd,cin,i

kd,qin,i

kd,cr,i

kd,qr,i


=



q∗
in,i

q∗
i

c∗
in,i−c

∗
i

q∗
i

q∗
r,i

q∗
i

c∗
r,i−c

∗
i

q∗
i


(2.9)

The steady-state process gain is:

ki =
c∗r,i − c∗i
q∗i

(2.10)

The concentration disturbance in Tank 2 is equal to the deviation from the
setpoint for the outlet concentration of Tank 1, and equivalently from Tank
2 to Tank 3. Since the model is in terms of deviation variables, we can write
that dcin1 = c′in1 and so on:

d1 =



c′in1(s)

q′in1(s)

c′r1(s)

q′r1,d(s)


(2.11)

d2 =


c′1,max(s)

c′r2(s)

q′r2,d(s)

 (2.12)

d3 =


c′2,max(s)

c′r3(s)

q′r3,d(s)

 (2.13)

A block diagram of the process is given in Figure 2.1.
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2.2. Linearized model

Figure 2.1: Block diagram of the process
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2 Tank model

2.3 Control structure

To compensate for the time delay in the tanks, a good choice of controller
is the Smith predictor. The Smith predictor has an inner loop with a con-
troller that can be designed without the deadtime. The outer loop has a
process model G̃(s) that predicts the output of the process G(s), which is
fed to the primary controller.

A PI controller was selected for the inner loop. The controller was built
in the following manner:

1. The SIMC Tuning Rules were used to obtain the tuning parameters
for a simple PI controller.

2. A saturation block was added to prevent a negative reagent flow, and
anti-windup was implemented.

3. The PI controller was incorporated as a part of the Smith Predictor.

2.3.1 Tuning of PI controllers

For tuning of PID controllers, Skogestad has developed a set of simple tuning
rules, namely the SIMC (Simple/Skogestad Internal Model Control) tuning
rules[4]. For a PI controller the steps will be like this:

Step 1: Obtain a first order + delay model (FOPDT) that approximates
the process:

G(s) = k

τ1s+ 1e
−θs (2.14)

Where G(s) is the process transfer function, k is the plant gain, θ is the
effective time delay and τ1 is the dominant lag time constant (additional
time to reach 63% of the response).

To obtain the FOPDT model, a step response experiment is performed:

10



2.3. Control structure

Make a step change in the input u and plot the output y. Using this plot,
the parameters can be obtained:
Steady-state gain:

k = ∆y∞
∆u (2.15)

Where ∆y∞ is the total change in the output, and ∆u is the step in the
input.
τ1 is found as the time where the response reaches 63% of its final value:

y63% = y0 + 0.63 ·∆y (2.16)

Step 2: Obtain the controller settings for the PI controller:

c(s) = Kc · (1 + 1
τIs

) (2.17)

Controller gain:

Kc = 1
k′

1
(θ + τc)

(2.18)

Integral time:

τI = min(τ1, 4(τc + θ)) (2.19)

k’ is the slope after response "takes off", and is calculated as follows:

k′ = k

τ1
(2.20)

For an integrating process, k’ is calculated directly from:

k′ = ∆y
∆t ·∆u (2.21)

τc is a tuning parameter that needs to be selected. Skogestad[4] states that
a small τc should be chosen for fast speed of response and good disturbance
rejection, and a large τc for stability, robustness and small input usage. The

11



2 Tank model

first corresponds to tight control, the latter to smooth control.

The linear model of the first tank with c1,sp = 0.05 was used for the tuning
of the controllers, and the following tuning parameters were obtained (See
Appendix E):

Kc = −133 (2.22)

τI = 80 (2.23)

These parameters were used for all controllers, regardless of setpoint. It
is shown in Appendix E that almost exactly the same parameters were
obtained when using Tank 3 with c3,sp = 0 to tune the controller.

2.3.2 Saturation and anti-windup

In practice, the controller output is limited due to physical constraints. In
our case, the reagent flow rate cannot become negative. To avoid this, a
saturation block can be added to the controller. The lower limit of the sat-
uration block is equal to −qr,nom, as the controller input and output are in
terms of deviation variables.

However, when the the output saturates, we need to ensure that the er-
ror is not further integrated. When the actuator (in this case the control
valve) reaches its limits, the feedback loop will be broken and the system
will run as open loop because the actuator will remain at its limit indepen-
dently of the process output [5]. This will cause the error to continue to
be integrated, such that the integral term becomes very large - it "winds
up". This buildup of the integral term while the controller is saturated is
called integral windup or reset windup. The only way for the controller to
return to normal operation by itself, is that the error must have must have
opposite sign for a long period.

To prevent integral windup, an approach is to use the the back-calculating

12



2.3. Control structure

anti-windup method[6] . This method uses a feedback loop to discharge the
integrator when the controller hits specified saturation limits. The integral
action resumes when the output is no longer saturated.

Figure 2.2 shows a PI controller with a saturation block and a feedback
loop with the back-calculation gain Kb. When the controller output ex-
ceeds its limit, the saturation block will keep the output at its limit, such
that the input and output of the saturation block is no longer the same.
Then the difference between the saturation block input and output will be
multiplied with Kb and added to the integral gain I = Kc/τI , which then is
multiplied with the integral term 1/s. In this case I has a negative sign, so
Kb must be a positive number in order to reduce the impact of the integral
term.

As long as the controller output is not saturated, the input and output
of the saturation block will be the same, and nothing will happen.

In this case, the value of Kb was arbitrarily set to 10, as the magnitude
of Kb proved to have no impact on the controller performance.

13



2 Tank model

qr’

1

SumI2

SumI1

Saturation
P = Kc

−133

Kb

10

Integrator

1
s

I = Kc/tau_I

−133/80

SP error

1

Figure 2.2: The PI controller with saturation block and back-calculating
anti-windup.
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2.3. Control structure

2.3.3 Smith predictor

After tuning the PI controller and including anti-windup, the PI controller
could be implemented as a part of the Smith predictor. For the linear
Simulink model, G(s) = G̃(s), while for the nonlinear Simulink model, the
process is described by the mass balances modeled in Matlab.

The process model G̃(s) is in terms of deviation variables, so the input
and output of the Smith Predictor shown in Figure 2.3 are also deviation
variables. u′ is the deviation from the nominal reagent flow rate q∗r,u, the
process output c′ is the deviation from the nominal value c∗ = csp, and we
always have that c′sp = 0.

The closed-loop output from the Smith Predictor is (See Appendix F):

u′(s) = GC,PI(s)e(s)
1 +GC,PI(s)G̃(s)(1− eθ̃s)

(2.24)

Figure 2.3: The Smith Predictor

15



2 Tank model

2.3.4 Controller performance

Fig.2.4 compares the performance of the simple PI controller, the PI con-
troller with anti-windup and the Smith Predictor with anti-windup. A step
in c1,sp from 0.05 to 0.1 is made, and the response in c1 plotted.

0 50 100 150 200 250 300 350 400 450
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

t [s]

c
1

Step in c
1,sp

 from 0.05 to 0.1

 

 

Smith Predictor w/anti−windup

PI w/anti−windup

PI only

Figure 2.4: This plot compares the performance of the controllers when a
step change in the setpoint is made.
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Chapter 3

Determining the optimal
setpoints

3.1 Overview of the procedure

This is an iterative procedure, where we start out with a set of arbitrarily
selected setpoints, examine the results, and repeat the whole procedure with
a new set of setpoints.

The first step of the procedure is to find the worst-case disturbance com-
binations for each tank. We will consider the worst-case scenario where all
disturbances are occurring at the same time, and because each disturbance
can be either positive or negative, we need to find the combination of signs
that gives the largest deviation from the setpoint for the outlet concentra-
tion of the tank. We use the linear model derived in Section 2.2 to calculate
the deviation from the setpoint for all disturbance combinations, using a
Matlab script. The maximum deviation from the setpoint in Tank 1 is used
as the concentration disturbance to Tank 2, and equivalently from Tank 2
to Tank 3. When we have found the worst-case disturbance combination
for each tank, we will apply these in a linear Simulink model to see how the
reagent flow rate is affected. The critical issue here is that we never can have
negative reagent flow rate. We will also use the linear Simulink model to

17



3 Determining the optimal setpoints

obtain more correct values for the maximum deviations from the setpoints.
In the Matlab script we have modeled a Smith predictor with a simple
PI controller, while in the linear Simulink model, we have included satu-
ration and anti-windup in the PI controller. This improves the controller
performance, as shown in Section 2.3.4. Finally, we will also do a nonlin-
ear simulation in Simulink to compare the results from the linear simulation.

We are considering step disturbances. The concentration disturbances to
Tank 2 and Tank 3, which are equal to the deviation from the setpoint for
the outlet concentration from the previous tank, will certainly not appear
as steps. However, we will determine the maximum of the concentration
profile from the outlet stream from Tank 1 and Tank 2 and use this as the
magnitude of a step disturbance in the inlet concentration to Tank 2 and
Tank 3. This simplification increases the impact of the disturbance, as it
is harder to keep the setpoint when you have a sudden disturbance like a
step, than when the disturbance arises gradually.

Summarized, we can say that the procedure consists of the following three
steps:

1. Find the worst-case disturbance combination using a linear Matlab
model.

2. Invoking these disturbances in a linear Simulink model to obtain the
maximum deviation from the setpoints in each tank and examine how
the reagent flow rate is affected.

3. Repeating step 2 with a nonlinear Simulink model to compare the
results.

3.2 Finding the worst-case disturbance combina-
tion

Inserting the closed-loop output from the Smith Predictor (Eq. 2.24) into
the Laplace transformed linearized model (Eq. 2.8), we obtain the closed-

18



3.2. Finding the worst-case disturbance combination

loop response for Tank i (See Appendix F for a more detailed derivation):

c′i(s) = Si(s)Gd,i(s)di(s)e−θs (3.1)

Where c′i(s) is the deviation from the setpoint in Tank i, Gd,i is the vector
of disturbance transfer functions, di(s) is the disturbance vector, θ is the
overall effective time delay, and Si is the sensitivity:

Si(s) = 1
1 + Gi(s)GC,PI,i(s)e−θs

1+GC,PI,iG̃i(s)(1−e−θ̃s)

(3.2)

Since the disturbances can be both positive and negative, we need to find
the combination of signs that gives the largest deviation from the setpoint.
Because we are working with a linear model, we can simply calculate the
deviation from the setpoint for the disturbances one by one and add them
up to see which combination of signs that yields the largest deviation from
the setpoint.

Single disturbances:
To find c′max for a certain disturbance, say dcin1, we have to find the max-
imum value S1(s)Gdcin(s) can take and multiply it with dcin1. Finding the
maximum value is the same as computing the norm in Matlab.

Matlab can compute two different norms:

1. The H2 norm: The root-mean-square of the impulse response of the
system.

2. The H∞ norm: The peak gain of the frequency response

We have to make use of the H∞ norm, as we need to consider the max-
imum output.

Let the norm of Si(s)Gd,i(s) be denoted N to simplify the notation:

19



3 Determining the optimal setpoints

Nij = norm(SiGd,j) (3.3)

Where i is the tank number and j is the selected disturbance, e.g.:

Ncin1 = norm(S1Gd,cin1) (3.4)

Such that the maximum output when d = dcin1 = c′in1 is:

c′1max = Ncin1dcin1 (3.5)

Multiple disturbances:
As mentioned earlier, we can simply add up c′max for each of the disturbances
to find the worst-case deviation from the setpoint. In Tank 1, there are four
disturbances, cin,1, qin,1, cr1 and qr1, such that we need to consider the
following combinations:

C1 =



c′max,cin1 + c′max,qin1 + c′max,cr1 + c′max,qr1

c′max,cin1 + c′max,qin1 + c′max,cr1 − c′max,qr1
c′max,cin1 + c′max,qin1 − c′max,cr1 + c′max,qr1

c′max,cin1 + c′max,qin1 − c′max,cr1 − c′max,qr1
c′max,cin1 − c′max,qin1 + c′max,cr1 + c′max,qr1

c′max,cin1 − c′max,qin1 + c′max,cr1 − c′max,qr1
c′max,cin1 − c′max,qin1 − c′max,cr1 + c′max,qr1

c′max,cin1 − c′max,qin1 − c′max,cr1 − c′max,qr1



(3.6)

Note that due to the linearity of the model, we have that:

c′max,cin1−c′max,qin1+c′max,cr1+c′max,qr1 = −[−c′max,cin1+c′max,qin1−c′max,cr1−c′max,qr1]
(3.7)

And so on, such that we for the first tank only have to calculate 8 values
and not 16.

The maximum deviation from the setpoint in the first tank is finally found
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3.2. Finding the worst-case disturbance combination

as the maximum value of the vector C1:

c′1,max = max{abs(C1)} (3.8)

For Tank 2 and 3, changes in the flowrate are neglected, such that there
only are three disturbances, where the concentration disturbance is equal
to the maximum deviation from the setpoint of the previous tank. We thus
have that:

dcin2 = c′1,max (3.9)

C2 =


c′max,cin2 + c′max,cr2 + c′max,qr2

c′max,cin2 − c′max,cr2 + c′max,qr2

c′max,cin2 + c′max,cr2 − c′max,qr2
c′max,cin2 − c′max,cr2 − c′max,qr2

 (3.10)

Equivalently as for Tank 2, we have that the concentration disturbance to
Tank 3 is:

dcin3 = c′2,max = max{abs(C2)} (3.11)

C3 =


c′max,cin3 + c′max,cr3 + c′max,qr3

c′max,cin3 − c′max,cr3 + c′max,qr3

c′max,cin3 + c′max,cr3 − c′max,qr3
c′max,cin3 − c′max,cr3 − c′max,qr3

 (3.12)

And finally, the maximum deviation from the setpoint in the last tank is
found:

c′3,max = max{abs(C3)} (3.13)
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3 Determining the optimal setpoints

Where the requirement for c′3,max is:

c′3,max < 10−6 (3.14)

This method was modeled in Matlab, and the code is attached in Appendix
G.1.

However, as mentioned in the overview of the procedure, we have mod-
eled the controller without a saturation block and anti-windup. This gives
poorer controller performance, such that when we do the same simulation
with the Simulink models (which have controllers with a saturation block
and anti-windup), we might satisfy the requirement due to better controller
performance.

We should now have found which combination of signs that yields the maxi-
mum deviation from the setpoint in each tank, such that we can invoke these
disturbances in the linear Simulink model to see how this affects the reagent
flow rate and to obtain more precise values for the maximum deviation from
the setpoint in each tank.

3.2.1 Linear simulation

The linearized model was used to model the system in Simulink, see Fig. 3.1.
A description of the modifications that have to be made to the model for
every case and tank is attached in Appendix H.1. The tanks were modeled
separately, such that we can simulate the tanks one by one. We first apply
the worst-case disturbance combination for Tank 1 found in Section 3.2 to
find the maximum deviation from the setpoint (c1,max) and to examine the
reagent flow rate. We then use c1,max as the concentration disturbance to
Tank 2 together with the other two disturbances in the worst-case combi-
nation. We find c2,max and examine the reagent flow rate, and finally we
repeat this procedure for Tank 3.
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3.2. Finding the worst-case disturbance combination

time
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Figure 3.1: The linear Simulink model
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3 Determining the optimal setpoints

3.2.2 Nonlinear simulation / Verification of the results

To verify the results from the linear simulation, we will repeat the procedure
in the previous section (3.2.1) with a nonlinear simulation. The nonlinear
component and total mass balances (Eq. 2.3 and 2.4) were used to model
the tank in Matlab, see Appendix G.5. The Simulink interface to the non-
linear Matlab model is attached in Appendix G.6, and the Simulink model
is shown in Figure 3.2 below. A description of the modifications that have
to be made to the Simulink model for every case and tank is attached in
Appendix H.2.

We will repeat this procedure with different sets of setpoints until we have
satisfied Equation 3.14.
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Figure 3.2: The nonlinear Simulink model
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Chapter 4

Results

The cases with different sets of setpoints that were tested are presented in
Table 4.1. Some selected nominal values are listed in Table 4.2.

Table 4.1: The selected setpoints for the outlet concentration in each tank.

Tank 1 Tank 2 Tank 3
Case 1 0.05 0.0001 0
Case 2 0.001 0.00001 0
Case 3 0.5 0.01 0
Case 4 0.1 0.01 0
Case 5 0.5 0.05 0
Case 6 0.5 0.005 0
Case 7 1.0 0.01 0

Table 4.2: Nominal values

Tank 1 Tank 2 Tank 3

Case q∗
r q∗

in τ q∗
r q∗

in τ q∗
r q∗

in τ

1 4.950 5.0 2726.9 0.0497 9.9503 2713.4 9.9999·10−5 9.99990 2713.3
2 4.999 5.0 2713.6 0.00099 9.9990 2713.3 9.9999·10−6 9.99999 2713.3
3 4.524 5.0 2849.0 0.46620 9.5238 2716.1 0.009990 9.99001 2713.3
4 4.901 5.0 2740.5 0.08902 9.9010 2716.0 0.009990 9.99001 2713.3
5 4.524 5.0 2849.0 0.42644 9.5238 2726.9 0.049751 9.95025 2713.3
6 4.524 5.0 2849.0 0.47119 9.5238 2714.7 0.0049975 9.99503 2713.3
7 4.091 5.0 2984.7 0.8991 9.0909 2716.0 0.00999 9.99000 2713.3
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4 Results

4.1 Worst-case disturbance combinations

For all cases, it was found that the combination of disturbances that gave
the maximum deviation from the setpoint were the following:

Tank 1:

d1 =



c′in1

q′in1

−c′r1

q′r1,d


(4.1)

Tank 2:

d2 =


c′in2 = −c′1,max

−c′r2

q′r2,d

 (4.2)

Tank 3:

d3 =


c′in3 = −c′2,max

−c′r3

q′r3,d

 (4.3)

As explained in Section 3.2 (See Eq. 3.7), we have that disturbance combi-
nations with opposite signs yield the same absolute value of the deviation
from the setpoint for the outlet concentration. Since the critical issue here
is that we never can have negative reagent flow, we have to consider the
combination of signs that require qr,u,i to decrease.

In practice this means that we, for example for Tank 1, have to check
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4.2. Maximum deviation from setpoints

whether it is the combination where c′r1 is positive or negative that yields a
decreasing reagent flow rate.

Tank 1: c′in1, q′in1, −c′r1, q′r1,d is equivalent to −c′in1, −q′in1, c′r1, −q′r1,d

Tank 2: c′in2, −c′r2, q′r2,d is equivalent to −c′in2, c′r2, −q′r2,d

Tank 3: c′in3, −c′r3, q′r3,d is equivalent to −c′in3, c′r3, −q′r3,d

In Table 4.3, the maximum deviations from the setpoint that were caused
by these disturbance combinations are listed. Recall that this model has a
controller with poorer performance, which results in a larger deviation from
the setpoints than what we will obtain with the Simulink models.

Table 4.3: Maximum deviation from the setpoints for the outlet concen-
tration in each tank, obtained by the linear Matlab model (with poorer
controller performance).

Tank 1 Tank 2 Tank 3
Case 1 ± 4.44·10−2 ± 4.04·10−4 ± 3.16·10−6

Case 2 ± 4.48·10−2 ± 3.36·10−4 ± 2.52·10−6

Case 3 ± 4.13·10−2 ± 9.89·10−4 ± 2.23·10−5

Case 4 ± 4.40·10−2 ± 4.58·10−4 ± 1.82·10−5

Case 5 ± 4.13·10−2 ± 9.27·10−4 ± 8.11·10−5

Case 6 ± 4.13·10−2 ± 9.96·10−4 ± 1.49·10−5

Case 7 ± 3.81·10−2 ± 2.68·10−3 ± 2.68·10−5

4.2 Maximum deviation from setpoints

Running the linear and nonlinear Simulink tank models one by one, we ob-
tain the maximum deviation from the setpoints for the outlet concentration
in each tank, and use the maximum deviation from the setpoint in one tank
as the concentration disturbance to the next tank. The results are listed in
Table 4.4 and Table 4.5. A typical concentration profile in a tank where qr
does not saturate is shown in Figure 4.1, and a typical concentration profile
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4 Results

where qr does saturate is shown in Figure 4.2.

In some of the cases, qr,u,i saturated, and these results are listed in in-
side a parenthesis. Most of the simulations showed that the disturbance
combination with a positive c′r,i required qr,u,i to decrease. The simulations
where c′r,i is negative is denoted with an *.

After simulating the four first cases both linearly and nonlinearly, it became
clear that the nonlinear model gave slightly better results, so to simplify the
procedure, the linear simulation was excluded in the remaining cases.

Table 4.4: Linear model: Max. deviation from the setpoints for the outlet
concentration in each tank.

Tank 1 Tank 2 Tank 3
Case 1 - 3.83·10−2 - 2.69·10−4 (- 1.49·10−5)
Case 2 (- 1.92·10−1) (1.90·10−1) (- 1.90·10−1)
Case 3 - 3.70·10−2 - 5.82·10−4* -1.85·10−5*
Case 4 - 3.83·10−2 -1.95·10−4* - 2.35·10−5*

Table 4.5: Nonlinear model: Max. deviation from the setpoints for the
outlet concentration in each tank.

Tank 1 Tank 2 Tank 3
Case 1 - 2.76·10−2 - 1.78·10−4 (- 6.54·10−5)
Case 2 - 2.78·10−2 (- 2.53·10−2) (-2.39·10−2)
Case 3 - 2.65·10−2 - 6.17·10−4* - 2.19·10−6*
Case 4 - 2.75·10−2 - 1.02·10−4 -1.69·10−5*
Case 5 - 2.65·10−2 - 5.47·10−4* -8.40·10−5*
Case 6 - 2.65·10−2 - 6.26·10−4* 3.19 ·10−6

Case 7 - 2.52·10−2 - 1.41·10−3* 4.85·10−6

*Opposite disturbance combination (e.g. c′in, −c′r, q′r,d)
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4.2. Maximum deviation from setpoints

0 2000 4000 6000 8000 10000
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

x 10
−5

0 2000 4000 6000 8000 10000
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Figure 4.1: Case 1, Tank 2, Nonlinear Model. Left: Deviation from
setpoint when the worst-case combination of all four disturbances is applied
at the same time. Maximum deviation: c′2,max = −1.78 · 10−5. Right:
Reagent flow rate, qr,u (does not saturate)
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Figure 4.2: Case 1, Tank 3, Nonlinear Model. Left: Deviation from
setpoint when the worst-case combination of all four disturbances is applied
at the same time. Maximum deviation: c′3,max = −6.54 · 10−5. Right:
Reagent flow rate, qr,u (saturates).
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Chapter 5

Discussion

5.1 Optimal setpoints

We were not able to find a combination of setpoints that ensured that the
outlet concentration in Tank 3 always would satisfy the specification. How-
ever, we saw that a very low setpoint in Tank 2 lead to saturation of qr. In
Case 1, where csp2 = 0.0001, qr saturated in Tank 3, and in Case 2, where
csp2 = 0.00001, qr saturated in both Tank 2 and Tank 3. For the cases
where csp2 ranged from 0.005 to 0.01, qr did not saturate in neither Tank 2
or Tank 3.

The best result we were able to obtain, was a maximum deviation of 2.19 ·
10−6 in Tank 3. This is not very far from the specification, which is 10−6.
When we also keep in mind that we have implied step disturbances in the
inlet concentration to each tank, which are stronger disturbances than the
actual gradual disturbances, it might be that we in practice will satisfy the
specification. At the same time we have neglected disturbances in the inlet
flow rate to to Tank 2 and Tank 3.

5.2 The Method

This is a very time consuming method for determining the optimal set-
points. It is a very "wild guess" approach, and even after looking at several
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5 Discussion

different cases, it was hard to see any pattern that could make the process
more iterative.

As the disturbance combination that gave the maximum deviation from
the setpoint was the same in all the cases, it is probably not necessary to
run the Matlab script more than once. The Matlab script could possibly
been used to indicate which setpoint combinations that give a small devi-
ation from the setpoint of the last tank, but as long as it does not tell us
whether qr saturates or not, we have to perform a simulation in Simulink
anyway.

To simplify the method the linear simulation in Simulink can be omitted,
such that we only perform a nonlinear simulation. However, the nonlinear
simulation is still time consuming, as we have to obtain the process trans-
fer function and nominal values for every case. This was done running a
separate Matlab script and inserting the values manually in the Simulink
model. Other modifications, like changing the lower limit of the saturation
block, the value of the step disturbance in the reagent flow rate, the in-
let concentration, the initial value of the transport delay block, the initial
concentration in the tank model in Matlab, also were time consuming. By
doing all these changes manually, there is also a risk of forgetting to change
some of the parameters or to make typing mistakes.

5.3 Method Improvements

To improve the method, the Simulink model could have been built such that
the only parameters that had to be changed were the setpoints of each tank.
Then a Matlab script could have been used to to run the tank models in
Simulink with different selections of setpoints until a setpoint combination
that satisfied the requirement in the last tank was found. We would also
use the Matlab script to ensure that the reagent flow rate does not saturate.
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Chapter 6

Conclusions and further
work

Even though we were not able to obtain a combination of setpoints that
would ensure that the outlet concentration in Tank 3 always would satisfy
the specification, we obtained results that were quite close. The method
was very time consuming and there was not observed any significant pat-
tern that could help in the selection of setpoints for new cases. The only
conclusion we can draw, is that the setpoint in Tank 2 should not be too
low in order to avoid saturation of the reagent flow rate in Tank 3.

Further work on this subject could include to develop a Simulink model
where the modifications for each case should not be performed manually.
A Matlab script can be used to guess a number of setpoint combinations
and run the Simulink model until it has found a setpoint combination that
ensures that the specification in Tank 3 is satisfied and that the reagent
flow rate does not saturate.
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6 Conclusions and further work
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Chapter 7

Appendices

A Representing in terms of excess H+

pH = −logcH+ (A.1)

cH+ = 10−pH (A.2)

cOH− = KW

cH+
= 10−14

10−pH = 10−14+pH (A.3)

We let c denote excess H+ concentration:

c = cH+ − cOH− = 10−pH − 10−14+pH (A.4)

We then have for the inlet flow to the first tank:

cin1 = 10−(−1) − 10−14

10−(−1) = 10− 10−15 = 10 mol/l (A.5)

For the reagent flow to each tank:

cr,i = 10−15 − 10−14

10−15 = 10−15 − 10 = −10 mol/l (A.6)

And for the outlet flow from the last tank:
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7 Appendices

cout3 = 10−7 − 10−14

10−7 = 10−7 − 10−7 = 0 mol/l (A.7)

The specification for the outlet stream is pH = 7± 1, which corresponds to
the following upper and lower limits:

cout3,max = 10−6 − 10−14

10−6 = 10−6 − 10−8 = 10−6 mol/l (A.8)

cout3,min = 10−8 − 10−14

10−8 = 10−8 − 10−6 = −10−6 mol/l (A.9)
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B. Tank model

B Tank model

B.1 Component mass balance

For one tank, the general component mass balance can be written:

d

dt
nj = Fj,in + Fj,r − Fj + rV (B.1)

Where F is the molar flow rate of component j in [mol/s].

As F = qV and n = cV, the mass balances for H+ and OH− can be written:

d

dt
(cH+V ) = cH+inqin + cH+rqr − cH+q + rV (B.2)

d

dt
(cOH−V ) = cOH−inqin + cOH−rqr − cOH−q + rV (B.3)

By letting c denote the excess H+ concentration c = cH+ - cOH− , and
subtracting the mass balance for OH− from the mass balance for H+, the
component balance becomes:

d

dt
(cV ) = cinqin + crqr − cq (B.4)

B.2 Total mass balance

Total mass balance for one tank:

dV

dt
= qin + qr − q (B.5)

Chain rule:

d

dt
(cV ) = c

dV

dt
+ V

dc

dt
(B.6)

Rearranging:
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7 Appendices

dc

dt
= 1
V

[
d

dt
(cV )− cdV

dt

]
(B.7)

Inserting total mass balance and component mass balance:

dc

dt
= 1
V

[cinqin + crqr − cq − (qin + qr − q)] (B.8)

Rearranging:

dc

dt
= 1
V

[(cin − c)qin + (cr − c)qr] (B.9)

Each tank can thus be described by Eq. B.4 and Eq. B.9, and more generally
the equations can be written as follows (where the subscript i now denotes
the tank number):

d

dt
(ciVi) = cin,iqin,i + cr,iqr,i − ciqi (B.10)

dci
dt

= 1
Vi

[(cin,i − ci)qin,i + (cr,i − ci)qr,i] (B.11)
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C. Linearization

C Linearization

As we are considering tanks with constant volumes, the component mass
balance (Eq. B.9) for one tank can be written:

V
dc

dt
= (cin − c)qin + (cr − c)qr (C.1)

This is a nonlinear equation on the form dc
dt = f(c, u), and a linear approxi-

mation can be obtained using a Taylor series expansion and truncating after
the first order terms [3].

V · dc
dt

= V · f(c,u) ∼= f(c∗,u∗) + ∂f

∂c

∣∣∣∣
ss

(c− c∗) +
4∑
i=1

∂f

∂ui

∣∣∣∣
ss

(ui− u∗i ) (C.2)

Where the steady-state operation corresponds to f(c∗,u∗) = 0. (c− c∗) and
(ui − u∗i ) are replaced by the deviation variables c′ and u′:

V · dc
dt
∼= 0 + ∂f

∂c

∣∣∣∣
ss

c′ + ∂c

∂cin

∣∣∣∣
ss

c′in + ∂c

∂qin

∣∣∣∣
ss

q′in + ∂c

∂cr

∣∣∣∣
ss

c′r + ∂c

∂qr

∣∣∣∣
ss

q′r (C.3)

V · dc
dt

= (−q∗in − q∗r )c′ + q∗inc
′
in + (c∗in − c∗)q′in + q∗rc

′
r + (c∗r − c∗)q′r (C.4)

Because c∗ is a constant, it follows that:

dc

dt
= d(c− c∗)

dt
= dc′

dt
(C.5)

Where q∗ = q∗in + q∗r , such that Equation C.4 can be written:

V · dc
dt

= −q∗c′ + q∗inc
′
in + (c∗in − c∗)q′in + q∗rc

′
r + (c∗r − c∗)q′r (C.6)

Laplace transform of Equation C.6 yields:
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7 Appendices

V s[c′(s)−c′(0)] = −q∗c′(s)+q∗inc′in(s)+(c∗in−c∗)q′in(s)+q∗rc′r(s)+(c∗r−c∗)q′r(s)
(C.7)

Inserting the initial condition c′(0) = 0 and rearranging:

c′(s) = 1
(V ∗

q∗ s+ 1)

[
q∗in
q∗
c′in(s) + c∗in − c∗

q∗
q′in(s) + q∗r

q∗
c′r(s) + c∗r − c∗

q∗
q′r(s)

]
(C.8)

Where

q′r(s) = q′r,d(s) + q′r,u(s) (C.9)
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D. Calculation of nominal values

D Calculation of nominal values

The component balance derived in Appendix B is used to calculate nominal
values for qr:

V
dc

dt
= (cin − c)qin + (cr − c)qr (D.1)

At steady-state, dc
dt = 0, such that Equation D.1 can be rearranged to get

an expression for q∗r :

q∗r = (c∗in − c∗)
(c∗ − c∗r)

· q∗in (D.2)

The nominal outflow rates from each tank:

q∗ = q∗in + q∗r (D.3)
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E Tuning of PI controllers

The linear model of Tank 1 with c1,sp = 0.05 was used to obtain the tuning
parameters using the SIMC Tuning Rules[4]. The procedure is described in
Section 2.3.1.

Making a -1% step change in the input qr,1 and plotting the response of
the output c1:
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Figure E1: Step response, Case 1, Tank 3, where c1,sp = 0.05.

Calculating the tuning parameters, integrating process:

k′ = ∆y
∆t ·∆u = 0.05073− 0.05

40 · (−0.01 · 4.95) = −3.76 · 10−4 (E.1)

Setting τc = θ = 10 s:

Kc = 1
k′

1
(θ + τc)

= 1
−3.76 · 10−4

1
(10 + 10) = −133.0 (E.2)

To verify that we can use the same tuning parameters for all tanks, in-
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dependent of setpoint, we also obtain k′ for Tank 3 from Case 1 (where
c3,sp = 0):
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Figure E2: Step response, Case 1, Tank 3, where c3,sp = 0.

Integrating process, calculating k′:

k′ = ∆y
∆t ·∆u = 1.099 · 10−8 − 0

30 · (−0.01 · 9.9999 · 10−5) = −3.74 · 10−4 (E.3)

Which is practically equal to k′ for the first tank, and we have verified that
the same controller settings can be applied for all tanks and cases.
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F Closed-loop response for the linear model

A Laplace transformed linearized model for the process was derived in Ap-
pendix C:

ci(s) = [Gi(s)ui(s) +Gd,i(s)di(s)] e−θs (F.1)

Recall that c′i(s) and u′i(s) are deviation variables.

Controller:

u′i(s) = GC,PI,i(s)
[
e′i(s)− G̃i(s)(1− e−θ̃s)u′i(s)

]
(F.2)

Rearranging and inserting for e′i = 0− y′i = −y′i = −c′i:

u′i(s) = GC,PI,i(s)(−c′i)
1 +GC,PI,iG̃i(s)(1− e−θ̃s)

(F.3)

Inserting u′i(s) into Equation F.1:

c′i(s) =
[
Gi(s)

GC,PI,i(s)(−c′i)
1 +GC,PI,iG̃i(s)(1− e−θ̃s)

+Gd,i(s)di(s)
]
e−θs (F.4)

Rearranging:

c′i(s) = 1
1 + Gi(s)GC,PI,i(s)e−θs

1+GC,PI,i(s)G̃i(s)(1−e−θ̃s)

Gd,i(s)di(s)e−θs = Si(s)Gd,i(s)di(s)e−θs

(F.5)
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G Matlab scripts

G.1 Finding the worst-case disturbance combinations

This script calls the functions nomcalc.m (Section G.3), kcalc.m (Section
G.4) and sgd.m (Section G.2).

% This script calculates the maximum deviation from the selected setpoints
% for the outlet concentration from each tank for a pH neutralization
% process with three tanks in series.

% The disturbances are the following:
% Tank 1: cin1, qin1, cr1, qr1
% Tank 2: cin2 = c1max, cr2, qr2
% Tank 3: cin3 = c2max, cr3, qr3
% Changes in the flowrate q are neglected after the first tank.

% It passes the parameters to the function nomcalc, which
% calculates the nominal values for the inlet and outlet streams to each of
% the three tanks, e.g. flowrate of base and acid, concentration of acid,
% flowrate out of the tanks and the residence time tau in each tank.
% The function then uses the nominal values returned by nomcalc to
% calculate the steady-state gains for different disturbances and the
% control input gains for each tank.

clear all
clc

% Setpoints for the outlet concentration from each tank (excess
% H+ [mol/l] (Selected arbitrarily):

sp = [0.05 0.0001 0]; % Tank 1, Tank 2, Tank 3

% Time delay in each tank [s]:
theta = 10;

% Volume of each tank [l]
V = 2*40.7/3*1000;

% Controller settings:
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Kc = -133;
tau_i = 80;

% Disturbances :
d_cin1 = 0.5; % First tank (50%)
d_qin1 = 0.5; % First tank (50%)
d_cr = 0.1; % All tanks (10%)
d_qr = 0.1; % All tanks (10%)

% Nominal values::
qin1_nom = 5; % Nominal Flow rate of acid to Tank 1, [l/s]
pH_acid = -1; % pH of feed stream (pH=-1 --> c = 10 mol/l excess H+)
pH_base = 15; % pH of all reagent streams (pH=15 --> c = -10 mol/l excess H+)

% Concentration (excess H+) of acid stream to Tank 1:
cin1_nom = 10^(-pH_acid)-10^(-14+pH_acid);
% Concentration (excess H+) of base added to each tank:
cr_nom = 10^(-pH_base)-10^(-14+pH_base);

% Collecting the parameters in an array:
par_nom = [V cin1_nom qin1_nom cr_nom];

% Calculating nominal values
N = nomcalc(sp,par_nom); % Returns nom = [qr_nom ; q_nom ; cin_nom ; qin_nom ; tau];

qr_nom = N(1,:);
q_nom = N(2,:);
cin_nom = N(3,:);
qin_nom = N(4,:);
tau = N(5,:);

% Calculating the steady state gains for different disturbances and the gain from
% the control input:
K = kcalc(N,cr_nom,sp);

% Extracting the arrays from the matrix K:
ktank1 = K(1,:);
ktank2 = K(2,:);
ktank3 = K(3,:);

% Process gains
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Kp = [ktank1(5) ; ktank2(5) ; ktank3(5)];

% Defining s as the Laplace variable s
s = tf(’s’);

% Controller TF:
Gc = Kc*(1+1/(tau_i*s));

% Process model TF and sensitivity for each tank:
for i=1:3

% Process model TF
G(i) = Kp(i)/(tau(i)*s+1);

% Sensitivity; y(i) = sens(i)*gd(i)*d(i)
sens(i) = 1/(1 + G(i)*Gc*exp(-theta*s)/(1+G(i)*Gc*(1-exp(-theta*s))));

end

% SGd transfer functions for each disturbance in Tank 1:
SGd_tank1_c = sgd(ktank1(1),sens(1),tau(1));
SGd_tank1_q = sgd(ktank1(2),sens(1),tau(1));
SGd_tank1_cr = sgd(ktank1(3),sens(1),tau(1));
SGd_tank1_qr = sgd(ktank1(4),sens(1),tau(1));

% SGd transfer functions for each disturbance in Tank 2:
SGd_tank2_c = sgd(ktank2(1),sens(2),tau(2));
SGd_tank2_q = sgd(ktank2(2),sens(2),tau(2));
SGd_tank2_cr = sgd(ktank2(3),sens(2),tau(2));
SGd_tank2_qr = sgd(ktank2(4),sens(2),tau(2));

% SGd transfer functions for each disturbance in Tank 3:
SGd_tank3_c = sgd(ktank3(1),sens(3),tau(3));
SGd_tank3_q = sgd(ktank3(2),sens(3),tau(3));
SGd_tank3_cr = sgd(ktank3(3),sens(3),tau(3));
SGd_tank3_qr = sgd(ktank3(4),sens(3),tau(3));

% Multiplying the norm(max values) of sens(i)*Gd(i) with the maximum expected
% disturbance to obtain the maximum deviation from the setpoint for the
% outlet concentration from each tank:
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%__________________________________________________________________________
%/////////////////////////////////TANK 1: /////////////////////////////////

% Disturbances, Tank 1:
dcin1 = d_cin1*cin1_nom;
dqin1 = d_qin1*qin1_nom;
dcr1 = d_cr*cr_nom;
dqr1 = d_qr*qr_nom(1);

% _________________________Single disturbances:____________________________

% When d = c_in:
c1(1) = norm(SGd_tank1_c,inf)*dcin1;

% When d = q_in:
c1(2) = norm(SGd_tank1_q,inf)*dqin1;

% When d = cr1:
c1(3) = norm(SGd_tank1_cr,inf)*dcr1;

% When d = +qr1:
c1(4) = norm(SGd_tank1_qr,inf)*dqr1;

%__________________________Multiple disturbances:__________________________

% Four disturbances at a time:

c1m(1) = + c1(1) + c1(2) + c1(3) + c1(4);
c1m(2) = + c1(1) + c1(2) + c1(3) - c1(4);
c1m(3) = + c1(1) + c1(2) - c1(3) + c1(4);
c1m(4) = + c1(1) + c1(2) - c1(3) - c1(4);
c1m(5) = + c1(1) - c1(2) + c1(3) + c1(4);
c1m(6) = + c1(1) - c1(2) + c1(3) - c1(4);
c1m(7) = + c1(1) - c1(2) - c1(3) + c1(4);
c1m(8) = + c1(1) - c1(2) - c1(3) - c1(4);

%________________________Max. output from Tank 1:__________________________

c1max = max(abs(c1m));
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%__________________________________________________________________________
%/////////////////////////////////TANK 2: /////////////////////////////////

dcin2 = c1max;
dqin2 = 0;
dcr2 = dcr1;
dqr2 = d_qr*qr_nom(2);

% _________________________Single disturbances:____________________________
% When d = c1max:
c2(1) = norm(SGd_tank2_c,inf)*dcin2;

% When d = cr2:
c2(2) = norm(SGd_tank2_cr,inf)*dcr2;

% When d = qr2:
c2(3) = norm(SGd_tank2_qr,inf)*dqr2;

%_________________________Multiple disturbances:___________________________

c2m(1) = + c2(1) + c2(2) + c2(3);
c2m(2) = + c2(1) + c2(2) - c2(3);
c2m(3) = + c2(1) - c2(2) + c2(3);
c2m(4) = + c2(1) - c2(2) - c2(2);

%________________________Max. output from Tank 2:__________________________

c2max = max(abs(c2m));

%__________________________________________________________________________
%///////////////////////////////// TANK 3: ////////////////////////////////

dcin3 = c2max;
dqin3 = 0;
dcr3 = dcr1;
dqr3 = d_qr*qr_nom(3);

% _________________________Single disturbances:____________________________
% When d = c2max:
c3(1) = norm(SGd_tank3_c,inf)*dcin3;
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% When d = cr2:
c3(2) = norm(SGd_tank3_cr,inf)*dcr3;

% When d = qr2:
c3(3) = norm(SGd_tank3_qr,inf)*dqr3;

%________________________Multiple disturbances:____________________________

c3m(1) = c3(1) + c3(2) + c3(3);
c3m(2) = c3(1) + c3(2) - c3(3);
c3m(3) = c3(1) - c3(2) + c3(3);
c3m(4) = c3(1) - c3(2) - c3(3);

%________________________Max. output from Tank 3:__________________________

c3max = max(abs(c3m));

%__________________________________________________________________________

% Finding the indices of the worst-case combinations:

index1 = find(c1m==(max((max(c1m)))));
index2 = find(c2m==(max((max(c2m)))));
index3 = find(c3m==(max((max(c3m)))));

% -------------------Displaying the results:-------------------------------

format shortEng

if index1 == 1
comb1 = ’cin1, qin1, cr1, qr1’;

elseif index1 == 2
comb1 = ’cin1, qin1, cr1, -qr1’;

elseif index1 == 3
comb1 = ’cin1, qin1, -cr1, qr1’;

elseif index1 == 4
comb1 = ’cin1, qin1, -cr1, -qr1’;

elseif index1 == 5
comb1 = ’cin1, -qin1, cr1, qr1’;
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elseif index1 == 6
comb1 = ’cin1, -qin1, cr1, -qr1’;

elseif index1 == 7
comb1 = ’cin1, -qin1, -cr1, qr1’;

else
comb1 = ’cin1, -qin1, -cr1, -qr1’;

end

if index2 == 1
comb2 = ’cin2, cr2, qr2’;

elseif index2 == 2
comb2 = ’cin2, cr2, -qr2’;

elseif index2 == 3
comb2 = ’cin2, -cr2, qr2’;

else
comb2 = ’cin2, -cr2, -qr2’;

end

if index3 == 1
comb3 = ’cin3, cr3, qr3’;

elseif index2 == 2
comb3 = ’cin3, cr3, -qr3’;

elseif index2 == 3
comb3 = ’cin3, -cr3, qr3’;

else
comb3 = ’cin3, -cr3, -qr3’;

end

text1 = ’Tank 1: ’;
text2 = ’Tank 2: ’;
text3 = ’Tank 3: ’;

disp(’Maximum allowed dev. from sp, Tank 3: +-1e-06’)

disp(’ ’)

disp(’Selected setpoints:’)
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disp([text1, num2str(sp(1))])
disp([text2, num2str(sp(2))])
disp([text3, num2str(sp(3))])

disp(’ ’)

disp(’Calculated max. deviation from setpoint:’)
disp([text1, num2str(c1max)])
disp([text2, num2str(c2max)])
disp([text3, num2str(c3max)])

disp(’ ’)

disp(’Worst-case disturbance combinations:’)
disp([text1, comb1])
disp([text2, comb2])
disp([text3, comb3])

G.2 Calculating SGd (sgd.m)

% This function takes in, for one disturbance at a time, the disturbance gain
% and the sensitivity and tau for the tank, and creates the SGd transfer
% function

function SGd = sgd(kd,sens,tau)

% Defining s as the Laplace variable s
s = tf(’s’);

gd = kd/(tau*s+1); % Disturbance TF
sgd = sens*gd; % Output y (outlet concentration)
[A,B,C,D]=ssdata(sgd); % Extracting the matrix data from the state-space model
SGd=tf(ss(A,B,C,D)); % Creating a TF model of the state-space model

G.3 Calculating nominal values (nomcalc.m)

% This function takes in an array of parameters, calculates the
% nominal values for the 3 tanks: flow rate and concentration of acid, flow
% rate of base, flow rate of outlet stream and residence times. These
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% values are returned in arrays collected in a matrix nom.

function nom = nomcalc(setpoints,par_nom)

% Exctracting the parameters:
cin_nom(1) = par_nom(2);
qin_nom(1) = par_nom(3);
cr_nom = par_nom(4);
c_nom(1) = setpoints(1);
c_nom(2) = setpoints(2);
c_nom(3) = setpoints(3);
V = par_nom(1);

% Calculating nominal values and for Tank 1: flow rate of base, outlet flow
% rate, and the residence time tau.

qr_nom(1) = (cin_nom(1) - c_nom(1))/(c_nom(1)-cr_nom)*qin_nom(1);

q_nom(1) = qin_nom(1)+qr_nom(1); %Outlet flow rate=acid+base flow rates

tau(1) = V/q_nom(1);

% Calculating nominal values for Tank 2 and 3: flow rate of base and acid,
% acid concentration and outlet flow rate, and the residence time.
for i=2:3

cin_nom(i) = c_nom(i-1); %Acid conc.=conc. of outlet stream from prev.tank
qin_nom(i) = q_nom(i-1); %Acid flow=outlet flow rate from prev.tank

qr_nom(i) = (cin_nom(i) - c_nom(i))/(c_nom(i)-cr_nom)*qin_nom(i);

q_nom(i) = qin_nom(i)+qr_nom(i);%Outlet flow rate=acid+base flow rates

tau(i) = V/q_nom(i);

end

% Creating a matrix nom with the arrays of nominal values.
nom = [qr_nom ; q_nom ; cin_nom ; qin_nom ; tau];

G.4 Calculation process and disturbance gains (kcalc.m)
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% This function takes in an array of parameters
% nomval=[qr_nom, q_nom, cin_nom, qin_nom, c_nom],
% cr_nom and the setpoints.
%
% It calculates the unscaled steady-state gains for different disturbances
% and the control input gains for each tank, which is returned in the
% matrix kval.

function kval = kcalc(nomval,cr_nom,sp)

% Nominal values:
qr_nom = nomval(1,:);
q_nom = nomval(2,:);
cin_nom = nomval(3,:);
qin_nom = nomval(4,:);
c_nom = [sp(1) sp(2) sp(3)];

% Calculating steady-state gains for different disturbances and the gain
% from the control input for Tank 1-3, collecting the values in 1 by 3
% arrays:

for i=1:3

kd_cin(i) = qin_nom(i)/q_nom(i); % When d = c_in
kd_qin(i) = (cin_nom(i)-c_nom(i))/q_nom(i); % When d = q_in
kd_cr(i) = qr_nom(i)/q_nom(i); % When d = c_r
kd_qr(i) = (cr_nom-c_nom(i))/q_nom(i); % When d = q_r

k(i) = (cr_nom-c_nom(i))/q_nom(i); % Controller

end

k_tank1 = [kd_cin(1) kd_qin(1) kd_cr(1) kd_qr(1) k(1)];
k_tank2 = [kd_cin(2) kd_qin(2) kd_cr(2) kd_qr(2) k(2)];
k_tank3 = [kd_cin(3) kd_qin(3) kd_cr(3) kd_qr(3) k(3)];

% Creating a matrix kval with the vectors of disturbance gains, control
% input gains and tau for each tank. This is what the function returns.
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kval = [k_tank1 ; k_tank2 ; k_tank3];

G.5 Nonlinear Matlab model

function xprime=ph_model(t,X,U)
%
% ph_model - This is a model of a single pH neutralization tank, where an
% acid (influent) is mixed with a base (reagent) to yield a
% product with pH = 7. Concentrations are in terms of excess H+,
% e.g. c = c_H+ - c_OH-
%
% Inputs: t - Time [s].
% X - States, X(1) = c, X(2) = V
% U(1) - reagent flow, qr [l/s]
% U(2) - Excess H+ in reagent, cr [mol/l]
% U(3) - Influent flow rate, qi [l/s]
% U(4) - Excess H+ in influent, ci [mol/l]
%
% Outputs: xprime - vector with time derivative of the states
% (states: X(1) = c, X(2) = V)

% Splitting the states
c=X(1); % Excess H+ in effluent
V=X(2); % Volume of tank

% One manipulated input:
qr = U(1); % Reagent flow rate
q = U(2);

% Three disturbances:
cr = U(3); % Excess H+ in reagent, cr [mol/l]
qi = U(4); % Influent flow rate
ci = U(5); % Excess H+ in influent, ci [mol/l]

% Total mass balance:

57



7 Appendices

dVdt = qi + qr - q;

% Component mass balance (in terms of excess H+):
%dcVdt = ci*qi + cr*qr - c*q;

dcdt = (1/V)*((ci-c)*qi + (cr-c)*qr);

% Compute the derivative for the concentration from d(cV) = c dV + V dc
%dcdt = (dcVdt - c*dVdt)/V;

% Output
xprime = [dcdt; dVdt];

G.6 Simulink interface to the nonlinear model

This is the Simulink interface to the nonlinear tank model in Appendix G.5.
It is important to note that the initial value of c have to be changed to the
actual setpoint for the tank, such that x0(1) = csp.

function [sys,x0] = tank1(t,x,u,flag)
%
% Simulink interface to ph_model.m
%
% Inputs: t - time [s]
% X - State, X(1) = c, X(2) = V
%
% U(1) - reagent flow, qr [l/s]
% U(2) - Excess H+ in reagent, cr [mol/l]
% U(3) - Influent flow rate, qi [l/s]
% U(4) - Excess H+ in influent, ci [mol/l]
%
% Outputs: x0: Column vector of initial conditions
% sys: The main vector of results requested by Simulink.
% Will hold different information, depending on the flag.
%
% When flag=0:
% x0 contains initial conditions
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% sys = [a, b, c, d, e, f, g]
% a = # of continuous time states
% b = # of discrete time states
% c = # of outputs
% d = # of inputs
% e = required to be 0
% f = 0(no) or 1(yes) for direct algebraic feed
% through of input to output.
% g = # of sample times (for continuous process, we
% set this equal to 1)
%
% When flag = 1:
% sys = column vector of the derivatives
%
% When flag = 3:
% sys = column vector of the output variables:
% y(1): effluent concentration c in terms of excess H+
% y(2): tank volume V
%
% Else: sys is a null vector

if abs(flag) == 1
% Return state derivatives.
sys = ph_model(t,x,u);

elseif abs(flag) == 3
% Return system outputs.
sys(1,1) = x(1); % Outlet concentration, c [mol/l]
sys(2,1) = x(2); % Tank volume, V [l]

elseif flag == 0
% Initialize the system
x0 = [ 0.05 ; 1000*2*40.7/3]; % col.vector of init.values of c and V
sys = [2, 0, 2, 5, 0, 0];

else
sys = [];

end
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H Simulink models

H.1 Linear Simulink model

For every case and tank, the following modifications of the linear Simulink
model (Fig. 3.1) has to be done:

1. Disturbance gains (kd), process gain (k) and τ .

2. c1,nom = setpoint

3. qr,nom

4. Disturbance in qr

5. Lower limit of saturation block in PI controller = −qr,nom

H.2 Nonlinear Simulink model

For every case and tank, the following modifications of the nonlinear Simulink
model (Fig. 3.2) has to be done:

1. Process model in Smith predictor (k and τ).

2. c1,nom = setpoint

3. qr,nom

4. Disturbance in qr

5. Lower limit of saturation block in PI controller = −qr,nom

6. qin,nom

7. cin,nom = setpoint from previous tank

8. Initial value of transport delay = csp

9. In the tank model in Matlab (tank1.m/tank2.m/tank3.m), the initial
value of c must be changed: x0(1) = csp
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