
1 Abstract

To reduce loss, real-time optimization (RTO) is today used in most petroleum
industry. Minimizing loss is achieved by avoiding over- or underutilization
of the production system, and keeping the process as close to the capacity
constraints as possible. The dynamic nature of the petroleum extraction
makes the process conditions change rapidly. An example is the fluctuating
feed and compositions from the wells, which causes a ”drift” in the gas-oil
ratio(GOR). The changing process conditions will affect the optimal set-
points, thus, a frequent re-optimization is necessary to keep the operation
close to the optimum. A challenge is that a frequent re-optimization requires
updated measurements and a very good model for both process and distur-
bances. This can be difficult to retrieve.

Self-optimizing control is an alternative to circumvent the whole process of
continuous re-optimization. The concept of this method is to control vari-
ables which, when held at a constant set-point, can keep the process close to
the optimum and this way keep the loss at an acceptable level.

The scope of this thesis is to develop a simple MATLAB-model of a petroleum
well by using basic physical principles. The model can later be used locate
good control variables (CV’s) for self-optimizing control. To verify the flow
and pressure conditions in our model, a similar model is made in OLGA,
which is leading simulation software in the field of simulating multiphase
transport through pipelines.

Prior to making the model, a test is conducted where we find that the well
head pressure is a potential self-optimizing variable in our system. By simu-
lations in OLGA we find that the the flow from the reservoir into the well is
a linear function of bottom hole pressure, and therefore that Darcy’s law can
give a good estimation of these relations. OLGA simulations also verify that
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the compressibility equation of state gives a good estimate for the pressure
profile through the pipe. For the density profile, however, this estimation
is slightly more inaccurate. Finally, two different approaches for valve mod-
elling is studied; the Valve Equation Approach and the Bernoulli Approach.
Here we find that the valve equation is best suited for our case.

The model works best for the or the purpose of obtaining information on
trends and approximate pressure-values at different as a function of valve
opening. However, this is a very simplified model, which is also partly
adapted to dataseries obtained from OLGA, and should therefore be im-
proved at several areas and tested before used for other purposes.
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3 Introduction

Today, real-time optimization(RTO) is used in most petroleum industry, with
the objective to minimize loss. This is achieved by avoiding over- or under-
utilization of the production system, and keeping the process as close to
the capacity constraints as possible. Normally, this optimization is made
once a day, under the assumption of constant well-conditions during this pe-
riod. In reality, these conditions will change. An example is the fluctuating
feed and compositions from the wells, which causes a ”drift” in the gas-oil
ratio(GOR). Changing process conditions will also change the optimal val-
ues for the control variables used to optimize the process, and will lead to
sub-optimal operation between each optimization. To minimize the loss, a
frequent re-optimization is necessary.

A challenge is that a frequent re-optimization requires an updated model
with updated data, which as Foss(2012) points out, can be difficult to re-
trieve. This is one of the reasons to the growing interest in using results
from process control theory to increase the recovery in petroleum reservoirs.
In the paper by Jansen, Bosgra and van den Hof(2008), the potential of us-
ing control theory to develop model-based control of multiphase ïňĆow in
petroleum reservoirs is discussed.

Self-optimizing control is an alternative, where we can circumvent the whole
process of continuous re-optimization. The concept of this method is to con-
trol variables which, when held at a constant set-point, can keep the process
close to the optimum and this way keep the loss at an acceptable level. For
these variables, the optimal point also changes minimally due to the effect of
disturbances. This is discussed in the paper by Skogestad(1999).

The scope of this thesis is to develop a simple MATLAB-model of a petroleum
well by using basic physical principles. The model can later be used to iden-
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tify good control variables (CV’s) for self-optimizing control. To verify the
flow and pressure conditions in our model, a similar model is made in OLGA,
which is leading simulation software in the field of simulating multiphase
transport through pipelines. The model will describe pressure and flow rela-
tions from the bottom hole, where the petroleum mixture flows in from the
reservoir, to the valve at wellhead. The model can be divided in three parts,
which are based on different models and theory. In the finished model, the
parts are connected together and made a function of the valve opening, as
this often is the only variable that can be manually manipulated in a well.

A requirement for a self-optimizing variable is that it should be sensitive to
input changes. Prior to making the model, we therefore test if we can detect
changes in the GOR by measuring the wellhead pressure. The results shows
that there is a detectable change in wellhead pressure, as the reservoir gas
ratio is increased by 10%. We find that the well head pressure is a potential
self-optimizing variable in our system, and that it therefore is interesting to
proceed developing the model.

In this thesis, we first present the background and motivation for developing
the model. Section 1 presents this, together with the results from testing the
wellhead pressure’s potential as a self-optimizing variable. We find that the
pressure is affected by a shift in the GOR, and therefore can be a candidate
as a self-optimizing variable for the system. Following this, in section 2,
a description and specifications of the OLGA model is given. Here tables
and a figure of the model can be found. The three following sections, will
describe each part of the MATLAB-model. Theory, results and discussion
of the inflow-model, pipeflow-model and valve-model will be presented in
section 3,4 and 5 respectively.Finally, are some concluding remarks and an
overview of the literature that is used in this thesis.
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Part I

Motivation

4 Background and Motivation

A petroleum field can have more than hundred production wells connected
to the process platform by manifolds and pipelines. An illustration of the
Troll West rim is presented in Figure 1, where a number of wells produce a
mixture of gas, water and oil which is collected in manifolds at the seabed and
transported in larger pipelines to the separation facilities at the production
platform at sea level.

Figure 1: An illustration of the Troll West rim. Gunnerud and Foss (2009).
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The wells can be at different depths in the reservoir, and due to hetero-
geneity in the reservoir formation, the wells will produce different petroleum
mixtures of different compositions. As the separation process is expensive,
and the capacity of water and gas in the separation facilities are limited, the
production structure is optimized so that the wells that produce the highest
oil composition will produce at the highest production rate. Optimization is
normally made once a day, with the assumption of constant well-conditions
during this period. The challenge is that, in a realistic case, these conditions
will change. This means that the operation will run suboptimally until the
process is re-optimized.

In petroleum production a well-known phenomena is the shift in the gas-oil
ratio(GOR), that occurs after the well has produced for some time. During
production, the pressure near the well decreases, and causes the well to pro-
duce a higher amount of gas. At this point it can be beneficial to re-optimize
the production structure, and gain a higher production rate from wells with
a lower GOR. This will maximize the total oil production, and minimize the
total production of water and gas.
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4.1 Optimization Theory

As explained above, the well performance will decrease during production.
A change in the process conditions implies that the values for optimal well
pressures also will change as illustrated in Figure 2.

Figure 2: The process disturbence’s effect on optimal operating conditions.
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Figure 2 illustrates how the optimal operational conditions shift under im-
pact of disturbances. Keeping the controlled variables at the their ”old”
optimal values will make the process run sub-optimal and therefore lead to
a loss. To keep the process at optimal operation, a frequent re-optimizing
of the system is needed. This is costly, time consuming, and requires a very
good model for both process and disturbances.

To avoid re-optimizing it would be beneficial to control variables where, when
held at a constant set-point, can keep the process close to optimum and this
way keep the loss at an acceptable level. Variables with this property are
termed self optimizing variables. The concept of self-optimizing variables will
be elaborated on it the next section.

4.1.1 Self-Optimizing Control

The idea of self-optimizing control is, as mentioned in the previous section,
to control certain variables that makes it possible to circumvent the whole
process of continuous re-optimization. We want to control variables which,
when held at a constant set-point, can keep the process close to the optimum
and this way keep the loss at an acceptable level. This involves that the
optimal set-point for these variables changes minimally due to the effect of
disturbances. The procedure of finding self-optimizing variables requires a
process model and a cost function to be minimized.
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As stated in the paper by Skogestad(2000), a self-optimizing variable should
satisfy the following requirements:

1. Its optimal value is insensitive to disturbances i.e 4copt

4d
= small

2. Its value should be sensitive to input changes i.e 4c
4u

= large

3. It should be easy to measure and control

There is a handful of methods for identifying self optimizing structures. Ex-
amples are:”Null space method” and ”Exact local method”, but these methods
will not be elaborated on in this paper.

4.2 Wellhead Pressure as Self-Optimizing Variable

It is interesting to look at the potential for the wellhead pressure to be a
self-optimizing variable for our system. As stated in section 4.1.1, a self-
optimizing variable should be sensitive to input changes. In our system, this
means that the the wellhead pressure should be sensitive to a change in the
GOR. Prior to making the model, there is therefore first made a test to see
if there is any relationship between the wellhead pressure and the GOR in
the reservoir.

4.2.1 Result of Sensitivity Test

The wellhead pressure is first measured for valve openings between 0.01 and
1. Then the reservoir gas fraction is increased by 10%, and the same mea-
surements of the wellhead pressure are conducted. The results are plotted
and presented in Figure 3.

From Figure 3 we see that the wellhead pressure is affected by the shift in
GOR. The pressure difference at valve openings above 0.1 is approximately
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Figure 3: The wellhead pressure as a function of valve opening at nominal
values, and at 10% disturbance in the reservoir gas fraction.

1 bar. This result is reasonable as the pressure is a function of the density
of the mixture, which will change as the gas composition increases.
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4.2.2 Conclusion of Sensitivity Test

The results in section 4.2.1 implies that the wellhead pressure is affected by a
shift in the GOR. This is reasonable as the density of the mixture is a function
of the gas composition. From these results we find that it is interesting
to investigate the potential for the wellhead pressure as a self-optimizing
variable in our system, and therefore also to continue the developing of the
MATLAB-model.
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Part II

Method
To investigate the wellhead pressure as a self-optimizing variable, we wish
to make a model of our system that can be optimized. For this purpose,
MATLAB is considered a good tool. In order to verify the flow and pressure
relations in this model, a similar model is made in OLGA. OLGA is a mod-
elling tool for multiphase transport of oil, gas and water through pipelines,
and is established as a world leading product in this field.

From OLGA-simulations we obtain data for the flow- and pressure behaviour
at different valve openings and in different parts in the pipeline. In this the-
ses we attempt to describe this data by applying basic physical principles to
develop a simple MATLAB-model.

17



5 The OLGA Model

Data from the Troll West structure and the work of Gunnerud and Foss(2009)
is used as a basis for the model. The model consists of four wells, which are
set to produce similar amounts of oil, water and gas as the four wells from the
Troll-dataset given in appendix A. A figure of the OLGA model is presented
in Figure 4.

Figure 4: An illustration of the OLGA model.
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5.1 Well and Pipe Specifications

The software OLGA is used to simulate Typical well and reservoir conditions.
The specifications for the wells and pipes are listed in are listed in table 1
and 2 respectively.

Table 1: Well Specifications

Well 1 Well 2 Well 3 Well 4

Well Depth [m] 1300 1200 2000 1000
Well Pressure [bar] 205 195 250 180

Well Temperature [Co] 63 60 80 55
Gas Fraction 0.09 0.1 0.08 0.1

Water Fraction 0.63 0.6 0.7 0.57

In Table 1 we see that the four wells are at different depths in the reservoir,
and have different temperatures and pressures as a result to this. Because
of homogeneity in the reservoir formation, which means that there is an
uneven distribution of pores and concentrations of petroleum mixture, the
composition of water, gas and oil also changes.

Table 2: Pipe Specifications

Pipe 1 Pipe 2 Pipe 3 Pipe 4

Pipe Length [m] 1300 1200 2000 1000
Inner Pipe Diameter [m] 0.1 0.1 0.1 0.1

Roughness [m] 1 · 10−5 1 · 10−5 1 · 10−5 1 · 10−5

The physical specification of the four pipelines are given in Table 2.
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The same model is used for all four valves and the physical specifications are
given in Table 3. Valve specifications that are only needed for the OLGA
model are given in appendix B.

Table 3: Valve Specifications*

Diameter [m] Cf−factor[-]

Valve 1(-4) 0.0762 0.84

* The remaining valve specifications is only needed for the OLGA model,
and will be given in appendix B.

As the valve opening often is the only variable that can be directly manipu-
lated in an oil well, it is important that we map how changing this parameter
will affect the operation. There is therefore gathered much data from sim-
ulations of this type, and the most relevant tables are included in appendix
C. The MATLAB-model should give information on how flow and pressure
conditions change as a function of the valve opening, as this is important
properties when a well-network is optimized.
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5.2 The OLGA Software

OLGA is a modelling tool for multiphase transport of oil, gas and water
through pipelines, and is established as a world leading product in this field.
The software has enabled the development of deep see oil and gas fields that
would not be possible without this technology.

OLGA is a powerful tool for design and operation when considering new or
existing installation. It also has applications for control and tuning. The
software, however, has no application for optimization. In investigating this
problem it would be desirable to use a tool with high accuracy for flow and
reservoir simulations, as well as having the possibility for optimization. Based
on flow simulations from OLGA a simple flow model will be implemented in
MATLAB where it can be combined with various optimization routines.
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Part III

Model Development
Developing the MATLAB-model, data from only one of the wells is used.
The well that is used for the model is well 1, and the physical data for this
well can be found in Table 1. An illustration of the pipeline that will be
modelled in our MATLAB-model is presented in Figure 5.

Figure 5: The well that is described our model.

The MATLAB-model consists of three different flow-models;

1. Inflow from reservoir

2. Flow relations in pipe

3. Flow relations through valve

These flow models are based on different principles and theory, and are mod-
elled separately. In the finished model, the parts are connected together and
made a function of the valve opening, as this often is the only variable that
can be manually manipulated in a well.
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6 Inflow Model

6.1 Inflow Theory

To simulate the fluid flow from the reservoir into a well, the equation below
is used:

Pw = Pe −
µ
(
ln re

rw
+ S

)
q

2πkh︸ ︷︷ ︸ (1)

Constant
In Equation 1 the fluid flow(q) is given in

[
m3

s

]
and is a linear function of

the pressure difference between the well(Pw) and the reservoir boundary(Pe).
All pressures are given in [Pa]. The equation is derived from Darcy’s Law as
will be elaborated upon in section 6.1.1.

The size of the constant depends mainly on reservoir- and fluid properties.
These properties are; the ratio of the distance between the well(rw) and
the reservoir boundary(re); the permeability(k) which has the unit [m2]; the
formation thickness(h) and the viscosity(µ) of the fluid which is given in[

kg
ms

]
. The constant also contains a skin factor(S) to account for reduced

permeability (and, thus, reduced flow) in the region near the well. The
reduced permeability is a result of the damage made to the formation during
the drilling of the well and will be further explained in section 6.1.2.

6.1.1 Darcy’s Law

Darcy’s law describes flow through porous media, like the one in a petroleum
reservoir. Darcy established that the flow velocity was directly proportional
with the pressure difference across the porous media for any given flow. For
radial flow, Darcy’s law is given in Equation 2:

u = k

µ

dP

dr
(2)
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The flow velocity(u) is given in
[

m
s

]
. Darcy’s law was originally an empirical

expression based on observations and experiments, but later Hubbert(1956)
managed to derive the law directly from Navier-Stokes equation of motion of
viscous fluids. For details on this derivation, see King Hubbert(1956).

This mathematical description of the radial flow of fluids through a porous
media simulates flow from a reservoir into the wellbore. Figure 6 presents a
typical pressure profile from the outer boundary of the reservoir(re) to the
well(rw).

Figure 6: The radial flow of oil into a well under steady state flow conditions.

The model applies to a reservoir at steady state condition. For the sake of
simplicity the reservoir is assumed to be homogeneous, i.e it is assumed to
be no gradients in permeability or other reservoir parameters.
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Assuming that the fluid is incompressible, the velocity can be expressed as
in equation 3:

u = q

A
(3)

By rearranging Equation 2 and substituting A with the expression for a radial
area, A= 2πrh, the equation can be written:

dP

dr
= qµ

kh2πr (4)

Separating the variables and integrating Equation 4 gives:

P − Pw = qµ

kh2π ln
r

rw

(5)

This equation shows that the pressure increases logarithmically with respect
to the radius, i.e the pressure drop being more severe close to the well(rw)
than towards the outer boundary(re). Using boundary conditions r = re and
P = Pe, the flow(q) from a reservoir into an oil well can expressed as follows:

q = 2πkh
µln re

rw

(Pe − Pw) (6)

6.1.2 Skin factor

When a well is being drilled, it is common that some of the drilling mud will
flow into the formation and partially plug the pore spaces. This will reduce
the permeability in the formation near the well, and thus, reduce the flow in
this area.
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Figure 7: The radial pressure profile for a damaged well.

Figure 7 compares the pressure profile in a damaged well with the pressure
profile in an undamaged well. The area r ≤ ra represent the damaged zone.
If the well was undamaged the pressure drop for r < ra would be represented
by the dashed line. Due to the reduced permeability in a damaged well,
the pressure drop in the damaged zone will be larger than normal. This
additional pressure drop is denoted 4Pskin with the definition:

4Pskin = qµ

2πkhS (7)

Here, S is the dimensionless mechanical skin factor. The size of this factor
depends on the magnitude of the damage made to the well. This can be
checked by performing various well tests, but will not be elaborated upon in
this thesis.
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6.2 Results and Discussion

6.2.1 Flow profiles

By plotting simulation data of the flow from the reservoir into the the well,
we can confirm that there is a linear relationship between the flow and the
pressure difference between the reservoir and the bottom hole pressure.In
Figure 8 the flow is plotted as a function of the bottom hole pressure. The
reservoir pressure is assumed to be constant.
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Figure 8: The flow from the reservoir into the well as a function of bottom
pressure. The flow is given in standard m3.

The flow profiles showed in Figure 8 indicates that Equation 1 can be used
to model the inflow in our system, as this equation describes linear flows.
The flow is given in standard m3, which is the volume flow at standard
conditions(T= 273.15 [K] P=1[bar]).
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Figure 9 shows the bottom hole pressure as a function of valve opening. We
see that for valve opening 0.01 to 0.1 the bottom hole pressure decreases from
170 bar to 130 bar. For valve openings between 0.1 and 1, the value of the
bottom hole pressure flattens out at approximately 128 bar.
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Figure 9: Bottom hole pressure as a function of valve opening. The data is
generated from simulations in OLGA.
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In Figure 10 we compare pressure estimated form Darcy’s law with the bot-
tom hole pressure from Figure 9.
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Figure 10: A comparison of the estimated bottom hole pressure and the
bottom hole pressure generated in OLGA.

We see that Darcy’s law gives a quite good estimation for the bottom hole
pressure in our system, but that the estimation is generally poorer at valve
openings between 0 and 0.15.
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7 Pipe Flow Model

The pressure- and density profile in the pipe is calculated with a basis in the
compressibility equation of state:

PV = znRT (8)

Here, pressure(P ) is given in [bar], volume (V ) is given in [m3], n denotes the
number of moles and the temperature(T ) is given in [K]. The gas constant(R)
has the value 8.3144 · 10−5

[
barm3

moleK

]
.

The steps of calculating the z-factor in Equation 8 are described in the book
of McCain (1990), and will be presented in the following sections.

7.1 Pipeflow Theory

This equation is also known as the real gas equation and has a correction
factor, z, to account for the deviation from ideal- to real gas behaviour. The
correction factor is known as the compressibility factor and is the ratio of
the volume actually occupied by a gas at a given pressure and temperature,
to the volume the gas would occupy at the same pressure and temperature
if it had behaved like an ideal gas.

z = Vactual

Videal

(9)

Typically, a real gas behaves similarly to an ideal gas at low pressures and
also as the actual occupied volume approaches the ideal volume. At these
conditions the compressibility factor will have a value close to one, as illus-
trated in Figure 11.
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Figure 11: The typical shape of a z-factor curve as a function of pressure at
constant temperature.

To find the compressibility factor at the bottom of the reservoir, the gas
formation factor Bg is calculated. The factor relates the volume of 1 lbmol of
gas at reservoir conditions to the volume of the same lbmol of gas at standard
conditions. This gives gives:

Bg = v̂res

v̂ST P
= ρST P

ρres
(10)

By inserting equation8 Bg can be expressed as follows:

Bg =
P ST P

RT ST P zST P

P res

RT reszres

(11)

Pressure and temperature at standard conditions are 1.013 [bar] (1 [atm]) and
273.15 [K] respectively. The compressibility factor z is assumed to be 1 at
standard conditions. This results in an expression for Bg as presented in
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equation 12:

Bg = 0.003354Treszres

Pres

(12)

The compressibility factor must be determined experimentally and varies
with changes in temperature, pressure and composition. A chart of z-factors
for natural gas is given in Figure 12. The compressibility chart was pre-
sented by Standing and Katz(1942), and is a widely accepted correlation in
petroleum industry. The chart in Figure 12 relates pseudoreduced pressure(Ppr)
and pseudoreduced temperature(Tpr) to the z-factor of the gas.
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Figure 12: Compressibility factors of natural gases. From Standing and
Katz(1942)
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7.1.1 Law of Corresponding States

The discovery that, for most gases, the isotherms are very similar has led
to the development of the Law of Corresponding States and the definition
of reduced pressure (Pr) and reduced temperature (Tr). The definitions are
given in Equation 13 and 14 respectively, where the critical pressure and
temperature of the gas are denoted Pc and Tc.

Pr = P

Pc

(13)

Tr = T

Tc

(14)

The law correlates pure gases so that at the same reduced pressure and re-
duced temperature, all gases will have the same z-factor.

The Law of Corresponding States was originally made for pure gases, but
has been extended to also cover mixed gases, like the natural gas in a
petroleum reservoir . As obtaining the critical values for a multicompo-
nent mixture is complicated,pseudoreduced pressure(Ppr ) and pseudoreduced
temperature(Tpr ) has been defined as:

Ppr = P

Pcr

(15)

Tpr = T

Tcr

(16)

Here, Pcr and Tcr are pseudocritical pressure and temperature for mixed gas.
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7.1.2 Compensation for Non-hydrocarbon Components

Natural gas commonly contains some non-hydrocarbon components as hy-
drogen sulphide, carbon dioxide and nitrogen. Especially the presence of
hydrogen sulphide and carbon dioxide can cause errors in the calculated z-
factor if not accounted for.

The equations for this adjustment are given in equations 17 and 18:

P ′pc =
PpcT

′
pc

Tpc + yH2S(1− yH2S)ε (17)

T ′pc = Tpc − ε (18)

The pseudocritical temperature adjustment factor,ε , is obtained from equa-
tion 19 - 21 where yCO2 and yH2S denotes the mole fraction of CO2 and H2S.
Nitrogen is not included as it is assumed to have no significant effect on the
z-factor.

ε = 120(A0.9 − A1.6) + 15(B0.5 −B4) (19)

A = yCO2 + yH2S (20)

B = yH2S (21)

Pseudocritical pressure Ppc and pseudocritical temperature Tpc are calculated
by the empirical equations 22 and 23 :

Ppc = 756.8− 131δg − 3.68δ2
g (22)

Tpc = 169.2− 349.5δg − 74.0δ2
g (23)
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In Equation 22 and 23, δg denotes specific gravity of gas(in this case natural
gas) at standard conditions:

δg = Mg

Mair

(24)

7.1.3 Mixed Density

The density of the mixture is calculated by equations 25- 27. In the equations
vi denotes the volume fraction of component i in the mixture and ρi is the
density of the pure component i.

ρmix =
∑

i

viρi (25)

The volume fraction vi is calculated by Equation 25, where Vi is the volume
of the component, and Vtot is the total volume of the mixture.

vi = Vi

Vtot

(26)

The density of the component i is calculated by Equation 27, where Mi is
the molar weight of component i.

ρi = PMi

RT
(27)

7.1.4 Pressure and Density correlation

Pressure and density is correlated by Equation 28.

P = ρgh (28)
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7.2 Results and Discussion

7.2.1 Pressure Profile

Figure 13 shows how the pressure in the pipe decreases from 129.3 bar in the
bottom hole, to 50.8 bar at the valve. The pressure profile is generated from
data obtained from OLGA-simulations, which were made at valve opening
0.2.
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Figure 13: The pressure profile in the pipe as a function of pipe length. The
data is obtained from OLGA.

As expected, the results in Figure 13 show a correlation between the pressure
in the pipe and depth below sea level. However, the pressure profile is not
linear, but slightly curved. This means that the pressure cannot only be a
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linear function of the elevation in the pipe and that also the variation in
density must be taken into account when making a model for the pressure
drop.

Figure 14 compares the estimated pressure profile and the pressure profile
from Figure 13. The estimation of the pressure profile is calculated from
Equation 28. As discussed in the previous section, the density of the mixture
will decrease significantly. Therefore, the density (ρ) in Equation 28 is also
calculated as function of the height in the pipe.
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Figure 14: A comparison of the estimated pressure profile in the pipe with
the pressure profile from OLGA.

The trends in the pressure profile from OLGA and the estimated profile are
very similar. Approaching the valve, there is a slight deviation of 1 bar
between the real vales and the estimation.
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7.2.2 Density Profile

Figure 15 show how the density of the petroleum mixture decrease from
699.4

[
kg
m3

]
in the bottom of the pipe to 445

[
kg
m3

]
at the valve. The density

of the mixture decreases the higher up in the pipe it flows. The trend is
not linear, but slightly curved. The density profile is generated from data
obtained from OLGA-simulations, which were made at the valve opening 0.2.
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Figure 15: The density profile as a function of the pipe length. The data is
obtained from OLGA.
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Figure 16 compares the estimated density profile with the density profile from
Figure 15, and it shows that with increasing pressure, the density of the fluid
increase. This is because the molecules in a compressible fluid will be pressed
tighter together at a higher presser, which will increase mass per volume. As
oil and water are assumed to be incompressible fluids, the changing pressure
will only have effect on the density of the gas component in the mixture. The
density of the gas is calculated by the 27 and the density of the mixture is
then calculated by Equation 25.
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Figure 16: A comparison of the estimated density profile and the density
profile from OLGA.

As seen in Figure 16, the trends in the density estimation are quite simi-
lar to the real values. When approaching the valve, however, the deviation
increases. Because the density estimation is based on the estimation of the
pressure, there is a correlation between the deviations in these two estimates.
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It is reasonable to assume that an improvement in one of the models auto-
matically will give an improvement in the other model. Some of the deviation
in the density estimate can therefore be explained by the deviations in the
estimate of the pressure.
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8 Valve Model

8.1 Valve Theory

The pressure drop across a valve is difficult to model, as the fluid dynamic
in the valve is very complex. Many calculations of pressure drop and flow
through a valve are therefore based on equations that are highly empirical.
In the following sections we will describe two different methods on how to
model the pressure drop across the valve in our system. The first method is
based on empirical models , the latter is based on Bernoulli’s equation, and
is also the method which is used in OLGA.

8.1.1 Pressure Drop Calculations using Bernoulli

Equation 29 is used to model the pressure drop across the valve. The model
is derived from Bernoulli’s equation, which will be shown in the next section.

4PV alve = 1
2ρ
(
Q

AA

)2 [ 1− C2
f

(ZCf )2

]
(29)

Here AA represent the cross-sectional area of the valve inlet, and Z the valve
opening at the orifice. As the pressure in the pipe vary as a function of the
valve opening, the values of the volume flow (Q) and the density (ρ) also
need to be calculated for each valve opening. The density through the valve,
is assumed to be constant. In this model we assume the flow through the
valve to have the same characteristics as illustrated in Figure 17.

42



Derivation from Bernoulli
Equation 29 is derived from the incompressible Bernoulli’s equation presented
below:

∫ 2

1

dP

ρ
=
∫ 2

1
UdU (30)

Integrating Equation 30 gives:

4P = 1
2ρ(U2)2 − 1

2ρ(U1)2 (31)

Here ρ is the mixed density in
[

kg
m3

]
and U is the fluid velocity in

[
m
s

]
.

It follows from continuity that:

U = Q

A
(32)

where Q represents the volume flow given in
[

m3

s

]
, and A, the flow area in

[m2]. Thus, the pressure drop can be expressed:

4P = 1
2ρ
(
Q

A 2

)2
− 1

2ρ
(
Q

A 1

)2
(33)
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Figure 17: An illustration of the flow through a vale from position A, through
the orifice (o), to position B.

We divide the calculation of the pressure drop across the vale in two, and
calculate; the pressure drop from position A to orifice (o), and pressure re-
covery from orifice to position B. Finally, the two contributions are added to
find the pressure drop from position A to position B.

4P = 4PA,o +4Po,B =
∫ o

A
ρUdU +

∫ B

o
ρUdU (34)

44



Pressure Drop from Inlet to Orifice
As illustrated in Figure 17, the flow conditions at the orifice makes the effi-
cient flow area smaller than the cross sectional area of the orifice. To account
for this effect, a discharge coefficient(Cf ) is introduced.

4PA,o = 1
2ρ
(

Q

AoCf

)2

− 1
2ρ
(
Q

AA

)2
(35)

The coefficient Cf is the ratio between cross sectional area of the orifice and
the efficient flow area.

Cf = A
eff
o

Ao

(36)

The ratio A2
A1

can be expressed by the valve opening Z, and thus the pressure
drop can be expressed as in Equation 37.

4PA,o = 1
2ρ
(
Q

AA

)2
( 1

ZCf

)2

− 1
 (37)

Pressure Recovery
Due to area extension, which causes the pressure recovery between the orifice
and position B, the pressure drop will be reduced in this part of the valve.
Again, we use Bernoulli’s equation, given in 30 and integrate from orifice to
position B. The loss of effective flow area, is accounted for in the first part
of the valve, and does therefore not need to be accounted for here.

4Po,B = 1
2ρ
(
Q

AA

)2 [
1−

( 1
Z

)2]
(38)
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The valve inlet has the same cross-sectional(AA) as the cross-sectional area
of the valve outlet(AB). By combining the two pressure drop calculations
(equation 38 and 37) and setting AB = AA, we get an expression for the
total pressure drop across the valve as written in Equation 39.

4PA,o +4Po,B = 1
2ρ
(
Q

AA

)2
( 1

ZCf

)2

−
( 1
Z

)2
 (39)

8.1.2 Pressure Drop Calculations using Valve Equation

In the second method for doing the pressure drop calculations across the
valve, is by using Equation 40

4p = ρ

(
q

Cdf(z)A

)2

(40)

which is derived from the Valve Equation, given in Equation 41.

q = Cdf(z)A
√
4p
ρ

(41)

The valve equation describes the flow dependency as a function of valve
opening and the pressure drop across the valve. (ref. Boken til Skogestad).
Here, the volume flow is q, and Cd is the dimensionless valve coefficient. The
cross-sectional area of the valve (inlet or outlet) is represented by A , 4P is
the pressure drop from valve inlet to valve outlet, and ρ denotes the density
of the fluid. The function f(z) is the inherent valve characteristics, and will
be elaborated upon in the next section.
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Valve Characteristics
All valves have an inherent valve characteristic which describes the relation-
ship between the valve capacity and the flow through the valve. In the book
of Buckley (1964), he describes different valve types and their flow charac-
teristics. It is the different physical dimensions of the valve that affects the
flow characteristic as a function of valve opening. Valve dimensions are often
customized, so that the flow characteristic meets the customers control needs.

Figure 18: Inherent flow characteristics of different control valves.

Figure 18 shows some common valve characteristics, plotted as percent of
the maximum flow through the valve as a function of valve opening.
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Most valves used in control applications are:

Linear Valve Control f(z) = z

The flow is directly proportional with valve opening. Increasing valve open-
ing gives a linear increase in flowrate.

Equal Percentage Control f(z) = log(z)
As the valve opening increases the flowrate increase with a certain percent
of the previous flow. The relationship between the valve opening and the
flowrate is logarithmic.

Quick Opening Control
This design of a Quick Opening Valve gives a large increases in flow for small
changes in valve opening from the closed position. In contradiction to a
linear valve and a equal percent valve, the exact shape of the characteristic
curve is not defined. Both a valve giving 90% flow at 10% valve opening,
and a valve giving 90% at 60% valve opening can be characterised as a quick
opening valve.

By identifying the flow characteristic of the valve in our system, and applying
it in Equation 40, this can give an accurate estimate of the of the pressure
drop.
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8.2 Result and Discussion

The following sections will present the results from flow-, and valve charac-
teristics as well as the pressure drop estimations calculated by both the Valve
Equation Approach and the Bernoulli Approach.

8.2.1 Flow Characteristics

In order to determine the flow characteristics of the valve in our system, the
flow rate was plotted as a function of valve opening. The result is presented
in Figure 19.
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Figure 19: Flow characteristics for the valve.

The flow characteristics in Figure 19 resembles the trends of a quick opening
valve. Here, a small change in valve opening gives a large increase in flowrate
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for valve openings between 0 and 0.1, and a lagre change in valve opening
gives a small increase in flowrate for valve openings between 0.1 and 1.

As mentioned in section 8.1.2, quick opening characteristics does not have
any defined standard shape, and the function must be adjusted to the spe-
cific characteristic. It is therefore difficult to derive a function for the valve
characteristics directly from the flow characteristics in Figure 19. From sim-
ulations in OLGA, we have values for the pressure drop across the valve at
different valve openings, thus, we can plot the characteristic function and use
this to adjust estimate a function for the valve characteristic.
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Figure 20: Characteristic function for the valve.

The valve characteristics, f(z), obtained from OLGA simulations is plotted
in Figure 20. The valve characteristics resembles an exponential function,
and by the trial and error approach the function is set to:
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f(z) = 0.13(1− exp(−9z))

A comparison of the estimation and the real value of the valve characteristics
is presented in Figure 21.
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Figure 21: Comparison of theestimated characteristic function and the char-
acteristic function for the valve.

We see from Figure 21 that the exponential function fails to describe the valve
characteristics completely, but gives an acceptable estimation. This should be
kept in mind when later looking at the pressure drop estimation. However,
this is the function used as f(z) in the vave equation when estimating the
pressure drop across the valve in section 8.2.2.
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8.2.2 Pressure-drop Profiles

Figure 22 shows the pressure drop across the valve as a function of valve
opening. The pressure drop profile is generated from data obtained from
OLGA-simulations. As we see from the figure, the pressure drop only be-
comes large for small valve-openings(< 0.05), and is very flat for the larger
valve openings. From valve opening 0.1 to 1.0 the pressure drop only de-
creases from 3.05 bar to 1.35 bar.
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Figure 22: Pressure drop across the valve as a function of valve opening. The
data is obtained from OLGA.
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Valve Equation Approach
By using the valve function obtained in section 8.2.1:

f(z) = 0.13(1− exp(−9z))

and combining it with Equation 40, we obtain a pressure drop estimation as
presented in Figure 23.
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Figure 23: A comparison of the pressure drop estimated with the valve equa-
tion, and the actual pressure drop across the valve.

Figure 23 shows a comparison of the estimation and the pressure drop profile
from OLGA. We see that the this method gives a very good estimation of
the pressure drop across the valve. The areas in Figure 23 with the largest
deviations between estimation and OLGA profile, is also the area where the
valve equation is poorest fitted. This can be seen in Figure 21.
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Bernoulli Approach
The pressure drop is estimated from Equation 29, which is derived in chap-
ter 8.1. The result, presented in Figure 24, shows that the estimate by the
Bernoulli Approach flattens out at a lower value than the pressure drop val-
ues generated in OLGA. For valve openings between 0.1 and 1.0 the pressure
drop decreases from 0.99 bar to 0.0032 bar, which is slightly lower than for
the real values. Apart from that, the trend is very similar. Also here, the
pressure drop across the valve only gets large for very small valve openings.
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Figure 24: A comparison of the pressure drop estimated by the Bernoulli
approach, and the actual pressure drop across the valve.

One reason for the deviation between OLGA and the estimate, can be that
the estimation is based on a more ideal model than what is realistic. In a
real case there may occur more energy loss than what is accounted for in our
model, which again would result in a larger pressure drop.
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In our valve-model, the Cd−factor is the only factor which accounts for de-
viation between a theoretical and a real case. For the estimate presented
in Figure 24, this factor is set to 0.84, which is the same value as for the
Cd−factor in OLGA. However, it is likely that deviations from the theoreti-
cal case in OLGA are corrected for in other places than only in the Cd−factor.
It looks like the valve in OLGA has a minimum pressure drop of approxi-
mately 1.3[bar]. This is reasonable, as there in a real case always will be
some friction loss, also at valve opening 1.
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Figure 25: A comparison of the pressure drop estimated by Equation 42, and
the actual pressure drop across the valve.

4p = ρ

(
q

Cdf(z)A

)2

+4pmin (42)

By adding a minimum pressure drop value to Equation 40 (4pmin = 1.3[bar]),
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we obtain the pressure drop estimation presented in Figure 25. We see from
the estimation
adding friction-loss or a

8.2.3 Comparing the Valve Equation- and Bernoulli Approach

Both the Bernoulli approach(+ constant pressure drop factor) and the Valve
Equation approach give good estimations for the pressure drop across the
valve in our system.

An assumption that must be met for Bernoulli’s equation to apply, is that
friction forces must be negligible. This is not the case in most valves used
in process facilities. Some of the energy loss is accounted for by including
the Cf−factor, and the remaining in the minimum pressure drop(4pmin).
The pressure drop estimated by this method will highly depend on these two
factors, and therefore be much more empirical than it appears to be, being
based on Bernoulli.

By identifying the flow characteristics and an empirical valve equation, we
obtained a very good estimation for the pressure drop.
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9 Further Work

If the model presented in this thesis should be used for other purposes than
obtaining information on trends and approximate pressure-values as a func-
tion of valve opening, several improvements should be made.
The model developed in this thesis is dependent on a polynomial function
that calculates the flow as a function of valve opening. This function has been
made from data obtained in OLGA, and the MATLAB-model is therefore
not completely independent of the OLGA model. An improvement would be
to eliminate this dependence.

A suggestion is to start modelling from the valve and down. Here we can often
measure the initial value for the pressure, which gives enough information
for the integration. In this thesis the modelling was started from the bottom
of the well and up. Here we had no initial conditions available, and the flow
therefore was estimated by simulation-data.
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10 Conclusion

In this thesis a simple MATLAB-model is made based on basic physical prin-
ciples. The quality of the model is evaluated by making a similar model in
OLGA, and comparing the results from the MATLAB-model with data ob-
tained from the OLGA-simulations.

The model is combined of three flow models; inflow-, pipeflow-, and a valve
model. In the finished model these three parts are linked together, and made
a function of the valve opening. The principles used for the inflow-, pipeflow-,
and valve model is respectively Darcy’s law, the Compressibility EOS and
the Valve Equation. By comparing the results from the MATLAB-model
with the results from the OLGA-simulations, we see that the principles give
a good approximation of the pressure relations in the well.

The model works best for the or the purpose of obtaining information on
trends and approximate pressure-values at different as a function of valve
opening. However, this is a very simplified model, which is also partly
adapted to dataseries obtained from OLGA, and should therefore be im-
proved at several areas and tested before used for other purposes.
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Appendices

A Well Performance Curves

Figure 26: Well Preformance Curves from the Troll-dataset.
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B Valve specifications

Table 4: Valve Specifications in Olga

Model Equilibrium model Slip model Thermal Phase

Valve 1(-4) Hydrovalve Frozen No Slip No

Hydromodel - used for chokes and valves with liquid/gas characteristics.

Frozen is the equilibriummodel for no mass transfer.

No Slip is assumed in our valve model.

No thermal phase means that the gas will expand isentropical while the
liquid is isotermal.
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C Relevant Data From OLGA-simulations
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