

Optimal Operation of Parallel Heat Exchanger Networks

Stian Aaltvedt

Chemical Engineering and Biotechnology

Submission date: June 2013

Supervisor: Sigurd Skogestad, IKP Co-supervisor: Johannes Jäschke, IKP

Norwegian University of Science and Technology Department of Chemical Engineering

Abstract

Optimal operation of parallel heat exchanger networks is desirable for many processes aiming to achieve increased supply and potentially higher profit. The aim is to control the final outlet temperature within a certain range, which in many cases includes a trade off between maximum outlet temperature and minimum operating costs.

The goal with this study has been to investigate the performance of the self-optimizing Jäschke temperature control variable, proposed by post doctor Johannes Jäschke. The Jäschke temperature approach seeks to achieve near optimal operation of parallel heat exchanger networks, exclusively by manipulation of the bypass selection - only based on simple temperature measurements. The method has been demonstrated for several different cases and investigated both at steady state and dynamically.

For balanced heat exchanger networks, with evenly distributed hot stream heat capacities throughout the network, the Jäschke temperature showed good performance for all cases studied. The simulations revealed satisfactory disturbance rejection and very close to optimal operation. For cases suffering a more uneven heat capacity distribution, the method did not give near optimal operation. Also, exposed to major, non-realistic disturbances the Jäschke temperature control configuration gave poor performance due to singularities in the control variable when certain temperatures achieved equal values. In the presence of such incidents, a modified control variable was implemented by re-writing the expression controlling the Jäschke temperatures to a denomiator-free form. This gave slightly better performance and was concluded to operate the system satisfactory.

Sammendrag

Optimal drift av parallelle varmevekslernettverk er ønskelig for mange prosesser med mål om økt etterspørsel og potensielt større profitt. Målet er å kontrollere utgangstemperaturen innenfor et bestemt intervall, som i mange sammenhenger er en balanse mellom høyest mulig utgangstemperatur og lavest mulig driftskostnader.

Målet med denne studien har vært å undersøke ytelsen til den selv-optimaliserende Jäschke temperatur reguleringsvariabelen, forslått av postdoktor Johannes Jäschke. Jäschke temperatur-metoden forsøker å oppnå en drift så nært optimum som mulig, kun ved justering av strømsplitten – utelukkende basert på enkle temperatur-målinger. Metoden har blitt demonstrert for flere ulike tilfeller av varmevekslernettverk og blitt undersøkt både i stabil tilstand og dynamisk.

For balanserte varmevekslernettverk med jevn fordeling av de ulike varmestrømmenes varmekapasitet, viste Jäschke temperatur-konfigurasjonen god ytelse for alle undersøkte tilfeller av varmevekslernettverk. Simuleringene gav god forstyrrelsesavvisning og svært nær optimal drift. For tilfeller hvor varmekapasitetene var ujevnt fordelt i varmevekslernettverket, gav ikke metoden nær optimal drift. Utsatt for større og mer urealistiske forstyrrelser viste Jäschke temperatur-metoden dårlig ytelse grunnet singulariteter i reguleringsvariabelen i tilfeller hvor enkelte temperaturer fikk samme verdi. I slike tilfeller ble reguleringsvariablene modifisert ved å unnlate bruken av brøk i ligningen. Dette gav bedre ytelse og ble konkludert til å gi god drift av systemet.

1 Preface

This master thesis was completed during the spring semester of 2013, and was the very final compulsory part of the 5 year integrated master program in Chemical Engineering and Biotechnology at Norwegian University of Science and Technology (NTNU).

The task of this thesis has applied to me as very interesting, and I feel honored of having the opportunity to work together with Johannes Jäschke on his patent application. It has been a great factor of motivation, knowing that my work has, to some extent, contributed to his research on one of todays most important global concerns of energy saving. I would like to thank Johannes for being so helpful and inspirational. I have learned a lot from working with Johannes, you have given me a solid lesson on heat exchange and self-optimizing control. Additionally, I have become way more experienced with MATLAB and LATEX because of you. Thank you!

A huge thanks also goes out to Sigurd Skogestad, my main supervisor. You have an incredible high level of knowledge and skills. I admire your ability to always have such a good overview of the whole porcess-systems engineering group and each group members individual work. Thank you for being a very good and unique team leader.

Last but not least I would like to thank all the friends that I've made during my years at NTNU. You all certainly made the time in Trondheim very memorable!

I declare that this is an independent work according to the exam regulations of the Norwegian University of Science and Technology (NTNU).

Date and signature

7/6-2013 Stion All 1407

Contents

\mathbf{A}	bstra	act	i
Sa	amm	endrag	iii
1	Pre	face	v
2	Inti	roduction	1
3	Hea	at Exchanger Modelling	5
	3.1	Steady state model	5
		3.1.1 Approximations and Transformations	7
	3.2	Dynamic Model	9
		3.2.1 The Mixed Tanks in Series Model	9
4	Opt	imization of Heat Exchanger Networks	11
	4.1	Optimal Operation Problems	13
5	Self	E-Optimizing Control	17
	5.1	General Idea	17
	5.2	Jäschke Temperatures	18
6	Ste	ady State Analysis Results	21
	6.1	Case I: Four Heat Exchangers in Series and One in Parallel	21
	6.2	Case II: Two Heat Exchangers in Parallel	24
		6.2.1 Jäschke Temperature Operation at Extreme Cases	26
		6.2.2 Jäschke Temperature Operaton Subject to Measurement Er-	
		rors	31
7	Dyı	namic Analysis Results	35
	7.1	Closed Loop Steady State Parameters	39
	7.2	Jäschke Temperature Operation at Small Disturbances	39
	7.3	Jäschke Temperature Operation at Major Disturbances	43

8	Disc	cussion and Further Work	51
	8.1	Steady State Analysis Discussion	51
	8.2	Dynamic Analysis Discussion	52
	8.3	Further Work	53
9	Con	nclusions	57
Re	efere	nces	57
\mathbf{A}	Stea	ady State Analysis	63
	A.1	Four Heat Exchanger in Series and One in Parallel	63
	A.2	Six Heat Exchangers in Series and One in Parallel	63
	A.3	Two Heat Exchangers in Parallel	66
		A.3.1 Case II-c	66
		A.3.2 Case II-d	67
		A.3.3 Jäschke Temperature and Measurement Errors	69
В	Dyr	namic Analysis	7 1
	B.1	Dynamic case I	71
	B.2	Dynamic case II	75
	B.3	Dynamic Case II-a	76
	B.4	Dynamic Case III	77
	B.5	Dynamic Case IV	82
	B.6	Dynamic Case V	85
\mathbf{C}	Mat	tlab Scripts	91
	C.1	Steady State Analysis Scripts	91
	C.2	Dynamic Analysis Scripts	129
D	Sim	ulink Block Diagrams	203
	Dyn	amic Case I Block Diagram: dynamic_11_1.mdl	204
	Dyn	amic Case II Block Diagram: dynamic_21_1.mdl	205

Dynamic Case II-a Block Diagram: dynamic_21_1_1.mdl 20
Dynamic Case III Block Diagram: dynamic_32.mdl
Dynamic Case IV Block Diagram: dynamic_41.mdl
Dynamic Case V Block Diagram: dynamic 61.mdl

List of Figures

2.1	A simplified general heat exchanger network with N heat exchanger	
	in series on the upper branch (branch 1) and M heat exchangers in	
	series on the lower branch (branch 2)	1
3.1	The counter current heat exchanger	5
3.2	The mixed tanks heat exchanger model, modified	9
4.1	A general heat exchanger network with N heat exchanger in series	
	on the upper branch (branch 1) and M heat exchangers in series on	
	the lower branch (branch 2) \dots	13
4.2	ΔT in a heat exchanger	16
6.1	Case I: Four heat exchangers in series parallel to one heat exchanger	22
6.2	Case II: Two heat exchangers in parallel	24
6.3	Control variable JT and T_{end} as a function of split u for Case II.	
	The red and black dotted lines show optimal split considering outlet	
	temperature and control variable, respectively	26
6.4	Control variable JT and T_{end} as a function of split u for Case II-a.	
	The red and black dotted lines show optimal split considering outlet	
	temperature and control variable, respectively	28
6.5	Control variable JT and T_{end} as a function of split u for Case II-b.	
	The red and black dotted lines show optimal split considering outlet	
	temperature and control variable, respectively	29
6.6	Validity of the AMTD approximation, $\frac{\theta_1}{\theta_2}$ as a function of split u	30
7.1	The dynamic case II (base case) heat exchanger network $\ \ldots \ \ldots$	36
7.2	Simulink block diagram for Dynamic case II, ${\tt dynamic_21_1.mdl}$	37
7.3	Open loop step response of control variable JT on a 10 % increase	
	in inlet mass flow m_1 for Dynamic case II	38
7.4	Control variable response when T_0 is increased 10 °C and $Th_{1,2}$	
	decreased 25 °C at $t=1000$ and 1600 sec, respectively	40
7.5	Split response when T_0 is increased 10 °C and $Th_{1,2}$ decreased 25	
	°C at $t = 1000$ and 1600 sec, respectively	41

7.6	Outlet temperature response when T_0 is increased 10 °C and $Th_{1,2}$	
	decreased 25 °C at $t=1000$ and 1600 sec, respectively	42
7.7	Open loop step response of modified control variable c_{mod} on a 10	
	% increase in inlet mass flow m_1 for Dynamic case II-a	45
7.8	A selection of outlet temperature responses for tuning set 1 when	
	$Th_{2,1}$ is decreased from 255 - 180 °C from time $t=2000$ to 6000 sec	47
7.9	Split u as a function of time t when $Th_{2,1}$ is decreased from 255 -	
	180 °C from time $t=2000$ and 6000 sec $\dots \dots \dots \dots \dots$	48
7.10	Modified control variable c_{mod} as a function of time t when $Th_{2,1}$ is	
	decreased from 255 - 180 °C from time $t=2000$ and 6000 sec	48

List of Tables

6.1	Case I parameters	22
6.2	Case I price constants	23
6.3	Optimal operation and Jäschke temperature operation for Case I	23
6.4	Case II parameters	25
6.5	Case II-a parameters	27
6.6	Case II-b parameters	27
6.7	Temperature loss associated with measurement errors	32
7.1	Dynamic case II parameters	38
7.2	PI tuning parameters for Dynamic case II	38
7.3	Open loop and closed loop operation variables for Dynamic case II .	39
7.4	Analog filter parameters for Dynamic case II	40
7.5	Dynamic case II-a parameters	44
7.6	Tuning parameters for Dynamic case II-a	45
7.7	PI tuning parameters for Dynamic case II-a, set 1	45
7.8	PI tuning parameters for Dynamic case II-a, set 2	45
7.9	Analog filter parameters for ramp signals in Dynamic case II-a	46

List of Symbols

Symbol	Explanation	Unit
ΔT_{AM}	Arithmetic Mean Temperature Difference	$[^{\circ}C]$
ΔT_{LM}	Logarithmic Mean Temperature Difference	$[^{\circ}C]$
ΔT_{min}	Minimum temperature difference at heat exchanger ends	$[^{\circ}C]$
ΔT_{UN}	Underwood's approximated temperature difference	$[^{\circ}C]$
ϵ	Effectiveness of a heat exchanger	[-]
θ	Temperature difference at heat exchanger ends	$[^{\circ}C]$
θ	Transport delay	[sec]
ho	Density	$\left[kg/\!\!/m^3\right]$
$ au_f$	Filter time constant	[sec]
$ au_I$	PI controller time constant	[sec]
A	Heat exchanger area	$[m^2]$
c	Control variable	$[^{\circ}C]$
c_{mod}	Modified control variable	$[^{\circ}C^{4}]$
$C_{min/max}$	smallest/biggest heat capacity rate	$\left[^{kW}/\!$
C_p	Heat capacity	$\left[kW/kg^{\circ}\mathbf{C}\right]$
C_r	Heat capacity ratio	[-]
$ar{c}$	Steady state value for controller	$[^{\circ}C]$
d	Disturbance	[various]
e	Error signal to controller	[°C]
g	Equality constraint vector	[various]
h	Inequality constraint vector	$^{\circ}\mathrm{C}]$
h	Heat transfer coefficient	$\left[kW/\circ \mathrm{C}m^{2}\right]$
J	Cost function	[-\$]
$JT_{i,j}$	Jäschke temperature for heat exchanger i on branch j	[°C]
•		

K_c	PI controller gain	$\left[^{\circ}\mathbf{C}/\!\!/kg/s\right]$
K_f	Filter gain	$\left[^{\circ}\mathbf{C}/\!\!/kg/s\right]$
L	Loss	$[^{\circ}C]$
m	Mass flow	$\left[kg/\!\!/_{\!\! s}\right]$
M	Number of heat exchangers on the lower branch	[-]
N	Number of heat exchangers on the upper branch	[-]
NTU	Number of Transit Units	[-]
$P_{i,j}$	Price constant heat exchanger i on branch j	[\$/kW]
Q	Heat	[kW]
R	Model order in dynamic calculations	[-]
t	Time	[sec]
T	Temperature	$[^{\circ}C]$
u	Degrees of Freedom (DOF)	[-]
u	Stream split to upper branch	[-]
u_t	Manipulated variables	[various]
U	Overall heat transfer coefficient	$\left[kW/\!$
V	Volume	$[m^3]$
w	Heat capacity rate	$\left[^{kW}/\!$
x	State variables	[various]

2 Introduction

In a modern industrial and technological world where energy and power consumption serves as one of the most essential global concerns, there are enhanced requirements for all production processes to be sustainable to future generations of our planet. In the chemical industry, especially including todays great petroleum activity, an overall goal of using the available energy sources in the most efficient way can be satisfied by optimal heat recovery from different parts of a given process (Zhang, Yang, Pan & Gao 2011).

The need for research and development in this industry is one very important aspect of the issues associated with energy efficient processes. The trade off between a business goal seeking increased supply in an attempt to generate large profit margins - and still obey the sustainable methods to meet the energy demands - is rather complex (Zhang et al. 2011). Good heat recovery from a given process can be achieved through effective use of heat exchangers. Often, heat exchangers are combined in a heat exchanger network to distribute the available hot streams in the most effective way (Sinnott & Towler 2009). A simplified general heat exchanger network with N heat exchangers in series on the upper branch and M in series on the lower branch is presented in Figure 2.1.

Figure 2.1: A simplified general heat exchanger network with N heat exchanger in series on the upper branch (branch 1) and M heat exchangers in series on the lower branch (branch 2)

A heat exchanger network should be designed allowing for the best possible heat integration. At the same time, operating with reasonable heat exchanger duties is necessary in order to minimize the operation costs (Jensen & Skogestad 2008). Marselle, Morari & Rudd (Marselle, Morari & Rudd 1982) were some of the first to discuss optimal operation problems of heat exchanger networks, where simultaneous regulation and optimization were considered as a possible control configuration. Since that, among other publications, Mathisen, Morari & Skogestad (Mathisen, Morari & Skogestad 1994b) have proposed a method to operate heat exchanger networks that also minimizes utility consumption. Recently, Jäschke (Jaeschke 2012) derived the self-optimizing Jäschke temperature variable for operation of heat exchanger networks. According to Skogestad (Skogestad 2004), the use of self-optimizing control does not require simultaneous regulation and optimization when disturbances are present. Additionally, the method proposed by Jäschke includes utility costs, hence operation is also subject to each heat exchangers associated cost. The self-optimizing Jäschke temperature variable seeks to operate certain heat exchanger networks with the split u (see Figure 2.1) as the only manipulated variable. The method is claimed to achieve near-optimal operation with constant setpoints for the control variable (Jaeschke 2012). Usually operation of heat exchanger networks involves several different manipulated variables (e.g. bypass selection and hot stream flows), relying on both temperature and flow measurements (González & Marchetti 2005). With the Jäschke temperature, only temperature measurements are needed. Compared to flow measurements, temperature measurements are cheaper, faster and more exact which makes the control structure proposed by Jäschke easy to implement and use.

This study investigates optimal operation of heat exchanger networks. The aim is to continue the work done on the Jäschke temperature (Jaeschke 2012) in the specialization project (Aaltvedt 2012). The specialization project investigated optimal design and optimal steady state operation of parallel heat exchanger networks limited by three heat exchangers in series. Recently, Jäschke proposed a general equation applying for N heat exchangers in series (Jaeschke 2012), which, among other cases, will be investigated in this study.

During the progress of this study the Jäschke temperature control configuration is considered a patent application. The overall goal with this study is therefore to search for and investigate cases where the Jäschke temperature gives non-optimal

operation and/or poor control. First, a steady state analysis is done. Operation using the Jäschke temperature control variable is compared to optimal operation for several different heat exchanger networks. The downstream temperature loss associated with Jäschke temperature operation is investigated for each case. The Jäschke temperature will also be tested in the presence of measurement errors. Secondly, a dynamic analysis is done. The goal with this analysis is to relieve any poor control resulting from the Jäschke temperature in the presence of different disturbances, where temperature fluctuations will serve as the main source for disturbance. In addition, for a heat exchanger network of two heat exchanger in series parallel to one heat exchanger, a comprehensive analysis is done for an extreme case where a decreasing hot stream temperature in one heat exchanger gives a cooling effect.

3 Heat Exchanger Modelling

With heat exchange the overall goal is to transfer heat from a hot source to a cold source (Skogestad 2003a). The heat transfer process can be carried out by three different mechanisms (Geankoplis 2003):

- Conduction heat transfer
- Convection heat transfer
- Radiation heat transfer

For most industrial processes where heat is transferred from one fluid to another through a solid wall, conduction is the main mechanism for heat transfer (Geankoplis 2003). This heat transfer is conducted in a heat exchanger, where the cold fluid is to be heated by the hot fluid. The most effective way of heat transfer is done through a *counter current* heat exchanger (Geankoplis 2003) shown in Figure 3.1. Here, Q[kW] represents the transferred heat and T_h and T_c [°C] are the temperatures of the hot and cold stream, respectively.

Figure 3.1: The counter current heat exchanger

3.1 Steady state model

In an ideal counter current heat exchanger the outlet hot stream temperature equals the entering cold stream temperature (Bartlett 1996). That is, $T_{h,out} = T_{c,in}$ in Figure 3.1, and the heat exchangers effect is said to be maximized. For an ideal counter current heat exchanger constant inlet temperatures ($T_{h,in}$ and $T_{c,in}$ in Figure 3.1) can be assumed at steady state. The heat Q transferred form hot to cold side can be expressed by the heat exchanger equation (Skogestad 2003a)

$$Q = UA\Delta T_{LM} \tag{3.1}$$

Where U is the over all heat transfer coefficient $[^{kW}/^{\circ}Cm^2]$ and A is the total area of the heat exchanger $[m^2]$. For many ideal cases the the overall heat transfer coefficient U can be written as (Incorpera & DeWitt 2007)

$$U = \frac{h_c h_h}{h_c + h_h} \tag{3.2}$$

Here, h_c and h_h represents the heat transfer coefficients for cold and hot fluid, respectively. The ΔT_{LM} term is the Logarithmic Mean Temperature Difference (LMTD). For a counter current heat exchanger it is given as (Skogestad 2003*a*)

$$\Delta T_{LM} = \frac{(T_{h,in} - T_{c,out}) - (T_{h,out} - T_{c,in})}{\ln(\frac{T_{h,in} - T_{c,out}}{T_{h,out} - T_{c,in}})} = \frac{\theta_1 - \theta_2}{\ln(\frac{\theta_1}{\theta_2})}$$
(3.3)

The energy balance for the ideal counter current heat exchanger in Figure 3.1 is (Skogestad 2003a)

$$Q = m_c C p_c (T_{c,out} - T_{c,in}) \tag{3.4}$$

$$Q = m_h C p_h (T_{h,in} - T_{h,out}) \tag{3.5}$$

 Cp_c , Cp_h and m_c , m_h represents the heat capacities $[^{kW}/kg^{\circ}C]$ and the mass flows $[^{kg}/s]$ for the cold and hot fluid, respectively. Since this is a steady state model, the heat capacities can be assumed to be constant. The product mCp is called the *heat capacity flow rate* (Sinnott & Towler 2009), given in $[^{kW}/^{\circ}C]$.

$$m_c C p_c = w_c (3.6)$$

$$m_h C p_h = w_h (3.7)$$

From the principle of energy- and mass conservation the correlation between Equation 3.1, 3.4 and 3.5 is

$$Q = UA\Delta T_{LM} = w_c (T_{c,out} - T_{c,in}) = w_h (T_{h,in} - T_{h,out})$$
(3.8)

3.1.1 Approximations and Transformations

Associated with steady state is the already mentioned assumptions of constant heat capacities and constant inlet hot and cold stream temperatures. For the steady state investigation the mass flows of the cold stream and every hot stream will also be treated as constant. In addition, single phase flow for hot streams, that is no phase transfer during heat transfer, will also be assumed in the steady state analysis.

Approximation of the Logarithmic Mean Temperature Difference (LMTD)

Application of the LMTD equation might lead to numerical challenges. If the LMTD were to be applied on a transient in which the temperature difference had different signs on the two sides of the heat exchanger, the argument to the logarithmic function would be negative, which is not allowable (Kay & Nedderman 1985). Skogestad (Skogestad 2003a) states that the Logarithmic Mean Temperature Difference (LMTD) in Equation 3.3 can be approximated to an Arithmetic Mean Temperature Difference (AMTD). If $^{1}/_{1.4} < ^{\theta_{1}}/_{\theta_{2}} < 1.4$, i.e. the temperature difference between the cold and hot side is fairly constant, the error of using AMTD instead of LMTD is less than 1%. The arithmetic mean temperature difference, AMTD is given as (Skogestad 2003a)

$$\Delta T_{AM} = \frac{\theta_1 + \theta_2}{2} \tag{3.9}$$

Another and more robust approximation to the LMTD is made by Underwood (Underwood 1933) and is given as

$$\Delta T_{UN} = \left(\frac{\theta_1^{\frac{1}{3}} + \theta_2^{\frac{1}{3}}}{2}\right)^3 \tag{3.10}$$

To avoid the numerical issues associated with the LMTD and due to the robustness of the approximation, the Underwood approximation (Underwood 1933) will be used in parts of the steady state simulations where the LMTD needs to be approximated.

Transformation of the Model Equations to the NTU Method

The Number of Transfer Units (NTU) Method is used to calculate the steady state rate of heat transfer in heat exchangers where there is insufficient information to calculate the Logarithmic Mean Temperature Difference (LMTD) (Incorpera & DeWitt 2007). If both the heat exchanger area and the hot and cold mass flows together with the respective inlet temperatures are known, the NTU method can be applied for simulations of heat exchangers. The NTU method calculates the effectiveness of a heat exchanger based on the flow with the limiting heat capacity. The energy equations are the same as the ones given in Section 3, only expressed in a different way. The number of transfer units is defined as (Incorpera & DeWitt 2007)

$$NTU = \frac{UA}{C_{min}} \tag{3.11}$$

Where C_{min} is the smallest heat capacity rate, that is $C_{min} = min\{w_c, w_h\}$. For counter current flow, the effectiveness ε is given by (Incorpera & DeWitt 2007)

$$\varepsilon = \frac{1 - \exp(-NTU(1 - C_r))}{1 - C_r \exp(-NTU(1 - C_r))}$$
(3.12)

Here, C_r is defined as the ratio $\frac{C_{min}}{C_{max}}$ and $C_{max} = max\{w_c, w_h\}$. If C_r in Equation 3.12 becomes singular the equation can not be used. In that case, for counter current flow, ε becomes (Incorpera & DeWitt 2007)

$$\varepsilon = \frac{NTU}{1 + NTU} \tag{3.13}$$

From this, the hot and cold outlet temperatures from a heat exchanger can be found

$$T_{h,out} = (1 - C_r \varepsilon) T_{h,in} + C_r \varepsilon T_{c,in}$$
(3.14)

$$T_{c,out} = \varepsilon T_{h,in} + (1 - \varepsilon)T_{c,in}$$
(3.15)

According to these equations, the NTU-method yields a linear relationship between the inlet temperatures and the resulting outlet temperatures. However, the outlet temperature is nonlinearly dependent on the flow rate.

3.2 Dynamic Model

Dynamic models are needed to assess controllability of heat exchangers and heat exchanger networks (Mathisen, Morari & Skogestad 1994a). In order to verify whether the control configuration proposed by Jäschke (Jaeschke 2012) gives satisfactory control, dynamic simulations and control behavior of heat exchanger networks should also be taken into account.

The dynamic analysis includes simulations present to disturbances. For these parts the assumptions of constant cold and hot stream temperatures will no be longer valid. The cold stream mass flow will also serve as a disturbance and will thereby neither be treated as constant. However, single phase flow will still be assumed.

3.2.1 The Mixed Tanks in Series Model

Wolff, Mathisen and Skogestad (Wolff, Mathisen & Skogestad 1991) states that a heat exchanger can be approximated as a lumped model and thus be expressed as mixed tanks in series. Modeling the temperature development for a given stream in a heat exchanger as mixed tanks in series is desirable because of the simple expression that result. A modified version of this lumped model is presented in Figure 3.2 (Wolff et al. 1991)

Figure 3.2: The mixed tanks heat exchanger model, modified

Here, $m_h(0)$ and $T_h(0)$, $m_c(0)$ and $T_c(0)$ is the inlet mass flow and temperature on hot and cold side, respectively. $T_h(k)$ and $T_c(l)$ is the hot stream and cold stream outlet temperatures in tank k and l, respectively. T_w is the wall temperature and Q is the transferred heat in each tank. The lumped model consists of R equal mixing tanks, in which the total heat exchanger area A and volume V is assumed to be equally distributed throughout the R tanks. Negligible heat loss and pressure drop, constant heat capacity and fluid density are also assumed. Relevant heat exchanger data are given in Table B.1 in Appendix B From Mathisen et al. (Mathisen et al. 1994a), the differential equations resulting from the energy balance are

$$\frac{dT_h(k)}{dt} = \left(T_h(k-1) - T_h(k) - \frac{h_h A}{w_h R} \Delta T_h(k)\right) \frac{m_h R}{\rho_h V_h}$$
(3.16)

$$\frac{dT_w(l)}{dt} = \left(\left(h_h \Delta T_{w,h}(l) - h_c \Delta T_{w,c}(l) \right) \frac{A}{\rho_w c_{p,w} V_w}$$
 (3.17)

$$\frac{dT_c(l)}{dt} = \left(T_c(l-1) - T_c(l) - \frac{h_c A}{w_c R} \Delta T_c(l)\right) \frac{m_c R}{\rho_c V_c}$$
(3.18)

Where the subscript c, h and w denotes cold fluid, hot fluid and wall, respectively. Further, h is the heat transfer coefficient for each fluid, given in $[{}^{kW}/{}^{\circ}Cm^2]$, ρ is density given in $[{}^{kg}/m^3]$, R is the number of cells, V is volume given in $[m^3]$ and t is time in [sec]. A complete derivation can be found in Mathisen et al. (Mathisen et al. 1994a). According to the authors, a model order of R > 6 is typical to ensure satisfactory prediction. In this study a model order of 10 is used.

4 Optimization of Heat Exchanger Networks

For many processes, the overall goal is to maximize the income of the plant (Jensen & Skogestad 2008). In a perfect world, optimal heat-transfer performance would be achieved without compromise. Systems would require minimal heat exchanger area, with minimal cost associated with heat exchange equipment. In the real world, however, economic losses can begin as early as the preliminary design phase. The design must accommodate uncertainties and assumptions, adding to the projects capital investment and operating costs (Gramble 2006). Out of several factors, profitability associated with heat exchangers relies on the effectiveness of the heat transfer. However, there are two contradictory factors for cost-effective heat transfer. Obtaining the highest possible outlet temperature is desirable regarding the final product quality and the potential profit. At the same time, operating with reasonable heat exchanger duties is an equally important factor for keeping the operation costs low (Jensen & Skogestad 2008). Optimization of heat exchanger networks are based on an objective function J that includes capital and operation costs (Jensen & Skogestad 2008).

Subject to optimization is also equality and inequality constraints. These need to be satisfied in order for the optimization to be valid within the systems defined limits. In this case, each heat exchangers performance is limited by the design and its available hot stream. From Skogestad (Skogestad 2004) the goal of an optimization problem is to minimize an objective function J subject to its given constraints g and h

$$minimize J(x, u_t, d) (4.1)$$

subject to equality constraints:
$$g(x, u_t, d) = 0$$
 (4.2)

subject to inequality constrains:
$$h(x, u_t, d) \ge 0$$
 (4.3)

where J is the objective function, x the state variables, u_t is the manipulated variables and d the disturbances. The manipulated variables also denotes the systems degrees of freedom (DOFs). The equality constraints g include the model equations, whereas the *inequality* constraints for the cases studied in this report

includes the ΔT_{min} for each heat exchanger. The inequality constraints are only present for numerical purposes as it prevents the heat exchangers from unwanted temperature cross.

From a control perspective the task is to decide what to control with the available degrees of freedom, u. If the states x are eliminated by use of the model equations g the remaining unconstrained problem is

$$min_u J(u,d) = J(u_{opt},d) = J_{opt}(d)$$
(4.4)

Here, u_{opt} is to be found and $J_{opt}(d)$ is the optimal value of the objective function J. Jensen and Skogestad (Jensen & Skogestad 2008) state that the total annualized costs associated with operation of heat exchanger networks are divided into operation costs and capital costs.

$$min_u(J_{operation} + J_{capital})$$
 (4.5)

Where u is the degrees of freedom which includes all the equipment data and operating variables. As this study investigates operation of heat exchanger networks, only the operation costs ($J_{opertaion}$) in Equation 4.5 will be considered. A general heat exchanger network with N heat exchanger in series on the upper branch and M heat exchangers in series on the lower branch is presented in Figure 4.1.

Figure 4.1: A general heat exchanger network with N heat exchanger in series on the upper branch (branch 1) and M heat exchangers in series on the lower branch (branch 2)

4.1 Optimal Operation Problems

As different sources of heat may have different prices, Jäschke (Jaeschke 2012) has proposed a cost function for operation of a general heat exchanger network. For a heat exchanger network in Figure 4.1, consisting of N heat exchangers in series on the upper branch (j = 1) and M heat exchangers in series on the lower branch (j = 2), the cost function proposed by Jäschke is

$$J = (P_{i,1}(T_{i,1} - T_{i-1,1}) + \dots + P_{N,1}(T_{N,1} - T_{N-1,1}))uw_0 + (P_{i,2}(T_{i,2} - T_{i-1,2}) + \dots + P_{M,2}(T_{M,2} - T_{M-1,2}))(1 - u)w_0$$

$$(4.6)$$

Where all $P_{i,1}$ and $P_{i,2}$ are negative price constants given in [\$/kW] associated with the price of transferring the heat $Q_{i,1}$ and $Q_{i,2}$ through heat exchanger $HX_{i,1}$ and $HX_{i,2}$, respectively. $T_{i-1,1}$ and $T_{i,1}$ are the temperature of the cold stream entering and leaving heat exchanger i on branch 1, respectively. Branch 1 is

associated with the split u, and branch 2 with the remaining (1-u), hence the product $(T_{i,1} - T_{i-1,1})uw_0$ resembles the transferred heat $Q_{i,1}$ in heat exchanger i on branch 1 given in Figure 4.1. The same applies for all heat exchangers on branch 2. This product serves as an extended version of the energy balance in Equation 3.4. Doing an unit analysis, the cost function to be minimized is the negative of the total costs given in [\$]. This means that the lower the negative $P_{i,j}$ value for a certain heat exchanger, the cheaper it is to operate. If all price constants are equal, this cost function corresponds to maximizing the total transferred heat (Jaeschke 2012).

The Underwood approximation (Underwood 1933) given in Equation 3.10, Section 3.1.1 is used in simulations investigating optimal operation. Moreover, as this study takes on to operation of heat exchanger *networks* the notation in the original model equations from Section 3.1 is adjusted. For the general heat exchanger network in Figure 4.1, the heat exchanger equation for one given heat exchanger is thereby

$$Q_{i,j} = U A_{i,j} \Delta T_{UN_{i,j}} \tag{4.7}$$

Here, $UA_{i,j}$ is the respective UA design value for heat exchanger i on branch j. The total mass balance of the system is

$$w_0 = uw_0 + (1 - u)w_0 (4.8)$$

From this the overall energy balance with N heat exchanger on branch 1 and M heat exchangers on branch 2 becomes

$$w_0 T_{end} = u w_0 T_{N,1} + (1 - u) w_0 T_{M,2}$$
(4.9)

Applying the same notation for the energy balances given in Equation 3.4 and 3.5, the equality constraints for a general heat exchanger network with N heat exchangers on branch 1 and M heat exchangers on branch 2 is

$$g = \begin{pmatrix} Q_{1,1} - (uw_0(T_{1,1} - T_0)) \\ Q_{1,1} + (w_{1,1}(Th_{1,1}^{out} - Th_{1,1})) \\ Q_{1,1} - (UA_{1,1}\Delta T_{(1,1)UN}) \\ \vdots \\ Q_{N,1} - (uw_0(T_{N,1} - T_{(N-1),1})) \\ Q_{N,1} + (w_{N,1}(Th_{N,1}^{out} - Th_{N,1})) \\ Q_{N,1} - (UA_{N,1}\Delta T_{(N,1)UN}) \end{pmatrix} = 0$$

$$Q_{1,2} - ((1 - u)w_0(T_{1,2} - T_0)) \\ Q_{1,2} + (w_{1,2}(Th_{1,2}^{out} - Th_{1,2})) \\ Q_{1,2} - (UA_{1,2}\Delta T_{(1,2)UN}) \\ \vdots \\ Q_{M,2} - ((1 - u)w_0(T_{M,2} - T_{(M-1),2})) \\ Q_{M,2} + (w_{M,2}(Th_{M,2}^{out} - Th_{M,2})) \\ Q_{M,2} - (UA_{M,2}\Delta T_{(M,2)UN}) \\ uw_0 + (1 - u)w_0 - w_0 \\ uw_0T_{N,1} + (1 - u)w_0T_{M,2} - w_0T_{end} \end{pmatrix}$$
is the hot stream outlet temperature associated with heat ex-

where $Th_{i,j}^{out}$ is the hot stream outlet temperature associated with heat exchanger i on branch j.

Inequality constraints includes the ΔT_{min} constraint and is only included to ensure that the temperature difference on hot and cold side always is > 0, and thereby prevent from complex solutions. The value of ΔT_{min} is chosen to be 0.5. The temperature difference ΔT is illustrated in Figure 4.2.

Figure 4.2: ΔT in a heat exchanger

The general inequality constraint vector can then be written

$$h = \begin{pmatrix} Th_{1,1} - T_{1,1} - \Delta T_{min} \\ Th_{1,1}^{out} - T_0 - \Delta T_{min} \\ \vdots \\ Th_{N,1} - T_{N,1} - \Delta T_{min} \\ Th_{N,1}^{out} - T_{(N-1),1} - \Delta T_{min} \\ Th_{1,2}^{out} - T_{1,2} - \Delta T_{min} \\ Th_{1,2}^{out} - T_0 - \Delta T_{min} \\ \vdots \\ Th_{M,2} - T_{M,2} - \Delta T_{min} \\ Th_{M,2}^{out} - T_{(M-1),2} - \Delta T_{min} \end{pmatrix}$$

$$(4.11)$$

5 Self-Optimizing Control

Self-optimizing control is when near-optimal operation is achieved with constant setpoints for the controlled variables (Skogestad 2004). The advantage with self-optimizing control is that it does not need re-optimization when disturbances are present.

5.1 General Idea

The aim for self-optimizing control is to find a subset of the measured variables named c to keep constant at the optimal values c_{opt} (Skogestad 2004). The ideal case would give a disturbance-insensitive c_{opt} to obtain optimal operation. However, in practice, there is a loss associated with keeping the controlled variable constant. Therefore, the goal is an operation as *close to* optimum as possible. The loss can be expressed as

$$L(u,d) = J(u,d) - J_{opt}(d)$$
(5.1)

Skogestad (Skogestad 2000) presents the following guidelines for selecting controlled variables:

- c_{opt} should be insensitive to disturbances
- c should be easy to measure and control accurately
- c should be sensitive to change in the manipulated variables (degrees of freedom)
- For cases with more than one unconstrained degree of freedom, the selected controlled variables should be independent

Proposed by Halvorsen & Skogestad (Halvorsen & Skogestad 1997), an ideal self-optimizing variable is the gradient of the objective function J:

$$c_{ideal} = \frac{\partial J}{\partial u} \tag{5.2}$$

To ensure optimal operation for all disturbances, this gradient should be zero, but measurements of the gradient is usually not available. Therefore, computing this gradient requires values of unmeasured disturbances. To find the best suitable variables for approximations of the gradient, several methods can be used, including:

- Exact local method (Halvorsen, Skogestad, Morud & Alstad 2003)
- Direct evaluation of loss for all disturbances ("brute force") (Skogestad 2000)
- Maximum (scaled) gain method (Halvorsen et al. 2003)
- The null space method (Alstad & Skogestad 2007)

5.2 Jäschke Temperatures

For operation and control of different heat exchanger networks, Jäschke has proposed a self-optimizing control structure, currently considered as a patent application (Jaeschke 2012). The idea with the control structure proposed by Jäschke is to achieve near optimal operation by only manipulating the split u in the network, exclusively based on simple temperature measurements. The control variable is the Jäschke temperature, in which each heat exchangers respective Jäschke temperature on one branch is summed up to a total Jäschke temperature for the whole series. For a general heat exchanger network given in Figure 4.1, Equations 5.3 - 5.6 gives the Jäschke temperature ($JT_{i,1}$) for each heat exchanger on the upper branch (j = 1).

$$JT_{1,1} = P_{1,1} \frac{(T_{1,1} - T_0)^2}{Th_{1,1} - T_0}$$
(5.3)

$$JT_{2,1} = P_{2,1} \frac{((T_{2,1} - T_{1,1})(T_{2,1} + T_{1,1} - 2T_0 - JT_{1,1}))}{Th_{2,1} - T_{1,1}}$$
(5.4)

:

$$JT_{i,1} = P_{i,1} \frac{((T_{i,1} - T_{(i-1),1})(T_{i,1} + T_{(i-1),1} - 2T_0 - JT_{i-1,1}))}{Th_{i,1} - T_{(i-1),1}}$$
(5.5)

:

$$JT_{N,1} = P_{N,1} \frac{((T_{N,1} - T_{(N-1),1})(T_{N,1} + T_{(N-1),1} - 2T_0 - JT_{(N-1),1}))}{Th_{N,1} - T_{(N-1),1}}$$
(5.6)

Here, subscript i, 1 means heat exchanger i on the upper branch (branch 1). Further, P is the price constant introduced in Equation 4.6 in Section 4.1, T is still the temperature of the cold stream and Th is the temperature of hot stream.

The weighted sum of all Jäschke temperatures on the upper branch is defined as (Jaeschke 2012)

$$c_1 = JT_{1,1} + JT_{2,1} + \ldots + JT_{N,1} = \sum_{i=1}^{N} P_{i,1}JT_{i,1}$$
(5.7)

The same equations applies for the lower branch (j = 2), and the resulting weighted Jäschke temperature for the M heat exchangers in series on this branch is

$$c_2 = JT_{1,2} + JT_{2,2} + \ldots + JT_{M,2} = \sum_{i=1}^{M} P_{i,2}JT_{i,2}$$
 (5.8)

According to Jäschke (Jaeschke 2012), near optimal operation is achieved when the Jäschke temperature for the upper branch equals the Jäschke temperature for the lower branch

$$JT = c_1 - c_2 = 0 (5.9)$$

Hence, the control variable c is

$$c = JT (5.10)$$

The only degree of freedom is the split u (See Figure 4.1), which will be adjusted to satisfy Equation 5.9.

6 Steady State Analysis Results

The specialization project (Aaltvedt 2012) confirmed that the Jäschke temperature gave close to optimal operation at steady state for various heat exchanger networks limited by 3 heat exchanger in series on one branch. In *this* study, two networks were analyzed first, one with four heat exchanger in series and another one with six heat exchangers in series. These two cases were simulated using MATLAB and fmincon. The procedure is further explained in the next section. Of these two cases, only the case with four heat exchangers in series is presented in the report. See Appendix A.2 for the case with six heat exchangers in series. Additional simulation results are also given for the case with four heat exchangers in series in Appendix A.1.

For a simpler network of two heat exchanger in parallel, several more comprehensive steady state analyzes were done using the NTU Method described in Section 3.1.1. The detailed method are described in Section 6.2, and are followed by the following investigations:

- Investigation of Jäschke temperature operation for a base case with evenly distributed heat capacities (Case II)
- Investigation of Jäschke temperature operation for two extreme cases with uneven distribution of heat capacities (Case II-a and II-b)
- Investigation of Jäschke temperature operation subject to measurement errors

6.1 Case I: Four Heat Exchangers in Series and One in Parallel

The network of four heat exchanger in series parallel to one heat exchanger are shown in Figure 6.1. The respective parameters are given in Table 6.1 and the respective price constants $P_{i,j}$ are given in Table 6.2. With the given design parameters, outlet temperatures and split (given in red in Figure 6.1) were to be determined.

Figure 6.1: Case I: Four heat exchangers in series parallel to one heat exchanger

Table 6.1: Case I parameters $\,$

Parameter	Value	Unit
T_0	130	$[^{\circ}C]$
$Th_{1,1}$	190	$[^{\circ}C]$
$Th_{2,1}$	203	$[^{\circ}C]$
$Th_{3,1}$	220	$[^{\circ}C]$
$Th_{4,1}$	235	[°C]
$Th_{1,2}$	210	$[^{\circ}C]$
w_0	100	$[kW/\circ C]$
$w_{1,1}$	50	$[kW/^{\circ}C]$
$w_{2,1}$	30	$[kW/\circ C]$
$w_{3,1}$	15	$[kW/^{\circ}C]$
$w_{4,1}$	25	$[kW/^{\circ}C]$
$w_{1,2}$	70	$[kW/\circ C]$
$UA_{1,1}$	5	$\left[kWm^2/\circ C\right]$
$UA_{2,1}$	7	$\left[kWm^{2}/\circ \mathrm{C}\right]$
$UA_{3,1}$	10	$\left[kWm^2/\circ C\right]$
$UA_{4,1}$	12	$\left[kWm^2/\circ C\right]$
$UA_{1,2}$	9	$\left[kWm^2/\circ_{\mathrm{C}}\right]$

Table 6.2: Case I price constants

Parameter	Value	Unit
$P_{1,1}$	-1	[\$/kW]
$P_{2,1}$	-1.2	$[\$/\!kW]$
$P_{3,1}$	-1.3	[\$/kW]
$P_{4,1}$	-1.5	[\$/kW]
$P_{1,2}$	-1.4	$\left[\$/\!kW\right]$

Subject to the equality and inequality constraints given in Section 4.1 (Vector 4.10 and 4.11, respectively), optimal operation and operation using the Jäschke temperature was determined by the use of the build-in MATLAB function fmincon. The cost function proposed by Jäschke (Jaeschke 2012) in Equation 4.6 was used as objective function, and the Underwood Approximation (Underwood 1933) was used as an approximation to the LMTD. The results from optimal operation was compared to the Jäschke temperature operation and are given in Table 6.3

Table 6.3: Optimal operation and Jäschke temperature operation for Case I

	Optimal operation	Jäschke temperature operation
T_{end} [°C]	207.87	207.84
u [%]	64.15	70.66

As the results from Table 6.3 indicates, the Jäschke temperature operates the system close to optimum, as the outlet temperature from Jäschke temperature operation only differs 0.03 °C from optimal outlet temperature. The split, however, is different. This can imply that the optimum is very flat, i.e. the highest outlet temperatures covers a great range of possible splits.

The same observation can be seen for a system of six heat exchanger in series and one in parallel. Complete simulations results for both cases are given in Appendix A

6.2 Case II: Two Heat Exchangers in Parallel

From Section 6.1 and Appendix A the Jäschke temperature showed satisfactory control for a heat exchanger network with four and six heat exchangers in series. Therefore, to reveal any limitations associated with the Jäschke temperature operation, a smaller system with two heat exchangers in parallel was used in the proceeding steady state analysis. A small system like this is easier to work with, and can at the same time be a good representative for the behavior of more complex systems. The Case II network is presented in Figure 6.2.

Figure 6.2: Case II: Two heat exchangers in parallel

In the following steady state simulations, the NTU-method from Section 3.1.1 was used for all heat exchanger calculations. Both heat exchangers respective outlet temperatures together with the control variable JT controlling the Jäschke temperatures were calculated for all splits $u \in [0,1]$. From this, optimal operation was determined from the split u that gave the highest outlet temperature T_{end} , and optimal Jäschke temperature operation was calculated from the point where $JT = c_1 - c_2 = 0$ (Equation 5.9). The two results were compared and the loss (in terms of outlet temperature) associated with the Jäschke temperature operation

was calculated.

For this network, a base case was studied first, with parameters included in Table 6.4. The price constants for this case was all decided to be 1. The simulation results are shown in Figure 6.3. Here, the control variable JT and outlet temperature T_{end} are plotted as a function of split u (with respect to branch 1). The red and black dotted lines shows optimal operation and optimal Jäschke temperature operation, respectively. As expected from the results from the specialization project (Aaltvedt 2012), the Jäschke temperature operation showed close to optimal operation.

Table 6.4: Case II parameters

Parameter	Value	Unit
T_0	130	[°C]
$Th_{1,1}$	203	$[^{\circ}C]$
$Th_{1,2}$	248	$[^{\circ}C]$
w_0	100	$[kW/\circ_{\mathrm{C}}]$
$w_{1,1}$	50	$[^{kW}/_{^{\circ}\mathrm{C}}]$
$w_{1,2}$	50	$[kW/\circ_{\mathbf{C}}]$
$UA_{1,1}$	10	$\left[kWm^2\middle/\!\!\circ\mathrm{C}\right]$
$UA_{1,2}$	30	$\left[kWm^2\big/\!\!\circ\mathrm{C}\right]$

Figure 6.3: Control variable JT and T_{end} as a function of split u for Case II. The red and black dotted lines show optimal split considering outlet temperature and control variable, respectively

The plot shows a very flat optimum, i.e. several different splits allow close to optimal outlet temperature. Outlet temperature from optimal operation and Jäschke temperature operation was 159.15 and 159.14 $^{\circ}$ C, respectively, giving a small 0.01 $^{\circ}$ C temperature loss.

To investigate whether the Jäschke temperature fails to operate the system close to its optimum, more complex cases with a more uneven distribution of heat capacities were studied. This was done using the same method, and is presented in the next sections.

6.2.1 Jäschke Temperature Operation at Extreme Cases

The first extreme case, Case II-a, included a combination of one large heat exchanger with a correspondingly large heat capacity rate of the hot stream, and a small heat exchanger with a correspondingly small heat capacity rate of the hot stream. The second extreme case, Case II-b, included the same two very different hot stream heat capacities but two equally big heat exchanger areas. Both these cases corresponds to poor design, and is not realistic. However, it was included in order to study how the Jäschke temperature approach behaves in extreme cases.

The detailed parameters for Case II-a and Case II-b are given in Table 6.5 and 6.6, respectively.

Table 6.5: Case II-a parameters

Parameter	Value	Unit
T_0	130	[°C]
$Th_{1,1}$	203	$[^{\circ}C]$
$Th_{1,2}$	248	$[^{\circ}C]$
w_0	100	$[kW/\circ_{\mathbf{C}}]$
$w_{1,1}$	400	$[kW/\circ_{ m C}]$
$w_{1,2}$	100	$[kW/\circ_{\mathbf{C}}]$
$UA_{1,1}$	1000	$\left[kWm^{2}/_{\mathrm{^{\circ}C}}\right]$
$UA_{1,2}$	100	$\left[kWm^{2}/\circ C\right]$

Table 6.6: Case II-b parameters

Parameter	Value	Unit
T_0	130	$[^{\circ}C]$
$Th_{1,1}$	203	$[^{\circ}C]$
$Th_{1,2}$	248	$[^{\circ}C]$
w_0	100	$[kW/\circ C]$
$w_{1,1}$	400	$[kW/_{\rm ^{\circ}C}]$
$w_{1,2}$	100	$[kW/\circ_{\mathbf{C}}]$
$UA_{1,1}$	1000	$\left[kWm^2/_{^{\circ}}\mathrm{C}\right]$
$UA_{1,2}$	1000	$\left[kWm^2\big/\!\!\!\circ\mathrm{C}\right]$

These parameter selections gave a more distinct optimum, which makes these cases good examples of which the Jäschke temperature did *not* operate the system close to its optimum. For Case II-a, this can be seen in Figure 6.4, where the control variable JT and outlet temperature T_{end} are plotted as function of the split u.

Figure 6.4: Control variable JT and T_{end} as a function of split u for Case II-a. The red and black dotted lines show optimal split considering outlet temperature and control variable, respectively

As Figure 6.4 for Case II-a indicates, the point where $JT = c_1 - c_2 = 0$ (optimal control variable) differs significantly from the point of optimal operation. The outlet temperature associated with optimal operation and Jäschke temperature operation was 214.32 and 212.60 °C, respectively, giving a loss of 1.72 °C. The optimum is steep, which gives few possible splits for the highest outlet temperature.

For the second extreme case, Case II-b, the area $A_{1,2}$ of heat exchanger $HX_{1,2}$ on the lower branch took the same value as heat exchanger $HX_{1,1}$. This will, together with the originally low heat capacity rate $w_{1,2}$, allow for a much better heat transfer on the lower branch. Figure 6.5 presents the control variable JT and outlet temperature T_{end} plotted as function of the split u for Case II-b. As Figure 6.5 indicates, the Jäschke temperature diverged and ended up at a steady state value where $c_1 \neq c_2$ and thereby $JT \neq 0$.

Figure 6.5: Control variable JT and T_{end} as a function of split u for Case II-b. The red and black dotted lines show optimal split considering outlet temperature and control variable, respectively

The split resulted from Jäschke temperature operation was u = 0.01, giving a very small cold stream distribution through the upper branch. The optimal split was u = 0.10. However, the outlet temperature T_{end} associated with the Jäschke temperature operation was still relatively close to the optimal outlet temperature, 237.61 vs 238.53 °C giving a temperature loss of 0.92 °C.

The observed error caused by operating the system with the Jäschke temperature can be traced back to the AMTD approximation (Equation 3.10, Section 3.1.1). The derivation of the Jäschke temperature is based on systems of which the AMTD approximation is valid (Jaeschke 2012). The plots in Figure 6.6 show each heat exchangers θ_1/θ_2 relationship (recall Section 3.1.1) with the split u for the base case and both extreme cases Case II-a and Case II-b, respectively. Compared to the base case it is indicated that the AMTD serves as a very bad approximation for both extreme cases, as θ_1/θ_2 is way out of the bounds of $1/1.4 < \theta_1/\theta_2 < 1.4$ proposed by Skogestad (Skogestad 2003a). The AMTD bounds are defined by the magenta lines in Figure 6.6, where UB is the upper bound ($\theta_1/\theta_2 = 1.4$) and LB is the lower bound ($\theta_1/\theta_2 = 1/1.4$). The plots are based on a plotting command from Edvardsen (Edvardsen 2011).

Figure 6.6: Validity of the AMTD approximation, $\frac{\theta_1}{\theta_2}$ as a function of split u

According to Skogestad (Skogestad 2003a), within the horizontal magenta lines in Figure 6.6, the AMTD will serve as a satisfactory approximation to the LMTD. For Case II-a, around the optimal split of u = 0.65, none of the heat exchangers showed a θ_1/θ_2 ratio within this interval. The same pattern applied for Case II-b around the split u = 0.10. This will result in inaccurate temperature calculations in each heat exchanger, serving the controller with wrong data and eventually result in a far from optimum operation.

Equal simulations were done for two additional cases, Case II-c and Case II-d, respectively. The respective inlet parameters together with the simulation results are given in Section A.3.1 and A.3.2 in Appendix A, respectively.

6.2.2 Jäschke Temperature Operaton Subject to Measurement Errors

The accuracy of control instrumentation is very important with accuracy requirements related to control system objectives (Seborg, Edgar, Mellichamp & Doyle 2011). Therefore, in order to further investigate whether the Jäschke temperature control configuration operates a parallel heat exchanger network satisfactory, steady state simulations with implemented measurement errors were done.

Based on the case parameters for the base case, Case II-a and Case II-b in Table 6.4, 6.5 and 6.6, optimal operation was determined. Then, in the presence of measurement errors, the corresponding Jäschke temperature operation was calculated. The measurement errors were limited to span from +/- 2°C from each respective measured temperature, and were determined by the build-in MATLAB function rand.

Both optimal operation and Jäschke temperature operation were calculated based on the NTU-method described in Section 3.1.1. The final results are based on 1000 simulations with random measurement error. The same measurement errors were used for every case. The loss associated with keeping the control variable constant was given in Equation 5.1. For this case the loss was seen in terms of outlet temperature, T_{end} :

$$L = T_{end}^{opt} - T_{end}^{JT} (6.1)$$

Where T_{end}^{opt} is the outlet temperature from optimal operation (without the

Jäschke temperature), and T_{end}^{JT} is the actual outlet temperature from operation using Jäschke temperature in the presence of measurement errors. The maximum and average loss that occurred were detected and are given in Table 6.7

Table 6.7: Temperature loss associated with measurement errors

Case	Worst case loss	_
	$[^{\circ}C]$	[°C]
Base case	0.039	0.007
Case II-a	3.141	1.602
Case II-b	0.921	0.921

For the base case, both the worst case and the average loss is small enough to give satisfactory near-optimal operation. However, the simulations of the extreme cases showed that the Jäschke temperature gave a significant error in the presence of measurement noise. For the worst case loss in Case II-a, a temperature loss almost twice as big as the temperature loss found for the exact measurement simulation in Section 6.2.1 was observed. On the other hand, the average loss, which in general is more applicable, showed a slightly *lower* temperature loss than the temperature loss observed with exact measurement. 1.60 °C versus 1.72 °C, respectively.

For Case II-b both the average and the worst case losses are equal to the temperature loss associated with the exact measurements found in Section 6.2.1. This can be related to the divergence of the Jäschke temperature, resulted in a control variable $JT \neq 0$. As seen from Figure 6.5, the point favoring optimal control variable is $u \to 0$. This means that for this case, within the limits of u, the Jäschke temperature has its absolute minimum and optimal point at the boundary of u - giving the controller no choice but to stay on this boundary.

In summary, it was found that controlling the Jäschke temperatures to equal values gives good performance in the presence of noise when the heat exchanger network is balanced (approximately similar heat capacities on the hot and cold side). However, for a unbalanced network, with large differences in the total heat capacity on each branch, noise can significantly deteriorate the performance. Equal simulations were also done for the two additional cases, Case II-c and Case II-d,

respectively. These results are given in Appendix A

7 Dynamic Analysis Results

Using the equations presented in Section 3.2 on dynamic heat exchanger modeling, several heat exchanger networks were modeled using the Simulink software.

- Dynamic case I: Two heat exchangers in parallel
- Dynamic case II (base case): Two heat exchangers in series parallel to one heat exchanger
- Dynamic case III: Three heat exchangers in series parallel to two heat exchangers
- Dynamic case IV: Four heat exchangers in series parallel to one heat exchanger
- Dynamic case V: Six heat exchangers in series parallel to one heat exchanger

For all networks, the parameters for each respective heat exchanger in Dynamic case I - III were the same as used in the steady state analysis in the specialization project (Aaltvedt 2012). For Dynamic case IV and V, the parameters were the same as the ones used in the steady state analysis from this study (Section 6). All parameters associated with Dynamic case I - III are reprinted in the report. However, the heat transfer coefficient $h_{i,j}$ and heat exchanger area $A_{i,j}$ associated with each heat exchanger were estimated by simulations to match the resulting optimal operation variables found in both steady state analyzes. The estimations of $h_{i,j}$ and $A_{i,j}$ gave new design variables (UA values) for each heat exchanger, different from the originally optimal designed UA values. In steady state simulations where the Underwood approximation (Underwood 1933) was used (Dynamic case I - III) the new UA values turned out higher. In steady state simulations approximated by the AMTD (Skogestad 2003a) (Dynamic case IV and V), the new design values were observed lower. The estimations of $h_{i,j}$ and $A_{i,j}$ together with other relevant heat exchanger data are given in respective tables for each case in Appendix B.

A model order of R=10 was used for all simulations in order to assure good accuracy. A transport delay of $\theta=2$ sec was implemented for each measurement (i.e. temperatures) in each network. For Dynamic case I - III, each heat exchangers respective price constant $P_{i,j}$ was chosen to be 1, which means that the price had no

influence on the Jäschke temperature operation. For the two last cases, Dynamic case IV and V, different price constants were used. For all dynamic simulations, ode15s (Stiff/DNF) was used as numerical solver.

PI controllers were used for all heat exchanger networks. The controller for each network was tuned using the Skogestad IMC (SIMC) rules (Skogestad 2003b) on a step response of 10 % increase in the cold fluid mass flow m_1 to the upper branch (i.e. making a step change in the split u).

A base case, denoted Dynamic case II, of two heat exchangers in series parallel to one heat exchanger are presented in the report.

The Dynamic case II heat exchanger network is given in Figure 7.1 and the full Simulink block diagram, dynamic_21_1.mdl is given in Figure 7.2. The inlet parameters with the new UA values are given in Table 7.1. The estimated variables $h_{i,j}$ and $A_{i,j}$ are given in Table B.7 in Appendix B. The step and control variable response from the tuning are presented in Figure 7.3. PI tuning parameters are given in Table 7.2. Complete and additional simulation results for all dynamic cases I - V are given in Appendix B.

Figure 7.1: The dynamic case II (base case) heat exchanger network

Figure 7.2: Simulink block diagram for Dynamic case II, $dynamic_21_1.mdl$

Table 7.1: Dynamic case II parameters

Parameter	Value	Unit
T_0	130	[°C]
$Th_{1,1}$	203	$[^{\circ}C]$
$Th_{2,1}$	255	$[^{\circ}C]$
$Th_{1,2}$	248	$[^{\circ}C]$
w_0	160	$[kW/\circ_{\mathbf{C}}]$
$w_{1,1}$	60	$[kW/\circ_{ m C}]$
$w_{2,1}$	27	$[kW/\circ_{ m C}]$
$w_{1,2}$	65	$[kW/\circ_{\mathbf{C}}]$
$UA_{1,1}$	17.78	$\left[kWm^2/^{\circ}\mathrm{C}\right]$
$UA_{2,1}$	31.18	$\left[kWm^{2}/\circ \mathrm{C}\right]$
$UA_{1,2}$	57.79	$\left[kWm^{2}/^{\circ}\mathrm{C}\right]$

Figure 7.3: Open loop step response of control variable JT on a 10 % increase in inlet mass flow m_1 for Dynamic case II

Table 7.2: PI tuning parameters for Dynamic case II

Tuning parameter	Value	Unit
K_c	1.59	$\overline{\left[^{\circ}C/kg/s\right]}$
$ au_I$	10	[sec]

7.1 Closed Loop Steady State Parameters

Using the tuning parameters given in Table 7.2, closed loop operation variables (outlet temperatures and split) were compared to the open loop operation variables matching the steady state variables (Aaltvedt 2012).

Table 7.3: Open loop and closed loop operation variables for Dynamic case II

Operating variable	Open loop value	Closed loop value
$T_{1,1}$ [°C]	166.0	165.6
$T_{2,1}$ [°C]	197.9	197.2
$T_{1,2}$ [°C]	204.3	204.9
$Th_{1,1}^{out}$ [°C]	159.4	159.3
$Th_{2,1}^{out}$ [°C]	169.8	169.3
$Th_{1,2}^{out}$ [°C]	147.8	148.0
T_{end} [°C]	201.4	201.4
$\underline{}$	0.4522	0.4589

After closing the controller loop it was observed a small change in the internal system variables, i.e. outlet temperatures of each heat exchanger. Also, the split differed from the open loop simulation, but the outlet temperature T_{end} takes on the same value, 201.4 °C. These inner variations might be traced back to a flat optimum allowing several splits for maximum outlet temperature, in addition to the two different models used. The open loop values are based on a steady state simulation using the Underwood approximation (Underwood 1933), while the dynamic closed loop values are based on the mixed tank in series model (Wolff et al. 1991). Similar results for Dynamic case I and III - V are given in Appendix B.

7.2 Jäschke Temperature Operation at Small Disturbances

For the Dynamic case II system, two disturbances were applied in a close sequence over a 2000 second interval. At t = 1000 sec, a temperature step of +10 °C was applied in the inlet cold stream temperature T_0 . Then, at t = 1600 sec, a negative temperature step of 25 °C in the hot stream temperature of heat exchanger $HX_{1,2}$

on the lower branch, $Th_{1,2}$ (See Figure 7.1) was applied to the system. As the controller response showed significant over- and undershoot, an analog filter was implemented filtering the signals entering the PI controller. The filter parameters are given in Table 7.4.

Table 7.4: Analog filter parameters for Dynamic case II

Filter parameter	Value	Unit
K_f	12	$[^{\circ}C/kg/s]$
$ au_I$	45	[sec]

The response of the control variable (JT) is shown in Figure 7.4. Included in the plot are both behaviors with and without the analog filter, as red and blue lines, respectively. The same applies for the resulting effect on the split u, shown in Figure 7.5. Similar plots are shown for Dynamic case I and III - V in Appendix B.

Figure 7.4: Control variable response when T_0 is increased 10 °C and $Th_{1,2}$ decreased 25 °C at t=1000 and 1600 sec, respectively

Figure 7.5: Split response when T_0 is increased 10 °C and $Th_{1,2}$ decreased 25 °C at t = 1000 and 1600 sec, respectively

Both plots show satisfactory disturbance rejection and system control. The split response for the temperature step in T_0 at t = 1000 sec was observed to be slower than the same response for the temperature drop in $Th_{1,2}$ at t = 1600 sec. From Figure 7.5 inverse response was observed with the second applied disturbance. This feature arise from competing dynamic effects that operate on two different time scales (Seborg et al. 2011). In this case, an immediate change in $Th_{1,2}$ at t = 1600 sec results in a sudden change in the Jäschke temperature for the lower branch (Equation 5.8). The impacts of decreasing $Th_{1,2}$ is not seen in the associated cold stream outlet temperature $T_{1,2}$ until some time due to the counter current stream configuration in the heat exchanger. These two different temperatures on different time scales creates the inverse response.

Both the control variable response (Figure 7.4) and the split response (Figure 7.5) experienced a significant reduction in their respective over- and undershoot with the analog filter implemented (Table 7.4). As the red lines in Figure 7.4 and 7.5 indicates, the magnitude of the peaks are almost decreased to half its original value. The settling time for the control variable was about 400 sec for the applied disturbance in inlet temperature T_0 at t = 1000 sec. For the disturbance applied in $Th_{1,2}$ the settling time was only about 200 sec, even though the magnitude of

this disturbance was significantly higher. However, both can be considered as fast responses since temperature changes are slow processes. The outlet temperature profiles $(T_{1,1}, T_{2,1}, T_{1,2} \text{ and } T_{end})$ with the analog filter implemented were plotted as a function of time t. The temperature profiles are presented in Figure 7.6.

Figure 7.6: Outlet temperature response when T_0 is increased 10 °C and $Th_{1,2}$ decreased 25 °C at t = 1000 and 1600 sec, respectively

Worth noticing from Figure 7.6 is the temperature drop resulted from the disturbance in $Th_{1,2}$ at t = 1600 sec. This was observed for all potted temperature profiles. For the cold stream entering heat exchanger $HX_{1,2}$, suffering the negative temperature step change in $Th_{1,2}$, the cold stream temperature is just a direct effect of decreased heat transfer. For the cold stream passing through the *upper* branch, on the other hand, the temperature decrement is a result of the split response associated with the disturbance in $Th_{1,2}$. As Figure 7.5 indicated, the stream split through the upper branch was increased as a result of this disturbance, eventually giving more fluid to heat which resulted in lower outlet temperatures on this branch.

Also here, inverse response was observed with the 25 °C negative step change in $Th_{1,2}$ at time t = 1600 sec. Note that the cold stream temperature $T_{1,2}$ (red line) does not suffer from inverse response associated with the step change made in the hot stream temperature $Th_{1,2}$ at time t = 1600 sec.

7.3 Jäschke Temperature Operation at Major Disturbances

The results from the last section demonstrated satisfactory control by the Jäschke temperature control configuration (Jaeschke 2012) for a system present to small disturbances. To reveal any vulnerabilities associated with the Jäschke temperature the following investigation includes a system subject to more comprehensive disturbances. For the same topology, a case was studied were the hot stream temperature $Th_{2,1}$ of heat exchanger $HX_{2,1}$ experienced a slowly decrement over a 4000 sec time interval resulting in an eventually cooling effect in the given heat exchanger. In the presence of such an incident, the optimal operation would be to set the bypass of the current branch suffering this cooling effect to zero. In order for this to be fast and manageable enough to work with, some of the case parameters were changed. The temperatures $Th_{1,1}$ and $Th_{2,1}$ were increased and decreased, respectively, making the temperature difference between $T_{1,1}$ and $T_{2,1}$ smaller. The hot stream temperature $Th_{1,2}$ in heat exchanger $HX_{1,2}$ was also decreased. This new case was called Dynamic case II-a, with the new case parameters given in Table 7.5.

In this analysis it was decided to modify the expression for the control variable JT to prevent the simulation from singular solutions. Errors associated with singularity was observed when $T_{1,1}$ took on the same value as $Th_{2,1}$ due to the decaying temperature of $Th_{2,1}$. These two streams, the cold stream and hot stream entering heat exchanger $HX_{2,1}$ approached each other when $Th_{2,1}$ kept decreasing and u went toward zero. As a result of that, a very sudden increase in $T_{1,1}$ was observed, aimed to match the inlet hot stream temperature of heat exchanger $HX_{1,1}$. During this sudden increase, the temperatures $T_{1,1}$ and $Th_{2,1}$ crossed each other, resulted in a denominator-zero in the Jäschke temperature for heat exchanger $HX_{2,1}$ in Equation 5.4, which again resulted in a singular solution.

Therefore, it was decided to modify control variable JT adjusting the Jäschke temperatures. This was done by re-writing it to a denominator-free form. Another way of keeping the control variable JT in Equation 5.9 at its set point (JT=0), is by letting the numerator of each respective heat exchangers Jäschke temperature equal zero. Therefore, for this case in particular, a modification was done, putting the control variable JT for this system on a common denominator. Then, by use of the resulting numerator as the new control variable with a setpoint $\bar{c}=0$, it

should give the same results as the original Jäschke temperature. This modified control variable c_{mod} is given in Equation 7.1.

$$c_{mod} = (T_{1,1} - T_0)^2 (Th_{2,1} - T_{1,1}) (T_{1,2} - T_0)$$

$$+ ((T_{2,1} - T_{1,1})(T_{2,1} + T_{1,1} - 2T_0 - JT_{1,1})) (Th_{1,2} - T_0) (Th_{1,1} - T_0)$$

$$- (T_{1,2} - T_0)^2 (Th_{2,1} - T_{1,1}) (Th_{1,1} - T_0)$$
(7.1)

With this new control variable the system was re-tuned using the Skogestad IMC (SIMC) rules (Skogestad 2003b). The controllers were tuned based on a step response of a 10 % increase in the cold fluid mass flow. The step and control variable response are given in Figure 7.7, and the resulting tuning parameters are given in Table 7.6.

Table 7.5: Dynamic case II-a parameters

Parameter	Value	Unit
T_0	130	[°C]
$Th_{1,1}$	240	$[^{\circ}C]$
$Th_{2,1}$	255	$[^{\circ}C]$
$Th_{1,2}$	220	$[^{\circ}C]$
w_0	160	$[kW/\circ C]$
$w_{1,1}$	60	$[kW/_{\rm ^{\circ}C}]$
$w_{2,1}$	27	$[kW/_{\rm ^{\circ}C}]$
$w_{1,2}$	65	$[kW/^{\circ}C]$
$UA_{1,1}$	17.78	$\left[kWm^2/^{\circ}\mathrm{C}\right]$
$UA_{2,1}$	31.18	$\left[kWm^2/\circ C\right]$
$UA_{1,2}$	57.79	$\left[kWm^{2}/_{\circ}\mathrm{C}\right]$

Figure 7.7: Open loop step response of modified control variable c_{mod} on a 10 % increase in inlet mass flow m_1 for Dynamic case II-a

Table 7.6: Tuning parameters for Dynamic case II-a

Tuning parameter	Value	Unit
K_f	$6.45 \cdot 10^{-6}$	$[^{\circ}C/kg/s]$
$ au_I$	93	[sec]

However, since the tuning was done with the original $Th_{2,1}$ at 255 °C, it was decided to increase the controller gain in order to improve the controller performance at lower values of $Th_{2,1}$. By trial and error, different tuning parameters were tested as the system showed various behavior at different controller gains. Therefore, two other sets of tuning parameters were used for this case. Results from both sets are given in the report. The new tuning parameters are given in Table 7.7 and 7.8 as set 1 and set 2, respectively.

Table 7.7: PI tuning parameters for Dynamic case II-a, set 1

Tuning parameter	Value	Unit
K_c	$6.25 \cdot 10^{-3}$	$[^{\circ}C/kg/s]$
$ au_I$	93	[sec]

Table 7.8: PI tuning parameters for Dynamic case II-a, set 2

Tuning parameter	Value	Unit
K_c	$6.25 \cdot 10^{-5}$	$[^{\circ}C/kg/s]$
$ au_I$	93	[sec]

The disturbance were simulated using the build-in ramp block in Simulink. Starting at t = 2000 sec, the hot stream temperature of heat exchanger $HX_{2,1}$, $Th_{2,1}$, was decreased with a slope of 0.05 ending up at a steady state 180 °C at

time t = 6000 sec. This gave $Th_{2,1}$ a total temperature drop of 75 °C. The ramp signals were filtered making the slope even more smooth. The filter parameters for the ramp signals are given in Table 7.9. The full Simulink block diagram is given in Figure D.3 Appendix D

Table 7.9: Analog filter parameters for ramp signals in Dynamic case II-a

Filter parameter	Value	Unit
K_f	1	$[^{\circ}C/kg/s]$
$ au_I$	100	[sec]

For both sets of tuning parameters, the modified control variable showed satisfactory system control in the presence of a cooling heat exchanger. The modified control variable lead the split u to zero bypass on the upper branch at the point where $Th_{2,1} < T_{1,1}$ and heat exchanger $HX_{2,1}$ gave a cooling effect. The temperature profiles for set 1 are plotted as a function of time t and are given in Figure 7.8. Only the temperature profiles for tuning set 1 was included in the report due to similar temperature response with both tuning sets. Certain temperature profiles are omitted from the plot $(Th_{1,1}, Th_{1,2} \text{ and } T_{1,2})$. This is simply because they are either constant or are not directly affected by the changes in heat exchanger $HX_{2,1}$.

Figure 7.8: A selection of outlet temperature responses for tuning set 1 when $Th_{2,1}$ is decreased from 255 - 180 °C from time t = 2000 to 6000 sec

The response of the directly affected temperatures on the upper branch was as expected. As the hot stream temperature $Th_{2,1}$ in heat exchanger $HX_{2,1}$ decreased, so did the cold stream outlet temperature $T_{2,1}$ from the same heat exchanger. In other words, the heat transfer decreased as the hot stream temperature decreased, which is in good correlation with the expected behavior. The cold stream outlet temperature $T_{1,1}$ of heat exchanger $HX_{1,1}$ showed a small increment as $Th_{2,1}$ decreased. This temperature rise can be related to a simultaneously small decrement in the stream split to the upper branch. A temperature decrement in $Th_{2,1}$ makes the upper branch less favorable regarding maximum outlet temperature.

After about t = 3350 sec, both $T_{1,1}$ and $T_{2,1}$ experienced a very sudden increase and took on the same value as their respective hot stream inlet temperatures. $T_{1,1}$ quickly stabilized at $Th_{1,1}$ of 240 °C, and $T_{2,1}$ followed the still ongoing temperature drop of $Th_{2,1}$. This sudden temperature change was a result of a split $u \to 0$ to the upper branch. The split behavior for both sets of tuning parameters are presented in Figure 7.9, showing the split u as a function of time t. The control variable behavior for both tuning sets are presented in Figure 7.9.

Figure 7.9: Split u as a function of time t when $Th_{2,1}$ is decreased from 255 - 180 °C from time t = 2000 and 6000 sec

Figure 7.10: Modified control variable c_{mod} as a function of time t when $Th_{2,1}$ is decreased from 255 - 180 °C from time t = 2000 and 6000 sec

The split response for each set slightly deviate from each other. For both tuning parameter sets, the split u runs immediately to zero around t = 3350 sec. However, the split response from set 1 showed small oscillations from t = 2000 to about 3350 sec, while the resulting split response from set 2 has a more smooth decrease over the same time interval. This slightly different behavior can be related to the modified control variable c_{mod} , presented in Figure 7.10. In both cases the control variable ends up at a value of -10^7 . The full range of the control variable on the ordinate axis is not included in the report due to readability. It is, however, included in Figure B.8 in Appendix B.3.

As Figure 7.10 indicates, the control variable shows a far more violent behav-

ior for set 2, resulting in a more smooth split behavior in Figure 7.9b. As the controller gain for set 1 is 100 times bigger than the controller gain for set 2, the controller output from using set 1 will give a much bigger system input. Since the manipulated variable is the split u, this will result in greater variation in the split. The small oscillations observed in Figure 7.9a confirms this.

8 Discussion and Further Work

The discussion is organized in three parts - two parts discussing the steady state and dynamic analysis results and one part presenting further work.

8.1 Steady State Analysis Discussion

Systems with a very distinctive optimum might suffer from poor operation with the Jäschke temperature control configuration. For unbalanced heat exchanger networks with an uneven distribution of hot stream heat capacities, the self-optimizing Jäschke temperature variable showed inadequate operation as it differed at the maximum 1.72 °C from optimal operation. In the presence of the worst case measurement errors the deviation was nearly doubled. However, looking at the average error caused by the measurement errors for systems with a more balanced heat capacity distribution, this type of noise was not associated with the factors that influenced the operation the most. As the Jäschke temperature did not show significant aggravated behavior, this makes the Jäschke temperature a robust control configuration for balanced heat exchanger networks in terms of measurement sensitivity.

The weakness associated with unevenly distributed heat capacities throughout the network can be associated with systems where the AMTD failed to approximate the LMTD with reasonable error (Skogestad 2003a). System like this included the extreme cases studied in Section 6.2.1. Here, the Jäschke temperature showed relatively far from optimal operation. However, in reality heat exchanger networks should be arranged differently to achieve best possible heat integration. A system like Case II-b, with two different hot stream heat capacity rates and very big heat exchanger areas would not be optimal. It is not profitable to provide a $1000 \ m^2$ heat exchanger with a hot stream having a heat capacity rate of $1000 \ \frac{kWm^2}{\circ C}$. This is supported by the result presented in Figure 6.5, where it was shown that the heat exchanger with these parameters only supplied 10% of the total transfered heat. This makes this configuration unlikely for a real big scale system. Additionally, according to the results from the optimization done in the specialization project (Aaltvedt 2012), it was indicated that a design allowing for an approximately 50/50 distribution to each branch was favorable for opti-

mal operation. Heat exchanger networks with a design allowing for the AMTD approximation to be used in each heat exchanger, are both better candidates for real big scale processes and at the same time a configuration where the Jäschke temperature gives close to optimal operation.

8.2 Dynamic Analysis Discussion

Inverse response, over- and undershoot was a consistent observed phenomenon in dynamic simulations for every heat exchanger network investigated in this study. As explained in Section 7.2, two factors were causing this; the fact that counter current heat exchangers always suffers from competing dynamic effects on different time scales (Seborg et al. 2011) and the Jäschke temperature control configuration. Of these two, it is the Jäschke temperature that might be dominating, especially in the presence of disturbances of greater magnitude. The Jäschke temperatures for each heat exchanger in a given series (Equation 5.3 - 5.6 in Section 5.2), all include squared sized measurements which can apply to responses of significant magnitude. For systems like heat exchanger networks, such behavior can result in excessively big mass flows, over and above that for which certain heat exchangers originally was designed, causing structural failure and can potentially trig disasters (Sinnott & Towler 2009).

The dynamic case II-b revealed a case where the Jäschke temperature control variable failed to operate the system properly. As explained in Section 7.3, the Jäschke temperature took a negative infinite value as the temperatures in the denominator, in this case $Th_{2,1}$ and $T_{1,1}$ in Equation 5.4, approached each other. At the temperature cross where $Th_{2,1} = T_{1,1}$ a singular solution occurred causing the simulation to crash. Due to the implemented saturation limits in the controller, the resulting system input gave either a maximum or a minimum stream split to the upper branch, i.e. it showed a very unstable behavior. In the presence of such an incident, the Jäschke temperature did not show satisfactory control. For a real, large scale plant, an incident like this, with the resulting violently oscillating system input could also give a unfortunate and detrimental effect. Modifying the control variable (Equation 7.1) improved the performance of the controller. But like the original control variable did at the point where the singular solution stopped the simulation, neither the modified control variable converged to the set

point $(c_1 = c_2)$ at steady state. The observed response was far from smooth, as the bypass on the upper branch immediately shut down as $Th_{2,1}$ decreased further below 200 °C (Figure 7.9). From the modified control variable in Equation 7.1, each of the three terms include different temperature differences. At the point where temperature crosses are observed (Figure 7.8), violent behavior occurs as terms cancel out in the presence of a zero multiplication in one given term. As a result, big oscillations were seen in the control variable. At the point where $T_{1,1} > Th_{2,1}$ resulting in $T_{1,1} > T_{2,1}$, two of the three terms change signs form positive to negative. This makes c_{mod} all negative and the controller will immediately close the cold stream distribution to the upper branch and thereby $u \to 0$.

However, in all the cases presented in this study, the Jäschke temperature operation showed relatively close to optimal operation and good system control. Also considering the observation of a diverged steady state Jäschke temperature of $c_1 \neq c_2$ and that the control was not smooth, it still managed to operate the system satisfactory. In the presence of smaller and more realistic disturbances, the Jäschke temperature showed tight control and good disturbance rejection for all dynamic cases studied in this report.

8.3 Further Work

For all steady state and dynamic cases investigated in this study, single phase flow was assumed. In the presence of such an assumption, the Jäschke temperature showed satisfactory control and close to optimal operation for systems of which the AMTD served as a valid approximation (Skogestad 2003a). However, multiphase flows show an increased frequency in many of todays big industries, including the chemical, petroleum and power generation industry (Gidaspow 1994). The challenges associated with this phenomenon increase the requirements for control configurations that handle multiphase flows. For the Jäschke temperature approach, more research is needed in the presence phase transfer, as heat transfer rates are highly dependent on the phase of the fluid.

In this study, neither the matter that being heated nor the matter that is heating are given any further attention than just a constant heat capacity. The related assumption of constant mass flows of both hot and cold fluids makes the heat capacity rate, w, constant throughout all investigations. This strongly relates

to the issue of phase transfer and multiphase flow. It is known that the heat capacity rate at constant pressure will vary with temperature (Sinnott & Towler 2009). Together with the heat capacity's dependency on fluid phase, occurrences like these will have a significant influence on the heat transfer when temperature disturbances resulting in phase transfer are present. For the Jäschke temperature to be versatile enough to be implemented in processes present to such temperature fluctuations, more comprehensive analyzes will be needed, emphasizing the heat capacity's complexity.

This study investigated configurations based on two parallel branches of heat exchangers, where each heat exchanger was supplied with one distinct, and most often constant hot stream. Usually, when designing heat exchanger networks, it is desirable to utilize each energy source to the maximum, achieving best possible energy recovery. That is, the available hot streams should be distributed throughout the network, finding feasible matches between streams and thereby serve several heat exchangers (Rathore & Powers 1975). With cross-overs like this, new challenges arise as noise and disturbances affect multiple heat exchangers, causing more challenging control problems. The configurations studied in this report only included two parallel branches. Aiming for the best possible heat integration it might also be desirable to include more possible branches, ending up with a more complex bypass regulation. Edvardsen (Edvardsen 2011) demonstrated that the Jäschke temperature control variable gave satisfactory control for a three branched case study, using two controllers - one controlling two branches, and the other one controlling the third branch. For more specific determination of the Jäschke temperature control variable and any versatility on different and more complex configurations, further investigations taking on to these issues are needed.

Another important issue that was not taken into great consideration in this study was the operation with different price constants, $P_{i,j}$. Associated with a general heat exchanger network is the price constant of each particular heat exchanger. With the exception of the networks included four and six heat exchanger in series, parallel to one heat exchanger, respectively, all price constants were chosen to be equal to unity throughout all investigations done in this study. This eventually gave a cost function aiming to maximize the total transferred heat, Q, not taking into account that different sources of heat may have different prices

(Jaeschke 2012). As stated in the introduction, optimal operation of heat exchanger networks is a very important aspect in the issue of obtaining maximum heat recovery from the available energy sources (Zhang et al. 2011). In the case of big scale industries, it is often necessary to supply additional energy beyond what's already accessible from other parts of the plant (Rathore & Powers 1975). Doing this can be expensive, as additional heat may need to be generated at the plant or outsourced from a third part service (Sinnott & Towler 2009). Therefore, optimal operation of heat exchanger networks needs to include these issues, and further investigation on these topics considering the Jäschke temperature operation will be needed. Luckily, the Jäschke temperature includes price constants in the weighted sum in Equation 5.7 and 5.8, allowing for different priced energy sources. The method can then easily be further tested for these types of configurations.

9 Conclusions

In this study the Jäschke temperature control configuration was evaluated for several different cases of parallel heat exchanger networks. The goal was to further investigate the properties of the Jäschke temperature and determine any limitations. Among the cases studied, both steady state and dynamic behavior were investigated. Far from optimal operation was revealed for systems with an uneven distribution of hot stream heat capacities. For such a system with two heat exchangers in parallel, the steady state temperature loss was 1.72 °C, feeding the control variable with exact measurement data. For the same system subject to measurement noise spanning +/- 2 °C from each respective temperature, the worst case temperature loss was 3.14 °C. Considering the average measurement error, the Jäschke temperature showed good robustness for this kind of noise for systems with evenly distributed heat capacities.

Poor control was observed in the presence of a decreasing hot stream temperature in one out of several heat exchangers. This feature was demonstrated for a system of two heat exchangers in series parallel to one heat exchanger. This resulted in a cooling effect, and the Jäschke temperature failed to simulate the system due to singular solutions. To prevent from singularity, the control variable was re-written to a denominator-free form, resulting in satisfactory control.

However, for systems with an even heat capacity distribution, the Jäschke temperature showed very close to optimal operation. Present to smaller and more realistic disturbances together with well tuned controllers, tight control and good disturbance rejection was achieved. This was demonstrated for all cases up to six heat exchanger in series on one branch.

Advantages with the Jäschke temperature control configuration is a control variable only dependent on simple temperature measurements, with the split u serving as the only manipulated variable. Disadvantages with this method is the inverse response and occasionally violent control behavior resulting from the Jäschke temperature equation with squared sized measurements. Also, potentially denominator-zeros as a result of temperature cross may lead to singularity, with resulting poor and sometimes wrong control. Assumptions including single phase flow and constant heat capacities were used in all simulations.

References

- Aaltvedt, S. (2012), Specialization project fall 2012: Optimal operation of parallel systems, Norwegian University of Science and Technology, Trondheim.
- Alstad, V. & Skogestad, S. (2007), 'Null space methods for selecting optimal measurement combinations as controlled variables', *Industrial & Chemical Engineering Research* **43**(3), 846–853.
- Bartlett, D. A. (1996), 'The fundamentals of heat exchangers', *The Industrial Physicist* pp. 18–21.
- Edvardsen, D. G. (2011), Master thesis: Optimal operation of heat exchanger networks, Norwegian University of Science and Technology, Trondheim.
- Geankoplis, C. J. (2003), Transport Processes and Separation Process Principles, 4 edn, Pearson Education, Inc.
- Gidaspow, D. (1994), Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description, Academic Press, Inc.
- González, A. H. & Marchetti, J. L. (2005), Minimum-cost operation in heat-exchanger networks, The 15th European Symposium on Computer Aided Process Engineering.
- Gramble, C. E. (2006), 'Cost management in heat-transfer-fluid systems', *Chemical Engineering Progress (CEP)*.
- Halvorsen, I. J. & Skogestad, S. (1997), Indirect on-line optimization through setpoint control, Prepared for presentation at the AIChe 1997 Annual Meeting, Los Angeles, CA.
- Halvorsen, I. J., Skogestad, S., Morud, J. C. & Alstad, V. (2003), 'Optimal selection of controlled variables', *Industrial & Chemical Engineering Research* 42, 3273–3284.
- Incorpera, F. P. & DeWitt, D. P. (2007), *Introduction to Heat Transfer*, 2nd edition edn, John Wiley and sons, New York.

- Jaeschke, J. (2012), United Kingdom Patent Application No. 1207770.7: Parallel Heat Exchanger Control.
- Jensen, J. B. & Skogestad, S. (2008), 'Problems with specifying δt_{min} in the design of processes with heat exchangers', Industrial and Engineering Chemistry Research (ACS Publications) 47(9), 3071–3075.
- Kay, J. & Nedderman, R. (1985), Fluid mechanics and transfer processes, Cambridge University Press.
- Marselle, D., Morari, M. & Rudd, D. F. (1982), 'Design of resilient processing plants: Design and control of energy management systems', *Chemical Engineering Science* **37**(2).
- Mathisen, K. W., Morari, M. & Skogestad, S. (1994a), 'Dynamic models for heat exchangers and heat exchanger networks', *Computers and Chemical Engineering* 18(1).
- Mathisen, K. W., Morari, M. & Skogestad, S. (1994b), Optimal operation of heat exchanger networks, Presented at Process Systems Engineering (PSE '94), Kyongju, Korea.
- Rathore, R. N. S. & Powers, G. J. (1975), 'A forward branching scheme for the synthesis of energy recovery', *Industrial Engineering Chemical Process Design Development* **14**(175).
- Seborg, D. E., Edgar, T. F., Mellichamp, D. A. & Doyle, F. J. (2011), *Process Dynamics and Control*, 3 edn, John Wiley & Sons, Inc.
- Sinnott, R. & Towler, G. (2009), *Chemical Engineering Design*, 5 edn, Coulson and Richardson's Chemical Engineering Series.
- Skogestad, S. (2000), 'Plantwide control: the search for the self-optimizing control structure', *Journal of Process Control* **10**(5), 487–507.
- Skogestad, S. (2003a), *Prosessteknikk*, 2 edn, Tapir Akademiske Forlag.
- Skogestad, S. (2003b), 'Simple analytic rules for model reduction and pid controller design', Journal of Process Control 13.

- Skogestad, S. (2004), 'Near-optimal operation by self-optimizing control: from process control and marathon running and business systems', *Computers and Chemical Engineering* (29), 127–137.
- Underwood, A. J. V. (1933), 'Graphical computation of logarithmic mean temperature difference', *Industrial Chemist and Chemical Manufacturer* (9), 167–170.
- Wolff, E. A., Mathisen, K. W. & Skogestad, S. (1991), Dynamics and controllability of heat exchanger networks, Prepared for the COPE-91, Barcelona, Spain.
- Zhang, D., Yang, Y., Pan, M. & Gao, Z. (2011), 'Toward a heat recovery chimney', Sustainability 3(11), 2115–2128.

A Steady State Analysis

A.1 Four Heat Exchanger in Series and One in Parallel

Table A.1: Complete optimal and operating results for the 4:1 heat exchanger network

	Optimal operation	Jäschke temperature operation
T_{end} [°C]	207.87	207.84
u_1 [%]	64.15	70.66
$T_{1,1} \ [^{\circ}C]$	162.86	160.87
$T_{1,2}$ [°C]	178.44	176.35
$T_{1,3}$ [°C]	189.49	187.18
$T_{1,4}$ [°C]	207.33	204.80
$T_{2,1}$ [°C]	208.84	215.16
$Th_{1,1}^{out}$ [°C]	147.84	146.37
$Th_{1,2}^{out}$ [°C]	169.67	166.54
$Th_{1,3}^{out}$ [°C]	172.76	169.00
$Th_{1,4}^{out}$ [°C]	189.23	185.18
$Th_{2,1}^{out}$ [°C]	169.62	174.31

A.2 Six Heat Exchangers in Series and One in Parallel

The network of 6 heat exchanger in series parallel to one heat exchanger are shown in Figure A.1. The respective parameters are given in Table A.2 and the price constants are given in Table A.3.

Figure A.1: The 6:1 heat exchanger network

Table A.2: Case parameters, 6 heat exchangers in series with one heat exchanger in parallel

Parameter	Value	Unit
T_0	130	$[^{\circ}C]$
$Th_{1,1}$	190	$[^{\circ}C]$
$Th_{2,1}$	203	$[^{\circ}C]$
$Th_{3,1}$	220	$[^{\circ}C]$
$Th_{4,1}$	235	$[^{\circ}C]$
$Th_{5,1}$	240	$[^{\circ}C]$
$Th_{6,1}$	245	$[^{\circ}C]$
$Th_{1,2}^{0,1}$	225	$[^{\circ}C]$
w_0	100	$[kW/^{\circ}C]$
$w_{1,1}$	50	$[kW/^{\circ}C]$
$w_{2,1}$	30	$[kW/^{\circ}C]$
$w_{3,1}$	15	$[kW/^{\circ}C]$
$w_{4,1}$	25	$[kW/^{\circ}C]$
$w_{5,1}$	40	$[kW/^{\circ}C]$
$w_{6,1}$	35	$[kW/^{\circ}C]$
$w_{1,2}$	30	$[kW/^{\circ}C]$
$UA_{1,1}$	5	$[kWm^2/^{\circ}C]$
$UA_{2,1}$	7	$[kWm^2/^{\circ}C]$
$UA_{3,1}^{-,-}$	10	$[kWm^2/^{\circ}C]$
$UA_{4,1}$	12	$[kWm^2/^{\circ}C]$
$UA_{5,1}$	9	$[kWm^2/^{\circ}C]$
$UA_{6,1}^{5,1}$	8	$[kWm^2/^{\circ}C]$
$UA_{1,2}$	11	$[kWm^2/^{\circ}C]$

Table A.3: Price constants, six heat exchanger in series parallel to one heat exchanger

Parameter	Value	Unit
$P_{1,1}$	-1	$\left[\frac{\$}{kW}\right]$
$P_{2,1}$	-1.2	$\left[\frac{\$}{kW}\right]$
$P_{3,1}$	-1.3	$\left[\frac{\$}{kW}\right]$
$P_{4,1}$	-1.5	$\left[\frac{\$}{kW}\right]$
$P_{5,1}$	-1.4	$\left[\frac{\$}{kW}\right]$
$P_{6,1}$	-1.7	$\left[\frac{\$}{kW}\right]$
$P_{1,2}$	-1.4	$\left[\frac{\$}{kW}\right]$

Subject to the equality and inequality constraints given in Section 4.1, optimal operation was determined by the use of the build-in matlab function fmincon. Operation using the Jäschke temperature was also determined and compared to optimal operation. The results are given in the following Table A.4

Table A.4: Complete optimal and operating results for the case of six heat exchanger in series parallel to one heat exchanger

	Optimal operation	Jäschke temperature operation
T_{end} [°C]	226.27	226.27
u_1 [%]	85.53	89.06
$T_{1,1}$ [°C]	157.13	156.37
$T_{1,2}$ [°C]	172.11	171.20
$T_{1,3}$ [°C]	182.41	181.38
$T_{1,4}$ [°C]	199.48	198.30
$T_{1,5}$ [°C]	215.16	214.12
$T_{1,6} \ [^{\circ} C]$	224.43	233.56
$T_{2,1}$ [°C]	237.12	247.73
$Th_{1.1}^{out}$ [°C]	143.59	143.02
$Th_{1.2}^{out}$ [°C]	160.30	158.99
$Th_{1.3}^{out}$ [°C]	161.23	159.54
$Th_{1.4}^{out}$ [°C]	176.62	174.73
$Th_{1,5}^{out}$ [°C]	206.46	204.77
$Th_{1.6}^{out}$ [°C]	222.36	220.99
$Th_{2,1}^{out}$ [°C]	173.34	182.08

A.3 Two Heat Exchangers in Parallel

The following sections contains complete simulations results for different cases studied.

A.3.1 Case II-c

The following parameters applies to Case II-c, given in Table A.5. The results are given in Table A.6 and pictured in Figure A.2 and Figure A.3. Temperature loss due to measurement errors are given in Table A.9

Table A.5: Case II-c parameters

Parameter	Value	Unit
T_0	130	[°C]
$Th_{1,1}$	203	$[^{\circ}C]$
$Th_{1,2}$	248	$[^{\circ}C]$
w_0	50	$[kW/^{\circ}C]$
$w_{1,1}$	100	$[kW/^{\circ}C]$
$w_{1,2}$	100	$[kW/^{\circ}C]$
$UA_{1,1}$	10	$[kWm^2/^{\circ}C]$
$UA_{1,2}$	30	$[kWm^2/^{\circ}C]$

Table A.6: A selection of optimal and operating results for Case II-c

	Optimal operation	Jäschke temperature operation
T_{end} [°C]	184.96	184.95
u_1 [%]	21.30	20.00

Figure A.2: T_{end} and control variable JT as a function of split u for case II-c. The red and black dotted lines shows optimal split considering outlet temperature and control variable, respectively

Figure A.3: AMTD approximation. $\frac{\theta_1}{\theta_2}$ as a function of split u for Case II-c

A.3.2 Case II-d

The following parameters applies to Case II-d, given in Table A.7. The results are given in Table A.8 and pictured in Figure A.4 and Figure A.5. Temperature loss due to measurement errors are given in Table A.9

Table A.7: Case II-d parameters

Parameter	Value	Unit
T_0	130	[°C]
$Th_{1,1}$	203	$[^{\circ}C]$
$Th_{1,2}$	248	$[^{\circ}C]$
w_0	50	$[kW/^{\circ}C]$
$w_{1,1}$	100	$[kW/^{\circ}C]$
$w_{1,2}$	100	$[kW/^{\circ}C]$
$UA_{1,1}$	100	$[kWm^2/^{\circ}C]$
$UA_{1,2}$	300	$[kWm^2/^{\circ}C]$

Table A.8: A selection of optimal and operating results for Case II-d

Optimal operation Jäschke temperature operation T_{end} [°C] 206.11 204.90 u_1 [%] 40.70 30.90

Figure A.4: T_{end} and control variable JT as a function of split u for case II-d. The red and black dotted lines shows optimal split considering outlet temperature and control variable, respectively

Figure A.5: AMTD approximation. $\frac{\theta_1}{\theta_2}$ as a function of split u for Case II-d

A.3.3 Jäschke Temperature and Measurement Errors

Table A.9: Temperature loss associated with measurement errors

Case	Worst case loss [°C]	Average loss [°C]
Case II-c	0.082	0.016
Case II-d	1.807	1.144

B Dynamic Analysis

Heat exchanger data valid for all heat exchangers in every case, are given in Table B.1

Table B.1: Heat exchanger and heat transfer data

Description	Symbol	Value	Unit
Total wall mass	m_{wall}	3000	[kg]
Wall density	$ ho_{wall}$	7850	$\left[\frac{kg}{m^3}\right]$
Wall volume	V_{wall}	0.3821	$[m^3]$
Heat capacity wall	Cp_{wall}	0.49	$\left[\frac{kW}{kg^{\circ}\mathrm{C}}\right]$
Density cold fluid	$ ho_c$	1000	$\left[\frac{kg}{m^3}\right]$

Selected plots are given for all cases modeled dynamically.

B.1 Dynamic case I

Estimated heat transfer variables are given in Table B.2 Inlet parameters for the dynamic Case II are given in Table B.3. Open loop and closed loop outlet variables are given in Table B.5 The PI controller was tuned using the Skogestad IMC (SIMC) rules (Skogestad 2003b) on a step response of 10% increase in the cold fluid mass flow. The step response is shown in Figure B.1. The resulting tuning parameters are given in Table B.4, and filter parameters in Table B.6 The Simulink block diagram is given in Figure D.1 in Section D.

A negative step change in inlet cold stream temperature T_0 of 4 °C was introduced at time t = 1000 sec, and a positive step change in hot stream temperature $Th_{1,1}$ of 4 °C at time t = 1600 sec. Control variable response and split response are shown both with and without the analog filter in Figure B.2 and B.3. Outlet temperature responses with the analog filter implemented are shown in Figure B.4.

Table B.2: Heat transfer data Dynamic case I

Description	Symbol	Value	Unit
Heat transfer coefficient cold stream	h_c	0.17	$\left[\frac{kW}{\circ \operatorname{Cm}^2}\right]$
Heat transfer coefficient hot stream $(1,1)$	$h_{1,1}$	0.223	$\left[\frac{kW}{{}^{\circ}\mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(1,2)$	$h_{1,2}$	0.187	$\left[\frac{kW}{{}^{\circ}\mathrm{C}m^2}\right]$
Area heat exchanger $(1,1)$	$A_{1,1}$	250	$[m^2]$
Area heat exchanger $(1,2)$	$A_{1,2}$	700	$[m^2]$

Table B.3: Dynamic Case I parameters

Parameter	Value	Unit
T_0	130	[°C]
$Th_{1,1}$	203	$[^{\circ}C]$
$Th_{1,2}$	248	$[^{\circ}C]$
w_0	95	$[kW/^{\circ}C]$
$w_{1,1}$	60	$[kW/^{\circ}C]$
$w_{1,2}$	65	$[kW/^{\circ}C]$
$UA_{1,1}$	24.10	$[kWm^2/^{\circ}C]$
$UA_{1,2}$	62.33	$[kWm^2/^{\circ}C]$

Figure B.1: Open loop step response of control variable JT on a 10 % increase in inlet mass flow m_1 for Dynamic Case I

Table B.4: PI tuning parameters for Case II

Tuning parameter	Value	Unit
K_c	5.97	$\left[\frac{^{\circ}\text{C}}{kg/s}\right]$
$ au_I$	10	[sec]

Table B.5: Open loop and closed loop operating variables for Dynamic Case I

Operating variable	Open loop value	Closed loop value
$T_{1,1}$ [°C]	199.2	199.2
$T_{1,2}$ [°C]	217.9	218.0
$Th_{1,1}^{out}$ [°C]	175.0	174.9
$Th_{1,2}^{out}$ [°C]	152.3	152.3
u	0.2553	0.2559
T_{end} [°C]	213.2	213.2

Table B.6: Analog filter parameters for Dynamic Case I

Filter parameter	Value	Unit
K_f	13	$\left[\frac{^{\circ}\mathrm{C}}{kg/s}\right]$
$ au_I$	60	[sec]

Figure B.2: Response of control variable JT when T_0 is decreased and $Th_{2,1}$ increased 4 °C at t=1000 and 1600 sec, respectively

Figure B.3: Response of split u when T_0 is decreased and $Th_{2,1}$ increased 4 °C at t=1000 and 1600 sec, respectively

Figure B.4: Response of outlet temperatures when T_0 is decreased and $Th_{2,1}$ increased 4 °C at t=1000 and 1600 sec, respectively

B.2 Dynamic case II

Inlet parameters, outlet variables, tuning parameter, filter parameters and Simulink block diagram were given i Section 7.

Estimated heat transfer variables are given in Table B.7

Table B.7: Heat transfer data Dynamic case II

Description	Symbol	Value	Unit
Heat transfer coefficient cold stream	h_c	0.10	$\left[\frac{kW}{\circ \operatorname{Cm}^2}\right]$
Heat transfer coefficient hot stream $(1,1)$	$h_{1,1}$	0.109	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(2,1)$	$h_{2,1}$	0.103	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(1,2)$	$h_{1,2}$	0.107	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Area heat exchanger $(1,1)$	$A_{1,1}$	341	$[m^2]$
Area heat exchanger $(2,1)$	$A_{2,1}$	616	$[m^2]$
Area heat exchanger $(1,2)$	$A_{1,2}$	1118	$[m^2]$

A negative step change in inlet cold stream temperature T_0 of 4 °C was introduced at time t = 1000 sec, and a positive step change in hot stream temperature $Th_{1,1}$ of 4 °C at time t = 2000 sec. Control variable response and split response are shown both with and without the analog filter in Figure B.5 and B.6. Outlet temperature responses with the analog filter implemented are shown in Figure B.7.

Figure B.5: Response of control variable JT when T_0 is decreased and $Th_{1,1}$ increased 4 °C at t=1000 and 2000 sec, respectively

Figure B.6: Response of split u when T_0 is decreased and $Th_{1,1}$ increased 4 °C at t=1000 and 2000 sec, respectively

Figure B.7: Response of outlet temperatures when T_0 is decreased and $Th_{1,1}$ increased 4 °C at t = 1000 and 2000 sec, respectively

B.3 Dynamic Case II-a

The following figure shows the complete plot of control variable response in the case of a decaying hot stream temperature $Th_{2,1}$ (Extended plot of Figure 7.10). The full Simulink block diagram are given in Figure D.3 in Section D.

Figure B.8: Full plot of modified control variable c_{mod} as a function of time t when $Th_{2,1}$ is decreased from 255 - 180 °C from time t=2000 - 6000 sec

B.4 Dynamic Case III

The network of 6 heat exchanger in series parallel to one heat exchanger are shown in Figure B.9. Estimated heat transfer variables are given in Table B.8. The respective parameters are given in Table B.9.

Table B.8: Heat transfer data Dynamic case III

Description	Symbol	Value	Unit
Heat transfer coefficient cold stream	h_c	0.10	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(1,1)$	$h_{1,1}$	0.111	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(2,1)$	$h_{2,1}$	0.109	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(3,1)$	$h_{3,1}$	0.107	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(1,2)$	$h_{1,2}$	0.107	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(2,2)$	$h_{2,2}$	0.100	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Area heat exchanger $(1,1)$	$A_{1,1}$	112.5	$[m^2]$
Area heat exchanger $(2,1)$	$A_{2,1}$	102	$[m^2]$
Area heat exchanger $(3,1)$	$A_{3,1}$	85	$[m^2]$
Area heat exchanger $(1,2)$	$A_{1,2}$	800	$[m^2]$
Area heat exchanger (2,2)	$A_{2,2}$	765	$[m^2]$

Figure B.9: Dynamic case III: Three heat exchangers in series parallel with two heat exchangers

Open loop and closed loop outlet variables are given in Table B.11 The PI controller was tuned using the Skogestad IMC (SIMC) rules (Skogestad 2003b) on a step response of 10 % increase in the cold fluid mass flow. The step response is shown in Figure B.10. The resulting tuning parameters are given in Table B.10, and filter parameters in Table B.12

The Simulink block diagram is given in Figure D.4 in Section D.

A negative step change in inlet cold stream temperature T_0 of 4 °C was introduced at time t = 1000 sec, and a positive step change in hot stream temperature $Th_{1,2}$ of 4 °C at time t = 2000 sec. Control variable response and split response are shown both with and without the analog filter in Figure B.11 and B.12. Outlet temperature responses with the analog filter implemented are shown in Figure B.13.

Table B.9: Dynamic case III parameters

Parameter	Value	Unit
T_0	130	[°C]
$Th_{1,1}$	190	$[^{\circ}C]$
$Th_{2,1}$	203	$[^{\circ}C]$
$Th_{3,1}$	220	$[^{\circ}C]$
$Th_{1,2}$	220	$[^{\circ}C]$
$Th_{2,2}$	248	$[^{\circ}C]$
w_0	150	$[kW/^{\circ}C]$
$w_{1,1}$	50	$[kW/^{\circ}C]$
$w_{2,1}$	30	$[kW/^{\circ}C]$
$w_{3,1}$	15	$[kW/^{\circ}C]$
$w_{1,2}$	70	$[kW/^{\circ}C]$
$w_{1,2}$	20	$[kW/^{\circ}C]$
$UA_{1,1}$	5.92	$[kWm^2/^{\circ}C]$
$UA_{2,1}$	5.31	$[kWm^2/^{\circ}C]$
$UA_{3,1}$	4.39	$[kWm^2/^{\circ}C]$
$UA_{1,2}$	41.32	$[kWm^2/^{\circ}C]$
$UA_{2,2}$	38.25	$[kWm^2/^{\circ}C]$

Figure B.10: Open loop step response of control variable JT on a 10 % increase in inlet mass flow m_1 for Dynamic case III

Table B.10: PI tuning parameters for Dynamic case III

Tuning parameter	Value	Unit
K_c	1.44	$\left[\frac{^{\circ}\mathrm{C}}{kg/s}\right]$
$ au_I$	40	[sec]

Table B.11: Open loop and closed loop operating variables for Dynamic case III

Operating variable	Open loop value	Closed loop value
$T_{1,1}$ [°C]	154.2	154.7
$T_{2,1}$ [°C]	170.7	168.6
$T_{3,1}$ [°C]	182.5	180.1
$T_{1,2}$ [°C]	176.6	177.8
$T_{2,2}$ [°C]	189.8	191.2
$Th_{1,1}^{out}$ [°C]	169.5	169.2
$Th_{2.1}^{out}$ [°C]	179.7	178.7
$Th_{3,1}^{out}$ [°C]	186.7	185.1
$Th_{1,2}^{out}$ [°C]	148.3	148.7
$Th_{2,2}^{out}$ [°C]	176.9	178.1
u	0.2828	0.3063
T_{end} [°C]	187.7	187.8

Table B.12: Analog filter parameters for Dynamic case III

Filter parameter	Value	Unit
K_f	1.5	$\left[\frac{^{\circ}\mathrm{C}}{kg/s}\right]$
$ au_I$	85	[sec]

Figure B.11: Response of control variable JT when T_0 is decreased and $Th_{1,2}$ increased 4 °C at t=1000 and 2000 sec, respectively

Figure B.12: Response of split u when T_0 is decreased and $Th_{1,2}$ increased 4 °C at t=1000 and 2000 sec, respectively

Figure B.13: Response of outlet temperatures when T_0 is decreased and $Th_{1,2}$ increased 4 °C at t=1000 and 2000 sec, respectively

B.5 Dynamic Case IV

Different from the case studied in Section 6.1, h and A were estimated such that the dynamic open loop outlet variables matched the steady state outlet variables found by using the AMTD approximation, rather than the Underwood approximation. Therefore, the estimated UA values for the dynamic analysis are *smaller* than the UA values used in the steady state analysis. For the same reason, also each outlet temperature are lower than what was seen in Section 6.1.

Estimated heat transfer variables are given in Table B.13. The respective parameters are given in Table B.14.

Table B.13: Heat transfer data Dynamic case IV

Description	Symbol	Value	Unit
Heat transfer coefficient cold stream	h_c	0.10	$\left[\frac{kW}{\circ \operatorname{Cm}^2}\right]$
Heat transfer coefficient hot stream $(1,1)$	$h_{1,1}$	0.120	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(2,1)$	$h_{2,1}$	0.142	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(3,1)$	$h_{3,1}$	0.139	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(4,1)$	$h_{4,1}$	0.070	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(1,2)$	$h_{1,2}$	0.143	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Area heat exchanger $(1,1)$	$A_{1,1}$	19	$[m^2]$
Area heat exchanger $(2,1)$	$A_{2,1}$	29.5	$[m^2]$
Area heat exchanger $(3,1)$	$A_{3,1}$	43.7	$[m^2]$
Area heat exchanger $(1,2)$	$A_{4,1}$	103	$[m^2]$
Area heat exchanger $(2,2)$	$A_{1,2}$	38.3	$[m^2]$

The open loop and closed loop outlet variables are given in Table B.16.

The PI controller was tuned using the Skogestad IMC (SIMC) rules (Skogestad 2003b) on a step response of 10 % increase in the cold fluid mass flow. The step response is shown in Figure B.14. The resulting tuning parameters are given in Table B.15. Analog filter was not implemented for this case.

The Simulink block diagram is given in Figure D.5 in Section D.

A positive step change in hot stream temperature $Th_{1,1}$ of 4 °C was introduced at time t = 1000 sec, a negative step change in hot stream temperature $Th_{3,1}$ of 4 °C at time t = 2000 sec and a positive step change in hot stream temperature $Th_{1,2}$ of 4 °C at time t=3000 sec. Control variable response and split response are shown in Figure B.15 and B.16. Outlet temperature responses are shown in Figure B.17.

Table B.14: Dynamic case IV parameters

Parameter	Value	Unit
T_0	130	[°C]
$Th_{1,1}$	190	$[^{\circ}C]$
$Th_{2,1}$	203	$[^{\circ}C]$
$Th_{3,1}$	220	$[^{\circ}C]$
$Th_{4,1}$	235	$[^{\circ}C]$
$Th_{1,2}$	210	$[^{\circ}C]$
w_0	130	$[kW/^{\circ}C]$
$w_{1,1}$	50	$[kW/^{\circ}C]$
$w_{2,1}$	30	$[kW/^{\circ}C]$
$w_{3,1}$	15	$[kW/^{\circ}C]$
$w_{4,1}$	25	$[kW/^{\circ}C]$
$w_{1,2}$	70	$[kW/^{\circ}C]$
$UA_{1,1}$	1.23	$[kWm^2/^{\circ}C]$
$UA_{2,1}$	1.73	$[kWm^2/^{\circ}C]$
$UA_{3,1}$	2.54	$[kWm^2/^{\circ}C]$
$UA_{4,1}$	4.24	$[kWm^2/^{\circ}C]$
$UA_{1,2}$	2.25	$[kWm^2/^{\circ}C]$

Figure B.14: Open loop step response of control variable JT on a 10 % increase in inlet mass flow m_1 for Dynamic case IV

Table B.15: PI tuning parameters for Dynamic case IV $\,$

Tuning parameter	Value	Unit
K_c	2.05	$\left[\frac{^{\circ}\mathrm{C}}{kg/s}\right]$
$ au_I$	10	[sec]

Table B.16: Open loop and closed loop operating variables for Dynamic case IV

Operating variable	Open loop value	Closed loop value
$T_{1,1}$ [°C]	133.6	133.6
$T_{2,1}$ [°C]	139.0	139.0
$T_{3,1}$ [°C]	146.4	146.4
$T_{4,1}$ [°C]	156.8	156.8
$T_{1,2}$ [°C]	155.5	155.5
$Th_{1,1}^{out}$ [°C]	184.4	184.4
$Th_{2.1}^{out}$ [°C]	189.0	189.0
$Th_{3,1}^{out}$ [°C]	181.3	181.3
$Th_{4.1}^{out}$ [°C]	202.6	202.6
$Th_{1,2}^{\stackrel{out}{out}} \ [^{\circ}\mathrm{C}]$	201.8	201.8
u	0.7767	0.7763
T_{end} [°C]	156.5	156.5

Figure B.15: Response of control variable JT when $Th_{1,1}$ is increased, $Th_{3,1}$ decreased and $Th_{1,2}$ increased 4 °C at $t=1000,\,2000$ and 3000 sec, respectively

Figure B.16: Response of split u when $Th_{1,1}$ is increased, $Th_{3,1}$ decreased and $Th_{1,2}$ increased 4 °C at t = 1000, 2000 and 3000 sec, respectively

Figure B.17: Response of outlet temperatures when $Th_{1,1}$ is increased, $Th_{3,1}$ decreased and $Th_{1,2}$ increased 4 °C at t = 1000, 2000 and 3000 sec, respectively

B.6 Dynamic Case V

Inlet parameters for Case VI are given in Table A.2.

As for the simulation in Section ??, h and A were estimated such that the dynamic open loop outlet variables matched the steady state outlet variables found by using the AMTD approximation, rather than the Underwood approximation. Therefore, the estimated UA values for the dynamic analysis are *smaller* than the UA values used in the steady state analysis.

Estimated heat transfer variables are given in Table B.13. The respective parameters are given in Table B.18.

Table B.17: Heat transfer data Dynamic case V

Description	Symbol	Value	Unit
Heat transfer coefficient cold stream	h_c	0.10	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(1,1)$	$h_{1,1}$	0.110	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(2,1)$	$h_{2,1}$	0.108	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(3,1)$	$h_{3,1}$	0.108	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(4,1)$	$h_{4,1}$	0.107	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(5,1)$	$h_{5,1}$	0.110	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(6,1)$	$h_{6,1}$	0.110	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Heat transfer coefficient hot stream $(1,2)$	$h_{1,2}$	0.110	$\left[\frac{kW}{\circ \mathrm{C}m^2}\right]$
Area heat exchanger $(1,1)$	$A_{1,1}$	20.50	$[m^2]$
Area heat exchanger $(2,1)$	$A_{2,1}$	23.30	$[m^2]$
Area heat exchanger $(3,1)$	$A_{3,1}$	42.60	$[m^2]$
Area heat exchanger $(4,1)$	$A_{4,1}$	49.95	$[m^2]$
Area heat exchanger $(5,1)$	$A_{5,1}$	36.50	$[m^2]$
Area heat exchanger $(6,1)$	$A_{6,1}$	32.50	$[m^2]$
Area heat exchanger $(1,2)$	$A_{1,2}$	43.50	$[m^2]$

The open loop and closed loop outlet variables are given in Table B.20.

The PI controller was tuned using the Skogestad IMC (SIMC) rules (Skogestad 2003b) on a step response of 10 % increase in the cold fluid mass flow. The step response is shown in Figure B.18. The resulting tuning parameters are given in Table B.19. Analog filter was not implemented for this case.

The Simulink block diagram is given in Figure D.6 in Section D.

A positive step change in hot stream temperature $Th_{1,1}$ of 4 °C was introduced at time t = 1000 sec, a negative step change in hot stream temperature $Th_{6,1}$ of 4 °C at time t = 2000 sec and a positive step change in hot stream temperature $Th_{1,2}$ of 4 °C at time t = 3000 sec. Control variable response and split response are shown in Figure B.19 and B.20. Outlet temperature responses are shown in Figure B.21.

Table B.18: Dynamic case V parameters

Parameter	Value	Unit
T_0	130	[°C]
$Th_{1,1}$	190	$[^{\circ}C]$
$Th_{2,1}$	203	$[^{\circ}C]$
$Th_{3,1}$	220	$[^{\circ}C]$
$Th_{4,1}$	235	$[^{\circ}C]$
$Th_{5,1}$	240	$[^{\circ}C]$
$Th_{6,1}$	245	$[^{\circ}C]$
$Th_{1,2}$	225	$[^{\circ}C]$
w_0	100	$[kW/^{\circ}C]$
$w_{1,1}$	50	$[kW/^{\circ}C]$
$w_{2,1}$	30	$[kW/^{\circ}C]$
$w_{3,1}$	15	$[kW/^{\circ}C]$
$w_{4,1}$	25	$[kW/^{\circ}C]$
$w_{5,1}$	40	$[kW/^{\circ}C]$
$w_{6,1}$	35	$[kW/^{\circ}C]$
$w_{1,2}$	30	$[kW/^{\circ}C]$
$UA_{1,1}$	1.07	$[kWm^2/^{\circ}C]$
$UA_{2,1}$	1.47	$[kWm^2/^{\circ}C]$
$UA_{3,1}$	2.21	$[kWm^2/^{\circ}C]$
$UA_{4,1}$	2.58	$[kWm^2/^{\circ}C]$
$UA_{5,1}$	1.91	$[kWm^2/^{\circ}C]$
$UA_{6,1}$	1.70	$[kWm^2/^{\circ}C]$
$UA_{1,2}$	2.39	$[kWm^2/^{\circ}C]$

Figure B.18: Open loop step response of control variable JT on a 10 % increase in inlet mass flow m_1 for Case VI

Table B.19: PI tuning parameters for Dynamic case V

Tuning parameter	Value	Unit
K_c	1.18	$\left[\frac{^{\circ}\mathrm{C}}{kg/s}\right]$
$ au_I$	40	[sec]

Table B.20: Open loop and closed loop operating variables for Dynamic case V

Operating variable	Open loop value	Closed loop value
$T_{1,1}$ [°C]	133.4	133.4
$T_{2,1}$ [°C]	138.4	138.4
$T_{3,1}$ [°C]	145.5	145.5
$T_{4,1}$ [°C]	155.3	155.3
$T_{5,1}$ [°C]	163.2	163.1
$T_{6,1}$ [°C]	170.0	170.0
$T_{1,2}$ [°C]	170.7	170.8
$Th_{1,1}^{out}$ [°C]	184.4	184.4
$Th_{2,1}^{out}$ [°C]	189.0	189.0
$Th_{3,1}^{out}$ [°C]	181.0	181.0
$Th_{4.1}^{out}$ [°C]	202.2	202.1
$Th_{5.1}^{out}$ [°C]	223.7	223.7
$Th_{6.1}^{out}$ [°C]	228.9	228.9
$Th_{1,2}^{out}$ [°C]	201.8	201.8
u	0.8299	0.8304
T_{end} [°C]	170.1	170.1

Figure B.19: Response of control variable JT when $Th_{1,1}$ is increased, $Th_{6,1}$ decreased and $Th_{1,2}$ increased 4 °C at t = 1000, 2000 and 3000 sec, respectively

Figure B.20: Response of split u when $Th_{1,1}$ is increased, $Th_{6,1}$ decreased and $Th_{1,2}$ increased 4 °C at t=1000, 2000 and 3000 sec, respectively

Figure B.21: Response of outlet temperatures when $Th_{1,1}$ is increased, $Th_{6,1}$ decreased and $Th_{1,2}$ increased 4 °C at t = 1000, 2000 and 3000 sec, respectively

C Matlab Scripts

C.1 Steady State Analysis Scripts

Case I: Four Heat Exchangers in Series and One in Parallel

RunHEN_41.m

```
1 %% Model to simulate a steady state 4:1 HEN
2 % Topology to be investigated:
  1 2 3 4
                              ---0----
                       5
11
12
13 close all;
14 clear all;
 clc;
16
17
 %% Parameters
19 % Heat Capacity rates
20 par.w0 = 100; %[kW/degC] w= miCpi
21 \text{ par.wh1} = 50; %[kW/degC]
22 par.wh2 = 30; %[kW/degC]
23 par.wh3 = 15; %[kW/degC]
24 par.wh4 = 25; %[kW/degC]
25 par.wh5 = 70; %[kW/degC]
27 % Hot streams inlet temperature
28 par.Th1 = 190; %[degC]
29 par.Th2 = 203; %[degC]
30 par.Th3 = 220; %[degC]
31 par.Th4 = 235; %[degC]
32 par.Th5 = 210; %[degC]
33
```

```
34 % Cold stream inlet temperature
35 par.T0 = 130; %[degC]
36
37 % UA values for each heat exchanger
38 par.UA1 = 5; %[kWm2/degC]
39 par.UA2 = 7; %[kWm2/degC]
40 par.UA3 = 10; %[kWm2/degC]
41 par.UA4 = 12; %[kWm2/degC]
42 par.UA5 = 9; %[kWm2/degC]
44 % Operating prices for each heat exchanger
45 par.P1 = 1; %[\$/kW]
46 par.P2 = 1.2; %[\$/kW]
47 par.P3 = 1.3; %[\$/kW]
48 par.P4 = 1.5; %[\$/kW]
49 par.P5 = 1.4; %[\$/kW]
51 %Inequality constraint
52 par.DeltaTmin = 0.5; %[degC]
54 % Scaling vector
par.sc.x = [200*ones(11,1);100;100;1000*ones(5,1)];
56 \text{ par.sc.j} = 200;
58 % Defining parameters
59 Th1 = par.Th1; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4; ...
      Th5 = par.Th5;
60 \text{ TO} = \text{par.TO};
62 %% OPTIMAL OPERATION
64 % Guessing outlet variables
65 % \times 0 = [Tend T1 T2 T3 T4 T5 Th1out Th2out Th3out Th4out Th5out ...
      w1 w2 ...
66 %
       [Q1 Q2 Q3 Q4 Q5]
68 \times 0 = [138 \ 131 \ 133 \ 138 \ 138 \ 140 \ 188 \ 198 \ 200 \ 215 \ 190 \ 60 \ 40 \ \dots]
          59 137 297 333 200]';
70 \% \times 0 = [207 \ 160 \ 176 \ 187 \ 204 \ 215 \ 146 \ 166 \ 169 \ 185 \ 174 \ 71 \ 29 \ \dots
              1.9224e+03 778.4439 581.1345 921.1994 3.3767e+03];
72
```

```
73
74
75 % Scaling variables
76 \% x0 = x0./par.sc.x;
   % Minimizing cost function based on equality constraints
   % using fmincon
   A = []; b = []; Aeq = []; Beq = [];
   LB = 0 * ones(23,1); UB = inf * ones(23,1);
   options = ...
83
       optimset('Algorithm','interior-point','display','iter',...
        'MaxFunEvals',9000,'TolCon',1e-12,'TolX',1e-12);
85
   options = optimset('Algorithm', 'active-set', 'display', 'iter', ...
        'MaxFunEvals',9000,'TolCon',1e-11,'TolX',1e-11);
87
   options = optimset('display','iter',...
89
        'MaxFunEvals',9000,'TolCon',1e-10,'TolX',1e-10);
91
   [x, J, exitflag] = fmincon(@(x)Object_41(x, par), x0, A, b, Aeq, Beq, ...
        LB, UB, @(x) HEN_Constraints_41(x,par), options);
93
   exitflag
95
   % Unscaling variables
   % x = x.*par.sc.x;
98
100 % RESULTS
   % Outlet temperatures
_{102} Tend = x(1);
  T1 = x(2); T2 = x(3); T3 = x(4); T4 = x(5); T5 = x(6);
  Th1out = x(7); Th2out = x(8); Th3out = x(9); Th4out = x(10);
  Th5out = x(11);
106 % Split
107 \text{ w1} = x(12); \text{ w2} = x(13);
108 % Heat transfer
|_{109} Q1 = x(14); Q2 = x(15); Q3 = x(16); Q4 = x(17); Q5 = x(18);
110 % Split ratio
| 111 \text{ w1 rat} = \text{w1/par.w0};
112 w2_rat = w2/par.w0;
```

```
113 % Delta Ts
114 DeltaT_hot1 = Th1 - T1;
115 DeltaT_hot2 = Th2 - T2;
116 DeltaT_hot3 = Th3 - T3;
117 DeltaT_hot4 = Th4 - T4;
118 DeltaT_hot5 = Th5 - T5;
119 DeltaT_cold1 = Thlout - T0;
120 DeltaT_cold2 = Th2out - T1;
121 DeltaT_cold3 = Th3out - T2;
122 DeltaT_cold4 = Th4out - T3;
123 DeltaT_cold5 = Th5out - T0;
125 % Displaying the results
126 display([' Tend [degC] = '])
127 disp(Tend)
                              Т3
128 display(['
              T1
                          Т2
                                               Т4
                                                        T5 ...
      [degC]'])
129 disp([T1 T2 T3 T4 T5])
130 display([' Th1out
                         Th2out
                                   Th3out Th4out
                                                      Th5out
      [degC]'])
131 disp([Thlout Th2out Th3out Th4out Th5out])
132 display(['
               w1
                            w2'])
133 disp([w1 w2])
134 display([' w1 ratio w2 ratio [%]'])
135 disp([w1_rat w2_rat])
136 display([' DeltaT hot side '])
137 display([' HX1 HX2
                                   HX3
                                         HX4 HX5
                                                              '])
138 disp([DeltaT_hot1 DeltaT_hot2 DeltaT_hot3 DeltaT_hot4 ...
      DeltaT_hot5])
139 display([' DeltaT cold side '])
140 display([' HX1
                          HX2
                                    HX3
                                             HX4
                                                       HX5 '1)
141 disp([DeltaT_cold1 DeltaT_cold2 DeltaT_cold3 DeltaT_cold4 ...
      DeltaT_cold5])
142
143
144 %% OPERATION USING THE JAESCHKE TEMPERATURE
145
146 % Guessing outlet variables
_{147} % _{x0} = [Tend T1 T2 T3 T4 T5 Th1out Th2out Th3out Th4out Th5out ...
      w1 w2...
148 % [Q1 Q2 Q3 Q4 Q5]
```

```
= [138 131 133 138 138 140 188 198 200 215 190 60 40 ...
149 X O
            59 137 297 333 200]';
150
151
   % Scaling variables
152
   % x0 = x0./par.sc.x;
153
154
   % Defining parameters
155
   Th1 = par.Th1; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4; ...
       Th5 = par.Th5;
   T0 = par.T0;
157
158
159
   % Minimizing cost function based on equality constraints and ...
       Jaeschke temp
161
   % using fmincon
   A = []; b = []; Aeq = []; Beq = [];
162
   LB = 0 * ones(23,1); UB = inf * ones(23,1);
164
165
   options = ...
       optimset('Algorithm', 'interior-point', 'display', 'iter',...
        'MaxFunEvals', 9000, 'TolCon', 1e-12, 'TolX', 1e-12);
166
167
   options = optimset('Algorithm', 'active-set', 'display', 'iter',...
168
        'MaxFunEvals',9000,'TolCon',1e-11,'TolX',1e-11);
169
170
   options = optimset('display','iter',...
171
172
        'MaxFunEvals', 9000, 'TolCon', 1e-10, 'TolX', 1e-10);
173
   [xDJT, J, exitflag] = ...
174
       fmincon(@(x)Object_41(x,par),x0,A,b,Aeq,Beq,...
        LB, UB, @(x) HEN_Constraints_41_DJT(x,par), options);
175
   exitflag
176
177
   %Unscaling variables
   % xDJT = xDJT.*par.sc.x;
179
180
181
182 % RESULTS
183 % Outlet temperatures
184 Tend DJT = xDJT(1);
```

```
185 T1_DJT = xDJT(2); T2_DJT = xDJT(3); T3_DJT = xDJT(4); T4_DJT = ...
      xDJT(5);
186 \text{ T5}\_DJT = xDJT(6);
187 Th1out_DJT = xDJT(7); Th2out_DJT = xDJT(8); Th3out_DJT = xDJT(9);
188 Th4out_DJT = xDJT(10); Th5out_DJT = xDJT(11);
189 % Split
190 \text{ w1}_DJT = \text{xDJT}(12); \text{ w2}_DJT = \text{xDJT}(13);
191 % Heat transfer
_{192} Q1_DJT = xDJT(14); Q2_DJT = xDJT(15); Q3_DJT = xDJT(16); ...
      Q4\_DJT = xDJT(17);
193 % Split ratio
194 w1_rat_DJT = w1_DJT/par.w0;
195 w2_rat_DJT = w2_DJT/par.w0;
196 % Delta Ts
197 DeltaT_hot1_DJT = Th1 - T1_DJT;
198 DeltaT_hot2_DJT = Th2 - T2_DJT;
199 DeltaT_hot3_DJT = Th3 - T3_DJT;
200 DeltaT_hot4_DJT = Th4 - T4_DJT;
201 DeltaT_hot5_DJT = Th5 - T5_DJT;
202 DeltaT_cold1_DJT = Th1out_DJT - T0;
203 DeltaT_cold2_DJT = Th2out_DJT - T1_DJT;
204 DeltaT_cold3_DJT = Th3out_DJT - T2_DJT;
205 DeltaT_cold4_DJT = Th4out_DJT - T3_DJT;
206 DeltaT_cold5_DJT = Th5out_DJT - T0;
208 % Displaying the results
209 display([' Tend DJT [degC] = '])
210 disp(Tend_DJT)
211 display(['
               T1 DJT T2 DJT T3 DJT T4 DJT T5 DJT ...
       [degC]'])
212 disp([T1_DJT T2_DJT T3_DJT T4_DJT T5_DJT])
213 display(['Th1out DJT Th2out DJT Th3out DJT Th4out DJT Th5out ...
      DJT [degC]'])
214 disp([Th1out_DJT Th2out_DJT Th3out_DJT Th4out_DJT Th5out_DJT])
215 display(['
                w1 DJT w2 DJT'])
216 disp([w1_DJT w2_DJT])
217 display([' w1 ratio w2 ratio [%]'])
218 disp([w1_rat_DJT w2_rat_DJT])
219 display([' DeltaT hot side '])
220 display([' HX1 HX2 HX3 HX4 HX5
                                                                  '])
```

HEN_Constraints_41.m

```
1 % HEN_Constraints function 4:1 HEN for simulation of optimal \dots
      operation
2 % Nonlinear constraints for optimizing a HEN
3 % Includes mass, energy and steady state balances
5 %%
6 function [Cineq, Res] = HEN_Constraints_41(x,par)
8 % Defining state variables
9 Tend = x(1); T1 = x(2); T2 = x(3); T3 = x(4); T4 = x(5); T5 = ...
      x(6);
10 Th1out = x(7); Th2out = x(8); Th3out = x(9); Th4out = x(10);
11 Th5out = x(11);
12 \text{ w1} = x(12); \text{ w2} = x(13);
13 Q1 = x(14); Q2 = x(15); Q3 = x(16); Q4 = x(17); Q5 = x(18);
15 % Defining parameters
16 \ w0 = par.w0;
17 wh1 = par.wh1; wh2 = par.wh2; wh3 = par.wh3; wh4 = par.wh4; ...
      wh5 = par.wh5;
18 Th1 = par.Th1; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4; ...
      Th5 = par.Th5;
19 T0 = par.T0;
20 UA1 = par.UA1; UA2 = par.UA2; UA3 = par.UA3; UA4 = par.UA4; ...
      UA5 = par.UA5;
21 DeltaTmin = par.DeltaTmin;
22
25 %% INEQUALITY CONSTRAINTS
26
```

```
27 % HX1
28 Cineq1 = - (Th1-T1-DeltaTmin); % HOT SIDE HX1
29 Cineq2 = -(Th1out-T0-DeltaTmin); % COLD SIDE HX1
31 % HX2
32 Cineq3 = -(Th2-T2-DeltaTmin); % HOT SIDE HX2
33 Cineq4 = - (Th2out-T1-DeltaTmin); % COLD SIDE HX2
35 % HX3
36 Cineq5 = -(Th3-T3-DeltaTmin); % HOT SIDE HX3
37 Cineq6 = - (Th3out-T2-DeltaTmin); % COLD SIDE HX3
39 % HX4
40 Cineg7 = -(Th4-T4-DeltaTmin); % HOT SIDE HX4
41 Cineq8 = - (Th4out-T3-DeltaTmin); % COLD SIDE HX4
42
43 % HX 5
44 Cineq9 = -(Th5-T5-DeltaTmin); % HOT SIDE HX5
45 Cineq10 = - (Th5out-T0-DeltaTmin); % COLD SIDE HX5
46
47 Cineq = ...
      [Cineq1; Cineq2; Cineq3; Cineq4; Cineq5; Cineq6; Cineq7; Cineq8; ...
          Cineq9;Cineq10];
49 Cineq = [];
52
53 %% MODEL EQUATIONS
54
55 % AMTD
56 \% DeltaT1 = 0.5*((Th1out-T0)+(Th1-T1));
57 % DeltaT2 = 0.5*((Th2out-T1)+(Th2-T2));
58 \% DeltaT3 = 0.5*((Th3out-T2)+(Th3-T3));
59 \% DeltaT4 = 0.5*((Th4out-T3)+(Th4-T4));
60 % DeltaT5 = 0.5*((Th5out-T0)+(Th5-T5));
62 %UNDERWOOD APPROXIMATION
   DeltaT1 = (((Th1out-T0)^1/3) + ((Th1-T1)^1/3))/2)^3;
  DeltaT2 = (((Th2out-T1)^1/3)+((Th2-T2)^1/3))/2)^3;
   DeltaT3 = (((Th3out-T2)^1/3) + ((Th3-T3)^1/3))/2)^3;
   DeltaT4 = (((Th4out-T3)^1/3)+((Th4-T4)^1/3))/2)^3;
```

```
DeltaT5 = (((Th5out-T0)^1/3)+((Th5-T5)^1/3))/2)^3;
67
68
69
70
    %% EOUALITY CONSTRAINTS
71
72
   Res = [ % Upper path, 1st HX
73
             Q1-(w1*(T1-T0));
                                               % Cold Stream, w1
             Q1+(par.wh1*(Th1out-Th1));
                                              % Hot Stream, wh1
75
             Q1-(UA1*DeltaT1);
                                               % HX Design Equation
76
77
78
            % Upper path, 2nd HX
             Q2-(w1*(T2-T1));
                                                % Cold Stream, w1
80
81
             Q2+(par.wh2*(Th2out-Th2));
                                              % Hot Stream, wh2
             O2-(UA2*DeltaT2);
                                               % HX Design Equation
82
84
            % Upper path, 3rd HX
             Q3-(w1*(T3-T2));
                                               % Cold Stream, w1
86
             Q3+(par.wh3*(Th3out-Th3));
                                               % Hot Stream, wh3
             Q3-(UA3*DeltaT3);
                                                % HX Design equation
88
89
            % Lower path, 4th HX
90
             Q4-(w1*(T4-T3));
                                               % Cold stream, w2
             Q4+(par.wh4*(Th4out-Th4));
                                              % Hot stream, wh4
92
             Q4-(UA4*DeltaT4);
                                               % HX design equation
93
94
             % Lower path, 5th HX
95
             Q5-(w2*(T5-T0));
                                               % Cold stream, w2
             Q5+(par.wh5*(Th5out-Th5));
                                              % Hot stream, wh4
97
             Q5-(UA5*DeltaT5);
                                               % HX design equation
98
99
100
            % Mass balance
101
             w1+w2-w0;
102
103
            % Energy balance
104
             (w0*Tend) - (w1*T4) - (w2*T5)];
105
106
107 end
```

HEN_Constraints_41_DJT.m

```
1 % HEN Constraints function 4:1 HEN for simulations with the ...
      Jaeschke temp
3 % Nonlinear constraints for optimizing a HEN
4 % Includes mass, energy and steady state balances and the \dots
      Jaeschke temp
7 function [Cineq, Res] = HEN_Constraints_41_DJT(x,par)
9 % Defining state variables
10 Tend = x(1); T1 = x(2); T2 = x(3); T3 = x(4); T4 = x(5); T5 = ...
      x(6);
11 Thlout = x(7); Th2out = x(8); Th3out = x(9); Th4out = x(10);
12 Th5out = x(11);
w1 = x(12); w2 = x(13);
Q1 = x(14); Q2 = x(15); Q3 = x(16); Q4 = x(17); Q5 = x(18);
16 % Defining parameteres
w0 = par.w0;
18 wh1 = par.wh1; wh2 = par.wh2; wh3 = par.wh3; wh4 = par.wh4; ...
      wh5 = par.wh5;
19 Th1 = par.Th1; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4; ...
      Th5 = par.Th5;
20 T0 = par.T0;
21 UA1 = par.UA1; UA2 = par.UA2; UA3 = par.UA3; UA4 = par.UA4; ...
      UA5 = par.UA5;
22 DeltaTmin = par.DeltaTmin;
23 P1 = par.P1; P2 = par.P2; P3 = par.P3; P4 = par.P4; P5 = par.P5;
25
27 %% INEQUALITY CONSTRAINTS
29 % HX1
30 Cineq1 = -(Th1-T1-DeltaTmin); % HOT SIDE HX1
31 Cineq2 = - (Th1out-T0-DeltaTmin); % COLD SIDE HX1
33 % HX2
```

```
34 Cineq3 = -(Th2-T2-DeltaTmin); % HOT SIDE HX2
35 Cineq4 = - (Th2out-T1-DeltaTmin); % COLD SIDE HX2
36
37 % HX3
38 Cineq5 = -(Th3-T3-DeltaTmin); % HOT SIDE HX3
39 Cineq6 = -(Th3out-T2-DeltaTmin); % COLD SIDE HX3
40
41 % HX4
42 Cineq7 = -(Th4-T4-DeltaTmin); % HOT SIDE HX4
  Cineq8 = -(Th4out-T3-DeltaTmin); % COLD SIDE HX4
44
45 % HX 5
46 Cineq9 = -(Th5-T5-DeltaTmin); % HOT SIDE HX5
  Cineq10 = -(Th5out-T0-DeltaTmin); % COLD SIDE HX5
48
49 Cineq = ...
      [Cineq1;Cineq2;Cineq3;Cineq4;Cineq5;Cineq6;Cineq7;Cineq8;...
          Cineq9;Cineq10];
50
  Cineq = [];
52
54
  %% MODEL EQUATIONS
56
57 % % AMTD
58 \% DeltaT1 = 0.5*((Th1out-T0)+(Th1-T1));
59 \% DeltaT2 = 0.5*((Th2out-T1)+(Th2-T2));
60 % DeltaT3 = 0.5*((Th3out-T2)+(Th3-T3));
61 % DeltaT4 = 0.5*((Th4out-T3)+(Th4-T4));
62 % DeltaT5 = 0.5*((Th5out-T0)+(Th5-T5));
63
  %UNDERWOOD APPROXIMATION
64
   DeltaT1 = (((Th1out-T0)^1/3)+((Th1-T1)^1/3))/2)^3;
65
   DeltaT2 = (((Th2out-T1)^1/3)+((Th2-T2)^1/3))/2)^3;
   DeltaT3 = (((Th3out-T2)^1/3)+((Th3-T3)^1/3))/2)^3;
67
   DeltaT4 = (((Th4out-T3)^1/3)+((Th4-T4)^1/3))/2)^3;
68
   DeltaT5 = (((Th5out-T0)^1/3)+((Th5-T5)^1/3))/2)^3;
69
70
71
72
73 %% JAESCHKE TEMPERATURES
```

```
74 % Upper path
75 \text{ JT11} = P1*(T1-T0)^2/(Th1-T0);
76 \text{ JT}12 = P2 * ((T2-T1) * (T2+T1-2*T0-JT11)) / (Th2-T1);
JT13 = P3*((T3-T2)*(T3+T2-2*T0-JT12))/(Th3-T2);
78 JT14 = P4*((T4-T3)*(T4+T3-2*T0-JT13))/(Th4-T3);
79 % Lower path
80 JT21 = P5*(T5-T0)^2/(Th5-T0);
82
  %% EQUALITY CONSTRAINTS
   Res = [ % Upper path, 1st HX
             Q1-(w1*(T1-T0));
                                               % Cold Stream, w1
             Q1+(par.wh1*(Th1out-Th1));
                                               % Hot Stream, wh1
87
             Q1-(UA1*DeltaT1);
                                               % HX Design Equation
89
            % Upper path, 2nd HX
91
             Q2-(w1*(T2-T1));
                                               % Cold Stream, w1
             Q2+(par.wh2*(Th2out-Th2));
                                               % Hot Stream, wh2
93
             Q2-(UA2*DeltaT2);
                                               % HX Design Equation
95
96
            % Upper path, 3rd HX
97
             Q3-(w1*(T3-T2));
                                               % Cold Stream, w1
98
             Q3+(par.wh3*(Th3out-Th3));
                                              % Hot Stream, wh3
99
100
             Q3-(UA3*DeltaT3);
                                               % HX Design equation
101
102
            % Lower path, 4th HX
             Q4-(w1*(T4-T3));
                                               % Cold stream, w2
103
             Q4+(par.wh4*(Th4out-Th4));
                                               % Hot stream, wh4
104
             Q4-(UA4*DeltaT4);
                                               % HX design equation
105
106
107
             % Lower path, 5th HX
             Q5-(w2*(T5-T0));
                                               % Cold stream, w2
108
             Q5+(par.wh5*(Th5out-Th5));
                                              % Hot stream, wh4
109
             Q5-(UA5*DeltaT5);
                                               % HX design equation
110
111
            % Mass balance
112
113
             w1+w2-w0;
114
```

Object_41.m

```
1 % Object function to be minimized
2 % for the 4:1 HEN
4 function[J] = Object_41(x,par)
6 % Unscale variables
7 % x = x.*par.sc.x;
9 % Defining parameters
10 P1 = par.P1;
11 P2 = par.P2;
12 P3 = par.P3;
13 P4 = par.P4;
14 P5 = par.P5;
16 % Defining outlet variables
17 T0 = par.T0;
18
19 \text{ w1} = \text{x(12)};
w2 = x(13);
21
22 T1 = x(2);
23 T2 = x(3);
24 T3 = x(4);
25 \quad T4 = x(5);
26 	ext{ T5} = x(6);
28 Tend = x(1);
29
30
```

```
31 % Cost function

32 J = -(P1*(T1-T0)*w1 + P2*(T2-T1)*w1 + P3*(T3-T2)*w1 + ...

P4*(T4-T3)*w1 + P5*(T5-T0)*w2);

33 % J = J/1000;

34 end
```

Six Heat Exchangers in Series and One in Parallel

RunHEN_61.m

```
1 %% Model to simulate a steady state 6:1 HEN
2 % Topology to be investigated:
 1 2 3 4 5 6
            ____0____0____0____0____0____
                                     --0---
        ---
                         7
  11
12 close all;
13 clear all;
14 clc;
16 %% Parameters
18 % Heat Capacity rates
19 par.w0 = 100; %[kW/degC] w= miCpi
20 par.wh1 = 50; %[kW/degC]
21 par.wh2 = 30; %[kW/degC]
22 par.wh3 = 15; %[kW/degC]
par.wh4 = 25; %[kW/degC]
24 par.wh5 = 40; %[kW/degC]
25 par.wh6 = 35; %[kW/degC]
26 par.wh7 = 30; %[kW/degC]
27
28 % Hot stream inlet temperature
29 par.Th1 = 190; %[degC]
30 par.Th2 = 203; %[degC]
31 par.Th3 = 220; %[degC]
32 par.Th4 = 235; %[degC]
33 par.Th5 = 240; %[degC]
34 par.Th6 = 245; %[degC]
35 par.Th7 = 225; %[degC]
37 % Cold stream inlet temperture
```

```
38 par.T0 = 130; %[degC]
40 % UA values for each heat exchanger
41 par.UA1 = 5; %[kWm2/degC]
42 par.UA2 = 7;
                  %[kWm2/degC]
43 par.UA3 = 10; %[kWm2/degC]
44 par.UA4 = 12; %[kWm2/degC]
                  %[kWm2/degC]
45 \text{ par.UA5} = 9;
46 par.UA6 = 8; %[kWm2/degC]
47 par.UA7 = 11; %[kWm2/degC]
49 % Operating prices for each heat exchanger
50 par.P1 = 1; %[\$/kW]
par.P2 = 1.2; %[\$/kW]
52 \text{ par.P3} = 1.3; % [\$/kW]
par.P4 = 1.5; %[\$/kW]
54 \text{ par.P5} = 1.4; % [\$/kW]
55 \text{ par.P6} = 1.7; % [\$/kW]
56 par.P7 = 1.5; %[\$/kW]
58 % Scaling vector
par.sc.x = [200*ones(15,1);100;100;500*ones(7,1)];
61 % Defining parameters
62 Th1 = par.Th1; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4; ...
      Th5 = par.Th5;
63 Th6 = par.Th6; Th7 = par.Th7;
64 \text{ T0} = par.T0;
67 %% OPTIMAL OPERATION
69 % Guessing outlet variables
70 % x0 = [Tend T1 T2 T3 T4 T5 T6 T7 Th1 Th2 Th3 Th4 Th5 Th6 Th7 ...
      w1 w2 ...
     Q1 Q2 Q3 Q4 Q5 Q6 Q7]
72 \times 0 = [148 \ 131 \ 133 \ 138 \ 138 \ 140 \ 145 \ 150 \ 188 \ 198 \ 200 \ 215 \ 190 \ 230 \ \dots
      200 50 50 ...
         59 137 297 333 200 250 300]';
75 % Minimizing cost function based on equality constraints
```

```
76 % using fmincon
77 A = []; b = []; Aeq = []; Beq = [];
78 LB = 0 * ones(24,1); UB = inf * ones(24,1);
   options = optimset('display','iter',...
       'MaxFunEvals',9000,'TolCon',1e-10,'TolX',1e-10);
82
   [x, J, exitflag] = fmincon(@(x)Object_61(x, par), x0, A, b, Aeq, Beq, ...
       LB, UB, @(x) HEN_Constraints_61(x,par), options);
   exitflag
85
86
87 % RESULTS
88 % Outlet temperatures
89 Tend = x(1);
90 T1 = x(2); T2 = x(3); T3 = x(4); T4 = x(5); T5 = x(6); T6 = ...
       x(7); T7 = x(8);
91 Th1out = x(9); Th2out = x(10); Th3out = x(11); Th4out = x(12);
92 Th5out = x(13); Th6out = x(14); Th7out = x(15);
93 % Split
94 \text{ w1} = x(16); \text{ w2} = x(17);
95 % Heat transfer
Q1 = x(18); Q2 = x(19); Q3 = x(20); Q4 = x(21); Q5 = x(22);
97 Q6 = x(23); Q7 = x(24);
98 % Split ratio
99 w1_rat = w1/par.w0;
100 w2_rat = w2/par.w0;
101 % Delta Ts
102 DeltaT_hot1 = Th1 - T1;
103 DeltaT_hot2 = Th2 - T2;
104 DeltaT hot3 = Th3 - T3;
DeltaT_hot4 = Th4 - T4;
106 DeltaT_hot5 = Th5 - T5;
107 DeltaT_hot6 = Th6 - T6;
108 DeltaT_hot7 = Th7 - T7;
DeltaT_cold1 = Th1out - T0;
110 DeltaT_cold2 = Th2out - T1;
111 DeltaT_cold3 = Th3out - T2;
li DeltaT_cold4 = Th4out - T3;
113 DeltaT_cold5 = Th5out - T4;
114 DeltaT cold6 = Th6out - T5;
115 DeltaT_cold7 = Th7out - T0;
```

```
116
117 % Displaying the results
118 display([' Tend [degC] = '])
119 disp(Tend)
                                Т3
                                              Τ4
120 display([' T1
                          Т2
                                                       T5 ...
           T6 T7 [degC]'])
121 disp([T1 T2 T3 T4 T5 T6 T7])
122 display([' Th1out Th2out
                                  Th3out Th4out
                                                     Th5out ...
         Th6out Th7out [degC]'])
123 disp([Th1out Th2out Th3out Th4out Th5out Th6out Th7out])
124 display(['
              w1
                          w2'])
125 disp([w1 w2])
126 display([' w1 ratio w2 ratio [%]'])
127 disp([w1_rat w2_rat])
128 display([' DeltaT hot side '])
129 display([' HX1 HX2
                                   HX3 HX4 HX5 ...
           HX6 HX7 '])
130 disp([DeltaT_hot1 DeltaT_hot2 DeltaT_hot3 DeltaT_hot4 ...
      DeltaT_hot5 DeltaT_hot6 DeltaT_hot7])
131 display([' DeltaT cold side '])
132 display([' HX1 HX2
                                   HX3 HX4 HX5 ...
           HX6 HX7 '])
133 disp([DeltaT_cold1 DeltaT_cold2 DeltaT_cold3 DeltaT_cold4 ...
      DeltaT_cold5 DeltaT_cold6 DeltaT_cold7])
134
136 %% OPERATION USING THE JAESCHKE TEMPERATURE
137
138 % Guessing outlet variables
_{139} % x0 = [Tend T1 T2 T3 T4 T5 T6 T7 Th1 Th2 Th3 Th4 Th5 Th6 Th7 ...
     w1 w2 ...
      Q1 Q2 Q3 Q4 Q5 Q6 Q7]
140 %
_{141} _{x0} = [148 131 133 138 138 140 145 150 188 198 200 215 190 230 ...
      200 50 50 ...
        59 137 297 333 200 250 300]';
142
144 % Defining parameters
145 Th1 = par.Th1; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4; ...
      Th5 = par.Th5;
146 Th6 = par.Th6; Th7 = par.Th7;
147 \text{ T0} = par.T0;
```

```
148
149
   % Minimizing cost function based on equality constraints and ...
150
       Jaeschke temp
   % using fmincon
151
   A = []; b = []; Aeq = []; Beq = [];
   LB = 0 * ones(24,1); UB = inf * ones(24,1);
   options = optimset('display','iter',...
155
        'MaxFunEvals', 9000, 'TolCon', 1e-10, 'TolX', 1e-10);
156
157
   [xDJT, J, exitflaq] = ...
158
       fmincon(@(x)Object_61(x,par),x0,A,b,Aeq,Beq,...
       LB, UB, @(x) HEN_Constraints_61_DJT(x,par), options);
159
   exitflag
160
161
   % RESULTS
163
   % Outlet temperatures
  Tend_DJT = xDJT(1);
   T1_DJT = xDJT(2); T2_DJT = xDJT(3); T3_DJT = xDJT(4); T4_DJT = ...
       xDJT(5); T5_DJT = xDJT(6); T6_DJT = xDJT(7); T7_DJT = xDJT(8);
   Th1out_DJT = xDJT(9); Th2out_DJT = xDJT(10); Th3out_DJT = ...
       xDJT(11); Th4out_DJT = xDJT(12);
   Th5out_DJT = xDJT(13); Th6out_DJT = xDJT(14); Th7out_DJT = ...
168
       xDJT (15);
169 % Split
w1_DJT = xDJT(16); w2_DJT = xDJT(17);
171 % Heat transfer
_{172} Q1_DJT = xDJT(18); Q2_DJT = xDJT(19); Q3_DJT = xDJT(20); ...
       Q4\_DJT = xDJT(21); Q5\_DJT = xDJT(22);
Q6_DJT = xDJT(23); Q7_DJT = xDJT(24);
174 % Split ratio
175 w1_rat_DJT = w1_DJT/par.w0;
176 w2_rat_DJT = w2_DJT/par.w0;
177 % Delta Ts
178 DeltaT_hot1_DJT = Th1 - T1_DJT;
179 DeltaT_hot2_DJT = Th2 - T2_DJT;
180 DeltaT_hot3_DJT = Th3 - T3_DJT;
181 DeltaT hot4 DJT = Th4 - T4 DJT;
182 DeltaT_hot5_DJT = Th5 - T5_DJT;
```

```
183 DeltaT_hot6_DJT = Th6 - T6_DJT;
184 DeltaT_hot7_DJT = Th7 - T7_DJT;
185 DeltaT_cold1_DJT = Th1out_DJT - T0;
186 DeltaT_cold2_DJT = Th2out_DJT - T1_DJT;
187 DeltaT_cold3_DJT = Th3out_DJT - T2_DJT;
188 DeltaT_cold4_DJT = Th4out_DJT - T3_DJT;
189 DeltaT_cold5_DJT = Th5out_DJT - T4_DJT;
190 DeltaT_cold6_DJT = Th6out_DJT - T5_DJT;
191 DeltaT_cold7_DJT = Th7out_DJT - T0;
192
193 % Displaying the results
194 display([' Tend [degC] = '])
195 disp(Tend)
196 display([' T1
                         Т2
                               T3 T4 T5 ...
           T6 T7 [degC]'])
197 disp([T1_DJT T2_DJT T3_DJT T4_DJT T5_DJT T6_DJT T7_DJT])
198 display([' Th1out Th2out Th3out Th4out
                                                    Th5out ...
         Th6out Th7out [degC]'])
199 disp([Th1out_DJT Th2out_DJT Th3out_DJT Th4out_DJT Th5out_DJT ...
      Th6out_DJT Th7out_DJT])
200 display(['
                w1
                          w2'])
201 disp([w1_DJT w2_DJT])
202 display([' w1 ratio w2 ratio [%]'])
203 disp([w1_rat_DJT w2_rat_DJT])
204 display([' DeltaT hot side '])
205 display([' HX1
                         HX2
                                  HX3
                                            HX4
                                                     HX5 ...
           HX6 HX7 '])
206 disp([DeltaT_hot1_DJT DeltaT_hot2_DJT DeltaT_hot3_DJT ...
      DeltaT_hot4_DJT DeltaT_hot5_DJT DeltaT_hot6_DJT ...
      DeltaT_hot7_DJT])
207 display([' DeltaT cold side '])
208 display([' HX1
                         HX2
                                  HX3 HX4 HX5 ...
           HX6 HX7 '])
209 disp([DeltaT_cold1_DJT DeltaT_cold2_DJT DeltaT_cold3_DJT ...
      DeltaT_cold4_DJT DeltaT_cold5_DJT DeltaT_cold6_DJT ...
      DeltaT_cold7_DJT])
```

HEN_Constraints_61.m

```
1 % HEN_Constraints function 6:1 HEN for simulations of optimal ...
      operation
2 % Nonlinear constraints for optimizing a HEN
3 % Includes mass, energy and steady state balances
6 function [Cineq, Res] = HEN_Constraints_61(x,par)
8 % Defining state variables
9 Tend = x(1);
10 T1 = x(2); T2 = x(3); T3 = x(4); T4 = x(5); T5 = x(6); T6 = ...
      x(7); T7 = x(8);
11 Th1out = x(9); Th2out = x(10); Th3out = x(11); Th4out = x(12);
12 Th5out = x(13); Th6out = x(14); Th7out = x(15);
w1 = x(16); w2 = x(17);
Q1 = x(18); Q2 = x(19); Q3 = x(20); Q4 = x(21); Q5 = x(22);
15 	 Q6 = x(23); 	 Q7 = x(24);
16
17 % Defining parameters
18 Th1 = par.Th1; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4; ...
      Th5 = par.Th5;
19 Th6 = par.Th6; Th7 = par.Th7;
20 T0 = par.T0;
21 UA1 = par.UA1; UA2 = par.UA2; UA3 = par.UA3; UA4 = par.UA4; ...
     UA5 = par.UA5;
22 UA6 = par.UA6; UA7 = par.UA7;
23
24
25
26 %% INEQUALITY CONSTRAINTS
27 Cineq = [];
29
30
31 %% MODEL EQUATIONS
32 % AMTD
33 DeltaT1 = 0.5*((Th1out-T0)+(Th1-T1));
34 DeltaT2 = 0.5*((Th2out-T1)+(Th2-T2));
35 DeltaT3 = 0.5*((Th3out-T2)+(Th3-T3));
```

```
36 \text{ DeltaT4} = 0.5 * ((Th4out-T3) + (Th4-T4));
37 \text{ DeltaT5} = 0.5*((Th5out-T4)+(Th5-T5));
38 DeltaT6 = 0.5*((Th6out-T5)+(Th6-T6));
39 DeltaT7 = 0.5*((Th7out-T0)+(Th7-T7));
40
41 %UNDERWOOD APPROXIMATION
   DeltaT1 = (((Th1out-T0)^1/3)+((Th1-T1)^1/3))/2)^3;
42
   DeltaT2 = (((Th2out-T1)^1/3)+((Th2-T2)^1/3))/2)^3;
   DeltaT3 = (((Th3out-T2)^1/3)+((Th3-T3)^1/3))/2)^3;
   DeltaT4 = (((Th4out-T3)^1/3)+((Th4-T4)^1/3))/2)^3;
   DeltaT5 = (((Th5out-T4)^1/3)+((Th5-T5)^1/3))/2)^3;
   DeltaT6 = (((Th6out-T5)^1/3)+((Th6-T6)^1/3))/2)^3;
47
   DeltaT7 = (((Th7out-T0)^1/3)+((Th7-T7)^1/3))/2)^3;
49
   %% EQUALITY CONSTRAINTS
51
52 \text{ Res} = [
           % Upper path, 1st HX
53
            Q1-(w1*(T1-T0));
                                              % Cold Stream, w1
            Q1+(par.wh1*(Th1out-Th1));
                                              % Hot Stream, wh1
55
            Q1-(UA1*DeltaT1);
                                              % HX Design Equation
56
57
58
           % Upper path, 2nd HX
59
            Q2-(w1*(T2-T1));
                                              % Cold Stream, w1
60
            Q2+(par.wh2*(Th2out-Th2));
                                             % Hot Stream, wh2
61
            Q2-(UA2*DeltaT2);
                                              % HX Design Equation
62
63
64
           % Upper path, 3rd HX
65
            Q3-(w1*(T3-T2));
                                              % Cold Stream, w1
66
            Q3+(par.wh3*(Th3out-Th3));
                                              % Hot Stream, wh3
            Q3-(UA3*DeltaT3);
                                              % HX Design equation
68
           % Lower path, 4th HX
70
            Q4-(w1*(T4-T3));
                                              % Cold stream, w2
71
            Q4+(par.wh4*(Th4out-Th4));
                                              % Hot stream, wh4
72
            Q4-(UA4*DeltaT4);
                                              % HX design equation
73
74
           % Lower path, 5th HX
75
76
            Q5-(w1*(T5-T4));
                                              % Cold stream, w2
```

```
Q5+(par.wh5*(Th5out-Th5)); % Hot stream, wh4
77
            Q5-(UA5*DeltaT5);
                                             % HX design equation
78
79
           % Upper path, 6th HX
80
           Q6-(w1*(T6-T5));
                                             % Cold stream, w1
81
           Q6+(par.wh6*(Th6out-Th6));
                                            % Hot stream, wh1
           Q6-(UA6*DeltaT6);
                                             % HX Design Equation
83
           % Lower path, 7th HX
85
           Q7-(w2*(T7-T0));
                                             % Cold stream, w1
           Q7+(par.wh7*(Th7out-Th7));
                                            % Hot stream, wh1
87
           Q7-(UA7*DeltaT7);
                                             % HX Design Equation
88
           % Mass balance
90
91
          par.w0-(w1+w2);
92
           % Energy balance;
           par.w0*Tend-(w1*T6+w2*T7)];
94
96 end
```

HEN_Constraints_61_DJT.m

```
Q1 = x(18); Q2 = x(19); Q3 = x(20); Q4 = x(21); Q5 = x(22);
16 	 Q6 = x(23); 	 Q7 = x(24);
17
18 % Defining parameters
19 Th1 = par.Th1; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4; ...
      Th5 = par.Th5;
20 Th6 = par.Th6; Th7 = par.Th7;
T0 = par.T0;
22 UA1 = par.UA1; UA2 = par.UA2; UA3 = par.UA3; UA4 = par.UA4; ...
      UA5 = par.UA5;
23 UA6 = par.UA6; UA7 = par.UA7;
24 P1 = par.P1; P2 = par.P2; P3 = par.P3; P4 = par.P4; P5 = par.P5;
25 P6 = par.P6; P7 = par.P7;
26
27
28
29 %% INEQUALITY CONSTRAINTS
30 Cineq = [];
32
34 %% MODEL EQUATIONS
36 % AMTD
37 \text{ DeltaT1} = 0.5*((Th1out-T0)+(Th1-T1));
38 DeltaT2 = 0.5*((Th2out-T1)+(Th2-T2));
39 DeltaT3 = 0.5*((Th3out-T2)+(Th3-T3));
40 DeltaT4 = 0.5*((Th4out-T3)+(Th4-T4));
41 DeltaT5 = 0.5*((Th5out-T4)+(Th5-T5));
42 DeltaT6 = 0.5*((Th6out-T5)+(Th6-T6));
43 DeltaT7 = 0.5*((Th7out-T0)+(Th7-T7));
45 %UNDERWOOD APPROXIMATION
   DeltaT1 = ((((Th1out-T0)^1/3)+((Th1-T1)^1/3))/2)^3;
46
   DeltaT2 = (((Th2out-T1)^1/3)+((Th2-T2)^1/3))/2)^3;
47
   DeltaT3 = (((Th3out-T2)^1/3)+((Th3-T3)^1/3))/2)^3;
   DeltaT4 = (((Th4out-T3)^1/3)+((Th4-T4)^1/3))/2)^3;
   DeltaT5 = (((Th5out-T4)^1/3)+((Th5-T5)^1/3))/2)^3;
   DeltaT6 = ((((Th6out-T5)^1/3)+((Th6-T6)^1/3))/2)^3;
   DeltaT7 = (((Th7out-T0)^1/3) + ((Th7-T7)^1/3))/2)^3;
53
```

```
54
55
56 %% JAESCHKE TEMPERATURES
57 % Upper path
JT11 = P1*(T1-T0)^2/(Th1-T0);
  JT12 = P2*((T2-T1)*(T2+T1-2*T0-JT11))/(Th2-T1);
_{60} JT13 = P3*((T3-T2)*(T3+T2-2*T0-JT12))/(Th3-T2);
_{61} JT14 = P4*((T4-T3)*(T4+T3-2*T0-JT13))/(Th4-T3);
_{62} JT15 = P5*((T5-T4)*(T5+T4-2*T0-JT14))/(Th5-T4);
  JT16 = P6*((T6-T5)*(T6+T5-2*T0-JT15))/(Th6-T5);
64 % Lower path
  JT21 = P7*(T7-T0)^2/(Th7-T0);
67
68
  %% EQUALITY CONSTRAINTS
69
  Res = [
           % Upper path, 1st HX
71
            Q1-(w1*(T1-T0));
                                              % Cold Stream, w1
            Q1+(par.wh1*(Th1out-Th1));
                                              % Hot Stream, wh1
73
            Q1-(UA1*DeltaT1);
                                              % HX Design Equation
75
           % Upper path, 2nd HX
77
            Q2-(w1*(T2-T1));
                                              % Cold Stream, w1
78
            Q2+(par.wh2*(Th2out-Th2));
                                             % Hot Stream, wh2
            Q2-(UA2*DeltaT2);
                                              % HX Design Equation
80
81
82
           % Upper path, 3rd HX
            Q3-(w1*(T3-T2));
                                              % Cold Stream, w1
84
            Q3+(par.wh3*(Th3out-Th3));
                                              % Hot Stream, wh3
            Q3-(UA3*DeltaT3);
                                              % HX Design equation
86
           % Lower path, 4th HX
88
            Q4-(w1*(T4-T3));
                                              % Cold stream, w2
89
            Q4+(par.wh4*(Th4out-Th4));
                                              % Hot stream, wh4
90
            Q4-(UA4*DeltaT4);
                                              % HX design equation
91
92
           % Lower path, 5th HX
93
            Q5-(w1*(T5-T4));
94
                                              % Cold stream, w2
```

```
Q5+(par.wh5*(Th5out-Th5));
                                              % Hot stream, wh4
95
             Q5-(UA5*DeltaT5);
                                                % HX design equation
96
97
            % Upper path, 6th HX
98
            Q6-(w1*(T6-T5));
                                                % Cold stream, w1
99
            Q6+(par.wh6*(Th6out-Th6));
                                               % Hot stream, wh1
100
            Q6-(UA6*DeltaT6);
                                                % HX Design Equation
101
102
            % Lower path, 7th HX
103
            Q7-(w2*(T7-T0));
104
                                                % Cold stream, w1
            Q7+(par.wh7*(Th7out-Th7));
                                               % Hot stream, wh1
105
            Q7-(UA7*DeltaT7);
                                                % HX Design Equation
106
107
108
109
            % Mass balance
110
            par.w0-(w1+w2);
111
            % Energy balance;
112
            par.w0*Tend-(w1*T6+w2*T7)
113
114
            % Jaeschke temperature
            (JT11+JT12+JT13+JT14+JT15+JT16)-JT21];
116
117
118 end
```

Object_61.m

```
1 % Object function to be minimized
2 % for the 6:1 HEN
3
4 function[J] = Object_61(x,par)
5 % Unscale variables
6 % x = x.*par.sc.x;
7
8 % Defining parameters
9 P1 = par.P1;
10 P2 = par.P2;
11 P3 = par.P3;
12 P4 = par.P4;
13 P5 = par.P5;
```

```
14 P6 = par.P6;
15 P7 = par.P7;
16
17 % Defining outlet variables
18 \text{ TO} = \text{par.TO};
20 \text{ w1} = \text{x(16)};
w2 = x(17);
23 T1 = x(2);
24 \text{ T2} = x(3);
25 T3 = x(4);
26 \text{ T4} = x(5);
27 	 T5 = x(6);
28 \text{ T6} = x(7);
29 	ext{ T7} = x(8);
31 % Cost function
J = -(P1*(T1-T0)*w1 + P2*(T2-T1)*w1 + P3*(T3-T2)*w1 + ...
      P4*(T4-T3)*w1 + P5*(T5-T4)*w1 + P6*(T6-T5)*w1 + P7*(T7-T0)*w2);
_{33} J = J/1000;
34 end
```

Case II: Two Heat Exchangers in Parallel

OptCalc.m

```
1 % Optimal operation of a 1:1 HEN and
2 % operation using the Jaeschke temperature.
_{3} % Simulations are based on the NTU-method
6 % Topology to be investigated
1
10 %
                -0--
        ---
                2
16
17 clc;
18 clear all;
19 close all;
20
21 % Defining parameters
23 % Cases evaluated
24 % Vector parameters: [T0 w0 wh1 wh2 Th1in Th2in UA1 UA2]
            = [130 100 50 50 203 248 10 30];
26 caseI
27 caseII
             = [130 100 50 50 203 248 31.1 93.9];
             = [130 50 100 100 203 248 10 30];
28 caseIII
29 caseIV
             = [130 100 50 50 203 248 100 300];
30 caseV
             = [130 100 400 100 203 248 1000 100];
31 caseVI
            = [130 100 400 100 203 248 1000 1000];
33 % Select case
34 casesel = caseI;
36 % Operation parameters
37 TO = casesel(1); % Feed stream temperature [degC]
```

```
38 w0
          = casesel(2); % [kW/K]
39
40 % Utility parameters
          = casesel(3); % Hot stream 1 Heat Capacity rate [kW/K]
41 wh1
          = casesel(4); % Hot stream 2 Heat Capacity rate [kW/K]
42 wh2
43 Thlin = casesel(5); % Hot stream 1 Temperature [degC]
44 Th2in
         = casesel(6); % Hot stream 2 Temperature [degC]
46 % Design parameters
  UA1
         = casesel(7);
                               % [kW/K]
48 UA2
          = casesel(8);
                               % [kW/K]
50 % Number of iterations
N=1000;
52
n = zeros(N, 1);
54 T1=n; T2=n; Th1=n; Th2=n; Tmix=n; e1=n; eh1=n; e2=n; eh2=n;
  C1=n; C2=n; NTU1=n; NTU2=n; U=n;
57 % Calculating HX based on the NTU-method for all splits ...
      ranging [0,1]:
  for i=1:N
       u = i/N;
60
      U(i)=u;
       Calculating outlet temperatures and info about HEs
63
         (only u is changing)
       [T HE] = TempCalc(T0, w0, UA1, UA2, Th1in, wh1, Th2in, wh2, u);
65
       T1(i) = T(1); T2(i) = T(2); Th1(i) = T(3); Th2(i) = T(4);
67
       Tmix(i) = T(5); e1(i) = HE(1); eh1(i) = HE(2); e2(i) = HE(3);
       eh2(i)=HE(4); C1(i)=HE(5); C2(i)=HE(6); NTU1(i)=HE(7);
69
      NTU2(i) = HE(8);
71
  end
73
74
75 % RESULTS
76
77 % Finding optimal split
```

```
78 [Tmixm,nr]=max(Tmix);
80 split=U(nr);
81 T1m=T1(nr);
82 Th1m=Th1(nr);
83 T2m=T2(nr);
84 Th2m=Th2(nr);
85 Tmixm
86 split
88 % Finding the self-optimizing split
90 % Jaeschke Temperature for HX1 and HX2
91 JT = (T1-T0).^2./(Th1in-T0) - (T2-T0).^2./(Th2in-T0);
93 [JTmin, nr2] = min(abs(JT));
95 JT_opt=JT(nr);
96 JTsplit=U(nr2);
97 T1JT=T1(nr2);
98 Th1JT=Th1(nr2);
99 T2JT=T2(nr2);
100 Th2JT=Th2(nr2);
101 JTmin;
102 JTTmax=Tmix(nr2);
103 JTTmax
104 JTsplit
105
_{
m 106} % Jaeschke temperature in the presence of measurement errors, max
107
108 JTTmax_vec = [];
109 TempLoss = [];
110
nT0 = 0;
_{112} nTh1 = 0;
nTh2 = 0;
nT1 = 0;
nT2 = 0;
116
_{117} M = 1000;
118
```

```
119 % Simulating HX with measurement errors, with given ...
       Measurement errors
120 % (data file Measurement_Errors.m)
   for j=1:M;
122
        load Measurement_Errors
123
124
       nT0 = noise(1,j);
       nTh1 = noise(2,j);
126
       nTh2 = noise(3,j);
127
       nT1 = noise(4, j);
128
       nT2 = noise(5,j);
129
130
        % Implementing the noise in the control variable
131
        JT_noise = ((T1+nT1)-(T0+nT0)).^2./((Th1in+nTh1)-(T0+nT0)) ...
132
           -((T2+nT2)-(T0+nT0)).^2./((Th2in+nTh2)-(T0+nT0));
133
        [JTmin_noise, nr3] = min(abs(JT_noise));
134
        JT_noise_split = U(nr3);
135
        JTnoiseTmax = Tmix(nr3);
136
137
        JTTmax_vec(j) = JTnoiseTmax;
138
        TempLoss(j) = Tmixm-JTnoiseTmax;
139
140
       noise(:,j) = [nT0, nTh1, nTh2, nT1, nT2]';
141
142
143
   end
144
  % Worst case loss and avergae loss
145
146 WCloss = max(TempLoss);
147 AVGloss = sum(TempLoss)/M;
  WCloss
   AVGloss
149
150
   % % Calculating temperature difference on each side of each HX
151
152
   dTcold1=Th1-T0;
153
   dThot1=Th1in-T1;
154
155
156 dTcold2=Th2-T0;
157 dThot2=Th2in-T2;
```

```
158
159 % Calculating errors from AMTD approximation
160 [eU1 eU2 eAM1 eAM2] = ErrorCalc(dTcold1, dThot1, dTcold2, dThot2);
162 % Calculating the AMTD approximation valid range..
163 theta1 = dThot1./dTcold1;
164 theta2 = dThot2./dTcold2;
165
166
167 % PLOTTING THE RESULTS
168
169 % Temperature and control variable profile with split u
170 % return
_{171} h = figure;
172 % return
173 % figure(1)
174 y1start = 160; y1end = 210; y1step = 10;
y2start = -60; y2end = 60; y2step = 60;
176
177 split = [split split];
178 JTs = [JTsplit JTsplit];
y11 = [y1start y1end];
_{180} y22 = [y2start y2end];
181
[AX, H1, H2] = plotyy(U, JT, U, Tmix);
set(get(AX(2), 'Ylabel'), 'String', ...
184
        'T_{end} [ \circC]', 'fontsize', 12)
185 set(get(AX(1), 'Ylabel'), 'String',...
       'Controlled variable, JT [ \circC]', 'fontsize', 12)
186
187 axis(AX(2),[0 1 y1start y1end]);
188 axis(AX(1),[0 1 y2start y2end]);
set(AX(2), 'YLim', [y1start y1end])
set(AX(2), 'YTick', y1start:y1step:y1end)
191 set(AX(1), 'YLim', [y2start y2end])
set(AX(1), 'YTick', y2start: y2step: y2end)
193 set(H1,'linewidth',2)
194 set (H2, 'linewidth', 2)
195 xlabel('Split, u','fontsize',12);
196 hold on;
197 H3 = plot(JTs, y22, 'Color', 'k', 'LineStyle', '---', 'LineWidth', 2);
198 hold on
```

```
199 H4 = plot(split,y22,'Color','r','LineStyle','--','LineWidth',2);
200
   set(H3, 'parent', AX(1));
201
  % hold on;
202
203 grid on;
   print(h,'-depsc','CaseIId_optCalc.eps');
205
206
   % Validity of AMTD approximation
207
   UB = [1.4 1.4]; % Upper AMTD limit
  LB = [(1/1.4) (1/1.4)]; % Lower AMTD limit
209
   s = [0 \ 1];
210
211
_{212} k = figure;
213 % figure (6);
plot (U, theta2, U, theta1, 'LineWidth', 2);
215 xlabel('Split, u', 'fontsize', 12);
216 ylabel('\theta_{1}/\theta_{2}','fontsize',12);
217 % legend('HX_{1,2}','HX_{1,1}','fontsize',12);
218 axis([0 1 0 2]);
219 % Using hline.m to include upper and lower bounds:
220 hline([1/1.4 1.4], {'m', 'm'}, {'AMTD LB', 'AMTD UB'})
221 hold on;
plot(splitline, solid, 'Color', 'r', 'LineStyle', '--', 'LineWidth', 2);
legend('HX_{1,2}','HX_{1,1}','Optimal split','fontsize',11);
224 print(k,'-depsc','AMTD_CaseIIb.eps');
```

TempCalc.m

```
12 \text{ NTU2} = \text{UA2/w2};
14 % Heat capacity ratios
15 C1 = w1/wh1;
16 C2 = w2/wh2;
18 % Preventing from singular solutions
19 if (C1>0.999 && C1<1.001)
      C1=0.999;
21 end
23 if (C2>0.999 && C2<1.001)
C2=0.999;
25 end
27 % Calculating the effectiveness of HXs
28 el = (1-\exp(-NTU1*(C1-1)))/(C1-\exp(-NTU1*(C1-1)));
e^{29} = (1-\exp(-NTU2*(C2-1)))/(C2-\exp(-NTU2*(C2-1)));
30 \text{ eh1} = e1 * C1;
31 \text{ eh2} = e2 * C2;
33 % Calculating outlet temperatures
34 \text{ T1} = e1 * Th1 in + (1-e1) * T0;
35 T2 = e2*Th2in + (1-e2)*T0;
36 \text{ Th1} = (1-\text{eh1}) * \text{Th1in} + \text{eh1} * \text{T0};
37 \text{ Th2} = (1-\text{eh2}) * \text{Th2in} + \text{eh2} * \text{T0};
38 Tmix = u * T1 + (1-u) * T2;
_{40} T = [T1 T2 Th1 Th2 Tmix];
HE = [e1 eh1 e2 eh2 C1 C2 NTU1 NTU2];
```

ErrorCalc.m

```
1 % ErrorCalc function to calculate errors associated with using the
2 % AMTD and Underwood approximation
3
4 function [eU1 eU2 eAM1 eAM2] = ErrorCalc(dTcold1, dThot1, ...
dTcold2, dThot2)
5
6
```

```
7 %Logarithmic mean temperature difference
8 LM1 = (dThot1-dTcold1)./log(dThot1./dTcold1);
9 LM2 = (dThot2-dTcold2)./log(dThot2./dTcold2);
11 %Arithmetic mean temperature difference
12 AM1 = (dTcold1+dThot1)./2;
13 \text{ AM2} = (dTcold2+dThot2)./2;
15 % Underwood temperature difference
16 \text{ U1} = ((((dTcold1).^(1/3)) + ((dThot1).^(1/3)))./2).^3;
17 U2 = ((((dTcold2).^(1/3))+((dThot2).^(1/3)))./2).^3;
19 %AMTD error
_{20} eAM1 = (AM1-LM1)./LM1*100;
_{21} eAM2 = (AM2-LM2)./LM2*100;
22
23 %Underwood error
_{24} eU1 = (U1-LM1)./LM1*100;
_{25} eU2 = (U2-LM2)./LM2*100;
26
27 end
```

hline.m

```
12 % legends, but it is not findable by using findobj. ...
      Specifying an output argument causes the function to
13 % return a handle to the line, so it can be manipulated or ...
      deleted. Also, the HandleVisibility can be
14 % overridden by setting the root's ShowHiddenHandles property \dots
      to on.
15 응
16 \% h = hline(42, 'g', 'The Answer')
18 % returns a handle to a green horizontal line on the current \dots
      axes at y=42, and creates a text object on
19 % the current axes, close to the line, which reads "The Answer".
20 %
_{21} % hline also supports vector inputs to draw multiple lines at \dots
      once. For example,
22 %
23 % hline([4 8 12], {'g', 'r', 'b'}, {'l1', 'lab2', 'LABELC'})
25 % draws three lines with the appropriate labels and colors.
26 %
27 % By Brandon Kuczenski for Kensington Labs.
28 % brandon_kuczenski@kensingtonlabs.com
29 % 8 November 2001
31 if length(y)>1 % vector input
       for I=1:length(y)
32
           switch nargin
33
           case 1
               linetype='r:';
35
               label='';
36
          case 2
37
               if ~iscell(in1)
                   in1={in1};
39
               end
40
               if I>length(in1)
41
                   linetype=in1{end};
42
               else
43
                   linetype=in1{I};
44
               end
45
               label='';
46
         case 3
47
```

```
48
                if ~iscell(in1)
                    in1={in1};
49
                end
50
                if ~iscell(in2)
51
                    in2={in2};
52
                end
                if I>length(in1)
54
55
                    linetype=in1{end};
                else
56
                    linetype=in1{I};
57
                end
58
                if I>length(in2)
59
                    label=in2{end};
                else
61
62
                    label=in2{I};
                end
63
           end
           h(I)=hline(y(I),linetype,label);
65
       end
  else
67
       switch nargin
       case 1
69
70
            linetype='r:';
           label='';
71
       case 2
           linetype=in1;
73
           label='';
74
       case 3
75
           linetype=in1;
76
           label=in2;
       end
78
79
80
82
83
       g=ishold(gca);
       hold on
84
85
       x=get(gca,'xlim');
86
       h=plot(x,[y y],linetype);
87
       if ~isempty(label)
```

```
89
            yy=get(gca,'ylim');
            yrange=yy(2)-yy(1);
90
            yunit=(y-yy(1))/yrange;
91
            if yunit<0.2</pre>
92
                text(x(1)+0.85*(x(2)-x(1)),y+0.02*yrange,label,...
93
                     'color', get(h, 'color'))
            else
95
                text(x(1)+0.85*(x(2)-x(1)),y-0.02*yrange,label,...
96
                     'color',get(h,'color'))
97
98
            end
        end
99
100
        if g==0
101
       hold off
102
103
        end
        set(h,'tag','hline','handlevisibility','off') % this last ...
104
           part is so that it doesn't show up on legends
105 end % else
106
107 if nargout
       hhh=h;
109 end
```

C.2 Dynamic Analysis Scripts

Dynamic Case I: Two Heat Exchangers in Parallel

Run.m

```
1 % RUN FILE FOR DYNAMIC SIMULATION OF THE 1:1 HEN
{\it 3} % Topology to be investigated:
  1
               ____0__
         ---
                 -0-
  12
13 clear all;
14 close all;
15 clc;
16
  % Calling parameters from Data.m file
  [T0, Th1, Th2, ...
             m0, m1, m2, mh1, mh2...
19
             rho_0, hc, Cp0,...
20
             Vwall, rho_wall, Cp_wall,...
21
             P1, P2] = Data;
22
23
24
25
 sim('dynamic_11_1')
27
28
  % % TUNING OF CONTROLLER
 % % 10% STEP CHANGE INLET MASS FLOW COLD STREAM
32 % % TUNING PLOT
33 \% t0 = 800;
34 \% \text{ tend} = 1800;
35 %
```

```
36 \% \text{ cv1}_0 = -6;
37 % cv1_end = 1;
38 % cv1_step = 1;
39 %
40 \% m1_0 = 9;
41 % ml_end = 11;
42 \% m1_step = 0.5;
44 % k = figure;
45 % [AX, H1, H2] = plotyy(t, cv1, t, m1);
46 % set(get(AX(1), 'Ylabel'), 'String', 'Controlled variable, JT ...
      [^{\circ}C]','fontsize',12)
47 % set(get(AX(2),'Ylabel'),'String','Mass flow m_1 to upper ...
      path [kg/sec]','fontsize',12)
48 % axis(AX(1),[t0 tend cv1_0 cv1_end]);
49 % axis(AX(2),[t0 tend m1_0 m1_end]);
50 % set(AX(1), 'YLim', [cv1_0 cv1_end])
51 % set(AX(1),'YTick',cv1_0:cv1_step:cv1_end)
52 % set(AX(2), 'YLim', [m1_0 m1_end])
53 % set(AX(2),'YTick',m1_0:m1_step:m1_end)
54 % xlabel('Time [sec]','fontsize',12)
55 % set(H1,'linewidth',2)
56 % set(H2,'linewidth',2)
57 % grid on
58 % print(k,'-depsc','tune_11.eps');
61 % IMPLEMENTING FILTERS - SIMULATING BEHAVIOR WITH AND WITHOUT ...
      FILTE
62 % % Without Filter
63 % cv1_noAF = cv1;
64 % u1_noAF = u1;
65 % T1_noAF = T1;
66 % T2_noAF = T2;
67 % Tend_noAF = Tend;
69 % save no_filter
71 % % With Filter
72 % CV1 AF = CV1;
73 % u1_AF = u1;
```

```
74 % T1_AF = T1;
75 % T2_AF = T2;
76 % Tend AF = Tend;
77
   % save filter
78
79
80
   % PLOTING THE RESULTS
82
83 t0 = 800;
84 \text{ tend} = 2000;
86 \text{ cv1}_0 = -3.5;
87 \text{ cv1\_end} = 1;
  cv1\_step = 0.1;
89
91 % CONTROLLED VARIABLE PROFILES
92 k = figure;
93 plot(t,cv1_noAF,'b',t,cv1_AF,'r','LineWidth',2)
94 legend('Without filter','With filter')
95 xlabel('Time [sec]','fontsize',12);
96 ylabel('Controlled variable, JT [^{\circ}C]','fontsize',12)
97 axis([t0 tend cv1_0 cv1_end])
98 grid on
  % print(k,'-depsc','CV_11.eps');
100
101 % SPLIT
_{102} i = figure;
plot(t,u1_noAF,'b',t,u1_AF,'r','LineWidth',2)
104 legend('Without filter', 'With filter')
105 xlabel('Time [sec]','fontsize',12)
106 ylabel('Split u (Upper path)', 'fontsize', 12)
107 axis([t0 tend 0 0.36])
108 grid on
   % print(i,'-depsc','Split_11.eps');
110
111 % TEMPERATURE PROFILES
112 j = figure;
plot(t,T1_AF,t,T2_AF,t,Tend_AF,'LineWidth',2)
114 xlabel('Time[sec]','fontsize',12)
```

Data.m

```
1 % DATA FILE
2 % STREAM AND HEAT EXCHANGER DATA FOR THE 1:1 HEN
4 function [T0, Th1, Th2, ...
               m0, m1, m2, mh1, mh2...
               rho_0, hc, Cp0,...
               Vwall, rho_wall, Cp_wall,...
               P1, P2] = Data
11 % COLD STREAM
12 TO = 130; % Inlet cold stream temperature [degC]
13 \text{ rho}_0 = 1000; % Density cold stream [kg/m3]
14 hc = 0.17; % Heat transfer coeffsient cold fluid (water) ...
      [kW/m2degC]
m0 = 38; % Mass flow cold stream [kg/sek]
16 Cp0 = 2.5; % Heat capacity cold stream [kJ/kgdegC]
17 m1 = m0 * 0.2553; % Bypass to upper branch, start value for ...
      simulation
18 m2 = m0-m1; % Bypass to lower branch, start value for simulation
20 % HEAT EXCHANGER 1
21 Th1 = 203; % Inlet hot stream temperature [degC]
22 mh1 = 30; % Mass flow hot stream [kg/sek]
23 P1 = 1; % Price constant
25 % HEAT EXCHANGER 2
26 Th2 = 248; % Inlet hot stream temperature [degC]
27 \text{ mh2} = 21.67; \% \text{ Mass flow hot stream } [kg/sek]
28 P2 = 1; % Price constant
30 % HEAT EXCHANGER DATA
```

```
31 m_wall = 3000; % Wall weight HXers [kg]
32 rho_wall = 7850; % Wall density CS [kg/m3] %7850
33 Vwall = m_wall/rho_wall; % Volume walls [m3]
34 Cp_wall = 0.49; % Heat capacity walls CS [kW/kgdegC]
35
36 end
```

Dynamic.m

```
1 % DYNAMIC FUNCTION AND STATE EQUATIONS FOR THE 1:1 HEN
3 function xprime = Dynamic(t, X, U, N, HXindex)
5 % Defining the outlet varibles
6 \text{ Th\_out} = X(1:N);
7 Twall = X(N+1:2*N);
8 \text{ Tc\_out} = X(2*N+1:3*N);
10 % Defining inlet parameters from Simulink
11 Th_in(1) = U(1);
12 \text{ mh\_in} = U(2);
13 \text{ Tc_in}(1) = U(3);
14 \text{ mO}_{in} = U(4);
15
16 % Calling parameters from Data.m file
  [T0, Th1, Th2, ...
17
                m0, m1, m2, mh1, mh2, ...
18
                 rho_0, hc, Cp0,...
19
                Vwall, rho_wall, Cp_wall] = Data;
21
22
23 if HXindex == 1
       Cph = 2;
       wh = Cph*mh_in;
25
       rho_h = rho_0;
26
       hh = 1.31*hc;
27
       U = (hh*hc)/(hh+hc);
       Vhot = mh_in/rho_h;
29
30
       Vcold = m0_in/rho_0;
       w0 = m0_in*Cp0;
31
```

```
Ai = 250;
32
33
34
35
36 elseif HXindex == 2
       Cph = 3;
       wh = Cph*mh_in;
38
39
       rho_h = rho_0;
       hh = 1.1 * hc;
40
       U = (hh*hc)/(hh+hc);
41
       Vhot = mh_in/rho_h;
42
       Vcold = m0_in/rho_0;
43
       w0 = m0_in*Cp0;
       Ai = 700;
45
47
48 end
49
51 % STATE EQUATIONS
53 % Hot stream
54 dThotdt(1) = ...
      (Th_in(1)-Th_out(1)-((U*Ai)/(wh*N))*(Th_out(1)-Twall(N))...
       *(mh_in*N)/(rho_h*Vhot));
55
57 % Wall
58 dTwalldt(1) = (hh*(Th_out(N)-Twall(1))-hc*(Twall(1)-Tc_out(1)))...
       *(Ai/(rho_wall*Cp_wall*Vwall));
59
61 % Cold stream
62 dTcolddt(1) ...
      = (Tc_in(1) - Tc_out(1) - ((U*Ai) / (w0*N)) * (Tc_out(1) - Twall(1))) ...
       *((m0_in*N)/(rho_0*Vcold));
63
64
66 for i = 2:N
       j = N-i+1;
67
       dThotdt(i) = (Th_out(i-1)-Th_out(i)-((U*Ai)/(wh*N))...
           *(Th_out(i)-Twall(j))*(mh_in*N)/(rho_h*Vhot));
69
70 end
```

HX1.m

```
1 % HEAT EXCHANGER 1
3 function [sys,x0] = HX1(t,x,u,flag)
5 HXindex = 1; % HX number
6 N = 10; % Model order
9 if abs(flag) == 1
       sys = Dynamic(t, x, u, N, HXindex);
10
11
  elseif abs(flag) == 3
12
       sys(1,1) = x(N); % Outlet hot temperature
       sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
16 elseif flag == 0
       x0 = ssvar(HXindex, N);
      sys = [3*N, 0, 2, 4, 0, 0];
18
19
20 else
    sys = [];
21
22
23 end
^{24}
```

HX2.m

```
1 % HEAT EXCHANGER 2
3 function [sys,x0] = HX2(t,x,u,flag)
5 HXindex = 2; % HX number
6 N = 10; % Model order
9 if abs(flag) == 1
     sys = Dynamic(t, x, u, N, HXindex);
10
11
12 elseif abs(flag) == 3
      sys(1,1) = x(N); % Outlet hot temperature
13
      sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
15
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
17
      sys = [3*N, 0, 2, 4, 0, 0];
18
19
20 else
    sys = [];
23 end
24
25 end
```

${\tt ssvar.m}$

```
1 % STEADY STATE VARIABLES FOR EACH HEAT EXCHANGER
2 % IN THE 1:1 HEN
3
4 function [x0] = ssvar(HXindex,N)
5
6    if HXindex == 1
7
```

```
x0 = [202.4350]
                        201.6831
                        200.6825
10
                        199.3507
11
                        197.5784
12
                        195.2197
                        192.0806
14
                        187.9029
15
                        182.3430
16
                        174.9436
17
                        156.5233
18
                        168.5020
19
                        177.5028
                        184.2660
21
                        189.3478
22
                        193.1663
23
                        196.0355
                        198.1914
25
                        199.8113
                        201.0286
27
                        132.3926
                        150.3702
29
                        163.8786
30
                        174.0288
31
                        181.6556
32
                        187.3864
                        191.6925
34
                        194.9281
35
                        197.3593
36
                        199.1861];
38
40
41
        elseif HXindex == 2
42
43
44
                 x0 = [238.5844]
45
                        229.1347
                        219.6505
47
                        210.1320
48
```

```
49
                        200.5788
                       190.9910
50
                        181.3683
51
                       171.7107
52
                       162.0179
53
                       152.2900
54
                       142.1443
55
                       151.9090
56
                       161.6383
57
                       171.3324
58
                       180.9914
59
                       190.6155
60
                       200.2047
61
                       209.7592
62
                       219.2791
63
                        228.7645
64
                       130.9841
65
                       140.7891
66
                       150.5587
67
                       160.2929
68
                       169.9919
69
                       179.6558
70
                       189.2846
71
                       198.8787
72
                       208.4380
73
                       217.9627];
74
75
76
77
78
       end
```

Dynamic Case II: Two Heat Exchangers in Series Parallel to One Heat Exchanger

Run.m

```
1 % RUN FILE FOR DYNAMIC SIMULATION OF THE 2:1 HEN
3 % Topology to be investigated:
  1 2
             --0----0----
                        |----
                 -0-
                 3
  13 clear all;
14 close all;
15 clc;
16
 % Calling parameters from Data.m
  [T0, Th1, Th2, Th3...
             m0, m1, m2, mh1, mh2, mh3...
19
             rho_0, hc, Cp0,...
20
             Vwall, rho_wall, Cp_wall,...
21
             filterk, filtert,...
22
             P1, P2, P3] = Data;
23
24
  % SIMULINK FILE FOR SIMULATION WITH THE MODIFIED CV
  % sim('dynamic_21_1_1')
28
  % SIMULINK FILE FOR SIMULATION WITH THE ORIGINAL CV
 sim('dynamic_21_1')
30
31
32
33
34 % % TUNING OF CONTROLLER
35 % % 10% STEP CHANGE INLET MASS FLOW COLD STREAM
36 % % TUNING PLOT
```

```
37 \% t0 = 800;
38 \% \text{ tend} = 1800;
40 \% \text{ cv1}_0 = 1e7;
41 \% \text{ cv1\_end} = 3e7;
42 % cv1_step = 0.5e7;
43 %
44 \% m1_0 = 28;
45 \% m1_end = 34;
46 % m1_step = 1;
47 %
48 \% k = figure;
49 % [AX, H1, H2] = plotyy(t, cv1, t, m1);
50 % set(get(AX(1), 'Ylabel'), 'String', 'Controlled variable, JT ...
      [^{\circ}C]','fontsize',12)
51 % set(qet(AX(2),'Ylabel'),'String','Mass flow m_1 to upper ...
      path [kg/sec]','fontsize',12)
52 % axis(AX(1),[t0 tend cv1_0 cv1_end]);
53 % axis(AX(2),[t0 tend m1_0 m1_end]);
54 % set(AX(1), 'YLim', [cv1_0 cv1_end])
55 % set(AX(1),'YTick',cv1_0:cv1_step:cv1_end)
56 % set(AX(2), 'YLim', [m1_0 m1_end])
57 % set(AX(2), 'YTick', m1_0:m1_step:m1_end)
58 % xlabel('Time [sec]','fontsize',12)
59 % set(H1,'linewidth',2)
60 % set(H2,'linewidth',2)
61 % grid on
62 % print(k,'-depsc','tune_21_numJT.eps');
65 % % IMPLEMENTING FILTERS — SIMULATING BEHAVIOR WITH AND ...
      WITHOUT FILTER
66 % % Without Filter
67 % cv1_noAF = cv1;
68 % u1_noAF = u1;
69 % T1_noAF = T1;
70 % T2_noAF = T2;
71 % T3_noAF = T3;
72 % Tend_noAF = Tend;
73 %
74 % save no_filter
```

```
75
76 % % With Filter
77 % cv1_AF = cv1;
78 % u1_AF = u1;
79 % T1_AF = T1;
80 \% T2\_AF = T2;
81 % T3_AF = T3;
82 % Tend_AF = Tend;
  % save filter
85
86
  % PLOTING THE RESULTS
90 t0 = 800;
91 tend = 2000;
92
93 cv1_0 = -5;
94 \text{ cv1\_end} = 5;
  cv1\_step = 5;
96
  % % RESULTS FOR THE CASE WITH COOLING HX (MOD. CV)
98
100 % % TEMPERATURE PROFILES W/ COOLING TH2
101 % h = figure;
  % figure(1)
103 % plot(t,T1,t,T2,t,Th2_d,'LineWidth',2)
104 % xlabel('Time [sec]','fontsize',12);
105 % ylabel('Temperature [ \circC]', 'fontsize', 12);
106 % legend('T_{1,1}','T_{2,1}','Th_{2,1}')
107 % axis([t0 tend 170 260])
   % grid on
109 % % print(h,'-depsc','T_coolHX2_numJT_Tune1.eps');
110
111 % % SPLIT PROFILE W/ COOLING TH2
112 % j = figure;
113 % figure(2)
114 % plot(t,u1,'LineWidth',2)
115 % xlabel('Time [sec]', 'fontsize', 12);
```

```
116 % ylabel('Split u', 'fontsize', 12);
117 % % legend('T1','T2','Th2')
118 % axis([t0 tend 0 1])
119 % grid on
120 % % print(j,'-depsc','Split_coolHX2_numJT_Tune1.eps');
121
122
123 % % RESULTS FOR THE ORIGINAL CASE (ORG. CV)
125 % % CONTROLLED VARIABLE PROFILE WITHOUT FILTER
126 % k = figure;
127 % % figure(3)
128 % plot(t,cv1,'LineWidth',2)
129 % % h=BreakXAxis(t,cv1,-1e7,-5000,1000);
130 % % legend('Without AF','With AF')
131 % % title('CV (J1-J2)')
132 % xlabel('Time [sec]','fontsize',12);
133 % ylabel('Mod. control variable, JT [^{\circ}C^4]','fontsize',12)
134 % axis([t0 tend cv1_0 cv1_end])
135 % grid on
136 % print(k,'-depsc','CV_coolHX2_fullplot_Tune2.eps');
137
138
139 % % SPLIT WITHOUT FILTER
140 % % figure(3)
141 % i = figure;
142 % plot(t,u1,'LineWidth',2)
143 % % legend('Without AF','With AF')
144 % % title('CV (J1-J2)')
145 % xlabel('Time [sec]', 'fontsize', 12)
146 % ylabel('Split u (Upper path)','fontsize',12)
147 % axis([t0 tend 0.1 0.8])
148 % grid on
149 % print(i,'-depsc','Split_21.eps');
150
151
152
153 % CONTROLLED VARIABLE PROFILE WITH FILTER
154 l = figure;
plot(t,cv1_noAF,'b',t,cv1_AF,'r','LineWidth',2)
156 legend('Without filter','With filter')
```

```
157 xlabel('Time [sec]', 'fontsize', 12);
158 ylabel('Controlled variable, JT [^{\circ}C]', 'fontsize', 12)
159 axis([t0 tend cv1_0 cv1_end])
160 grid on
   % print(l,'-depsc','CV_filter_21.eps');
161
162
163 % SPLIT WITH FILTER
164 i = figure;
plot(t,u1_noAF,'b',t,u1_AF,'r','LineWidth',2)
166 legend('Without filter','With filter')
167 xlabel('Time [sec]', 'fontsize', 12)
168 ylabel('Split u (Upper path)', 'fontsize', 12)
169 axis([t0 tend 0.3 0.601])
170 grid on
171
   % print(i,'-depsc','Split_filter_21.eps');
172
173 % TEMPERATURE PROFILES WITH FILTER
174 j = figure;
plot(t,T1_AF,t,T2_AF,t,T3,t,Tend_AF,'LineWidth',2)
176 xlabel('Time[sec]','fontsize',12)
177 ylabel('Temperature [^{\circ}C]','fontsize',12)
178 axis([t0 tend 160 210])
179 legend('T_{1,1}','T_{2,1}','T_{1,2}','T_{end}')
180 grid on
181 % print(j,'-depsc','T_21.eps');
```

Data.m

```
13 TO = 130; % Inlet cold stream temperature [degC]
14 \text{ rho}_0 = 1000; \% \text{ Density cold stream [kg/m3]}
15 hc = 0.10; % Heat transfer coeffsient cold fluid (water) ...
      [kW/m2degC]
m0 = 64; % Mass flow cold stream [kg/sek]
17 Cp0 = 2.5; % Heat capacity cold stream [kJ/kgdegC]
18 m1 = m0 * 0.4522; % Bypass to upper branch, start value for ...
      simulation
19 \text{ m2} = \text{m0-m1}; % Bypass to lower branch, start value for simulation
21 % HEAT EXCHANGER 1
22 Th1 = 203; % Inlet hot stream temperature [degC]
23 mh1 = 30; % Mass flow hot stream [kg/sec]
24 P1 = 1; % Price constant
26 % HEAT EXCHANGER 2
27 Th2 = 255; % Inlet hot stream temperature [degC]
28 \text{ mh2} = 13.5; % Mass flow hot stream [kg/sec]
29 P2 = 1; % Price constant
31 % HEAT EXCHANGER 3
32 Th3 = 248; % Inlet hot stream temperature [degC]
mh3 = 21.67; % Mass flow hot stream [kg/sec]
_{34} P3 = 1; % Price constant
36 % HEAT EXCHANGER DATA
37 m_wall = 3000; % Wall weight HXers [kg]
38 rho_wall = 7850; % Wall density CS [kg/m3] %7850
39 Vwall = m_wall/rho_wall; % Wall volume [m3]
40 Cp_wall = 0.49; % Heat capacity wall CS [kW/kgdegC]
41
42
43 end
```

Dynamic.m

```
1 % DYNAMIC FUNCTION AND STATE EQUATIONS FOR THE 2:1 HEN
2
3 function xprime = Dynamic(t, X, U, N, HXindex)
4
```

```
5 % Defining outlet variables
6 Th_out = X(1:N);
7 Twall = X(N+1:2*N);
8 \text{ Tc\_out} = X(2*N+1:3*N);
10 % Defining inlet parameters from Simulink
11 \text{ Th_in}(1) = U(1);
12 \text{ mh}_in = U(2);
13 \text{ Tc_in}(1) = U(3);
14 \text{ mO}_{in} = U(4);
15
  % Calling additional parameters from Data.m
   [T0, Th1, Th2, Th3...
                m0, m1, m2, mh1, mh2, mh3...
18
19
                rho_0, hc, Cp0,...
                Vwall, rho_wall, Cp_wall,...
20
                filterk, filtert,...
                P1, P2, P3] = Data;
22
23
24
  if HXindex == 1
       Cph = 2;
26
       wh = Cph*mh_in;
       rho_h = rho_0;
28
       hh = 1.089*hc;
       U = (hh*hc)/(hh+hc);
31
       Vhot = mh_in/rho_h;
       Vcold = m0_in/rho_0;
32
       w0 = m0_in*Cp0;
33
       Ai = 341;
35
36
  elseif HXindex == 2
37
       Cph = 2;
38
       wh = Cph*mh_in;
39
       rho_h = rho_0;
       hh = 1.025*hc;
41
       U = (hh*hc)/(hh+hc);
42
       Vhot = mh_in/rho_h;
43
       Vcold = m0_in/rho_0;
44
       w0 = m0_in*Cp0;
45
```

```
Ai = 616;
46
47
48
49
50 else HXindex == 3
       Cph = 3;
       wh = Cph*mh_in;
52
53
       rho_h = rho_0;
       hh = 1.070*hc;
54
       U = (hh*hc)/(hh+hc);
55
       Vhot = mh_in/rho_h;
56
       Vcold = m0_in/rho_0;
57
       w0 = m0_in*Cp0;
       Ai = 1118;
59
61 end
63
64 % STATE EQUATIONS
66 % Hot stream
67 dThotdt(1) = ...
      (Th_in(1)-Th_out(1)-((U*Ai)/(wh*N))*(Th_out(1)-Twall(N))...
       *(mh_in*N)/(rho_h*Vhot));
70 % Wall
71 dTwalldt(1) = (hh*(Th_out(N)-Twall(1))-hc*(Twall(1)-Tc_out(1)))...
       *(Ai/(rho_wall*Cp_wall*Vwall));
73
74 % Cold stream
75 dTcolddt(1) ...
      = (Tc_in(1) - Tc_out(1) - ((U*Ai) / (w0*N)) * (Tc_out(1) - Twall(1))) ...
       *((m0_in*N)/(rho_0*Vcold));
76
77
78
79 for i = 2:N
       j = N-i+1;
80
       dThotdt(i) = (Th_out(i-1)-Th_out(i)-((U*Ai)/(wh*N))*...
81
           (Th_out(i)-Twall(j))*(mh_in*N)/(rho_h*Vhot));
83 end
84
```

HX1.m

```
1 % HEAT EXCHANGER 1
3 function [sys,x0] = HX1(t,x,u,flag)
5 HXindex = 1; % HX number
6 N = 10; % Model order
  if abs(flag) == 1
       display('flag = 1')
10
       sys = Dynamic(t, x, u, N, HXindex);
11
       disp(sys)
12
  elseif abs(flag) == 3
14
       display('flag = 3')
15
       sys(1,1) = x(N); % Outlet hot temperature
16
       sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
       disp(sys)
18
19
20 elseif flag == 0
       display('flag = 0')
21
       x0 = ssvar(HXindex, N);
22
       sys = [3*N, 0, 2, 4, 0, 0];
23
       disp(sys)
^{24}
```

HX2.m

```
1 % HEAT EXCHANGER 2
3 function [sys,x0] = HX2(t,x,u,flag)
5 HXindex = 2; % HX number
_{6} N = 10; % Model order
9 if abs(flag) == 1
      sys = Dynamic(t, x, u, N, HXindex);
10
11
12 elseif abs(flag) == 3
       sys(1,1) = x(N); % Outlet hot temperature
13
       sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
16 elseif flag == 0
      x0 = ssvar(HXindex, N);
      sys = [3*N, 0, 2, 4, 0, 0];
18
20 else
   sys = [];
23 end
24
25 end
```

HX3.m

```
1 % HEAT EXCHANGER 3
```

```
3 function [sys, x0] = HX3(t,x,u,flag)
5 HXindex = 3; % HX number
6 N = 10; % Model order
9 if abs(flag) == 1
     sys = Dynamic(t,x,u,N,HXindex);
11
12 elseif abs(flag) == 3
      sys(1,1) = x(N); % Outlet hot temperature
13
       sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
15
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
17
     sys = [3*N, 0, 2, 4, 0, 0];
18
19
20 else
21 sys = [];
23 end
25 end
```

ssvar.m

```
1 % STEADY STATE VARIABLES FOR EACH HEAT EXCHANGER
2 % IN THE 2:1 HEN
3
4 function [x0] = ssvar(HXindex,N)
5
6 if HXindex == 1
7
8 x0 = [198.3549
9 193.7732
10 189.2542
11 184.7968
12 180.4004
13 176.0641
```

```
14
                            171.7870
                            167.5684
15
                            163.4074
16
                            159.3032
17
                            145.4507
18
                            149.3629
19
                            153.3294
20
                            157.3508
21
                            161.4278
22
                            165.5614
23
                            169.7523
24
                            174.0012
25
                            178.3089
26
                            182.6763
27
                            130.3653
28
                            134.0685
29
                            137.8231
                            141.6297
31
                            145.4890
32
                            149.4017
33
                            153.3687
34
                            157.3906
35
                            161.4683
36
                            165.6024];
37
38
       elseif HXindex == 2
39
40
41
                     x0 = [234.0031]
42
                            217.7572
43
                            205.1873
44
                            195.4616
45
                            187.9366
46
                            182.1142
47
                            177.6093
48
                            174.1237
49
                            171.4268
50
                            169.3401
51
                            167.5332
52
                            169.0914
53
                            171.1054
54
```

```
55
                             173.7083
                             177.0724
56
                             181.4204
57
                             187.0398
                             194.3026
59
                             203.6894
                             215.8213
61
                             165.6811
62
                             166.6977
63
                             168.0116
64
                             169.7098
65
                             171.9046
66
                             174.7412
67
                             178.4074
68
                             183.1458
69
                             189.2699
70
                             197.1848];
71
72
73
74
75
        else HXindex == 3
76
77
78
79
                      x0 = [235.0515]
                             222.8678
81
                             211.4038
82
                             200.6169
83
                             190.4672
                             180.9169
85
                             171.9308
                             163.4754
87
                             155.5194
88
                             148.0334
89
                             139.6122
90
                             146.5695
91
                             153.9637
92
                             161.8220
93
                             170.1736
94
                             179.0494
95
```

```
96
                              188.4824
                              198.5076
97
                              209.1621
98
                              220.4854
99
                              130.6014
100
                              136.9932
101
                              143.7862
102
                              151.0056
103
                              158.6782
104
                              166.8324
105
                              175.4985
106
                              184.7086
107
                              194.4969
108
                              204.8996];
109
110
111
112
113
        end
```

Dynamic Case III: Three Heat Exchangers in Series Parallel to Two Heat Exchangers

Run.m

```
1 % RUN FILE FOR DYNAMIC SIMULATION OF THE 3:2 HEN
3 % Topology to be investigated:
  1 2
                         3
              --0---
                   ---0----
                         ---0-----
                               |---
                  -0---
                  4
                         5
  13 clear all;
14 close all;
15 clc;
16
  % Calling parameters from Data.m file
  [T0, Th1, Th2, Th3, Th4, Th5, ...
              m0, m1, m2, mh1, mh2, mh3, mh4, mh5, ...
19
              rho_0, hc, Cp0, ...
20
              Vwall, rho_wall, Cp_wall, ...
21
              P1, P2, P3, P4, P5] = Data;
22
23
24
25
26 sim('dynamic_32')
27
28
  % % TUNING OF CONTROLLER
  % % 10% STEP CHANGE INLET MASS FLOW COLD STREAM
  % % TUNING PLOT
32 \% t0 = 800;
33 % tend = 2000;
35 \% \text{ cv1}_0 = -5;
36 % cv1_end = 10;
```

```
37 % cv1_step = 3;
38 %
39 \% m1_0 = 16;
40 \% m1_end = 20;
41 % ml_step = 1;
42 %
43 % [AX, H1, H2] = plotyy(t, cv1, t, m1);
44 % set(get(AX(1),'Ylabel'),'String','Controlled variable, JT ...
      [^{\circ}C]','fontsize',12)
45 % set(get(AX(2), 'Ylabel'), 'String', 'Mass flow m_1 to upper ...
      path [kg/sec]','fontsize',12)
46 % axis(AX(1),[t0 tend cv1_0 cv1_end]);
47 % axis(AX(2),[t0 tend m1_0 m1_end]);
48 % set(AX(1), 'YLim', [cv1_0 cv1_end])
49 % set(AX(1), 'YTick', cv1_0:cv1_step:cv1_end)
50 % set(AX(2),'YLim',[m1_0 m1_end])
51 % set(AX(2), 'YTick', m1_0:m1_step:m1_end)
52 % xlabel('Time [sec]','fontsize',12)
53 % set(H1,'linewidth',2)
54 % set(H2,'linewidth',2)
55 % grid on
56 % print(k,'-depsc','tune_32.eps');
_{59} % IMPLEMENTING FILTERS - SIMULATING BEHAVIOR WITH AND WITHOUT ...
     FILTE
60 % % Without Filter
61 % cv1_noAF = cv1;
62 % u1_noAF = u1;
63 % T1 noAF = T1;
64 % T2_noAF = T2;
65 % Tend_noAF = Tend;
66 %
67 % save no_filter
69 % % With Filter
70 % CV1_AF = CV1;
71 % u1_AF = u1;
72 % T1_AF = T1;
73 % T2 AF = T2;
74 % T3_AF = T3;
```

```
75 \% T4\_AF = T4;
76 % T5_AF = T5;
77 % Tend AF = Tend;
   % save filter
79
80
81
   % PLOTING THE RESULTS
84 t0 = 800;
85 \text{ tend} = 3000;
87 \text{ cv1}_0 = -0.5;
88 \text{ cv1\_end} = 3;
89 cv1_step = 0.1;
90
92 % CONTROLLED VARIABLE PROFILE
93 k = figure;
94 plot(t,cv1_noAF,'b',t,cv1_AF,'r','LineWidth',2)
95 legend('Without filter','With filter')
96 xlabel('Time [sec]', 'fontsize', 12);
97 ylabel('Controlled variable, JT [^{\circ}C]','fontsize',12)
98 axis([t0 tend cv1_0 cv1_end])
99 grid on
   % print(k,'-depsc','CV_32.eps');
100
101
102 % SPLIT
_{103} i = figure;
104 plot(t,u1_noAF,'b',t,u1_AF,'r','LineWidth',2)
los legend('Without filter', 'With filter')
106 xlabel('Time [sec]','fontsize',12)
107 ylabel('Split u (Upper path)', 'fontsize', 12)
108 axis([t0 tend 0.3 0.38])
109 grid on
   % print(i,'-depsc','Split_32.eps');
110
1111
112 % TEMPERATURE PROFILES
113 j = figure;
lii4 plot(t,T1_AF,t,T2_AF,t,T3_AF,t,T4_AF,t,T5_AF,t,...
       Tend_AF, 'LineWidth',2)
115
```

```
116 xlabel('Time[sec]','fontsize',12)
117 ylabel('Temperature [^{\circ}C]','fontsize',12)
118 axis([t0 tend 145 195])
119 legend('T_{1,1}','T_{2,1}','T_{3,1}','T_{1,2}','T_{2,2}','T_{end}')
120 grid on
121 % print(j,'-depsc','T_32.eps');
```

Data.m

```
1 % DATA FILE
2 % STREAM AND HEAT EXCHANGER DATA FOR THE 3:2 HEN
4 function [T0, Th1, Th2, Th3, Th4, Th5,...
               m0, m1, m2, mh1, mh2, mh3, mh4, mh5, ...
                rho_0, hc, Cp0, ...
6
               Vwall, rho_wall, Cp_wall, ...
               P1, P2, P3, P4, P5] = Data
11 % COLD STREAM
12 TO = 130; % Inlet cold stream temperature [degC]
13 \text{ rho}_0 = 1000; % Density cold stream [kg/m3]
14 hc = 0.10; % Heat transfer coeffsient cold fluid (water) ...
      [kW/m2degC]
m0 = 60; % Mass flow cold stream [kg/sek]
16 Cp0 = 2.5; % Heat capacity cold stream [kJ/kgdegC]
17 m1 = m0 * 0.2828; % Bypass to upper branch, start value for ...
      simulation
18 \text{ m2} = \text{m0-m1}; % Bypass to lower branch, start value for simulation
19
20 % HEAT EXCHANGER 1
21 Th1 = 190; % Inlet hot stream temperature [degC]
22 \text{ mh1} = 25; % Mass flow hot stream [kg/sec]
23 P1 = 1; % Price constant
25 % HEAT EXCHANGER 2
26 Th2 = 203; % Inlet hot stream temperature [degC]
27 \text{ mh2} = 15; % Mass flow hot stream [kg/sec]
28 P2 = 1; % Price constant
29
```

```
30 % HEAT EXCHANGER 3
31 Th3 = 220; % Inlet hot stream temperature [degC]
32 \text{ mh3} = 7.5; % Mass flow hot stream [kg/sec]
33 P3 = 1; % Price constant
35 % HEAT EXCHANGER 4
36 Th4 = 220; % Inlet hot stream temperature[degC]
37 \text{ mh4} = 17.5; % Mass flow hot stream [kg/sec]
38 P4 = 1; % Price constant
40 % HEAT EXCHANGER 5
41 Th5 = 248; % Inlet hot stresm temperature [degC]
42 mh5 = 10; % Mass flow hot stream [kg/sec]
43 P5 = 1; % Price constant
45 % HEAT EXCHANGER DATA
46 \text{ m\_wall} = 3000; % Wall weight HXers [kg]
47 rho_wall = 7850; % Wall density CS [kg/m3] %7850
48 Vwall = m_wall/rho_wall; % Volume walls [m3]
49 Cp_wall = 0.49; % Heat capacity walls CS [kW/kgdegC]
51
53 end
```

Dynamic.m

```
1 % DYNAMIC FUNCTION AND STEADY STATE EQUATIONS FOR THE 3:2 HEN
2
3 function xprime = Dynamic(t, X, U, N, HXindex)
4
5 % Defining the outlet variables
6 Th_out = X(1:N);
7 Twall = X(N+1:2*N);
8 Tc_out = X(2*N+1:3*N);
9
10 % Defining inlet parameters from Simulink
11 Th_in(1) = U(1);
12 mh_in = U(2);
13 Tc_in(1) = U(3);
```

```
14 \text{ mO}_{in} = U(4);
15
16 % Calling parameters from Data.m file
17 [T0, Th1, Th2, Th3, Th4, Th5, ...
                m0, m1, m2, mh1, mh2, mh3, mh4, mh5, ...
18
                rho_0, hc, Cp0, ...
                Vwall, rho_wall, Cp_wall, ...
20
                P1, P2, P3, P4, P5] = Data;
^{21}
22
  if HXindex == 1
       Cph = 2;
24
       wh = Cph*mh_in;
25
       rho_h = rho_0;
26
       hh = 1.109*hc;
27
       U = (hh*hc)/(hh+hc);
       Vhot = mh_in/rho_h;
29
       Vcold = m0_in/rho_0;
       w0 = m0_in*Cp0;
31
       Ai = 112.5;
33
35 elseif HXindex == 2
       Cph = 2;
36
       wh = Cph*mh_in;
37
       rho_h = rho_0;
38
       hh = 1.088*hc;
39
       U = (hh*hc)/(hh+hc);
40
       Vhot = mh_in/rho_h;
       Vcold = m0_in/rho_0;
42
       w0 = m0_in*Cp0;
43
       Ai = 102;
44
46
   elseif HXindex == 3
47
       Cph = 2;
48
       wh = Cph*mh_in;
49
       rho_h = rho_0;
50
       hh = 1.07 * hc;
51
       U = (hh*hc)/(hh+hc);
52
       Vhot = mh_in/rho_h;
53
       Vcold = m0_in/rho_0;
```

```
55
       w0 = m0_in*Cp0;
       Ai = 85;
56
57
  elseif HXindex == 4
59
       Cph = 4;
       wh = Cph*mh_in;
61
       rho_h = rho_0;
       hh = 1.068*hc;
63
       U = (hh*hc)/(hh+hc);
64
       Vhot = mh_in/rho_h;
65
       Vcold = m0_in/rho_0;
66
       w0 = m0_in*Cp0;
       Ai = 800;
68
69
70
71 else HXindex == 5
       Cph = 2;
72
       wh = Cph*mh_in;
       rho_h = rho_0;
74
       hh = 1*hc;
       U = (hh*hc)/(hh+hc);
76
77
       Vhot = mh_in/rho_h;
       Vcold = m0_in/rho_0;
78
       w0 = m0_in*Cp0;
79
       Ai = 765;
81
83 end
  % STATE EQUATIONS
87
   % Hot stream
  dThotdt(1) = (Th_in(1)-Th_out(1)-((U*Ai)/(wh*N))*...
       (Th_out(1)-Twall(N))*(mh_in*N)/(rho_h*Vhot));
90
91
92 % Wall
93 dTwalldt(1) = ...
       (hh*(Th_out(N)-Twall(1))-hc*(Twall(1)-Tc_out(1)))*...
       (Ai/(rho_wall*Cp_wall*Vwall));
94
```

```
95
96 % Cold stream
97 dTcolddt(1) ...
       = (Tc_in(1) - Tc_out(1) - ((U*Ai) / (w0*N)) * (Tc_out(1) - Twall(1))) * ...
        ((m0_in*N)/(rho_0*Vcold));
98
100
   for i = 2:N
        j = N-i+1;
102
        dThotdt(i) = (Th_out(i-1)-Th_out(i)-((U*Ai)/(wh*N))*...
103
            (Th_out(i)-Twall(j))*(mh_in*N)/(rho_h*Vhot));
104
105 end
106
107 \text{ for } j = 2:N
108
        i = N-j+1;
        dTwalldt(j) = ...
109
            (hh*(Th_out(i)-Twall(j))-hc*(Twall(j)-Tc_out(j)))*...
            (Ai/(rho_wall*Cp_wall*Vwall));
110
        dTcolddt(j) = (Tc_out(j-1)-Tc_out(j)-((U*Ai)/(w0*N))*...
111
            (Tc_out(j)-Twall(j))*((m0_in*N)/(rho_0*Vcold)));
112
113 end
114
115
116 xprime = [dThotdt, dTwalldt, dTcolddt];
```

HX1.m

HX2.m

```
1 % HEAT EXCHANGER 2
3 function [sys,x0] = HX2(t,x,u,flag)
5 HXindex = 2; % HX number
6 N = 10; % Model order
9 if abs(flag) == 1
     sys = Dynamic(t, x, u, N, HXindex);
11
12 elseif abs(flag) == 3
      sys(1,1) = x(N); % Outlet hot temperature
13
       sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
17
      sys = [3*N, 0, 2, 4, 0, 0];
18
20 else
  sys = [];
22
23 end
24
25 end
```

HX3.m

```
1 % HEAT EXCHANGER 3
3 function [sys,x0] = HX3(t,x,u,flag)
5 HXindex = 3; % HX number
_{6} N = 10; % Model order
9 if abs(flag) == 1
     sys = Dynamic(t,x,u,N,HXindex);
12 elseif abs(flag) == 3
      sys(1,1) = x(N); % Outlet hot temperature
      sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
     sys = [3*N, 0, 2, 4, 0, 0];
20 else
21 sys = [];
22
23 end
24
25 end
```

HX4.m

```
1 % HEAT EXCHANGER 4
2
3 function [sys,x0] = HX4(t,x,u,flag)
4
5 HXindex = 4; % HX number
6 N = 10; % Model order
7
8
9 if abs(flag) == 1
10    sys = Dynamic(t,x,u,N,HXindex);
```

```
11
12 elseif abs(flag) == 3
      sys(1,1) = x(N); % Outlet hot temperature
       sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
15
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
17
      sys = [3*N, 0, 2, 4, 0, 0];
18
19
20 else
    sys = [];
21
23 end
24
25 end
```

HX4.m

```
1 % HEAT EXCHANGER 4
3 function [sys, x0] = HX4(t,x,u,flag)
5 HXindex = 4; % HX number
6 N = 10; % Model order
9 if abs(flag) == 1
      sys = Dynamic(t,x,u,N,HXindex);
10
12 elseif abs(flag) == 3
       sys(1,1) = x(N); % Outlet hot temperature
      sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
17
     sys = [3*N, 0, 2, 4, 0, 0];
18
19
20 else
21
    sys = [];
22
```

```
23 end
24
25 end
```

ssvar.m

```
1 % STEADY STATE VARIABLES FOR EACH HEAT EXCHANGER
2 % IN THE 3:2 HEN
4 function [x0] = ssvar(HXindex,N)
      if HXindex == 1
6
                    x0 = [188.0976]
                           186.1641
9
                           184.1991
10
                           182.2021
11
                           180.1724
12
                           178.1097
13
                           176.0132
14
                           173.8826
15
                           171.7172
16
                           169.5165
17
                           150.9158
18
                           153.4152
19
                           155.8744
20
                           158.2941
^{21}
                           160.6750
22
                           163.0177
^{23}
                           165.3228
24
                           167.5908
                           169.8225
26
                           172.0183
                           130.2877
28
                           133.1182
29
                           135.9033
30
                           138.6437
31
                           141.3400
32
33
                           143.9931
                           146.6036
34
```

```
35
                             149.1722
                             151.6996
36
                             154.1863];
37
38
39
40
        elseif HXindex == 2
41
42
                      x0 = [200.4704]
43
                             197.9864
44
                             195.5472
45
                             193.1520
46
                             190.8000
47
                             188.4904
48
                             186.2224
49
                             183.9953
50
                             181.8084
51
                             179.6609
52
                             167.5396
                             169.4645
54
                             171.4247
                             173.4209
56
                             175.4538
57
                             177.5241
58
                             179.6323
59
                             181.7792
                             183.9656
61
                             186.1921
62
                             154.3516
63
                             156.0343
                             157.7479
65
                             159.4930
                             161.2701
67
                             163.0799
68
                             164.9229
69
                             166.7997
70
                             168.7110
71
                             170.6574];
72
73
74
75
```

```
76
        elseif HXindex == 3
77
78
                      x0 = [215.3492]
79
                             211.0567
80
                             207.0951
                             203.4387
82
                             200.0641
83
                             196.9495
84
                             194.0750
85
                             191.4219
86
                             188.9733
87
                             186.7134
88
                             178.9982
89
                             180.6139
90
                             182.3645
91
                             184.2613
                             186.3165
93
                             188.5433
                             190.9559
95
                             193.5701
96
                             196.4025
97
                             199.4714
98
                             170.7429
99
                             171.6693
100
                             172.6731
101
                             173.7608
102
                             174.9392
103
                             176.2160
104
                             177.5994
105
                             179.0984
106
                             180.7224
107
                             182.4821];
108
109
110
111
112
         elseif HXindex == 4
113
114
                      x0 = [210.3670]
115
                             201.3865
116
```

```
117
                               193.0143
                               185.2092
118
                               177.9328
119
                               171.1493
120
                               164.8253
121
                               158.9296
122
                               153.4334
123
                               148.3094
124
                               139.6279
125
                               144.1211
126
                               148.9407
127
                               154.1106
128
                               159.6561
129
                               165.6045
130
                               171.9851
131
                               178.8293
132
                               186.1709
133
                               194.0458
134
                               130.3561
135
                               134.1756
136
                               138.2726
137
                               142.6673
138
                               147.3813
139
                               152.4379
140
                               157.8618
141
                               163.6799
142
                               169.9206
143
                               176.6149];
144
145
146
147
148
        elseif HXindex == 5
149
150
                       x0 = [219.5400]
151
                               202.4055
152
                               192.0895
153
                               185.8787
154
                               182.1394
155
                               179.8882
156
                               178.5328
157
```

```
158
                              177.7168
                              177.2255
159
160
                              176.9297
                              176.7750
161
                              176.9686
162
                              177.2901
163
                              177.8241
164
                              178.7110
165
                              180.1842
166
                              182.6312
167
                              186.6955
168
                              193.4462
169
                              204.6590
170
                              176.6204
171
                              176.7117
172
                              176.8634
173
                              177.1154
174
175
                              177.5339
                              178.2291
176
177
                              179.3837
                              181.3015
178
                              184.4870
179
                              189.7779];
180
181
182
183
184
        end
```

Dynamic Case IV: Four Heat Exchangers in Series Parallel to One Heat Exchanger

Run.m

```
1 % RUN FILE FOR DYNAMIC SIMULAITON OF THE 4:1 HEN
3 % Topology to be investigated:
  1 2
                        3
                            4
             --0----0---
                         ---0----
                              ---0----
                       -0-
                       5
  13 clear all;
14 close all;
15 clc;
16
  % Calling parameters from Data.m file
  [T0, Th1, Th2, Th3, Th4, Th5, ...
             m0, m1, m2, mh1, mh2, mh3, mh4, mh5, ...
19
             rho_0, hc, Cp0, ...
20
             Vwall, rho_wall, Cp_wall, ...
21
             P1, P2, P3, P4, P5] = Data;
22
23
24
25
26 sim('dynamic_41')
27
28
 % % TUNING OF CONTROLLER
 % % 10% STEP CHANGE INLET MASS FLOW COLD STREAM
  % % TUNING PLOT
32 \% t0 = 800;
33 % tend = 2200;
35 \% \text{ cv1}_0 = -20;
36 % cv1_end = 0;
```

```
37 % cv1_step = 4;
38 %
39 \% m1_0 = 38;
40 \% m1_end = 44;
41 % m1_step = 2;
42 %
43 % % figure(1)
44 % k = figure;
45 % [AX, H1, H2] = plotyy(t, cv1, t, m1);
46 % set(get(AX(1), 'Ylabel'), 'String', 'Controlled variable, JT ...
      [^{\circ}C]','fontsize',12)
47 % set(get(AX(2),'Ylabel'),'String','Mass flow m_1 to upper ...
      path [kg/sec]','fontsize',12)
48 % axis(AX(1),[t0 tend cv1_0 cv1_end]);
49 % axis(AX(2),[t0 tend m1_0 m1_end]);
50 % set(AX(1), 'YLim', [cv1_0 cv1_end])
51 % set(AX(1), 'YTick', cv1_0:cv1_step:cv1_end)
52 % set(AX(2), 'YLim', [m1_0 m1_end])
53 % set(AX(2), 'YTick', m1_0:m1_step:m1_end)
54 % xlabel('Time [sec]','fontsize',12)
55 % set(H1,'linewidth',2)
56 % set(H2,'linewidth',2)
57 % grid on
58 % print(k,'-depsc','tune_41.eps');
60 % PLOTTING THE RESULTS
61
62 t0 = 800;
63 \text{ tend} = 5000;
65 \text{ cv1}_0 = -1;
66 \text{ cv1\_end} = 1;
67 \text{ cv1\_step} = 0.5;
69 u_0 = 0.75;
u_{end} = 0.80;
72 % CONTROL VARIABLE PROFILES
73 h = figure;
74 plot(t,cv1,'LineWidth',2)
75 xlabel('Time [sec]', 'fontsize', 12)
```

```
76 ylabel('Controlled variable, JT [^{\circ}C]','fontsize',12)
77 axis([t0 tend cv1_0 cv1_end])
78 grid on
79 % print(h,'-depsc','CV_41.eps');
81 % SPLIT
82 j = figure;
83 plot(t,u1,'LineWidth',2)
84 xlabel('Time [sec]','fontsize',12)
85 ylabel('Split u (Upper path)','fontsize',12)
86 axis([t0 tend u_0 u_end])
87 grid on
88 % print(j,'-depsc','Split_41.eps');
89
90 % TEMPERATURE PROFILES
91 k = figure;
92 plot(t,T1,t,T2,t,T3,t,T4,t,T5,t,Tend,'LineWidth',2)
93 legend('T_{1,1}','T_{2,1}','T_{3,1}','T_{4,1}','T_{1,2}','T_{end}')
94 xlabel('Time [sec]', 'fontsize', 12)
95 ylabel('Temperature [^{\circ}C]','fontsize',12)
96 axis([t0 tend 130 165])
97 % print(k,'-depsc','T_41.eps');
```

Data.m

```
m0 = 50; % Mass flow cold stream [kg/sek]
16 Cp0 = 2; % Heat capacity cold stream [kJ/kgdegC]
17 m1 = m0 \times 0.7767; % Bypass to upper branch, start value for ...
      simulation
18 \text{ m2} = \text{m0-m1}; % Bypass to lower branch, start value for simulation
20 % HEAT EXCHANGER 1
21 Th1 = 190; % Inlet hot stream temperature [degC]
22 mh1 = 25; % Mass flow hot stream [kg/sec]
23 P1 = 1; % Price constant
25 % HEAT EXCHANGER 2
26 Th2 = 203; % Inlet hot stream temperature [degC]
27 mh2 = 15; % Mass flow hot stream [kg/sec]
28 P2 = 1.2; % Price constant
30 % HEAT EXCHANGER 3
31 Th3 = 220; % Inlet hot stream temperature [degC]
32 \text{ mh3} = 7.5; % Mass flow hot stream [kg/sec]
33 P3 = 1.3; % Price constant
35 % HEAT EXCHANGER 4
36 Th4 = 235; % Inlet hot stream temperature [degC]
37 \text{ mh4} = 12.5; % Mass flow hot stream [kg/sec]
38 P4 = 1.5; % Price constant
40 % HEAT EXCHANGER 5
41 Th5 = 210; % Inlet hot stream temperature [degC]
42 \text{ mh5} = 35; % Mass flow hot stream [kg/sec]
43 P5 = 1.4; % Price constant
45 % HEAT EXCHANGER DATA
46 m_wall = 3000; % Wall weight HXers [kg]
47 rho_wall = 7850; % Wall density CS [kg/m3] %7850
48 Vwall = m_wall/rho_wall; % Volume walls [m3]
49 Cp_wall = 0.49; % Heat capacity walls CS [kW/kgdegC]
50
51
52 end
```

Dynamic.m

```
1 % DYNAMIC FUNCTION AND STATE EQUATIONS FOR THE 4:1 HEN
3 function xprime = Dynamic(t, X, U, N, HXindex)
5 % Defining the outlet varibles
6 \text{ Th\_out} = X(1:N);
7 Twall = X(N+1:2*N);
8 \text{ Tc\_out} = X(2*N+1:3*N);
10 % Defining inlet parameters from Simulink
11 Th_in(1) = U(1);
12 \text{ mh\_in} = U(2);
13 \text{ Tc_in}(1) = U(3);
14 \text{ mO}_{in} = U(4);
15
16 % Calling parameters from Data.m file
  [T0,Th1,Th2,Th3,Th4,Th5,...
                m0, m1, m2, mh1, mh2, mh3, mh4, mh5, ...
18
                rho_0, hc, Cp0, ...
19
                Vwall,rho_wall,Cp_wall,...
20
                P1, P2, P3, P4, P5] = Data;
22
23
  if HXindex == 1
       Cph = 2;
24
       wh = Cph*mh_in;
25
       rho_h = rho_0;
26
       hh = 1.2*hc;
27
       U = (hh*hc)/(hh+hc);
       Vhot = mh_in/rho_h;
29
       Vcold = m0_in/rho_0;
       w0 = m0_in*Cp0;
31
       Ai = 19;
33
34
35 elseif HXindex == 2
       Cph = 2;
36
       wh = Cph*mh_in;
37
38
       rho_h = rho_0;
       hh = 1.42*hc;
39
```

```
40
       U = (hh*hc)/(hh+hc);
       Vhot = mh_in/rho_h;
41
       Vcold = m0_in/rho_0;
42
       w0 = m0_in*Cp0;
43
       Ai = 29.5;
44
46
   elseif HXindex == 3
47
       Cph = 2;
48
       wh = Cph*mh_in;
49
       rho_h = rho_0;
50
       hh = 1.389*hc;
51
       U = (hh*hc)/(hh+hc);
52
       Vhot = mh_in/rho_h;
53
       Vcold = m0_in/rho_0;
       w0 = m0_in*Cp0;
55
       Ai = 43.7;
56
57
  elseif HXindex == 4
59
       Cph = 2;
60
       wh = Cph*mh_in;
61
       rho_h = rho_0;
62
       hh = 0.70*hc;
63
       U = (hh * hc) / (hh + hc);
64
       Vhot = mh_in/rho_h;
65
       Vcold = m0_in/rho_0;
66
       w0 = m0_in*Cp0;
       Ai = 103;
68
70
71 else HXindex == 5
       Cph = 2;
72
       wh = Cph*mh_in;
73
       rho_h = rho_0;
74
       hh = 1.43*hc;
75
       U = (hh*hc)/(hh+hc);
76
       Vhot = mh_in/rho_h;
77
       Vcold = m0_in/rho_0;
78
       w0 = m0_in*Cp0;
79
       Ai = 38.3;
```

```
81
82
83 end
85
  % STATE EQUATIONS
87
   % Hot stream
  dThotdt(1) = ...
       (Th_in(1)-Th_out(1)-((U*Ai)/(wh*N))*(Th_out(1)-Twall(N))*...
        (mh_in*N) / (rho_h*Vhot));
90
92 % Wall
  dTwalldt(1) = ...
       (hh*(Th_out(N)-Twall(1))-hc*(Twall(1)-Tc_out(1)))*...
        (Ai/(rho_wall*Cp_wall*Vwall));
94
  % Cold stream
  dTcolddt(1) ...
       = (Tc_in(1)-Tc_out(1)-((U*Ai)/(w0*N))*(Tc_out(1)-Twall(1)))*...
       ((m0_in*N)/(rho_0*Vcold));
99
100
   for i = 2:N
101
        j = N-i+1;
102
       dThotdt(i) = (Th_out(i-1)-Th_out(i)-((U*Ai)/(wh*N))*...
103
            (Th_out(i)-Twall(j))*(mh_in*N)/(rho_h*Vhot));
104
105
   end
106
   for j = 2:N
       i = N-j+1;
108
       dTwalldt(j) = ...
109
           (hh*(Th_out(i)-Twall(j))-hc*(Twall(j)-Tc_out(j)))*...
            (Ai/(rho_wall*Cp_wall*Vwall));
110
       dTcolddt(j) = (Tc_out(j-1)-Tc_out(j)-((U*Ai)/(w0*N))*...
111
            (Tc\_out(j)-Twall(j))*((m0\_in*N)/(rho\_0*Vcold)));
112
113 end
114
| 115 xprime = [dThotdt, dTwalldt, dTcolddt];
```

HX1.m

```
1 % HEAT EXCHANGER 1
3 function [sys,x0] = HX1(t,x,u,flag)
5 HXindex = 1; % HX number
_{6} N = 10; % Model order
9 if abs(flag) == 1
     sys = Dynamic(t, x, u, N, HXindex);
12 elseif abs(flag) == 3
      sys(1,1) = x(N); % Outlet hot temperature
      sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
     sys = [3*N, 0, 2, 4, 0, 0];
20 else
21 sys = [];
22
23 end
24
25 end
```

HX2.m

```
1 % HEAT EXCHANGER 2
2
3 function [sys,x0] = HX2(t,x,u,flag)
4
5 HXindex = 2; % HX number
6 N = 10; % Model order
7
8
9 if abs(flag) == 1
10    sys = Dynamic(t,x,u,N,HXindex);
```

```
11
12 elseif abs(flag) == 3
       sys(1,1) = x(N); % Outlet hot temperature
       sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
15
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
17
      sys = [3*N, 0, 2, 4, 0, 0];
18
19
20 else
    sys = [];
21
23 end
24
25 end
```

HX3.m

```
1 % HEAT EXCHANGER 3
3 function [sys, x0] = HX3(t,x,u,flag)
5 HXindex = 3; % HX number
6 N = 10; % Model order
9 if abs(flag) == 1
      sys = Dynamic(t,x,u,N,HXindex);
10
12 elseif abs(flag) == 3
       sys(1,1) = x(N); % Outlet hot temperature
      sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
17
     sys = [3*N, 0, 2, 4, 0, 0];
18
19
20 else
21
    sys = [];
22
```

```
23 end
24
25 end
```

HX4.m

```
1 % HEAT EXCHANGER 4
3 function [sys,x0] = HX4(t,x,u,flag)
5 HXindex = 4; % HX number
6 N = 10; % Model order
9 if abs(flag) == 1
      sys = Dynamic(t,x,u,N,HXindex);
11
12 elseif abs(flag) == 3
      sys(1,1) = x(N); % Outlet hot temperature
13
      sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
16 elseif flag == 0
     x0 = ssvar(HXindex,N);
17
     sys = [3*N, 0, 2, 4, 0, 0];
18
19
20 else
    sys = [];
21
22
23 end
24
25 end
```

HX5.m

```
1 % HEAT EXCHANGER 5
2
3 function [sys,x0] = HX5(t,x,u,flag)
4
5 HXindex = 5; % HX number
```

```
6 N = 10; % Model order
9 if abs(flag) == 1
      sys = Dynamic(t, x, u, N, HXindex);
10
11
12 elseif abs(flag) == 3
       sys(1,1) = x(N); % Outlet hot temperature
13
       sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
15
16 elseif flag == 0
      x0 = ssvar(HXindex, N);
17
      sys = [3*N, 0, 2, 4, 0, 0];
19
20 else
    sys = [];
21
23 end
25 end
```

ssvar.m

```
1 % STEADY STATE VARIABLES FOR EACH HEAT EXCHANGER
2 % IN THE 4:1 HEN
5 function [x0] = ssvar(HXindex,N)
     if HXindex == 1
                   x0 = [189.4314]
                         188.8645
                         188.2992
11
                         187.7357
12
                          187.1738
13
                          186.6137
14
                         186.0552
15
16
                         185.4984
                         184.9432
17
```

```
18
                            184.3897
                            161.9307
19
                            162.4168
20
                            162.9043
21
                            163.3933
22
                            163.8838
23
                            164.3758
24
                            164.8692
25
                            165.3641
26
                            165.8605
27
                            166.3584
28
                            130.0389
29
                            130.4293
30
                            130.8208
31
                            131.2135
32
                            131.6074
33
                            132.0025
34
                            132.3988
35
                            132.7962
36
                            133.1949
37
                            133.5947];
38
39
        elseif HXindex == 2
40
41
                     x0 = [201.5099]
42
                            200.0399
43
                            198.5896
44
                            197.1589
45
                            195.7474
46
                            194.3550
47
                            192.9812
48
                            191.6260
49
                            190.2890
50
                            188.9701
51
                            166.1107
52
                            167.1177
53
                            168.1385
54
                            169.1732
55
                            170.2220
56
57
                            171.2852
                            172.3628
58
```

```
59
                             173.4552
                             174.5624
60
                             175.6848
61
                             133.6504
62
                             134.2144
63
                             134.7862
                             135.3658
65
                             135.9533
66
                             136.5488
67
                             137.1524
68
                             137.7643
69
                             138.3845
70
                             139.0132];
71
72
73
74
75
        elseif HXindex == 3
76
77
                      x0 = [215.1294]
78
                             210.5147
                             206.1425
80
                             202.0001
81
                             198.0753
82
                             194.3568
83
                             190.8336
84
                             187.4956
85
                             184.3330
86
                             181.3365
87
                             163.6465
                             165.6618
89
                             167.7889
                             170.0340
91
                             172.4036
                             174.9046
93
                             177.5443
94
                             180.3305
95
                             183.2711
96
                             186.3748
97
                             139.0750
98
                             139.7276
99
```

```
100
                              140.4164
                              141.1434
101
102
                              141.9107
                              142.7205
103
104
                              143.5753
                              144.4775
105
                              145.4297
106
                              146.4348];
107
108
109
          elseif HXindex == 4
110
111
                       x0 = [231.2829]
112
                              227.6813
113
                              224.1915
114
                              220.8101
115
                              217.5336
116
117
                              214.3589
                              211.2828
118
119
                              208.3022
                              205.4141
120
                              202.6158
121
                              169.6252
122
                              171.3663
123
                              173.1633
124
                              175.0178
125
                              176.9318
126
                              178.9071
127
                              180.9457
128
                              183.0496
129
                              185.2210
130
                              187.4619
131
                              146.5318
132
                              147.5329
133
                              148.5660
134
                              149.6323
135
                              150.7328
136
                              151.8685
137
                              153.0406
138
                              154.2503
139
                              155.4988
140
```

```
141
                               156.7872];
142
143
        elseif HXindex == 5
144
145
                       x0 = [209.2873]
146
                               208.5518
147
                               207.7927
148
                               207.0093
149
                               206.2009
150
                               205.3665
151
                               204.5055
152
                               203.6169
153
                               202.6998
154
                               201.7534
155
                               172.3595
156
                               174.2179
157
                               176.0185
158
                               177.7633
159
                               179.4540
160
                               181.0922
161
                               182.6796
162
                               184.2177
163
                               185.7082
164
                               187.1524
165
                               130.3264
166
                               133.4886
167
                               136.5528
168
169
                               139.5220
                               142.3990
170
                               145.1868
171
                               147.8880
172
                               150.5055
173
                               153.0418
174
                               155.4994];
175
176
177
178
        end
```

Dynamic Case V: Six Heat Exchangers in Series Parallel to One Heat Exchanger

Run.m

```
1 % RUN FILE FOR DYNAMIC SIMULATION OF THE 6:1 HEN
3 % Topology to be investigated:
  3 4
                                   5
              1
                                   ---0----
                   ---0----
                        ---0---
                              ---0---
                                         ---0---
13 clear all;
14 close all;
15 clc;
16
  [T0, Th1, Th2, Th3, Th4, Th5, Th6, Th7...
17
             m0, m1, m2, mh1, mh2, mh3, mh4, mh5, mh6, mh7...
             rho_0,hc,Cp0...
19
             Vwall, rho_wall, Cp_wall...
20
             P1, P2, P3, P4, P5, P6, P7] = Data
21
22
23
24
 sim('dynamic_61')
26
28 % % TUNING OF CONTROLLER
29 % % 10% STEP CHANGE INLET MASS FLOW COLD STREAM
30 % % TUNING PLOT
31 \% t0 = 800;
32 % tend = 2400;
34 \% \text{ cv1}_0 = -43;
35 \% \text{ cv1\_end} = 7;
36 % cv1_step = 10;
```

```
37 %
38 \% m1_0 = 40;
39 \% m1\_end = 48;
40 % m1_step = 2;
41 %
42 % k = figure;
43 % [AX, H1, H2] = plotyy(t, cv1, t, m1);
44 % set(get(AX(1),'Ylabel'),'String','Controlled variable, JT ...
      [^{\circ}C]','fontsize',12)
45 % set(get(AX(2), 'Ylabel'), 'String', 'Mass flow m_1 to upper ...
      path [kg/sec]','fontsize',12)
46 % axis(AX(1),[t0 tend cv1_0 cv1_end]);
47 % axis(AX(2),[t0 tend m1_0 m1_end]);
48 % set(AX(1), 'YLim', [cv1_0 cv1_end])
49 % set(AX(1), 'YTick', cv1_0:cv1_step:cv1_end)
50 % set(AX(2), 'YLim', [m1_0 m1_end])
51 % set(AX(2), 'YTick', m1_0:m1_step:m1_end)
52 % xlabel('Time [sec]', 'fontsize', 12)
53 % set(H1,'linewidth',2)
54 % set(H2,'linewidth',2)
55 % grid on
56 % print(k,'-depsc','tune_61.eps');
58
  % PLOTTING THE RESULTS
61 t0 = 800;
62 \text{ tend} = 5000;
63
64 \text{ cv1}_0 = -1.5;
65 \text{ cv1\_end} = 1.5;
66 \text{ cv1\_step} = 0.5;
67
68 u_0 = 0.82;
u_{end} = 0.8601;
71 % CONTROLLED VARIABLE PROFILES
h = figure;
73 plot(t,cv1,'LineWidth',2)
74 xlabel('Time [sec]', 'fontsize', 12)
75 ylabel('Controlled variable, JT [^{\circ}C]','fontsize',12)
```

```
76 axis([t0 tend cv1_0 cv1_end])
77 grid on
78 % print(h,'-depsc','CV_61.eps');
80 % SPLIT
81 j = figure;
82 plot(t,u1,'LineWidth',2)
83 xlabel('Time [sec]', 'fontsize', 12)
84 ylabel('Split u (Upper path)', 'fontsize', 12)
85 axis([t0 tend u_0 u_end])
86 grid on
87 % print(j,'-depsc','Split_61.eps');
89 % TEMPERATURE PROFILES
90 k = figure;
91 plot(t,T1,t,T2,t,T3,t,T4,t,T5,t,T6,t,T7,t,Tend,'LineWidth',2)
92 legend('T_{1,1}','T_{2,1}','T_{3,1}','T_{4,1}','T_{5,1}',...
      'T_{6,1}','T_{1,2}','T_{end}')
94 xlabel('Time [sec]', 'fontsize', 12)
95 ylabel('Temperature [^{\circ}C]','fontsize',12)
96 axis([t0 tend 130 175])
97 % print(k,'-depsc','T_61.eps');
```

Data.m

```
15 hc = 0.10; % Heat transfer coeffsient cold fluid (water) ...
      [kW/m2degC]
16 m0 = 50; % Mass flow cold stream [kg/sek]
17 Cp0 = 2; % Heat capacity cold stream [kJ/kgdegC]
18 m1 = m0 * 0.8299; % Bypass to upper branch, start value for ...
      simulation
19 m2 = m0-m1; % Bypass to lower branch, start value for simulation
21 % HEAT EXCHANGER 1
22 Th1 = 190; % Inlet hot stream temperature [degC]
23 mh1 = 25; % Mass flow hot stream [kg/sec]
24 P1 = 1; % Price constant
25
26 % HEAT EXCHANGER 2
27 Th2 = 203; % Inlet hot stream temperature [degC]
28 mh2 = 15; % Mass flow hot stream [kg/sec]
29 P2 = 1.2; % Price constant
30
31 % HEAT EXCHANGER 3
32 Th3 = 220; % Inlet hot stream temperature [degC]
33 mh3 = 7.5; % Mass flow hot stream [kg/sec]
34 P3 = 1.3; % Price constant
36 % HEAT EXCHANGER 4
37 Th4 = 235; % Inlet hot stream temperature [degC]
38 \text{ mh4} = 12.5; \% \text{ Mass flow hot stream [kg/sec]}
39 P4 = 1.5; % Price constant
40
41 % HEAT EXCHANGER 5
42 Th5 = 240; % Inlet hot stream temperature [degC]
43 \text{ mh5} = 20; \% \text{ Mass flow hot stream [kg/sec]}
44 P5 = 1.4; % Price constant
45
46 % HEAT EXCHANGER 6
47 Th6 = 245; % Inlet hot stream temperature [degC]
48 mh6 = 17.5; % Mass flow hot stream [kg/sec]
49 P6 = 1.7; % Price constant
51 % HEAT EXCHANGER 7
52 Th7 = 225; % Inlet hot stream temperature [degC]
mh7 = 15; % Mass flow hot stream [kg/sec]
```

```
P7 = 1.5; % Price constant

55

56 % HEAT EXCHANGER DATA

57 m_wall = 3000; % Wall weight HXers [kg]

58 rho_wall = 7850; % Wall density CS [kg/m3] %7850

59 Vwall = m_wall/rho_wall; % Volume walls [m3]

60 Cp_wall = 0.49; % Heat capacity walls CS [kW/kgdegC]

61

62 end
```

Dynamic.m

```
1 % DYNAMIC FUNCTION AND STATE EQUATIONS FOR THE 6:1 HEN
3 function xprime = Dynamic(t, X, U, N, HXindex)
5 % Defining the outlet varibles
6 \text{ Th\_out} = X(1:N);
7 Twall = X(N+1:2*N);
8 \text{ Tc\_out} = X(2*N+1:3*N);
10 % Defining inlet parameters from Simulink
11 Th_in(1) = U(1);
12 \text{ mh\_in} = U(2);
13 \text{ Tc_in}(1) = U(3);
14 \text{ m0 in} = U(4);
16 % Calling parameters from Data.m file
17 [T0, Th1, Th2, Th3, Th4, Th5, Th6, Th7, ...
                 m0, m1, m2, mh1, mh2, mh3, mh4, mh5, mh6, mh7, ...
18
                 rho_0, hc, Cp0, ...
                 Vwall, rho_wall, Cp_wall, ...
20
                 P1, P2, P3, P4, P5, P6, P7] = Data;
22
23 if HXindex == 1
       Cph = 2;
24
       wh = Cph*mh_in;
25
       rho_h = rho_0;
26
27
       hh = 1.10 * hc;
       U = (hh*hc)/(hh+hc);
```

```
29
       Vhot = mh_in/rho_h;
       Vcold = m0_in/rho_0;
30
       w0 = m0_in*Cp0;
31
       Ai = 20.5;
32
33
35 elseif HXindex == 2
       Cph = 2;
       wh = Cph*mh_in;
37
       rho_h = rho_0;
38
       hh = 1.08*hc;
39
       U = (hh*hc)/(hh+hc);
40
       Vhot = mh_in/rho_h;
       Vcold = m0_in/rho_0;
42
       w0 = m0_in*Cp0;
       Ai = 28.3;
44
46
  elseif HXindex == 3
       Cph = 2;
48
       wh = Cph*mh_in;
       rho_h = rho_0;
50
51
       hh = 1.08*hc;
       U = (hh*hc)/(hh+hc);
52
       Vhot = mh_in/rho_h;
53
       Vcold = m0_in/rho_0;
       w0 = m0_in*Cp0;
55
       Ai = 42.6;
56
57
  elseif HXindex == 4
59
       Cph = 2;
       wh = Cph*mh_in;
61
       rho_h = rho_0;
       hh = 1.07 * hc;
63
       U = (hh*hc)/(hh+hc);
64
       Vhot = mh_in/rho_h;
65
       Vcold = m0_in/rho_0;
66
       w0 = m0_in*Cp0;
67
       Ai = 49.95;
68
69
```

```
70
71 elseif HXindex == 5
        Cph = 2;
72
        wh = Cph*mh_in;
73
        rho_h = rho_0;
74
       hh = 1.10 * hc;
        U = (hh*hc)/(hh+hc);
76
        Vhot = mh_in/rho_h;
       Vcold = m0_in/rho_0;
78
        w0 = m0_in*Cp0;
79
        Ai = 36.5;
80
81
83 elseif HXindex == 6
        Cph = 2;
        wh = Cph*mh_in;
85
        rho_h = rho_0;
86
       hh = 1.10*hc;
87
        U = (hh*hc)/(hh+hc);
        Vhot = mh_in/rho_h;
89
       Vcold = m0_in/rho_0;
90
       w0 = m0_in*Cp0;
91
        Ai = 32.5;
92
93
95 else HXindex == 7
        Cph = 2;
96
        wh = Cph*mh_in;
97
        rho_h = rho_0;
98
       hh = 1.109*hc;
        U = (hh*hc)/(hh+hc);
100
        Vhot = mh_in/rho_h;
101
        Vcold = m0_in/rho_0;
102
        w0 = m0_in*Cp0;
       Ai = 45.5;
104
105
106
107 end
108
109
110 % STATE EQUATIONS
```

```
111
112
   % Hot stream
dThotdt(1) = (Th_in(1)-Th_out(1)-((U*Ai)/(wh*N))*...
        (Th_out(1)-Twall(N))*(mh_in*N)/(rho_h*Vhot));
1115
  % Wall
116
_{117} dTwalldt(1) = ...
       (hh*(Th_out(N)-Twall(1))-hc*(Twall(1)-Tc_out(1)))*...
        (Ai/(rho_wall*Cp_wall*Vwall));
1118
119
   % Cold stream
120
   dTcolddt(1) ...
       = (Tc_in(1) - Tc_out(1) - ((U*Ai) / (w0*N)) * (Tc_out(1) - Twall(1))) * ...
        ((m0 in*N)/(rho 0*Vcold));
122
123
124
   for i = 2:N
        j = N-i+1;
126
        dThotdt(i) = (Th_out(i-1)-Th_out(i)-((U*Ai)/(wh*N))*...
127
            (Th_out(i)-Twall(j))*(mh_in*N)/(rho_h*Vhot));
128
   end
130
   for j = 2:N
131
        i = N-j+1;
132
        dTwalldt(j) = ...
133
            (hh*(Th_out(i)-Twall(j))-hc*(Twall(j)-Tc_out(j)))*...
            (Ai/(rho_wall*Cp_wall*Vwall));
134
135
        dTcolddt(j) = (Tc_out(j-1)-Tc_out(j)-((U*Ai)/(w0*N))*...
            (Tc\_out(j)-Twall(j))*((m0\_in*N)/(rho\_0*Vcold)));
136
137
   end
138
   xprime = [dThotdt, dTwalldt, dTcolddt];
```

HX1.m

```
1 % HEAT EXCHANGER 1
2
3 function [sys,x0] = HX1(t,x,u,flag)
4
5 HXindex = 1; % HX number
```

```
6 N = 10; % Model order
9 if abs(flag) == 1
       sys = Dynamic(t, x, u, N, HXindex);
10
12 elseif abs(flag) == 3
13
       sys(1,1) = x(N); % Outlet hot temperature
       sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
16 elseif flag == 0
      x0 = ssvar(HXindex, N);
17
       sys = [3*N, 0, 2, 4, 0, 0];
19
20 else
     sys = [];
21
23 end
_{25} end
```

HX2.m

```
1 % HEAT EXCHANGER 2
2
3 function [sys,x0] = HX2(t,x,u,flag)
4
5 HXindex = 2; % HX number
6 N = 10; % Model order
7
8
9 if abs(flag) == 1
10     sys = Dynamic(t,x,u,N,HXindex);
11
12 elseif abs(flag) == 3
13     sys(1,1) = x(N); % Outlet hot temperature
14     sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
15
16 elseif flag == 0
17     x0 = ssvar(HXindex,N);
```

HX3.m

```
1 % HEAT EXCHANGER 3
3 function [sys,x0] = HX3(t,x,u,flag)
5 HXindex = 3; % HX number
6 N = 10; % Model order
9 if abs(flag) == 1
     sys = Dynamic(t,x,u,N,HXindex);
11
12 elseif abs(flag) == 3
      sys(1,1) = x(N); % Outlet hot temperature
13
      sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
15
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
17
     sys = [3*N, 0, 2, 4, 0, 0];
19
20 else
21 sys = [];
23 end
24
25 end
```

HX4.m

```
1 % HEAT EXCHANGER 4
3 function [sys,x0] = HX4(t,x,u,flag)
5 HXindex = 4; % HX number
_{6} N = 10; % Model order
9 if abs(flag) == 1
     sys = Dynamic(t,x,u,N,HXindex);
12 elseif abs(flag) == 3
      sys(1,1) = x(N); % Outlet hot temperature
      sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
     sys = [3*N, 0, 2, 4, 0, 0];
20 else
21 sys = [];
22
23 end
24
25 end
```

HX5.m

```
1 % HEAT EXCHANGER 5
2
3 function [sys,x0] = HX5(t,x,u,flag)
4
5 HXindex = 5; % HX number
6 N = 10; % Model order
7
8
9 if abs(flag) == 1
10    sys = Dynamic(t,x,u,N,HXindex);
```

```
11
12 elseif abs(flag) == 3
      sys(1,1) = x(N); % Outlet hot temperature
       sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
15
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
17
      sys = [3*N, 0, 2, 4, 0, 0];
18
19
20 else
    sys = [];
21
23 end
24
25 end
```

HX6.m

```
1 % HEAT EXCHANGER 6
3 function [sys, x0] = HX6(t, x, u, flag)
5 HXindex = 6; % HX number
6 N = 10; % Model order
9 if abs(flag) == 1
      sys = Dynamic(t,x,u,N,HXindex);
10
12 elseif abs(flag) == 3
       sys(1,1) = x(N); % Outlet hot temperature
       sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
16 elseif flag == 0
     x0 = ssvar(HXindex, N);
17
     sys = [3*N, 0, 2, 4, 0, 0];
18
19
20 else
21
    sys = [];
22
```

```
23 end
24
25 end
```

HX7.m

```
1 % HEAT EXCHANGER 7
3 function [sys,x0] = HX7(t,x,u,flag)
5 HXindex = 7; % HX number
6 N = 10; % Model order
9 if abs(flag) == 1
     sys = Dynamic(t, x, u, N, HXindex);
11
12 elseif abs(flag) == 3
      sys(1,1) = x(N); % Outlet hot temperature
13
      sys(2,1) = x(3*N); % Outlet cold temperature (Tend)
14
16 elseif flag == 0
     x0 = ssvar(HXindex,N);
17
     sys = [3*N, 0, 2, 4, 0, 0];
18
19
20 else
    sys = [];
21
22
23 end
24
25 end
```

ssvar.m

```
1 % STEADY STATE VARIABLES FOR EACH HEAT EXCHANGER
2 % IN THE 6:1 HEN
3
4 function [x0] = ssvar(HXindex,N)
5
```

```
if HXindex == 1
                     x0 = [189.4271]
                            188.8561
                            188.2871
10
                            187.7201
11
                            187.1549
12
                            186.5917
13
                            186.0305
14
                            185.4711
15
                            184.9137
16
                            184.3582
17
                            158.4909
                            158.9577
19
                            159.4261
20
                            159.8961
21
                            160.3677
                            160.8409
23
                            161.3158
                            161.7923
25
                            162.2704
                            162.7502
27
                            130.0368
28
                            130.4060
29
                            130.7765
30
                            131.1482
31
                            131.5212
32
                            131.8955
33
                            132.2711
34
                            132.6479
                            133.0261
36
                            133.4055];
37
38
        elseif HXindex == 2
40
41
                     x0 = [201.5136]
                            200.0480
42
                            198.6031
43
                            197.1783
44
                            195.7736
45
                            194.3886
46
```

```
47
                            193.0230
                            191.6766
48
                             190.3491
49
                            189.0402
50
                            162.3173
51
                            163.2459
52
                            164.1878
53
                            165.1431
54
                            166.1119
55
                            167.0945
56
                             168.0912
57
                             169.1020
58
                            170.1271
59
                             171.1669
60
                            133.4566
61
                             133.9745
62
                            134.4999
63
                            135.0327
64
                            135.5730
65
                            136.1211
66
                            136.6770
67
                            137.2407
68
                            137.8125
69
                            138.3925];
70
71
72
73
74
       elseif HXindex == 3
75
76
                     x0 = [215.0666]
77
                            210.3961
                             205.9744
79
                             201.7884
80
                            197.8254
81
                            194.0736
82
                            190.5217
83
                            187.1591
84
                            183.9757
85
                            180.9619
86
                            160.5241
87
```

```
88
                              162.3875
                              164.3558
89
                              166.4349
90
                              168.6310
91
                              170.9508
92
                              173.4011
93
                              175.9893
94
                              178.7232
                              181.6110
96
                              138.4513
97
                              139.0723
98
                              139.7283
99
                              140.4212
100
                              141.1531
101
                              141.9262
102
                              142.7428
103
                              143.6054
104
                              144.5165
105
                              145.4789];
106
107
108
         elseif HXindex == 4
109
110
                       x0 = [231.2098]
111
                              227.5417
112
                              223.9918
113
                              220.5563
114
                              217.2314
115
                              214.0136
116
                              210.8995
117
                              207.8857
118
                              204.9690
119
                              202.1462
120
                              174.8146
121
                              176.7276
122
                              178.7043
123
                              180.7467
124
                              182.8572
125
                              185.0379
126
                              187.2912
127
                              189.6195
128
```

```
129
                              192.0253
                              194.5111
130
131
                               145.5698
                              146.5094
132
                              147.4802
133
                              148.4833
134
                              149.5198
135
                              150.5909
136
                              151.6975
137
                              152.8410
138
                              154.0226
139
                              155.2435];
140
141
142
        elseif HXindex == 5
143
144
                       x0 = [238.2897]
145
                              236.5973
146
                              234.9227
147
148
                              233.2655
                              231.6257
149
                              230.0031
150
                              228.3974
151
                              226.8085
152
                              225.2363
153
                              223.6805
154
                              191.1307
155
                              192.3423
156
                              193.5668
157
                              194.8042
158
                              196.0547
159
                              197.3184
160
                              198.5954
161
                              199.8860
162
                              201.1902
163
                              202.5082
164
                              155.3259
165
                              156.1590
166
167
                              157.0009
                              157.8516
168
                              158.7114
169
```

```
170
                              159.5802
                              160.4583
171
                              161.3456
172
                              162.2423
173
                              163.1485];
174
175
        elseif HXindex == 6
176
177
                       x0 = [243.3016]
178
                              241.6237
179
                              239.9663
180
                              238.3289
181
                              236.7115
182
                              235.1137
183
                              233.5353
184
                              231.9760
185
                              230.4357
186
                              228.9141
187
                              197.6308
188
                              198.7678
189
                              199.9189
190
                              201.0841
191
                              202.2636
192
                              203.4577
193
                              204.6664
194
                              205.8899
195
                              207.1285
196
                              208.3824
197
                              163.2190
198
                              163.9331
199
                              164.6560
200
                              165.3878
201
                              166.1286
202
                              166.8784
203
                              167.6375
204
                              168.4060
205
                              169.1838
206
                              169.9713];
207
208
        elseif HXindex == 7
209
210
```

```
211
                       x0 = [223.0233]
                              220.9773
212
213
                              218.8595
                              216.6675
214
                              214.3987
215
                              212.0504
216
                              209.6198
217
                              207.1039
218
                              204.4999
219
                              201.8046
220
                              168.0086
221
                              171.8484
222
                              175.5582
223
                              179.1424
224
                              182.6052
225
                              185.9507
226
                              189.1829
227
                              192.3057
228
                              195.3227
229
                              198.2375
230
                              130.5288
231
                              135.6380
232
                              140.5741
233
                              145.3430
234
                              149.9505
235
                              154.4019
236
                              158.7025
237
                              162.8575
238
                              166.8718
239
                              170.7502];
240
241
242
        end
243
```

D Simulink Block Diagrams

Simulink block diagrams for all dynamic cases are given in the following Section. The longest networks of four and six heat exchangers in series tended to give a very small figure. The dynamic case I with two heat exchangers in parallel (Figure D.1) is big enough to be read without difficulties and represents the repeating pattern for bigger networks.

Dynamic Case I Block Diagram: dynamic_11_1.mdl

Figure D.1: Simulink block diagram Dynamic case I

Dynamic Case II Block Diagram: dynamic_21_1.mdl

Figure D.2: Simulink block diagram Dynamic case II

Dynamic Case II-a Block Diagram: dynamic_21_1_1.mdl

Figure D.3: Simulink block diagram Dynamic case II-a

Dynamic Case III Block Diagram: dynamic_32.mdl

Figure D.4: Simulink block diagram Dynamic case III

Dynamic Case IV Block Diagram: dynamic_41.mdl

Figure D.5: Simulink block diagram Dynamic case IV

Dynamic Case V Block Diagram: dynamic_61.mdl

Figure D.6: Simulink block diagram Dynamic case V