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Abstract

Optimal operation of parallel heat exchanger networks is desirable for many pro-
cesses aiming to achieve increased supply and potentially higher profit. The aim
is to control the final outlet temperature within a certain range, which in many
cases includes a trade off between maximum outlet temperature and minimum

operating costs.

The goal with this study has been to investigate the performance of the self-
optimizing Jéschke temperature control variable, proposed by post doctor Jo-
hannes Jéschke. The Jéaschke temperature approach seeks to achieve near optimal
operation of parallel heat exchanger networks, exclusively by manipulation of the
bypass selection - only based on simple temperature measurements. The method
has been demonstrated for several different cases and investigated both at steady

state and dynamically.

For balanced heat exchanger networks, with evenly distributed hot stream heat
capacities throughout the network, the Jaschke temperature showed good perfor-
mance for all cases studied. The simulations revealed satisfactory disturbance
rejection and very close to optimal operation. For cases suffering a more uneven
heat capacity distribution, the method did not give near optimal operation. Also,
exposed to major, non-realistic disturbances the Jaschke temperature control con-
figuration gave poor performance due to singularities in the control variable when
certain temperatures achieved equal values. In the presence of such incidents, a
modified control variable was implemented by re-writing the expression control-
ling the Jédschke temperatures to a denomiator-free form. This gave slightly better

performance and was concluded to operate the system satisfactory.
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Sammendrag

Optimal drift av parallelle varmevekslernettverk er gnskelig for mange prosesser
med mal om gkt etterspgrsel og potensielt stgrre profitt. Malet er a kontrollere
utgangstemperaturen innenfor et bestemt intervall, som i mange sammenhenger er

en balanse mellom hgyest mulig utgangstemperatur og lavest mulig driftskostnader.

Malet med denne studien har veert & undersgke ytelsen til den selv-optimaliserende
Jaschke temperatur reguleringsvariabelen, forslatt av postdoktor Johannes Jaschke.
Jéschke temperatur-metoden forsgker & oppna en drift sa neert optimum som mulig,
kun ved justering av strgmsplitten — utelukkende basert pa enkle temperatur-
malinger. Metoden har blitt demonstrert for flere ulike tilfeller av varmeveksler-

nettverk og blitt undersgkt bade i stabil tilstand og dynamisk.

For balanserte varmevekslernettverk med jevn fordeling av de ulike varmestrgmmenes
varmekapasitet, viste Jaschke temperatur-konfigurasjonen god ytelse for alle un-
dersgkte tilfeller av varmevekslernettverk. Simuleringene gav god forstyrrelsesavvis-
ning og sveert neer optimal drift. For tilfeller hvor varmekapasitetene var ujevnt
fordelt i varmevekslernettverket, gav ikke metoden neer optimal drift. Utsatt for
sterre og mer urealistiske forstyrrelser viste Jédschke temperatur-metoden darlig
ytelse grunnet singulariteter i reguleringsvariabelen i tilfeller hvor enkelte temper-
aturer fikk samme verdi. I slike tilfeller ble reguleringsvariablene modifisert ved &
unnlate bruken av brgk i ligningen. Dette gav bedre ytelse og ble konkludert til &
gi god drift av systemet.
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2 Introduction

In a modern industrial and technological world where energy and power consump-
tion serves as one of the most essential global concerns, there are enhanced re-
quirements for all production processes to be sustainable to future generations of
our planet. In the chemical industry, especially including todays great petroleum
activity, an overall goal of using the available energy sources in the most efficient
way can be satisfied by optimal heat recovery from different parts of a given process
(Zhang, Yang, Pan & Gao 2011).

The need for research and development in this industry is one very important
aspect of the issues associated with energy efficient processes. The trade off be-
tween a business goal seeking increased supply in an attempt to generate large
profit margins - and still obey the sustainable methods to meet the energy de-
mands - is rather complex (Zhang et al. 2011). Good heat recovery from a given
process can be achieved through effective use of heat exchangers. Often, heat ex-
changers are combined in a heat exchanger network to distribute the available hot
streams in the most effective way (Sinnott & Towler 2009). A simplified general
heat exchanger network with /N heat exchangers in series on the upper branch and

M in series on the lower branch is presented in Figure 2.1.

Ql 1 QZ,I Q 1 QN 1
HX s HX; 4 HX; 1 HXn 1
u
Ty Tena
 E—
1-u
HX, HX; HX; » HX

]

Q, Q,, Q;, Q.

Figure 2.1: A simplified general heat exchanger network with N heat exchanger
in series on the upper branch (branch 1) and M heat exchangers in series on the
lower branch (branch 2)



A heat exchanger network should be designed allowing for the best possible heat
integration. At the same time, operating with reasonable heat exchanger duties
is necessary in order to minimize the operation costs (Jensen & Skogestad 2008).
Marselle, Morari & Rudd (Marselle, Morari & Rudd 1982) were some of the first
to discuss optimal operation problems of heat exchanger networks, where simul-
taneous regulation and optimization were considered as a possible control con-
figuration. Since that, among other publications, Mathisen, Morari & Skogestad
(Mathisen, Morari & Skogestad 1994b) have proposed a method to operate heat
exchanger networks that also minimizes utility consumption. Recently, Jaschke
(Jaeschke 2012) derived the self-optimizing Jéschke temperature variable for op-
eration of heat exchanger networks. According to Skogestad (Skogestad 2004),
the use of self-optimizing control does not require simultaneous regulation and
optimization when disturbances are present. Additionally, the method proposed
by Jaschke includes utility costs, hence operation is also subject to each heat ex-
changers associated cost. The self-optimizing Jédschke temperature variable seeks
to operate certain heat exchanger networks with the split u (see Figure 2.1) as
the only manipulated variable. The method is claimed to achieve near-optimal
operation with constant setpoints for the control variable (Jaeschke 2012). Usu-
ally operation of heat exchanger networks involves several different manipulated
variables (e.g. bypass selection and hot stream flows), relying on both temper-
ature and flow measurements (Gonzalez & Marchetti 2005). With the Jaschke
temperature, only temperature measurements are needed. Compared to flow mea-
surements, temperature measurements are cheaper, faster and more exact which

makes the control structure proposed by Jaschke easy to implement and use.

This study investigates optimal operation of heat exchanger networks. The
aim is to continue the work done on the Jaschke temperature (Jaeschke 2012) in
the specialization project (Aaltvedt 2012). The specialization project investigated
optimal design and optimal steady state operation of parallel heat exchanger net-
works limited by three heat exchangers in series. Recently, Jaschke proposed a
general equation applying for N heat exchangers in series (Jaeschke 2012), which,

among other cases, will be investigated in this study.

During the progress of this study the Jaschke temperature control configuration
is considered a patent application. The overall goal with this study is therefore to

search for and investigate cases where the Jaschke temperature gives non-optimal



operation and/or poor control. First, a steady state analysis is done. Operation
using the Jaschke temperature control variable is compared to optimal operation
for several different heat exchanger networks. The downstream temperature loss
associated with Jéschke temperature operation is investigated for each case. The
Jaschke temperature will also be tested in the presence of measurement errors.
Secondly, a dynamic analysis is done. The goal with this analysis is to relieve any
poor control resulting from the Jaschke temperature in the presence of different
disturbances, where temperature fluctuations will serve as the main source for
disturbance. In addition, for a heat exchanger network of two heat exchanger
in series parallel to one heat exchanger, a comprehensive analysis is done for an
extreme case where a decreasing hot stream temperature in one heat exchanger

gives a cooling effect.






3 Heat Exchanger Modelling

With heat exchange the overall goal is to transfer heat from a hot source to a cold
source (Skogestad 2003a). The heat transfer process can be carried out by three

different mechanisms (Geankoplis 2003):

¢ Conduction heat transfer
+ Convection heat transfer

« Radiation heat transfer

For most industrial processes where heat is transfered from one fluid to an-
other through a solid wall, conduction is the main mechanism for heat transfer
(Geankoplis 2003). This heat transfer is conducted in a heat exchanger, where the
cold fluid is to be heated by the hot fluid. The most effective way of heat trans-
fer is done through a counter current heat exchanger (Geankoplis 2003) shown in
Figure 3.1. Here, @ [kW] represents the transfered heat and T}, and T, [°C] are

the temperatures of the hot and cold stream, respectively.

Th,in HOT FLUID Th,out
Q
AR AN
TC’Out o PR P P P Tc,in
COLD FLUID

Figure 3.1: The counter current heat exchanger

3.1 Steady state model

In an ideal counter current heat exchanger the outlet hot stream temperature
equals the entering cold stream temperature (Bartlett 1996). That is, T} ou =
T.in in Figure 3.1, and the heat exchangers effect is said to be maximized. For an
ideal counter current heat exchanger constant inlet temperatures (7}, and 1.,
in Figure 3.1) can be assumed at steady state. The heat () transfered form hot to
cold side can be expressed by the heat exchanger equation (Skogestad 2003a)



Q = UAAT}y, (3.1)

Where U is the over all heat transfer coefficient [¥W/°2cm?] and A is the total
area of the heat exchanger [m?]. For many ideal cases the the overall heat transfer
coefficient U can be written as (Incorpera & DeWitt 2007)

hehy,

U:m+m

(3.2)

Here, h. and hj, represents the heat transfer coefficients for cold and hot fluid,
respectively. The ATy, term is the Logarithmic Mean Temperature Difference

(LMTD). For a counter current heat exchanger it is given as (Skogestad 2003a)

(Th,in - Tc,out) - (Th,out - Tc,in) o 91 - 92

Th,in—Te, - 01
ln(ﬁ) ln(ei)

(3.3)

The energy balance for the ideal counter current heat exchanger in Figure 3.1
is (Skogestad 2003a)

Q = mcCpc(Tc,out - Tc,in) (34)

Q - thph(Th,in - Th,out) (35)

Cpe, Cpp, and m,., my, represents the heat capacities [FW /kgoc] and the mass
flows [k9/s] for the cold and hot fluid, respectively. Since this is a steady state
model, the heat capacities can be assumed to be constant. The product mCYp is
called the heat capacity flow rate (Sinnott & Towler 2009), given in [kW /oc].

m.Cp. = w, (3.6)
mpCpp = wy, (3.7)

From the principle of energy- and mass conservation the correlation between
Equation 3.1, 3.4 and 3.5 is

Q = UAATLM = wc(Tc,out - Tc,in) = wh(Th,in - Th,out) (38)



3.1.1 Approximations and Transformations

Associated with steady state is the already mentioned assumptions of constant
heat capacities and constant inlet hot and cold stream temperatures. For the
steady state investigation the mass flows of the cold stream and every hot stream
will also be treated as constant. In addition, single phase flow for hot streams,
that is no phase transfer during heat transfer, will also be assumed in the steady

state analysis.

Approximation of the Logarithmic Mean Temperature Difference (LMTD)

Application of the LMTD equation might lead to numerical challenges. If the
LMTD were to be applied on a transient in which the temperature difference had
different signs on the two sides of the heat exchanger, the argument to the logarith-
mic function would be negative, which is not allowable (Kay & Nedderman 1985).
Skogestad (Skogestad 2003a) states that the Logarithmic Mean Temperature Dif-
ference (LMTD) in Equation 3.3 can be approximated to an Arithmetic Mean
Temperature Difference (AMTD). If 114 < ¢1/0, < 1.4, i.e. the temperature dif-
ference between the cold and hot side is fairly constant, the error of using AMTD
instead of LMTD is less than 1%. The arithmetic mean temperature difference,
AMTD is given as (Skogestad 2003a)

01 + 09
2

ATy = (3.9)

Another and more robust approximation to the LMTD is made by Underwood
(Underwood 1933) and is given as

3

(3.10)

07 + 05
2

s -

To avoid the numerical issues associated with the LMTD and due to the ro-
bustness of the approximation, the Underwood approximation (Underwood 1933)
will be used in parts of the steady state simulations where the LMTD needs to be

approximated.



Transformation of the Model Equations to the NTU Method

The Number of Transfer Units (NTU) Method is used to calculate the steady
state rate of heat transfer in heat exchangers where there is insufficient information
to calculate the Logarithmic Mean Temperature Difference (LMTD) (Incorpera
& DeWitt 2007). If both the heat exchanger area and the hot and cold mass
flows together with the respective inlet temperatures are known, the NTU method
can be applied for simulations of heat exchangers. The NTU method calculates
the effectiveness of a heat exchanger based on the flow with the limiting heat
capacity. The energy equations are the same as the ones given in Section 3, only

expressed in a different way. The number of transfer units is defined as (Incorpera

& DeWitt 2007)

UA
Omin

NTU = (3.11)

Where C,,;,, is the smallest heat capacity rate, that is C,;, = min{w,, wp}.

For counter current flow, the effectiveness ¢ is given by (Incorpera & DeWitt 2007)

_ 1—exp(—NTU(1-C,))
11— Crexp(=NTU(1 - C,))

£ (3.12)

Here, C, is defined as the ratio g— and Cpe = maz{w.,wp}. If C, in
Equation 3.12 becomes singular the equation can not be used. In that case, for

counter current flow, € becomes (Incorpera & DeWitt 2007)

NTU

T 1+ NTU (313)

3

From this, the hot and cold outlet temperatures from a heat exchanger can be

found

Thput - (]— - Crg)Th,in + Crch,in (314)
Tc,out - ETh,in + (1 - g)Tc,in (315)

According to these equations, the NTU-method yields a linear relationship
between the inlet temperatures and the resulting outlet temperatures. However,

the outlet temperature is nonlinearly dependent on the flow rate.



3.2 Dynamic Model

Dynamic models are needed to assess controllability of heat exchangers and heat
exchanger networks (Mathisen, Morari & Skogestad 1994a). In order to verify
whether the control configuration proposed by Jaschke (Jaeschke 2012) gives sat-
isfactory control, dynamic simulations and control behavior of heat exchanger

networks should also be taken into account.

The dynamic analysis includes simulations present to disturbances. For these
parts the assumptions of constant cold and hot stream temperatures will no be
longer valid. The cold stream mass flow will also serve as a disturbance and will
thereby neither be treated as constant. However, single phase flow will still be

assumed.

3.2.1 The Mixed Tanks in Series Model

Wolff, Mathisen and Skogestad (Wolff, Mathisen & Skogestad 1991) states that a
heat exchanger can be approximated as a lumped model and thus be expressed as
mized tanks in series. Modeling the temperature development for a given stream
in a heat exchanger as mixed tanks in series is desirable because of the simple

expression that result. A modified version of this lumped model is presented in
Figure 3.2 (Wolff et al. 1991)

m,(0) m,(1) m,(2) m (k) m,(R-1) m,(R)
o To(1) > TW2) P - = Tk P> -—- —3 Ti(R) —

Q1 Qz Qk QR

L 4 v v v

Tu(R) Tw(R-1) Tull) Tu(1)

Q1 Qz Qk QR
(R (R-1 () (1 m.(0)
% TR el TR fe - ) e - < Ty —

Figure 3.2: The mixed tanks heat exchanger model, modified

Here, m;(0) and T3(0), m.(0) and 7,(0) is the inlet mass flow and temperature
on hot and cold side, respectively. T}, (k) and T.(I) is the hot stream and cold stream



outlet temperatures in tank k£ and [, respectively. T, is the wall temperature and @)
is the transfered heat in each tank. The lumped model consists of R equal mixing
tanks, in which the total heat exchanger area A and volume V is assumed to be
equally distributed throughout the R tanks. Negligible heat loss and pressure drop,
constant heat capacity and fluid density are also assumed. Relevant heat exchanger
data are given in Table B.1 in Appendix B From Mathisen et al. (Mathisen

et al. 1994a), the differential equations resulting from the energy balance are

dTh(k‘) o hhA mhR
i (Th(k — 1) = Ty(k) — thATh(k)> AT (3.16)
4T, (1) A
P ((hn ATy n (1) — hcATw,c(l))m (3.17)
dT,(l) hA m.R
e (Tc(l - 1) -T.() - chATC(l)> A% (3.18)

Where the subscript ¢, h and w denotes cold fluid, hot fluid and wall, respec-
tively. Further, h is the heat transfer coefficient for each fluid, given in [FW focm?],
p is density given in [F9/m?], R is the number of cells, V is volume given in [m?] and
t is time in [sec]. A complete derivation can be found in Mathisen et al. (Mathisen
et al. 1994a). According to the authors, a model order of R > 6 is typical to ensure

satisfactory prediction. In this study a model order of 10 is used.
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4 Optimization of Heat Exchanger Networks

For many processes, the overall goal is to maximize the income of the plant (Jensen
& Skogestad 2008). In a perfect world, optimal heat-transfer performance would
be achieved without compromise. Systems would require minimal heat exchanger
area, with minimal cost associated with heat exchange equipment. In the real
world, however, economic losses can begin as early as the preliminary design
phase. The design must accommodate uncertainties and assumptions, adding to
the projects capital investment and operating costs (Gramble 2006). Out of several
factors, profitability associated with heat exchangers relies on the effectiveness of
the heat transfer. However, there are two contradictory factors for cost-effective
heat transfer. Obtaining the highest possible outlet temperature is desirable re-
garding the final product quality and the potential profit. At the same time,
operating with reasonable heat exchanger duties is an equally important factor for
keeping the operation costs low (Jensen & Skogestad 2008). Optimization of heat
exchanger networks are based on an objective function J that includes capital and

operation costs (Jensen & Skogestad 2008).

Subject to optimization is also equality and inequality constraints. These need
to be satisfied in order for the optimization to be valid within the systems defined
limits. In this case, each heat exchangers performance is limited by the design
and its available hot stream. From Skogestad (Skogestad 2004) the goal of an
optimization problem is to minimize an objective function J subject to its given

constraints g and h

minimize J(z, uy, d) (4.1)
subject to equality constraints: g(x,us,d) =0 (4.2)
subject to inequality constrains: h(z,us, d) > 0 (4.3)

where J is the objective function, x the state variables, u; is the manipulated
variables and d the disturbances. The manipulated variables also denotes the
systems degrees of freedom (DOFs). The equality constraints ¢ include the model

equations, whereas the inequality constraints for the cases studied in this report
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includes the AT,,;, for each heat exchanger. The inequality constraints are only
present for numerical purposes as it prevents the heat exchangers from unwanted

temperature cross.

From a control perspective the task is to decide what to control with the
available degrees of freedom, u. If the states x are eliminated by use of the model

equations g the remaining unconstrained problem is

ming J(u,d) = J(Uopt, d) = Jopi(d) (4.4)

Here, gy, is to be found and J,,(d) is the optimal value of the objective
function J. Jensen and Skogestad (Jensen & Skogestad 2008) state that the total
annualized costs associated with operation of heat exchanger networks are divided

into operation costs and capital costs.

minu(Joperation + Jcapital) (45)

Where u is the degrees of freedom which includes all the equipment data and
operating variables. As this study investigates operation of heat exchanger net-
works, only the operation costs (Jypertaion) i Equation 4.5 will be considered. A
general heat exchanger network with N heat exchanger in series on the upper
branch and M heat exchangers in series on the lower branch is presented in Figure
4.1.
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Figure 4.1: A general heat exchanger network with N heat exchanger in series on
the upper branch (branch 1) and M heat exchangers in series on the lower branch
(branch 2)

4.1 Optimal Operation Problems

As different sources of heat may have different prices, Jéschke (Jaeschke 2012) has
proposed a cost function for operation of a general heat exchanger network. For
a heat exchanger network in Figure 4.1, consisting of NV heat exchangers in series
on the upper branch (j = 1) and M heat exchangers in series on the lower branch

(j = 2), the cost function proposed by Jéschke is

J=(Pi1(Tir —Ti-11) + -+ Pvi(Tng — Tn-11))uwy

(4.6)
+(Pi2(Tio = Tici2) + - + Pua(Tare — Thr—12)) (1 — u)wy

Where all P;; and P, are negative price constants given in [3/kw] associated
with the price of transferring the heat @); ; and (); 2 through heat exchanger H X
and HX,,, respectively. T;_1, and T;; are the temperature of the cold stream

entering and leaving heat exchanger ¢ on branch 1, respectively. Branch 1 is

13



associated with the split u, and branch 2 with the remaining (1—u), hence the
product (T;; — T;_11)uwy resembles the transferred heat ();; in heat exchanger 4
on branch 1 given in Figure 4.1. The same applies for all heat exchangers on branch
2. This product serves as an extended version of the energy balance in Equation
3.4. Doing an unit analysis, the cost function to be minimized is the negative
of the total costs given in [$]. This means that the lower the negative P;; value
for a certain heat exchanger, the cheaper it is to operate. If all price constants
are equal, this cost function corresponds to maximizing the total transfered heat
(Jaeschke 2012).

The Underwood approximation (Underwood 1933) given in Equation 3.10, Sec-
tion 3.1.1 is used in simulations investigating optimal operation. Moreover, as this
study takes on to operation of heat exchanger networks the notation in the origi-
nal model equations from Section 3.1 is adjusted. For the general heat exchanger
network in Figure 4.1, the heat exchanger equation for one given heat exchanger

is thereby

Qi; = UA ATy, (4.7)

Here, UA, ; is the respective UA design value for heat exchanger 7 on branch

j. The total mass balance of the system is

wo = uwp + (1 — u)wy (4.8)

From this the overall energy balance with N heat exchanger on branch 1 and

M heat exchangers on branch 2 becomes

WL ena = vwoTng + (1 — w)woT 2 (4.9)

Applying the same notation for the energy balances given in Equation 3.4 and
3.5, the equality constraints for a general heat exchanger network with N heat

exchangers on branch 1 and M heat exchangers on branch 2 is
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Q11 — (vwo(Th1 — Tp))
Qi1+ (le(Thff‘f —Thi,))

Q11— (UAl,lAT(l,l)UN>

QN,l - (Uwo(TN,1 - T(N—l),l))
Qna + (wn (TR — Thy )
Qn1 — (UAN AT (N yuN)
Q12— (1 —w)wo(Th2 — Tp))
g= =0 (4.10)
Q12+ (wl,z(Th(f?gt —This))
Q12 — (UA1 AT 2y0N)

QM,z - ((1 - U)wo(TM,Q - T(M—1),2))
Qur2 + (wWara(ThSy — Thare))

Q2 — (UAy2AT 0 2yuN)

uwo + (1 — w)wy — wy

wwolng + (1 — w)woTh2 — Wolend

where Thz-o’g‘»t is the hot stream outlet temperature associated with heat ex-

changer 7 on branch j.

Inequality constraints includes the AT,,;, constraint and is only included to
ensure that the temperature difference on hot and cold side always is > 0, and
thereby prevent from complex solutions. The value of AT,,;, is chosen to be 0.5.

The temperature difference AT is illustrated in Figure 4.2.

15



AT,

Th,in

HOT FLUID

AT,

Th,out

COLD FLUID

Tc,out
(—

} Tc,in

Figure 4.2: AT in a heat exchanger

The general inequality constraint vector can then be written

Thl,l - Tl,l - A,—Tmzn

ThyY — Ty — AT

ThN,l - TN,l - AT;nm

Th?\qfftl - T(Nfl),l - AT;nm

Thl,Q - T1,2 - AT‘mm

ThY — Ty — AT

Thyo — Ty — AT in

Thf/)\};fz - T(M—l),2 - ATmzn
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5 Self-Optimizing Control

Self-optimizing control is when near-optimal operation is achieved with constant
setpoints for the controlled variables (Skogestad 2004). The advantage with self-
optimizing control is that it does not need re-optimization when disturbances are

present.

5.1 General Idea

The aim for self-optimizing control is to find a subset of the measured variables
named ¢ to keep constant at the optimal values ¢, (Skogestad 2004). The ideal
case would give a disturbance-insensitive ¢, to obtain optimal operation. How-
ever, in practice, there is a loss associated with keeping the controlled variable
constant. Therefore, the goal is an operation as close to optimum as possible. The

loss can be expressed as

L(“? d) = ‘](ua d) - Jopt(d) (51>

Skogestad (Skogestad 2000) presents the following guidelines for selecting con-

trolled variables:

» Copt should be insensitive to disturbances
e ¢ should be easy to measure and control accurately

o ¢ should be sensitive to change in the manipulated variables (degrees of

freedom)

e For cases with more than one unconstrained degree of freedom, the selected

controlled variables should be independent

Proposed by Halvorsen & Skogestad (Halvorsen & Skogestad 1997), an ideal

self-optimizing variable is the gradient of the objective function J:

oJ

Cideal = % (52>

17



To ensure optimal operation for all disturbances, this gradient should be zero,
but measurements of the gradient is usually not available. Therefore, computing
this gradient requires values of unmeasured disturbances. To find the best suit-
able variables for approximations of the gradient, several methods can be used,

including;:

Exact local method (Halvorsen, Skogestad, Morud & Alstad 2003)

Direct evaluation of loss for all disturbances ("brute force") (Skogestad 2000)

Maximum (scaled) gain method (Halvorsen et al. 2003)

The null space method (Alstad & Skogestad 2007)

5.2 Jaschke Temperatures

For operation and control of different heat exchanger networks, Jaschke has pro-
posed a self-optimizing control structure, currently considered as a patent applica-
tion (Jaeschke 2012). The idea with the control structure proposed by Jaschke is
to achieve near optimal operation by only manipulating the split u in the network,
exclusively based on simple temperature measurements. The control variable is
the Jaschke temperature, in which each heat exchangers respective Jéschke tem-
perature on one branch is summed up to a total Jaschke temperature for the whole
series. For a general heat exchanger network given in Figure 4.1, Equations 5.3
- 5.6 gives the Jaschke temperature (J7T; ;) for each heat exchanger on the upper
branch (j = 1).
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(T —To)?

JTi1 =P ————— 5.3
1,1 11 This— Ty (5.3)
(Toy —Th1)(Tog + Ty — 2T — JT1,4))
JTh 1 = P 2 ’ ’ : 2 5.4
2,1 2,1 Thay — Tix (5.4)
(Tin = Ty )(Tig + Ty — 270 — JTi-11))
Jﬂ — PZ ) k] El El El 5'5
5 a Thiy — Tii—1)a (5:5)
Thn1—Tin_ T Tin-p1—2Ty — JT n_
JTxr = Py (T = Tiv) ) (Tva + Tiveyg = 210 = JTiv-),1)) (5.6)

Thyy —Tin-1)1

Here, subscript 7,1 means heat exchanger i on the upper branch (branch 1).
Further, P is the price constant introduced in Equation 4.6 in Section 4.1, T is

still the temperature of the cold stream and T'h is the temperature of hot stream.

The weighted sum of all Jaschke temperatures on the upper branch is defined
as (Jaeschke 2012)

N
C1 = JT171 + JTQ,l 4+ ...+ JTNJ = Z B,IJE,I (57)

i=1
The same equations applies for the lower branch (7 = 2), and the resulting

weighted Jaschke temperature for the M heat exchangers in series on this branch

is

M
Cy = JTLQ + JTQ’Q + ...+ JTM’Q = Z PinJj—’i’Q (58)

i=1
According to Jaschke (Jaeschke 2012), near optimal operation is achieved when

the Jaschke temperature for the upper branch equals the Jaschke temperature for

the lower branch

JT:C1—CQZO (59)
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Hence, the control variable ¢ is

c=JT (5.10)

The only degree of freedom is the split u (See Figure 4.1), which will be adjusted
to satisfy Equation 5.9.
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6 Steady State Analysis Results

The specialization project (Aaltvedt 2012) confirmed that the Jéschke temperature
gave close to optimal operation at steady state for various heat exchanger networks
limited by 3 heat exchanger in series on one branch. In this study, two networks
were analyzed first, one with four heat exchanger in series and another one with
six heat exchangers in series. These two cases were simulated using MATLAB and
fmincon. The procedure is further explained in the next section. Of these two
cases, only the case with four heat exchangers in series is presented in the report.
See Appendix A.2 for the case with six heat exchangers in series. Additional
simulation results are also given for the case with four heat exchangers in series in
Appendix A.1.

For a simpler network of two heat exchanger in parallel, several more com-
prehensive steady state analyzes were done using the NTU Method described in
Section 3.1.1. The detailed method are described in Section 6.2, and are followed

by the the following investigations:

o Investigation of Jaschke temperature operation for a base case

with evenly distributed heat capacities (Case II)

o Investigation of Jaschke temperature operation for two extreme cases

with uneven distribution of heat capacities (Case II-a and II-b)

« Investigation of Jaschke temperature operation subject to measurement er-

rors

6.1 Case I: Four Heat Exchangers in Series and One in
Parallel

The network of four heat exchanger in series parallel to one heat exchanger are
shown in Figure 6.1. The respective parameters are given in Table 6.1 and the
respective price constants P ; are given in Table 6.2. With the given design pa-
rameters, outlet temperatures and split (given in red in Figure 6.1) were to be

determined.
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Figure 6.1: Case I: Four heat exchangers in series parallel to one heat exchanger

Table 6.1: Case I parameters

Parameter Value Unit

T 130 PC
Thi, 190 [°C]
Tha, 203 [°C]
Ths, 220 [°C]
Tha, 235 [°C]
This 210 [C]

wo 100 [FW/ec]
wW1,1 50 [kW/OC]
W21 30 [kW OC]
w31 15 [kW foC]
Wq,1 25 [kW/OC]
w12 70 [kW OC]
UA1’1 ) [ka2/oc]
UA271 7 [ka2 °C]
UA371 10 [kme/OC]
UAix 12 [Wm?jeq]
UALQ 9 [k;sz/oc]
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Table 6.2: Case I price constants

Parameter Value Unit

Py -1 [8/kw]
Py -1.20 3w
P371 -1.3 [$/kW]
Py, -1.5 3w
Py -14 3w

Subject to the equality and inequality constraints given in Section 4.1 (Vec-
tor 4.10 and 4.11, respectively), optimal operation and operation using the Jaschke
temperature was determined by the use of the build-in MATLAB function fmincon.
The cost function proposed by Jéschke (Jaeschke 2012) in Equation 4.6 was used
as objective function, and the Underwood Approximation (Underwood 1933) was
used as an approximation to the LMTD. The results from optimal operation was

compared to the Jaschke temperature operation and are given in Table 6.3

Table 6.3: Optimal operation and Jaschke temperature operation for Case I

Optimal operation Jaschke temperature operation

Tona [°C] 207.87 207.84
u [%] 64.15 70.66

As the results from Table 6.3 indicates, the Jaschke temperature operates the
system close to optimum, as the outlet temperature from Jaschke temperature
operation only differs 0.03 °C from optimal outlet temperature. The split, however,
is different. This can imply that the optimum is very flat, i.e. the highest outlet

temperatures covers a great range of possible splits.

The same observation can be seen for a system of six heat exchanger in series

and one in parallel. Complete simulations results for both cases are given in
Appendix A
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6.2 Case II: Two Heat Exchangers in Parallel

From Section 6.1 and Appendix A the Jaschke temperature showed satisfactory
control for a heat exchanger network with four and six heat exchangers in series.
Therefore, to reveal any limitations associated with the Jéschke temperature op-
eration, a smaller system with two heat exchangers in parallel was used in the
proceeding steady state analysis. A small system like this is easier to work with,
and can at the same time be a good representative for the behavior of more complex

systems. The Case II network is presented in Figure 6.2.

UAy 4

TCI Te nd

Wy

Figure 6.2: Case II: Two heat exchangers in parallel

In the following steady state simulations, the NTU-method from Section 3.1.1
was used for all heat exchanger calculations. Both heat exchangers respective
outlet temperatures together with the control variable J7' controlling the Jaschke
temperatures were calculated for all splits u € [0,1]. From this, optimal operation
was determined from the split u that gave the highest outlet temperature 7,4,
and optimal Jdschke temperature operation was calculated from the point where
JT = ¢; — ¢y = 0 (Equation 5.9). The two results were compared and the loss (in

terms of outlet temperature) associated with the Jéschke temperature operation
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was calculated.

For this network, a base case was studied first, with parameters included in
Table 6.4. The price constants for this case was all decided to be 1. The simulation
results are shown in Figure 6.3. Here, the control variable JT and outlet temper-
ature T,,q are plotted as a function of split w (with respect to branch 1). The
red and black dotted lines shows optimal operation and optimal Jaschke tempera-
ture operation, respectively. As expected from the results from the specialization
project (Aaltvedt 2012), the Jéschke temperature operation showed close to opti-

mal operation.

Table 6.4: Case II parameters

Parameter Value Unit

T 130 [C]
Thia 203 [°C]

Th s 248 [°C]

w 100 [FW)q]
W11 50 [kW OC]
W1,2 50 [kW OC]
UAl,l 10 [ka2 OC]
UALQ 30 [ka2/oc]
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Figure 6.3: Control variable JT and T.,4 as a function of split u for Case II. The
red and black dotted lines show optimal split considering outlet temperature and
control variable, respectively

The plot shows a very flat optimum, i.e. several different splits allow close
to optimal outlet temperature. Outlet temperature from optimal operation and
Jéaschke temperature operation was 159.15 and 159.14 °C, respectively, giving a

small 0.01 °C temperature loss.

To investigate whether the Jaschke temperature fails to operate the system
close to its optimum, more complex cases with a more uneven distribution of heat
capacities were studied. This was done using the same method, and is presented

in the next sections.

6.2.1 Jaschke Temperature Operation at Extreme Cases

The first extreme case, Case Il-a, included a combination of one large heat ex-
changer with a correspondingly large heat capacity rate of the hot stream, and a
small heat exchanger with a correspondingly small heat capacity rate of the hot
stream. The second extreme case, Case II-b, included the same two very different
hot stream heat capacities but two equally big heat exchanger areas. Both these
cases corresponds to poor design, and is not realistic. However, it was included in

order to study how the Jéaschke temperature approach behaves in extreme cases.

26



The detailed parameters for Case II-a and Case II-b are given in Table 6.5 and
6.6, respectively.

Table 6.5: Case II-a parameters

Parameter Value Unit

T 130 [°C
Th, 203 [°C]

Thi s 248 [°C]

wo 100 [fW/d]
wW1,1 400 [kW/OC]
w12 100 [kW ° ]
UAr, 1000 [fWm? o]
UALQ 100 [kaz/oc]

Table 6.6: Case II-b parameters

Parameter Value Unit

T 130 [C]
Thia 203 [°C]

Th s 248 [°C]

wo 100 (kW /o]
W11 400 [kW OC]
W1,2 100 [kW/OC]
UA,, 1000 [fWm? foc]
UA, 1000 [kwm?/ec]

These parameter selections gave a more distinct optimum, which makes these
cases good examples of which the Jaschke temperature did not operate the system
close to its optimum. For Case Il-a, this can be seen in Figure 6.4, where the
control variable JT and outlet temperature T,,; are plotted as function of the

split w.
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Controlled variable, JT [ °C]
Tend [ OC]

Figure 6.4: Control variable JT and T,,4 as a function of split u for Case Il-a.
The red and black dotted lines show optimal split considering outlet temperature
and control variable, respectively

As Figure 6.4 for Case II-a indicates, the point where JT' = ¢; - ¢; = 0 (optimal
control variable) differs significantly from the point of optimal operation. The
outlet temperature associated with optimal operation and Jéaschke temperature
operation was 214.32 and 212.60 °C, respectively, giving a loss of 1.72 °C. The

optimum is steep, which gives few possible splits for the highest outlet temperature.

For the second extreme case, Case II-b, the area A; o of heat exchanger H.X, -
on the lower branch took the same value as heat exchanger H.X; ;. This will,
together with the originally low heat capacity rate wy s, allow for a much better
heat transfer on the lower branch. Figure 6.5 presents the control variable J7 and
outlet temperature T,,4 plotted as function of the split u for Case II-b. As Figure
6.5 indicates, the Jéschke temperature diverged and ended up at a steady state
value where ¢ # ¢y and thereby JT # 0.
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Figure 6.5: Control variable JT and T,,4 as a function of split u for Case II-b.
The red and black dotted lines show optimal split considering outlet temperature
and control variable, respectively

The split resulted from Jaschke temperature operation was v = 0.01, giving a
very small cold stream distribution through the upper branch. The optimal split
was u = 0.10. However, the outlet temperature T,,4 associated with the Jéaschke
temperature operation was still relatively close to the optimal outlet temperature,
237.61 vs 238.53 °C giving a temperature loss of 0.92 °C.

The observed error caused by operating the system with the Jaschke temper-
ature can be traced back to the AMTD approximation (Equation 3.10, Section
3.1.1). The derivation of the Jéschke temperature is based on systems of which
the AMTD approximation is valid (Jaeschke 2012). The plots in Figure 6.6 show
each heat exchangers 91/, relationship (recall Section 3.1.1) with the split u for the
base case and both extreme cases Case II-a and Case II-b, respectively. Compared
to the base case it is indicated that the AMTD serves as a very bad approxima-
tion for both extreme cases, as 91/9, is way out of the bounds of 1/1.4 < ¢1/s, < 1.4
proposed by Skogestad (Skogestad 2003a). The AMTD bounds are defined by the
magenta lines in Figure 6.6, where UB is the upper bound (% /s, = 1.4) and LB is
the lower bound (91/s, = 1/1.4). The plots are based on a plotting command from
Edvardsen (Edvardsen 2011).
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(c) Extreme case Case II-b

Figure 6.6: Validity of the AMTD approximation, % as a function of split u
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According to Skogestad (Skogestad 2003a), within the horizontal magenta lines
in Figure 6.6, the AMTD will serve as a satisfactory approximation to the LMTD.
For Case Il-a, around the optimal split of © = 0.65, none of the heat exchangers
showed a 91 /6, ratio within this interval. The same pattern applied for Case II-b
around the split u = 0.10. This will result in inaccurate temperature calculations
in each heat exchanger, serving the controller with wrong data and eventually

result in a far from optimum operation.

Equal simulations were done for two additional cases, Case II-c and Case II-d,
respectively. The respective inlet parameters together with the simulation results

are given in Section A.3.1 and A.3.2 in Appendix A, respectively.

6.2.2 Jaschke Temperature Operaton Subject to Measurement Errors

The accuracy of control instrumentation is very important with accuracy re-
quirements related to control system objectives (Seborg, Edgar, Mellichamp &
Doyle 2011). Therefore, in order to further investigate whether the Jaschke tem-
perature control configuration operates a parallel heat exchanger network satisfac-

tory, steady state simulations with implemented measurement errors were done.

Based on the case parameters for the base case, Case II-a and Case II-b in
Table 6.4, 6.5 and 6.6, optimal operation was determined. Then, in the presence
of measurement errors, the corresponding Jaschke temperature operation was cal-
culated. The measurement errors were limited to span from +/- 2°C from each
respective measured temperature, and were determined by the build-in MATLAB

function rand.

Both optimal operation and Jaschke temperature operation were calculated
based on the NTU-method described in Section 3.1.1. The final results are based
on 1000 simulations with random measurement error. The same measurement
errors were used for every case. The loss associated with keeping the control
variable constant was given in Equation 5.1. For this case the loss was seen in
terms of outlet temperature, T,,4:

L=T:4— T (6.1)

€ e

Where T2 is the outlet temperature from optimal operation (without the
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Jéschke temperature), and T% is the actual outlet temperature from operation
using Jaschke temperature in the presence of measurement errors. The maximum

and average loss that occurred were detected and are given in Table 6.7

Table 6.7: Temperature loss associated with measurement errors

Worst case loss Average loss

Case °C] °C
Base case 0.039 0.007
Case II-a 3.141 1.602
Case II-b 0.921 0.921

For the base case, both the worst case and the average loss is small enough to
give satisfactory near-optimal operation. However, the simulations of the extreme
cases showed that the Jaschke temperature gave a significant error in the presence
of measurement noise. For the worst case loss in Case IlI-a, a temperature loss
almost twice as big as the temperature loss found for the exact measurement
simulation in Section 6.2.1 was observed. On the other hand, the average loss,
which in general is more applicable, showed a slightly lower temperature loss than
the temperature loss observed with exact measurement. 1.60 °C versus 1.72 °C,

respectively.

For Case II-b both the average and the worst case losses are equal to the
temperature loss associated with the exact measurements found in Section 6.2.1.
This can be related to the divergence of the Jaschke temperature, resulted in a
control variable JT # 0. As seen from Figure 6.5, the point favoring optimal
control variable is u — 0. This means that for this case, within the limits of u, the
Jaschke temperature has its absolute minimum and optimal point at the boundary

of u - giving the controller no choice but to stay on this boundary.

In summary, it was found that controlling the Jaschke temperatures to equal
values gives good performance in the presence of noise when the heat exchanger
network is balanced (approximately similar heat capacities on the hot and cold
side). However, for a unbalanced network, with large differences in the total heat
capacity on each branch, noise can significantly deteriorate the performance. Equal

simulations were also done for the two additional cases, Case II-c and Case II-d,
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respectively. These results are given in Appendix A
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7 Dynamic Analysis Results

Using the equations presented in Section 3.2 on dynamic heat exchanger modeling,

several heat exchanger networks were modeled using the Simulink software.

e Dynamic case I: Two heat exchangers in parallel

o Dynamic case II (base case): Two heat exchangers in series parallel to one

heat exchanger

e Dynamic case III: Three heat exchangers in series parallel to two heat ex-

changers

e Dynamic case IV: Four heat exchangers in series parallel to one heat ex-

changer

o Dynamic case V: Six heat exchangers in series parallel to one heat exchanger

For all networks, the parameters for each respective heat exchanger in Dynamic
case | - IIT were the same as used in the steady state analysis in the specialization
project (Aaltvedt 2012). For Dynamic case IV and V, the parameters were the
same as the ones used in the steady state analysis from this study (Section 6). All
parameters associated with Dynamic case I - III are reprinted in the report. How-
ever, the heat transfer coefficient h; ; and heat exchanger area A; ; associated with
each heat exchanger were estimated by simulations to match the resulting optimal
operation variables found in both steady state analyzes. The estimations of h; ;
and A; ; gave new design variables (UA values) for each heat exchanger, different
from the originally optimal designed U A values. In steady state simulations where
the Underwood approximation (Underwood 1933) was used (Dynamic case I - I1I)
the new U A values turned out higher. In steady state simulations approximated
by the AMTD (Skogestad 2003a) (Dynamic case IV and V), the new design values
were observed lower. The estimations of h; ; and A, ; together with other relevant
heat exchanger data are given in respective tables for each case in Appendix B.

A model order of R = 10 was used for all simulations in order to assure good
accuracy. A transport delay of # = 2 sec was implemented for each measurement
(i.e. temperatures) in each network. For Dynamic case I - I11, each heat exchangers

respective price constant F; ; was chosen to be 1, which means that the price had no
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influence on the Jaschke temperature operation. For the two last cases, Dynamic
case IV and V, different price constants were used. For all dynamic simulations,

odelbs (Stiff/DNF) was used as numerical solver.

PI controllers were used for all heat exchanger networks. The controller for
each network was tuned using the Skogestad IMC (SIMC) rules (Skogestad 2003b)
on a step response of 10 % increase in the cold fluid mass flow m; to the upper

branch (i.e. making a step change in the split u).

A base case, denoted Dynamic case II, of two heat exchangers in series parallel

to one heat exchanger are presented in the report.

The Dynamic case II heat exchanger network is given in Figure 7.1 and the
full Simulink block diagram, dynamic_21_1.mdl is given in Figure 7.2. The inlet
parameters with the new U A values are given in Table 7.1. The estimated variables
hi; and A, ; are given in Table B.7 in Appendix B. The step and control variable
response from the tuning are presented in Figure 7.3. PI tuning parameters are
given in Table 7.2. Complete and additional simulation results for all dynamic

cases I - V are given in Appendix B.

Thy, Thy,
Wy, Wy 4
Tig @_ Ty
UA:A UAZ,:{
u
TCI TEnd
Wy
UA, >
@ Tz
Thy,
Wy

Figure 7.1: The dynamic case II (base case) heat exchanger network

36



Figure 7.2: Simulink block diagram for Dynamic case II, dynamic_21_1.mdl
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Table 7.1: Dynamic case Il parameters

Parameter Value Unit

T 130 [°C]
Thy, 203 [°C]
Tha, 255 [°C|
Thys 248 °C]

wo 160 [FW)d]
w11 60 [kW OC]
w21 27 (W /o
w12 65 [kW OC]
UA1’1 17.78 [ka2 OC]
UA271 31.18 [ka2 OC]
UA, 5779 [FWm?joc]

1

w
8

Controlled variable, JT [C]
L
=y

w
8
Mass flow m, to upper path [kg/sec]

™
3

_12 I I I I I I . . . 28
800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Time [sec]

Figure 7.3: Open loop step response of control variable JT on a 10 % increase in
inlet mass flow m; for Dynamic case 11

Table 7.2: PI tuning parameters for Dynamic case 11

Tuning parameter Value Unit
K. 1.59 [Oc/kg/s]
7 10 [sec]
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7.1 Closed Loop Steady State Parameters

Using the tuning parameters given in Table 7.2, closed loop operation variables
(outlet temperatures and split) were compared to the open loop operation vari-
ables matching the steady state variables (Aaltvedt 2012).

Table 7.3: Open loop and closed loop operation variables for Dynamic case I1

Operating variable Open loop value Closed loop value

Ty [°C] 166.0 165.6
Ty, [°C] 197.9 197.2
Ty [°C] 204.3 204.9
ThsY [°C] 159.4 159.3
ThgY [°C] 169.8 169.3
ThsY [°C] 147.8 148.0
Tena [°C] 201.4 201.4

u 0.4522 0.4589

After closing the controller loop it was observed a small change in the internal
system variables, i.e. outlet temperatures of each heat exchanger. Also, the split
differed from the open loop simulation, but the outlet temperature T,,, takes
on the same value, 201.4 °C. These inner variations might be traced back to a
flat optimum allowing several splits for maximum outlet temperature, in addition
to the two different models used. The open loop values are based on a steady
state simulation using the Underwood approximation (Underwood 1933), while
the dynamic closed loop values are based on the mixed tank in series model (Wolff
et al. 1991). Similar results for Dynamic case I and III - V are given in Appendix
B.

7.2 Jaschke Temperature Operation at Small Disturbances

For the Dynamic case II system, two disturbances were applied in a close sequence
over a 2000 second interval. At ¢ = 1000 sec, a temperature step of +10 °C was
applied in the inlet cold stream temperature Ty. Then, at t = 1600 sec, a negative

temperature step of 25 °C in the hot stream temperature of heat exchanger H X »
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on the lower branch, Ty, (See Figure 7.1) was applied to the system. As the
controller response showed significant over- and undershoot, an analog filter was
implemented filtering the signals entering the PI controller. The filter parameters

are given in Table 7.4.

Table 7.4: Analog filter parameters for Dynamic case II

Filter parameter Value Unit
K f 12 [0 C / kg/ s]
ot 45 [sec]

The response of the control variable (JT') is shown in Figure 7.4. Included in
the plot are both behaviors with and without the analog filter, as red and blue
lines, respectively. The same applies for the resulting effect on the split u, shown
in Figure 7.5. Similar plots are shown for Dynamic case I and III - V in Appendix
B.

5 T

= Without filter
—— With filter

s 4

Controlled variable, JT [ C]
o o
T
Il

— 1 1 1 1 1
800 1000 1200 1400 1600 1800 2000
Time [sec]

Figure 7.4: Control variable response when Tj is increased 10 °C and T'h; o de-
creased 25 °C at t = 1000 and 1600 sec, respectively
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Figure 7.5: Split response when 7j is increased 10 °C and T'hy 5 decreased 25 °C
at t = 1000 and 1600 sec, respectively

Both plots show satisfactory disturbance rejection and system control. The
split response for the temperature step in Ty at ¢ = 1000 sec was observed to be
slower than the same response for the temperature drop in T'h; o at t = 1600 sec.
From Figure 7.5 inverse response was observed with the second applied distur-
bance. This feature arise from competing dynamic effects that operate on two
different time scales (Seborg et al. 2011). In this case, an immediate change in
Thy o at t = 1600 sec results in a sudden change in the Jaschke temperature for
the lower branch (Equation 5.8). The impacts of decreasing Thy 2 is not seen
in the associated cold stream outlet temperature 7} o until some time due to the
counter current stream configuration in the heat exchanger. These two different

temperatures on different time scales creates the inverse response.

Both the control variable response (Figure 7.4) and the split response (Figure
7.5) experienced a significant reduction in their respective over- and undershoot
with the analog filter implemented (Table 7.4). As the red lines in Figure 7.4 and
7.5 indicates, the magnitude of the peaks are almost decreased to half its original
value. The settling time for the control variable was about 400 sec for the applied
disturbance in inlet temperature Ty at ¢ = 1000 sec. For the disturbance applied

in T'h; » the settling time was only about 200 sec, even though the magnitude of
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this disturbance was significantly higher. However, both can be considered as fast
responses since temperature changes are slow processes. The outlet temperature
profiles (T34, 151, Th 2 and T,,4) with the analog filter implemented were plotted

as a function of time ¢. The temperature profiles are presented in Figure 7.6.
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Figure 7.6: Outlet temperature response when 7Tj is increased 10 °C and T'hy o
decreased 25 °C at t = 1000 and 1600 sec, respectively

Worth noticing from Figure 7.6 is the temperature drop resulted from the
disturbance in T'h; 5 at t = 1600 sec. This was observed for all potted temperature
profiles. For the cold stream entering heat exchanger H X », suffering the negative
temperature step change in T'h, the cold stream temperature is just a direct
effect of decreased heat transfer. For the cold stream passing through the upper
branch, on the other hand, the temperature decrement is a result of the split
response associated with the disturbance in T'h; ». As Figure 7.5 indicated, the
stream split through the upper branch was increased as a result of this disturbance,
eventually giving more fluid to heat which resulted in lower outlet temperatures

on this branch.

Also here, inverse response was observed with the 25 °C negative step change
in Thyo at time t = 1600 sec. Note that the cold stream temperature 775 (red
line) does not suffer from inverse response associated with the step change made

in the hot stream temperature Thy 5 at time ¢ = 1600 sec.
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7.3 Jaschke Temperature Operation at Major Disturbances

The results from the last section demonstrated satisfactory control by the Jaschke
temperature control configuration (Jaeschke 2012) for a system present to small
disturbances. To reveal any vulnerabilities associated with the Jaschke tempera-
ture the following investigation includes a system subject to more comprehensive
disturbances. For the same topology, a case was studied were the hot stream tem-
perature T'hy; of heat exchanger HX,,; experienced a slowly decrement over a
4000 sec time interval resulting in an eventually cooling effect in the given heat ex-
changer. In the presence of such an incident, the optimal operation would be to set
the bypass of the current branch suffering this cooling effect to zero. In order for
this to be fast and manageable enough to work with, some of the case parameters
were changed. The temperatures Thy; and T'hy; were increased and decreased,
respectively, making the temperature difference between 7} ; and 75 ; smaller. The
hot stream temperature T'h; o in heat exchanger H X, » was also decreased. This

new case was called Dynamic case II-a, with the new case parameters given in

Table 7.5.

In this analysis it was decided to modify the expression for the control variable
JT to prevent the simulation from singular solutions. Errors associated with
singularity was observed when 7} ; took on the same value as Thy; due to the
decaying temperature of Thy ;. These two streams, the cold stream and hot stream
entering heat exchanger H X, ; approached each other when T'hy; kept decreasing
and u went toward zero. As a result of that, a very sudden increase in 7 ; was
observed, aimed to match the inlet hot stream temperature of heat exchanger
HX;,. During this sudden increase, the temperatures 7 ; and Thy; crossed
each other, resulted in a denominator-zero in the Jaschke temperature for heat

exchanger H X5 ; in Equation 5.4, which again resulted in a singular solution.

Therefore, it was decided to modify control variable JT adjusting the Jaschke
temperatures. This was done by re-writing it to a denominator-free form. Another
way of keeping the control variable J7 in Equation 5.9 at its set point (JT'= 0), is
by letting the numerator of each respective heat exchangers Jéaschke temperature
equal zero. Therefore, for this case in particular, a modification was done, putting
the control variabel JT' for this system on a common denominator. Then, by use

of the resulting numerator as the new control variable with a setpoint ¢ = 0, it
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should give the same results as the original Jaschke temperature. This modified

control variable ¢,,,q is given in Equation 7.1.

Cmod = (T1,1 - TO)Q(ThQ,l - Tl,l)(Tl,z - To)
+((Toq — Tl,l)(T2,1 + T, —2T6 — J111))(Thy g — To)(Thl,l —Tp)
—(Thv9 —T0)*(Thoy — Ty 1) (Thyy — Tp) (7.1)

With this new control variable the system was re-tuned using the Skogestad
IMC (SIMC) rules (Skogestad 2003b). The controllers were tuned based on a step
response of a 10 % increase in the cold fluid mass flow. The step and control
variable response are given in Figure 7.7, and the resulting tuning parameters are

given in Table 7.6.

Table 7.5: Dynamic case [I-a parameters

Parameter Value Unit

T 130 [C]
Thy, 240 °C]
Tha, 255 °C]
Thys 220 [°C]

w 160 [/
w11 60 [kW OC]
W2 1 27 [kW OC]
W12 65 (W /e
UA171 17.78 [k‘Wm2 OC]
UAg, 3118 [kWm?/oc]
UA, 5779 [kWm? joq]
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Figure 7.7: Open loop step response of modified control variable ¢,,,q on a 10 %
increase in inlet mass flow my for Dynamic case II-a

Table 7.6: Tuning parameters for Dynamic case II-a

Tuning parameter Value Unit
Kf 6.45-107° [Oc/kg/s]
T 93 [sec]

However, since the tuning was done with the original T'hy; at 255 °C, it was
decided to increase the controller gain in order to improve the controller perfor-
mance at lower values of Thy;. By trial and error, different tuning parameters
were tested as the system showed various behavior at different controller gains.
Therefore, two other sets of tuning parameters were used for this case. Results
from both sets are given in the report. The new tuning parameters are given in

Table 7.7 and 7.8 as set 1 and set 2, respectively.

Table 7.7: PI tuning parameters for Table 7.8: PI tuning parameters for
Dynamic case II-a, set 1 Dynamic case II-a, set 2
Tuning parameter Value Unit Tuning parameter Value Unit
K. 6.25- 1073 [Oc/k‘g/s] K. 6.25-107° [Oc/kg/s]
I 93 [sec] Tr 93 [sec]

The disturbance were simulated using the build-in ramp block in Simulink.
Starting at ¢ = 2000 sec, the hot stream temperature of heat exchanger HXs,
Thy;, was decreased with a slope of 0.05 ending up at a steady state 180 °C at
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time ¢t = 6000 sec. This gave Thy; a total temperature drop of 75 °C. The ramp
signals were filtered making the slope even more smooth. The filter parameters for
the ramp signals are given in Table 7.9. The full Simulink block diagram is given

in Figure D.3 Appendix D

Table 7.9: Analog filter parameters for ramp signals in Dynamic case II-a

Filter parameter Value Unit
Kf 1 [O C/k:g/s]
I 100 [sec]

For both sets of tuning parameters, the modified control variable showed satis-
factory system control in the presence of a cooling heat exchanger. The modified
control variable lead the split u to zero bypass on the upper branch at the point
where T'hy 1 < T and heat exchanger H X, gave a cooling effect. The tempera-
ture profiles for set 1 are plotted as a function of time ¢ and are given in Figure 7.8.
Only the temperature profiles for tuning set 1 was included in the report due to
similar temperature response with both tuning sets. Certain temperature profiles
are omitted from the plot (T'hy1, Thyo and T72). This is simply because they
are either constant or are not directly affected by the changes in heat exchanger
HX, ;.
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Figure 7.8: A selection of outlet temperature responses for tuning set 1 when Ths ;
is decreased from 255 - 180 °C from time ¢t = 2000 to 6000 sec

The response of the directly affected temperatures on the upper branch was as
expected. As the hot stream temperature T'hy g in heat exchanger H X, ; decreased,
so did the cold stream outlet temperature 75, from the same heat exchanger. In
other words, the heat transfer decreased as the hot stream temperature decreased,
which is in good correlation with the expected behavior. The cold stream outlet
temperature 77 ; of heat exchanger H.X; ; showed a small increment as Thy; de-
creased. This temperature rise can be related to a simultaneously small decrement
in the stream split to the upper branch. A temperature decrement in Thy; makes

the upper branch less favorable regarding maximum outlet temperature.

After about ¢ = 3350 sec, both T} ; and T5; experienced a very sudden increase
and took on the same value as their respective hot stream inlet temperatures. 717 ;
quickly stabilized at T'h; 1 of 240 °C, and 75 followed the still ongoing temperature
drop of T'hy ;. This sudden temperature change was a result of a split u — 0 to the
upper branch. The split behavior for both sets of tuning parameters are presented
in Figure 7.9, showing the split v as a function of time ¢. The control variable

behavior for both tuning sets are presented in Figure 7.9.
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Figure 7.9: Split u as a function of time ¢ when T'hy; is decreased from 255 - 180
°C from time t = 2000 and 6000 sec
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Figure 7.10: Modified control variable ¢,,,q as a function of time ¢ when T'hs; is
decreased from 255 - 180 °C from time ¢ = 2000 and 6000 sec

The split response for each set slightly deviate from each other. For both
tuning parameter sets, the split u runs immediately to zero around ¢ = 3350 sec.
However, the split response from set 1 showed small oscillations from ¢t = 2000 to
about 3350 sec, while the resulting split response from set 2 has a more smooth
decrease over the same time interval. This slightly different behavior can be related
to the modified control variable ¢,,.q, presented in Figure 7.10. In both cases the
control variable ends up at a value of —107. The full range of the control variable
on the ordinate axis is not included in the report due to readability. It is, however,

included in Figure B.8 in Appendix B.3.

As Figure 7.10 indicates, the control variable shows a far more violent behav-
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ior for set 2, resulting in a more smooth split behavior in Figure 7.9b. As the
controller gain for set 1 is 100 times bigger than the controller gain for set 2, the
controller output from using set 1 will give a much bigger system input. Since the
manipulated variable is the split u, this will result in greater variation in the split.

The small oscillations observed in Figure 7.9a confirms this.
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8 Discussion and Further Work

The discussion is organized in three parts - two parts discussing the steady state

and dynamic analysis results and one part presenting further work.

8.1 Steady State Analysis Discussion

Systems with a very distinctive optimum might suffer from poor operation with the
Jéschke temperature control configuration. For unbalanced heat exchanger net-
works with an uneven distribution of hot stream heat capacities, the self-optimizing
Jaschke temperature variable showed inadequate operation as it differed at the
maximum 1.72 °C from optimal operation. In the presence of the worst case
measurement errors the deviation was nearly doubled. However, looking at the
average error caused by the measurement errors for systems with a more balanced
heat capacity distribution, this type of noise was not associated with the factors
that influenced the operation the most. As the Jaschke temperature did not show
significant aggravated behavior, this makes the Jaschke temperature a robust con-
trol configuration for balanced heat exchanger networks in terms of measurement
sensitivity.

The weakness associated with unevenly distributed heat capacities throughout
the network can be associated with systems where the AMTD failed to approx-
imate the LMTD with reasonable error (Skogestad 2003a). System like this in-
cluded the extreme cases studied in Section 6.2.1. Here, the Jaschke temperature
showed relatively far from optimal operation. However, in reality heat exchanger
networks should be arranged differently to achieve best possible heat integration.
A system like Case II-b, with two different hot stream heat capacity rates and
very big heat exchanger areas would not be optimal. It is not profitable to pro-

vide a 1000 m? heat exchanger with a hot stream having a heat capacity rate

of 1000 kWé”Q This is supported by the result presented in Figure 6.5, where it
was shown that the heat exchanger with these parameters only supplied 10% of
the total transfered heat. This makes this configuration unlikely for a real big
scale system. Additionally, according to the results from the optimization done in
the specialization project (Aaltvedt 2012), it was indicated that a design allowing

for an approximately 50/50 distribution to each branch was favorable for opti-
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mal operation. Heat exchanger networks with a design allowing for the AMTD
approximation to be used in each heat exchanger, are both better candidates for
real big scale processes and at the same time a configuration where the Jéschke

temperature gives close to optimal operation.

8.2 Dynamic Analysis Discussion

Inverse response, over- and undershoot was a consistent observed phenomenon in
dynamic simulations for every heat exchanger network investigated in this study.
As explained in Section 7.2, two factors were causing this; the fact that counter
current heat exchangers always suffers from competing dynamic effects on different
time scales (Seborg et al. 2011) and the Jaschke temperature control configuration.
Of these two, it is the Jaschke temperature that might be dominating, especially
in the presence of disturbances of greater magnitude. The Jaschke temperatures
for each heat exchanger in a given series (Equation 5.3 - 5.6 in Section 5.2), all
include squared sized measurements which can apply to responses of significant
magnitude. For systems like heat exchanger networks, such behavior can result in
excessively big mass flows, over and above that for which certain heat exchangers
originally was designed, causing structural failure and can potentially trig disasters
(Sinnott & Towler 2009).

The dynamic case II-b revealed a case where the Jaschke temperature control
variable failed to operate the system properly. As explained in Section 7.3, the
Jaschke temperature took a negative infinite value as the temperatures in the
denominator, in this case T'hy; and 717 ; in Equation 5.4, approached each other.
At the temperature cross where Thy; = T a singular solution occurred causing
the simulation to crash. Due to the implemented saturation limits in the controller,
the resulting system input gave either a maximum or a minimum stream split to
the upper branch, i.e. it showed a very unstable behavior. In the presence of
such an incident, the Jaschke temperature did not show satisfactory control. For a
real, large scale plant, an incident like this, with the resulting violently oscillating
system input could also give a unfortunate and detrimental effect. Modifying
the control variable (Equation 7.1) improved the performance of the controller.
But like the original control variable did at the point where the singular solution

stopped the simulation, neither the modified control variable converged to the set
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point (¢; = ¢3) at steady state. The observed response was far from smooth, as
the bypass on the upper branch immediately shut down as T'hs ; decreased further
below 200 °C (Figure 7.9). From the modified control variable in Equation 7.1,
each of the three terms include different temperature differences. At the point
where temperature crosses are observed (Figure 7.8), violent behavior occurs as
terms cancel out in the presence of a zero multiplication in one given term. As a
result, big oscillations were seen in the control variable. At the point where T ; >
Thy; resulting in 711 > 151, two of the three terms change signs form positive to
negative. This makes ¢,,,q all negative and the controller will immediately close

the cold stream distribution to the upper branch and thereby u — 0.

However, in all the cases presented in this study, the Jaschke temperature
operation showed relatively close to optimal operation and good system control.
Also considering the observation of a diverged steady state Jaschke temperature
of ¢; # ¢» and that the control was not smooth, it still managed to operate the
system satisfactory. In the presence of smaller and more realistic disturbances, the
Jéschke temperature showed tight control and good disturbance rejection for all

dynamic cases studied in this report.

8.3 Further Work

For all steady state and dynamic cases investigated in this study, single phase
flow was assumed. In the presence of such an assumption, the Jaschke temper-
ature showed satisfactory control and close to optimal operation for systems of
which the AMTD served as a valid approximation (Skogestad 2003a). However,
multiphase flows show an increased frequency in many of todays big industries, in-
cluding the chemical, petroleum and power generation industry (Gidaspow 1994).
The challenges associated with this phenomenon increase the requirements for
control configurations that handle multiphase flows. For the Jaschke temperature
approach, more research is needed in the presence phase transfer, as heat transfer

rates are highly dependent on the phase of the fluid.
In this study, neither the matter that being heated nor the matter that is

heating are given any further attention than just a constant heat capacity. The
related assumption of constant mass flows of both hot and cold fluids makes the

heat capacity rate, w, constant throughout all investigations. This strongly relates
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to the issue of phase transfer and multiphase flow. It is known that the heat
capacity rate at constant pressure will vary with temperature (Sinnott & Towler
2009). Together with the heat capacity’s dependency on fluid phase, occurrences
like these will have a significant influence on the heat transfer when temperature
disturbances resulting in phase transfer are present. For the Jéschke temperature
to be versatile enough to be implemented in processes present to such temperature
fluctuations, more comprehensive analyzes will be needed, emphasizing the heat
capacity’s complexity.

This study investigated configurations based on two parallel branches of heat
exchangers, where each heat exchanger was supplied with one distinct, and most
often constant hot stream. Usually, when designing heat exchanger networks, it
is desirable to utilize each energy source to the maximum, achieving best pos-
sible energy recovery. That is, the available hot streams should be distributed
throughout the network, finding feasible matches between streams and thereby
serve several heat exchangers (Rathore & Powers 1975). With cross-overs like
this, new challenges arise as noise and disturbances affect multiple heat exchang-
ers, causing more challenging control problems. The configurations studied in this
report only included two parallel branches. Aiming for the best possible heat
integration it might also be desirable to include more possible branches, ending
up with a more complex bypass regulation. Edvardsen (Edvardsen 2011) demon-
strated that the Jaschke temperature control variable gave satisfactory control for
a three branched case study, using two controllers - one controlling two branches,
and the other one controlling the third branch. For more specific determination
of the Jéschke temperature control variable and any versatility on different and
more complex configurations, further investigations taking on to these issues are

needed.

Another important issue that was not taken into great consideration in this
study was the operation with different price constants, P; ;. Associated with a
general heat exchanger network is the price constant of each particular heat ex-
changer. With the exception of the networks included four and six heat exchanger
in series, parallel to one heat exchanger, respectively, all price constants were cho-
sen to be equal to unity throughout all investigations done in this study. This
eventually gave a cost function aiming to maximize the total transfered heat, @,

not taking into account that different sources of heat may have different prices
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(Jaeschke 2012). As stated in the introduction, optimal operation of heat ex-
changer networks is a very important aspect in the issue of obtaining maximum
heat recovery from the available energy sources (Zhang et al. 2011). In the case of
big scale industries, it is often necessary to supply additional energy beyond what’s
already accessible from other parts of the plant (Rathore & Powers 1975). Doing
this can be expensive, as additional heat may need to be generated at the plant or
outsourced from a third part service (Sinnott & Towler 2009). Therefore, optimal
operation of heat exchanger networks needs to include these issues, and further
investigation on these topics considering the Jaschke temperature operation will be
needed. Luckily, the Jaschke temperature includes price constants in the weighted
sum in Equation 5.7 and 5.8, allowing for different priced energy sources. The

method can then easily be further tested for these types of configurations.
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9 Conclusions

In this study the Jaschke temperature control configuration was evaluated for sev-
eral different cases of parallel heat exchanger networks. The goal was to further
investigate the properties of the Jaschke temperature and determine any limita-
tions. Among the cases studied, both steady state and dynamic behavior were
investigated. Far from optimal operation was revealed for systems with an uneven
distribution of hot stream heat capacities. For such a system with two heat ex-
changers in parallel, the steady state temperature loss was 1.72 °C, feeding the
control variable with exact measurement data. For the same system subject to
measurement noise spanning +/— 2 °C from each respective temperature, the worst
case temperature loss was 3.14 °C. Considering the average measurement error,
the Jéschke temperature showed good robustness for this kind of noise for systems

with evenly distributed heat capacities.

Poor control was observed in the presence of a decreasing hot stream temper-
ature in one out of several heat exchangers. This feature was demonstrated for
a system of two heat exchangers in series parallel to one heat exchanger. This
resulted in a cooling effect, and the Jaschke temperature failed to simulate the
system due to singular solutions. To prevent from singularity, the control variable

was re-written to a denominator-free form, resulting in satisfactory control.

However, for systems with an even heat capacity distribution, the Jaschke
temperature showed very close to optimal operation. Present to smaller and more
realistic disturbances together with well tuned controllers, tight control and good
disturbance rejection was achieved. This was demonstrated for all cases up to six

heat exchanger in series on one branch.

Advantages with the Jaschke temperature control configuration is a control
variable only dependent on simple temperature measurements, with the split «
serving as the only manipulated variable. Disadvantages with this method is
the inverse response and occasionally violent control behavior resulting from the
Jéschke temperature equation with squared sized measurements. Also, potentially
denominator-zeros as a result of temperature cross may lead to singularity, with
resulting poor and sometimes wrong control. Assumptions including single phase

flow and constant heat capacities were used in all simulations.
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A Steady State Analysis

A.1 Four Heat Exchanger in Series and One in Parallel

Table A.1: Complete optimal and operating results for the 4:1 heat exchanger
network

Optimal operation Jaschke temperature operation

Tena [°C] 207.87 207.84

uy (%) 64.15 70.66
Ty, [°C] 162.86 160.87
Ty [°C] 178.44 176.35
Ty 5 [°C] 189.49 187.18
Tia [°C] 207.33 204.80
Ty, [°C] 208.84 215.16
Th$ [°C] 147.84 146.37
Ths [°C] 169.67 166.54
Ths [°C] 172.76 169.00
Th [°C] 189.23 185.18
Th3 [°C| 169.62 174.31

A.2 Six Heat Exchangers in Series and One in Parallel

The network of 6 heat exchanger in series parallel to one heat exchanger are shown
in Figure A.1. The respective parameters are given in Table A.2 and the price

constants are given in Table A.3.
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sl%

Figure A.1: The 6:1 heat exchanger network

Table A.2: Case parameters, 6 heat exchangers in series with one heat exchanger
in parallel

Parameter Value Unit

T 130 PQ

Thy 190 [°C]

Tha, 203 [°C]

Ths1 220 [°C]

Thy 235 [°C]

Ths 1 240 [°C]

The 245 [°C]

Thi 225 [°C]

wo 100 [EW/°C]
W11 50 [k’W/O ]
W21 30 [kW/O ]
w31 15 []CW/OC]

Wy 1 25 [kW/O ]
W51 40 [k?W/O ]

we 1 35 [kW/°C]
Wi,2 30 [kW/O ]
UA,, 5 [EWm?/°C]
UAQJ 7 [/{ZW’ITLQ/OC]
UA3’1 10 [k:WmZ/OC]
UA471 12 [k:WmQ/OC]
UAs,y 9 [EWm?/°C]
UAsg 8 [EWm?/°C]
UA, 11 [kWm?/°C]
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Table A.3: Price constants, six heat exchanger in series parallel to one heat ex-
changer

Parameter Value Unit

Py -1 (2]
Py, 1.2 [
Ps, 1.3 0[]
Py, 15 [2]
Ps, 14 [
P51 1.7 [
P, 14 [Z]

Subject to the equality and inequality constraints given in Section 4.1, optimal
operation was determined by the use of the build-in matlab function fmincon.
Operation using the Jaschke temperature was also determined and compared to

optimal operation. The results are given in the following Table A.4

Table A.4: Complete optimal and operating results for the case of six heat ex-
changer in series parallel to one heat exchanger

Optimal operation Jéschke temperature operation

Tong [°C] 226.27 226.27

uy (%] 85.53 89.06
Ty, [°C) 157.13 156.37
Ty 5 [°C] 172.11 171.20
Ty [°C] 182.41 181.38
Ti4 [°C] 199.48 198.30
Ty 5 [°C] 215.16 214.12
Tig [°C] 224.43 233.56
Ty, [°C] 237.12 247.73
Th$ [°C] 143.59 143.02
Th4 [°C] 160.30 158.99
Ths [°C] 161.23 159.54
Thst [°C] 176.62 174.73
Th [°C] 206.46 204.77
Ths [°C] 222.36 220.99
Th3 [°C] 173.34 182.08
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A.3 Two Heat Exchangers in Parallel

The following sections contains complete simulations results for different cases

studied.

A.3.1 Case Il-c

The following parameters applies to Case II-c, given in Table A.5. The results are
given in Table A.6 and pictured in Figure A.2 and Figure A.3. Temperature loss

due to measurement errors are given in Table A.9

Table A.5: Case II-c parameters

Parameter Value Unit

T, 130 [°C]

Thi, 203 [°C]

Thy s 218 [°C]

wo 50 [kW/eC]
w171 100 [k?W/O ]
Wi,2 100 [k‘W/o ]
UA171 10 [k:Wm2/° ]
UALQ 30 [kW??”I?/ ]

Table A.6: A selection of optimal and operating results for Case II-c

Optimal operation Jaschke temperature operation

Tena [°C] 184.96 184.95
uy (%) 21.30 20.00
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Figure A.2: T,,4 and control variable JT as a function of split u for case II-c. The
red and black dotted lines shows optimal split considering outlet temperature and
control variable, respectively
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Figure A.3: AMTD approximation. g—; as a function of split u for Case II-c

A.3.2 Case II-d

The following parameters applies to Case II-d, given in Table A.7. The results are
given in Table A.8 and pictured in Figure A.4 and Figure A.5. Temperature loss

due to measurement errors are given in Table A.9
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Table A.7: Case II-d parameters

Parameter Value Unit

T 130 [C]

Thi, 203 [°C]

Thys 248  [°C]

wo 50 [kW/°C]
Wi,1 100 [k’W/O ]
Wi,2 100 [kW/O ]
UAl,l 100 [kaQ/OC]
UALQ 300 [/{ZW’ITLQ/OC]

Table A.8: A selection of optimal and operating results for Case II-d

Optimal operation Jaschke temperature operation

Tona [°C] 206.11 204.90
uy (%) 40.70 30.90

60

Controlled variable, JT [ °C]
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Figure A.4: T.,,; and control variable JT as a function of split u for case II-d. The
red and black dotted lines shows optimal split considering outlet temperature and

control variable, respectively
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A.3.3 Jaschke Temperature and Measurement Errors

Table A.9: Temperature loss associated with measurement errors

Worst case loss  Average loss

Case o S
°C] °C]
Case II-c 0.082 0.016
Case II-d 1.807 1.144
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B Dynamic Analysis

Heat exchanger data valid for all heat exchangers in every case, are given in Table
B.1

Table B.1: Heat exchanger and heat transfer data

Description Symbol Value Unit
Total wall mass Maall 3000 [kg]
Wall density Pwall 7850 [% ]
Wall volume Vil 0.3821  [m?]
Heat capacity wall Cpya;  0.49 [k’;‘ffc]
Density cold fluid  p, 1000 [%9]

Selected plots are given for all cases modeled dynamically.

B.1 Dynamic case I

Estimated heat transfer variables are given in Table B.2 Inlet parameters for the
dynamic Case II are given in Table B.3. Open loop and closed loop outlet variables
are given in Table B.5 The PI controller was tuned using the Skogestad IMC
(SIMC) rules (Skogestad 2003b) on a step response of 10 % increase in the cold
fluid mass flow. The step response is shown in Figure B.1. The resulting tuning
parameters are given in Table B.4, and filter parameters in Table B.6

The Simulink block diagram is given in Figure D.1 in Section D.

A negative step change in inlet cold stream temperature Tj of 4 °C was introduced
at time ¢ = 1000 sec, and a positive step change in hot stream temperature 7'h; ; of
4 °C at time t = 1600 sec. Control variable response and split response are shown
both with and without the analog filter in Figure B.2 and B.3. Outlet temperature

responses with the analog filter implemented are shown in Figure B.4.
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Table B.2: Heat transfer data Dynamic case I

Description Symbol Value Unit
Heat transfer coefficient cold stream he 017  [55]
Heat transfer coefficient hot stream (1,1) hq 0.223  [5]
Heat transfer coefficient hot stream (1,2) hqo 0.187  [s55]
Area heat exchanger (1,1) A 250 [m?]
Area heat exchanger (1,2) Ao 700 [m?]

Table B.3: Dynamic Case I parameters

Parameter Value Unit

To 130 [°C]

Thy 203 [°C]

Thys 248 [°C]

wo 95  [kW/°C]
Wi,1 60 [kW/O ]
W12 65 [/{?W/OC]
UAl,l 24.10 [/{ZWWQ/OC]
UALQ 62.33 [k:Wm2/°C]

—105

Controlled variable, JT [rC]
=
5
Mass flow m, to upper path [kg/sec]

L
©
o

5k

6 I I I I I I 1 1 1 9
800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Time [sec]

Figure B.1: Open loop step response of control variable JT on a 10 % increase in
inlet mass flow m; for Dynamic Case I
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Table B.4: PI tuning parameters for Case II

Tuning parameter Value Unit

K, 5.97 [
I 10 [sec]

Table B.5: Open loop and closed loop operating variables for Dynamic Case I

Operating variable Open loop value Closed loop value

Ti1 [°C] 199.2 199.2
Ty, [°C] 217.9 218.0
They [°C] 175.0 174.9
ThyY [°C] 152.3 152.3
u 0.2553 0.2559
Ty [°C] 213.2 213.2

Table B.6: Analog filter parameters for Dynamic Case |

Filter parameter Value Unit

K; 13 (ra7s)
I 60 [sec]

Controlled variable, JT [rC]
|

35 I I I i i
800 1000 1200 1400 1600 1800 2000
Time [sec]

Figure B.2: Response of control variable J1' when Tj is decreased and Thy; in-
creased 4 °C at ¢t = 1000 and 1600 sec, respectively
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Figure B.3: Response of split « when 7j is decreased and T'hy; increased 4 °C at
t = 1000 and 1600 sec, respectively
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Figure B.4: Response of outlet temperatures when Tj is decreased and T'hy; in-
creased 4 °C at t = 1000 and 1600 sec, respectively
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B.2 Dynamic case 11

Inlet parameters, outlet variables, tuning parameter, filter parameters and Simulink
block diagram were given i Section 7.

Estimated heat transfer variables are given in Table B.7

Table B.7: Heat transfer data Dynamic case II

Description Symbol Value Unit
Heat transfer coefficient cold stream he 010  [o55]
Heat transfer coefficient hot stream (1,1) hq 0.109 [s55]
Heat transfer coefficient hot stream (2,1) hg; 0.103  [-5%]
Heat transfer coefficient hot stream (1,2) hy 0.107  [2%]
Area heat exchanger (1,1) Aiq 341 [m?]
Area heat exchanger (2,1) Az 616 [m?]
Area heat exchanger (1,2) Ao 1118 [m?]

A negative step change in inlet cold stream temperature Tj of 4 °C was intro-
duced at time ¢t = 1000 sec, and a positive step change in hot stream temperature
Thy; of 4 °C at time ¢ = 2000 sec. Control variable response and split response
are shown both with and without the analog filter in Figure B.5 and B.6. Outlet

temperature responses with the analog filter implemented are shown in Figure B.7.

05F

Controlled variable, JT [rC]
o

-0.5

“15 I I I I I I I 1 i i
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
Time [sec]

Figure B.5: Response of control variable J1' when Tj is decreased and Th; in-
creased 4 °C at ¢t = 1000 and 2000 sec, respectively
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Figure B.6: Response of split « when 7j is decreased and T'h; ; increased 4 °C at
t = 1000 and 2000 sec, respectively
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Figure B.7: Response of outlet temperatures when Tj is decreased and T'h;; in-
creased 4 °C at t = 1000 and 2000 sec, respectively
B.3 Dynamic Case II-a

The following figure shows the complete plot of control variable response in the
case of a decaying hot stream temperature The; (Extended plot of Figure 7.10).
The full Simulink block diagram are given in Figure D.3 in Section D.
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Control variable, ¢ ['C%
mod
Control variable, ¢ [ CA]
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(a) Cmoq With tuning set 1 (b) ¢moq with tuning set 2

Figure B.8: Full plot of modified control variable ¢,,.q as a function of time ¢ when
Thy; is decreased from 255 - 180 °C from time ¢t = 2000 - 6000 sec

B.4 Dynamic Case III

The network of 6 heat exchanger in series parallel to one heat exchanger are shown
in Figure B.9. Estimated heat transfer variables are given in Table B.8. The

respective parameters are given in Table B.9.

Table B.8: Heat transfer data Dynamic case 111

Description Symbol Value Unit
Heat transfer coefficient cold stream he 010  [o55s]
Heat transfer coefficient hot stream (1,1) hq 0.111  [-55]
Heat transfer coefficient hot stream (2,1) hg; 0.109  [-5%;]
Heat transfer coefficient hot stream (3,1) hs; 0.107  [s55]
Heat transfer coefficient hot stream (1,2) hq o 0.107  [-5%]
Heat transfer coefficient hot stream (2,2)  hg o 0.100 [555]
Area heat exchanger (1,1) Ay 112.5  [m?]
Area heat exchanger (2,1) Agy 102 [m?
Area heat exchanger (3,1) Aszq 85 [m?]
Area heat exchanger (1,2) A 800 [m?]
Area heat exchanger (2,2) Ass 765 [m?]
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T, Tend

Thy, Thy,
Wi W22
Tiz T2

UA, UA,

Wp

Figure B.9: Dynamic case III: Three heat exchangers in series parallel with two
heat exchangers

Open loop and closed loop outlet variables are given in Table B.11 The PI
controller was tuned using the Skogestad IMC (SIMC) rules (Skogestad 2003b) on
a step response of 10 % increase in the cold fluid mass flow. The step response is
shown in Figure B.10. The resulting tuning parameters are given in Table B.10,
and filter parameters in Table B.12

The Simulink block diagram is given in Figure D.4 in Section D.

A negative step change in inlet cold stream temperature Tj of 4 °C was introduced
at time ¢t = 1000 sec, and a positive step change in hot stream temperature T'h; o
of 4 °C at time t = 2000 sec. Control variable response and split response are
shown both with and without the analog filter in Figure B.11 and B.12. Outlet
temperature responses with the analog filter implemented are shown in Figure
B.13.
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Table B.9: Dynamic case III parameters

Parameter Value Unit

T 130 [C]

Thi 190 [°C]

Tha, 203 [°C]

Ths 220 [°C]

Thys 220 [°C]

Thys 248 [°C]

wo 150 [kW/°C]
W11 50 [ W/OC]
w271 30 [k?W/ C]
W31 15 [k’W/ ]
W1y,2 70 [kW/ ]
W12 20 [kW/ C]
UAl,l 5.92 [k;sz/ C]
UAQJ 5.31 [kW’an/OC]
UA3,1 4.39 [k?WTI’LQ/OC]
UA, 4132 [kWm?2/°C]
UAss 38.25 [kWm2/°C]

10 T T T T T 20

©

Mass flow m, to upper path [kg/sec]

Controlled variable, JT [nC]
=
&

=
5

5 I I I 1 | 16
800 1000 1200 1400 1600 1800 2000
Time [sec]

Figure B.10: Open loop step response of control variable JT on a 10 % increase
in inlet mass flow my for Dynamic case 111
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Table B.10: PI tuning parameters for Dynamic case III

Tuning parameter Value Unit

K, L4d [
I 40 [sec]

Table B.11: Open loop and closed loop operating variables for Dynamic case 111

Operating variable Open loop value Closed loop value

Tia [°C] 154.2 154.7
Ty [°C] 170.7 168.6
Ty, [°C] 182.5 180.1
Ty [°C] 176.6 177.8
Tys [°C] 189.8 191.2
ThsY [°C] 169.5 169.2
ThgY [°C] 179.7 178.7
ThgY [°C] 186.7 185.1
ThsY [°C] 148.3 148.7
Th3y [°C] 176.9 178.1

u 0.2828 0.3063
Tona [°C] 187.7 187.8

Table B.12: Analog filter parameters for Dynamic case 111

Filter parameter Value Unit

K; 1.5 [ k‘;f/fs]
I 85 [sec]
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Figure B.13: Response of outlet temperatures when 7j is decreased and T'hy
increased 4 °C at ¢t = 1000 and 2000 sec, respectively
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B.5 Dynamic Case IV

Different from the case studied in Section 6.1, h and A were estimated such that
the dynamic open loop outlet variables matched the steady state outlet variables
found by using the AMTD approximation, rather than the Underwood approxi-
mation. Therefore, the estimated U A values for the dynamic analysis are smaller
than the UA values used in the steady state analysis. For the same reason, also
each outlet temperature are lower than what was seen in Section 6.1.

Estimated heat transfer variables are given in Table B.13. The respective param-

eters are given in Table B.14.

Table B.13: Heat transfer data Dynamic case IV

Description Symbol Value Unit
Heat transfer coefficient cold stream h. 0.10 [OZZQ]
Heat transfer coefficient hot stream (1,1) hq; 0.120 [:E%]
Heat transfer coefficient hot stream (2,1) hg; 0.142 [OIEZQ]
Heat transfer coefficient hot stream (3,1) hs; 0.139  [s55]
Heat transfer coefficient hot stream (4,1) hy, 0.070 [o'é%z]
Heat transfer coefficient hot stream (1,2) hq o 0.143  [s85]
Area heat exchanger (1,1) Aiq 19 [m?]
Area heat exchanger (2,1) Aoy 20.5  [m?]
Area heat exchanger (3,1) Az 43.7  [m?
Area heat exchanger (1,2) Ayy 103 [m?]
Area heat exchanger (2,2) Alg 38.3  [m?

The open loop and closed loop outlet variables are given in Table B.16.

The PI controller was tuned using the Skogestad IMC (SIMC) rules (Skogestad
2003b) on a step response of 10 % increase in the cold fluid mass flow. The step
response is shown in Figure B.14. The resulting tuning parameters are given in
Table B.15. Analog filter was not implemented for this case.

The Simulink block diagram is given in Figure D.5 in Section D.

A positive step change in hot stream temperature T'h;; of 4 °C was introduced
at time ¢ = 1000 sec, a negative step change in hot stream temperature T'hg; of

4 °C at time t = 2000 sec and a positive step change in hot stream temperature
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Thyo of 4 °C at time ¢ = 3000 sec. Control variable response and split response
are shown in Figure B.15 and B.16. Outlet temperature responses are shown in
Figure B.17.

Table B.14: Dynamic case [V parameters

Parameter Value Unit

To 130 [°C]

Thy 190 [°C]

Tha, 203 [°C]

Ths, 220 [°C]

Thy 235 [°C]

Thy o 210  [°C]

Wo 130 [k?W/OC]
w1 50 [kW/°C]
Wa,1 30 [kW/OC]
W31 15 [kW/OC]
Wy,1 25 [kW/OC]
wl,g 70 [k?W/OC]
UAl,l 1.23 [k:WmQ/OC]
UA271 1.73 [kaZ/OC]
UAs, 254 [kWm?/°C]
UAy, 424 [kWm?/°C]
UALQ 2.25 [kaQ/OC]

42

variable, JT[C)

a0

Controlled
|
s
Mass flow m, to upper path [kg/sec]

~20 I I I I 1 1 28
800 1000 1200 1400 1600 1800 2000 2200
Time [sec]

Figure B.14: Open loop step response of control variable JT on a 10 % increase
in inlet mass flow m; for Dynamic case IV
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Table B.15: PI tuning parameters for Dynamic case IV

Tuning parameter Value Unit

K, 205 [57]
I 10 [sec]

Table B.16: Open loop and closed loop operating variables for Dynamic case IV

Operating variable Open loop value Closed loop value

Ty, [°C] 133.6 133.6
Ty, [°C] 139.0 139.0
T, [°C] 146.4 146.4
Ty1 [°C] 156.8 156.8
Ty [°C] 155.5 155.5
Ths [°C] 184.4 184.4
Thg¥ [°C] 189.0 189.0
Th3¥ [°C] 181.3 181.3
Thy¥ [°C] 202.6 202.6
Thsy [°C] 201.8 201.8

u 0.7767 0.7763
Tong [°C] 156.5 156.5

0.8

06

0.4

02F

-0.2

Controlled variable, JT [aC]
o

—04}-

-06

-0.8

gl I I I I 1 i i
1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [sec]

Figure B.15: Response of control variable J1' when Th,; is increased, Ths; de-
creased and T'hy o increased 4 °C at ¢t = 1000, 2000 and 3000 sec, respectively
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Figure B.16: Response of split w when Th;; is increased, T'hs; decreased and
Thy 2 increased 4 °C at t = 1000, 2000 and 3000 sec, respectively
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Figure B.17: Response of outlet temperatures when T'h; ; is increased, T'hs; de-
creased and T'hy o increased 4 °C at ¢t = 1000, 2000 and 3000 sec, respectively

B.6 Dynamic Case V

Inlet parameters for Case VI are given in Table A.2.

As for the simulation in Section ??, h and A were estimated such that the dy-
namic open loop outlet variables matched the steady state outlet variables found
by using the AMTD approximation, rather than the Underwood approximation.
Therefore, the estimated U A values for the dynamic analysis are smaller than the
U A values used in the steady state analysis.

Estimated heat transfer variables are given in Table B.13. The respective param-

eters are given in Table B.18.
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Table B.17: Heat transfer data Dynamic case V

Description Symbol Value Unit
Heat transfer coefficient cold stream he 010  [55]
Heat transfer coefficient hot stream (1,1) hq 0.110  [-5%5]
Heat transfer coefficient hot stream (2,1) hg; 0.108  [s55]
Heat transfer coefficient hot stream (3,1) hs; 0.108  [-5%5]
Heat transfer coefficient hot stream (4,1) hy; 0.107  [s55]
Heat transfer coefficient hot stream (5,1) s 0.110  [:5%5]
Heat transfer coefficient hot stream (6,1) g 0.110 [s55]
Heat transfer coefficient hot stream (1,2) hqo 0.110  [:5%]
Area heat exchanger (1,1) Aj 20.50  [m?]
Area heat exchanger (2,1) Ay 23.30  [m?]
Area heat exchanger (3,1) Az 42.60 [m?]
Area heat exchanger (4,1) Ay 49.95  [m?]
Area heat exchanger (5,1) Asq 36.50 [m?]
Area heat exchanger (6,1) Ag 1 32.50  [m?]
Area heat exchanger (1,2) Ao 43.50  [m?]

The open loop and closed loop outlet variables are given in Table B.20.

The PI controller was tuned using the Skogestad IMC (SIMC) rules (Skogestad
2003b) on a step response of 10 % increase in the cold fluid mass flow. The step
response is shown in Figure B.18. The resulting tuning parameters are given in
Table B.19. Analog filter was not implemented for this case.

The Simulink block diagram is given in Figure D.6 in Section D.

A positive step change in hot stream temperature T'h;; of 4 °C was introduced
at time ¢t = 1000 sec, a negative step change in hot stream temperature Thg; of
4 °C at time ¢t = 2000 sec and a positive step change in hot stream temperature
Thy o of 4 °C at time ¢ = 3000 sec. Control variable response and split response

are shown in Figure B.19 and B.20. Outlet temperature responses are shown in
Figure B.21.
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Table B.18: Dynamic case V parameters

Parameter Value Unit

T 130 [C]

Thi 190 [°C]

Thy, 203 [°C]

Ths., 220 [°C]

Thas 235 [°C]

Ths 240 [°C]

Thea 245 [°C]

Thy o 225  [°C]

Wo 100 [k?W/OC]
w1 50 [kW/°C]
Wa,1 30 [kW/OC]
W31 15 [kW/OC]
Wy,1 25 [kW/OC]
W51 40 [k?W/ C]
We,1 35 [kW/ C]
W1q,2 30 [kW/ ]
UAr, 1.07  [kWm2/°C]
UAy, 1.47  [kWm?/°C]
UA371 2.21 [k‘WmQ/ C]
UA471 2.58 [k:WmQ/OC]
UA5,1 1.91 [kW??’LQ/OC]
U Ag 1 170 [kWm2/°C]
UAy, 2.39  [kWm?2/°C]

,
=
3

Mass flow m, to upper path [kg/sec]

variable, JT[C)
)

=
S

Controlled
N
B

L
=
S

43 I I I I I 1 1 40
800 1000 1200 1400 1600 1800 2000 2200 2400
Time [sec]

Figure B.18: Open loop step response of control variable JT on a 10 % increase
in inlet mass flow m; for Case VI
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Table B.19: PI tuning parameters for Dynamic case V

Tuning parameter Value Unit

K, 118 [7]
I 40 [sec]

Table B.20: Open loop and closed loop operating variables for Dynamic case V

Operating variable Open loop value Closed loop value

Tia [°C] 133.4 133.4
Ty [°C] 138.4 138.4
Ty, [°C] 145.5 145.5
Ty [°C] 155.3 155.3
Ts.1 [°C] 163.2 163.1
Tsa [°C] 170.0 170.0
Ty o [°C] 170.7 170.8
Thst [°C] 184.4 184.4
Thg [°C) 189.0 189.0
Thg [°C) 181.0 181.0
Thgy [°C] 202.2 202.1
ThgY [°C] 223.7 223.7
Thgt [°C] 228.9 228.9
ThsY [°C] 201.8 201.8

u 0.8299 0.8304
Tena [°C] 170.1 170.1
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Controlled variable, JT [nC]

-15

; i i i i i i i
1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [sec]

Figure B.19: Response of control variable JT" when T'h; ; is increased, T'hg; de-
creased and T'h, o increased 4 °C at ¢t = 1000, 2000 and 3000 sec, respectively
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Figure B.20: Response of split v when Thy; is increased, T'hs; decreased and
Thy 5 increased 4 °C at t = 1000, 2000 and 3000 sec, respectively

175 T T T T T T :
TJ‘l
— 1
170 Tu H
31
—T
1651 — Tl
TE‘J
160 —TH
G _Tend
© 155F e
2
o
& 150
£
©
&
145 -
1401 1
1351 b
130t . . . . . . .
1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [sec]

Figure B.21: Response of outlet temperatures when T'h; ; is increased, T'hg; de-
creased and Thy o increased 4 °C at ¢t = 1000, 2000 and 3000 sec, respectively
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C Matlab Scripts

C.1 Steady State Analysis Scripts

Case I: Four Heat Exchangers in Series and One in Parallel

RunHEN_41.m

1 %% Model to simulate a steady state 4:1 HEN

Topology to be investigated:

N
o\

5 % 1 2 3 4 %
6 % 0 0 0 0 %
7% — —_— %
8 % 0 %
9 % 5 %
10 $355%5%5%555%%5%555%55555%%5%55%%5%5%55%5%5%5%5%5%5%5%5%5%5%5%5%%%
11

12

13 close all;

14 clear all;

15 clc;

16

17 %% Parameters

18

19 % Heat Capacity rates

20 par.w0 = 100; % [kW/degC] w= miCpi

21 par.whl = 50; % [kW/degC]

22 par.wh2 = 30; % [kW/degC]

23 par.wh3 = 15; % [kW/degC]

24 par.whd = 25; % [kW/degC]

25 par.wh5 = 70; % [kW/degC]

26
27 % Hot streams inlet temperature
28 par.Thl = 190; %[degC]
20 par.Th2 = 203; % [degC]
30 par.Th3 = 220; % [degC]
31 par.Thd = 235; %[degC]
32 par.Thb = 210; %[degC]

33
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34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

)

% Cold stream inlet temperature
par.T0 = 130; % [degC]

% UA values for each heat exchanger
par.UAl = 5; % [kWm2/degC]
par.UA2 = 7; % [kWm2/degC]
par.UA3 = 10; % [kWm2/degC]
par.UA4 = 12; % [kWm2/degC]
par.UA5 = 9; % [kWm2/degC]

[

% Operating prices for each heat exchanger

par.Pl = 1; S[S/kW]
par.P2 = 1.2; $[$/kW]
par.P3 = 1.3; $[$/kW]
par.P4 = 1.5; $[$/kW]
par.P5 = 1.4; S[S$/kW]

%$Inequality constraint

par.DeltaTmin = 0.5; %[degC]

% Scaling vector

par.sc.x = [200xones(11,1);100;100;1000x0nes(5,1)1;

par.sc.j = 200;

% Defining parameters

Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4;
Th5 = par.Th5;

TO = par.TO;

%% OPTIMAL OPERATION

o\

Guessing outlet variables

x0 = [Tend T1 T2 T3 T4 T5 Thlout Th2out Th3out Thdout Th5out

o\

wl w2

[Q1 Q2 Q3 Q4 Q5]

o\

x0 = [138 131 133 138 138 140 188 198 200 215 190 60 40
59 137 297 333 200]";
% x0 = [207 160 176 187 204 215 146 166 169 185 174 71 29

o\

1.9224e+03 778.4439 581.1345 921.1994 3.3767e+03]"';
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73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

107

109

110

111

112

o\

Scaling variables

o\

x0 = x0./par.sc.x;

o\

Minimizing cost function based on equality constraints

o\°

using fmincon
A = []; b= 1]; Aeqg = []; Beqg = [];
LB = Oxones(23,1); UB = infxones (23,1);

options =
optimset ('Algorithm', "interior—point', 'display"', "iter', ...

'MaxFunEvals', 9000, 'TolCon',le—12,'TolX"',1le—12);

options = optimset ('Algorithm', 'active—set', 'display', 'iter', ...

'MaxFunEvals', 9000, 'TolCon',le—11, 'TolX',le—11);

options = optimset('display', "iter', ...

'MaxFunEvals', 9000, 'TolCon',1le—10, 'TolX"',1e—10);

[x,0,exitflag] = fmincon (@ (x)Object_41(x,par),x0,A,b,Aeq,Beq, ...

LB, UB, @ (x) HEN_Constraints_41 (x,par),options);
exitflag

% Unscaling variables

[

s X = X.*xpar.sc.Xy

o\

RESULTS

o\°

Outlet temperatures

Tend = x(1);

Tl = x(2); T2 = x(3); T3 = x(4); T4 = x(5); T5 = x(6);
Thlout = x(7); Th2out = x(8); Th3out = x(9); Thdout = x(10);
Th5out x(11);

% Split

wl = x(12); w2 = x(13);

Q

% Heat transfer

Q1 = x(14); Q2 = x(15); Q3 = x(16); Q4 = x(17); Q5 = x(18);
% Split ratio

wl_rat = wl/par.w0;

w2_rat = w2/par.w0;
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113 % Delta Ts

114 DeltaT_hotl = Thl — T1;

115 DeltaT _hot2 = Th2 — T2;

116 DeltaT_hot3 = Th3 — T3;

117 DeltaT_hot4 = Thd — T4;

118 DeltaT_hot5 = Th5 — T5;

119 DeltaT _coldl = Thlout — TO;

120 DeltaT_cold2 = Th2out — T1;

121 DeltaT_cold3 = Th3out — T2;

122 DeltaT_cold4 = Thdout — T3;

123 DeltaT_cold5 = Thb5out — TO;

124

125 % Displaying the results

126 display([' Tend [degC] = '])

127 disp (Tend)

128 display ([ T1 T2 T3 T4 T5
[degC]'])

120 disp ([Tl T2 T3 T4 T5])

130 display ([’ Thlout Th2out Th3out Th4out Th5out
[degC]'])

131 disp([Thlout Th2out Th3out Th4out Thbout])

132 display ([' wl w2'])

133 disp([wl w2])

134 display([' wl ratio w2 ratio [%]'])

135 disp([wl_rat w2_rat])

136 display([' DeltaT hot side '])

137 display ([ HX1 HX2 HX3 HX4 HX5 1)

138 disp ([DeltaT_hotl DeltaT_hot2 DeltaT_hot3 DeltaT_hot4
DeltaT_hot5])

139 display([' DeltaT cold side '])

140 display ([ HX1 HX2 HX3 HX4 HX5 1)

141 disp ([DeltaT_coldl DeltaT_cold2 DeltaT_cold3 DeltaT_cold4
DeltaT_cold5])

142

143

144 %% OPERATION USING THE JAESCHKE TEMPERATURE

145

o\

146 Guessing outlet variables

x0 = [Tend T1 T2 T3 T4 T5 Thlout Th2out Th3out Thdout Thb5out

o

147
wl w2...

[01 Q2 Q3 Q4 Q5]

o\

148
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149

150

151

152

153

154

155

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

177

178

179

180

181

182

183

184

x0 = [138 131 133 138 138 140 188 198 200 215 190 60 40
59 137 297 333 200]"';

o\

Scaling variables

o\

x0 = x0./par.sc.x;

% Defining parameters

Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4;
Th5 = par.Th5;

TO = par.TO0;

% Minimizing cost function based on equality constraints and
Jaeschke temp

% using fmincon

A= []; b =1[]; AReqg = []; Beqg = [];

LB = Oxones(23,1); UB = infxones (23,1);

options =
optimset ('Algorithm', "interior—point', 'display"', '"iter', ...

'MaxFunEvals', 9000, 'TolCon',le—12, 'TolX"',1le—12);

options = optimset ('Algorithm', 'active—set', 'display', 'iter', ...

'MaxFunEvals', 9000, 'TolCon',le—11, 'TolX',le—11);

options = optimset ('display', "iter', ...

'MaxFunEvals', 9000, 'TolCon',1le—10, 'TolX"',1e—10);

[xDJT,J,exitflag] =
fmincon (@ (x)Object_41 (x,par),x0,A,b,Aeq,Beq, ...
LB, UB, @ (x) HEN_Constraints_41_DJT (x, par),options);
exitflag

%$Unscaling variables

o\°

xDJT = xDJT.*par.sc.x;

o\

RESULTS

o\°

Outlet temperatures

Tend_DJT = xDJT (1) ;
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185

187

188

189

190

191

192

193

194

195

196

198

199

200

201

202

203

204

205

206

207

208

210

211

212

213

214

215

216

217

218

219

220

T1_DJT = xDJT(2); T2_DJT = xDJT(3); T3_DJT = xDJT(4); T4_DJT =
xDJT (5) ;

T5_DJT = xDJT (6);

Thlout_DJT = xDJT(7); Th2out_DJT = xDJT (8); Th3out_DJT = xDJT(9);

Th4out_DJT = xDJT(10); Thbout_DJT = xDJT(11);

% Split

wl_DJT = xDJT(12); w2_DJT = xDJT(13);

% Heat transfer

Q1_DJT = xDJT(14); Q2_DJT = xDJT(15); Q3_DJT = xDJT(16);
Q4_DJT = xDJT(17);

% Split ratio

wl_rat_DJT = wl_DJT/par.w0;

w2_rat_DJT = w2_DJT/par.w0;

% Delta Ts

DeltaT_hotl_DJT = Thl — T1_DJT;

DeltaT_hot2_DJT = Th2 — T2_DJT;

DeltaT_hot3_DJT = Th3 — T3_DJT;

DeltaT_hot4_DJT = Th4 — T4_DJT;

DeltaT_hot5_DJT = Th5 — T5_DJT;

DeltaT_coldl_DJT = Thlout_DJT — TO;

DeltaT_cold2_DJT = Th2out_DJT — T1_DJT;

DeltaT_cold3_DJT = Th3out_DJT — T2_DJT;

DeltaT_cold4_DJT = Thdout_DJT — T3_DJT;

DeltaT_cold5_DJT = Th5out_DJT — TO;

% Displaying the results

display ([' Tend DJT [degC] = '])

disp (Tend_DJT)

display ([ T1 DJT T2 DJT T3 DJT T4 DJT T5 DJT
[degCl'])

disp ([T1_DJT T2_DJT T3_DJT T4_DJT T5_DJT])

display (['Thlout DJT Th2out DJT Th3out DJT Th4out DJT Thbout

DJT [degC]l'])
disp ([Thlout_DJT Th2out_DJT Th3out_DJT Thd4out_DJT Thb5out_DJT])
display ([’ wl DJT w2 DJT'])

disp([wl_DJT w2_DJT])

display([' wl ratio w2 ratio [%]'])

disp([wl_rat_DJT w2_rat_DJT])
'1)
HX2

display([' DeltaT hot side

display ([' HX1 HX3 HX4 HX5
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221 disp([DeltaT_hotl _DJT DeltaT_hot2_DJT DeltaT_hot3_DJT
DeltaT_hot4_DJT DeltaT_hot5_DJT])

222 display ([' DeltaT cold side '])

223 display ([’ HX1 HX2 HX3 HX4 HX5

224 disp([DeltaT_coldl_DJT DeltaT_cold2_DJT DeltaT_cold3_DJT
DeltaT_cold4_DJT DeltaT_cold5_DJT])

HEN_Constraints_41.m

HEN_Constraints function 4:1 HEN for simulation of optimal

—
o\

operation

Nonlinear constraints for optimizing a HEN

N
o°

3 % Includes mass, energy and steady state balances

o
o\
o\

6 function [Cineq, Res] = HEN_Constraints_41 (x,par)

8 % Defining state variables

9 Tend = x(1); Tl = x(2); T2 = x(3); T3 = x(4); T4 = x(5); T5 =
x(6);

10 Thlout = x(7); Th2out = x(8); Th3out = x(9); Thdout = x(10);

11 Th5out = x(11);

12 wl = x(12); w2 = x(13);

13 Q1 = x(14); Q2 = x(15); Q3 = x(16); Q4 = x(17); Q5 = x(18);

14

o

15 % Defining parameters

16 w0 = par.w0;

17 whl = par.whl; wh2 = par.wh2; wh3 = par.wh3; wh4 = par.wh4;
wh5 = par.whb5;

18 Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4;
Th5 = par.Th5;

19 TO = par.TO;

20 UAl = par.UAl; UA2 = par.UA2; UA3 = par.UA3; UA4 = par.UA4;

UA5 = par.UA5;
21 DeltaTmin = par.DeltaTmin;
22
23
24
25 %% INEQUALITY CONSTRAINTS

26
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27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

% HX1
Cinegl = —(Thl—-T1-DeltaTmin); % HOT SIDE HXI1

Cineg2 = —(Thlout—T0—DeltaTmin); % COLD SIDE HX1
% HX2

Cineg3 = —(Th2—-T2-DeltaTmin); % HOT SIDE HX2
Cineg4 = —(Th2out—T1l-DeltaTmin); % COLD SIDE HX2
% HX3

Cineg5 = —(Th3—T3-DeltaTmin); % HOT SIDE HX3
Cineg6 = —(Th3out—T2-—DeltaTmin); % COLD SIDE HX3
$ HXA4

Cineqg7 = —(Th4—T4-DeltaTmin); % HOT SIDE HX4
Cineg8 = —(Thd4out—T3-—DeltaTmin); % COLD SIDE HX4
$ HX 5

Cineg9 = —(Th5-T5-DeltaTmin); % HOT SIDE HX5
CineglO0 = —(Th5out—T0-DeltaTmin); % COLD SIDE HX5
Cineq =

[Cinegl;Cineg2;Cineg3;Cineg4;Cineg5;Cineg6;Cineq7;Cineg8; ...
Cineg9;Cineqgl0];
Cineq = [];

%% MODEL EQUATIONS

% AMTD

% DeltaTl = 0.5x ((Thlout—T0)+ (Thl-T1));

% DeltaT2 = 0.5 ((Th2out—T1)+ (Th2-T2));

% DeltaT3 = 0.5+ ((Th3out—T2) +(Th3-T3));

% DeltaT4 = 0.5+ ((Thd4out—T3)+ (Th4-T4));

% DeltaT5 = 0.5x ((Th5out—T0)+ (Th5-T5)) ;

$UNDERWOOD APPROXIMATION

DeltaTl = ((((Thlout—TO0)"1/3)+((Thl-T1)"1/3))/2)"3;
DeltaT2 = ((((Th2out—T1)"1/3)+((Th2-T2)"1/3))/2)"3;
DeltaT3 = ((((Th3out—T2)"1/3)+((Th3—-T3)"1/3))/2)"3;
DeltaT4 = ((((Thd4out—T3)"1/3)+((Th4-T4)"1/3))/2)"3;
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67

68

69

70

71

72

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

107

DeltaTh =

oo
)

Res

end

EQUALITY CONSTRAINTS

o)

= [ % Upper path, 1st HX
01— (wl* (T1=T0)) ;

Ql+ (par.whlx (Thlout—Thl));

Q1— (UAl1%DeltaTl);

o)

% Upper path,
Q2— (wlx (T2—-T1));

2nd HX

Q2+ (par.wh2* (Th2out—Th2)) ;

Q02— (UA2+DeltaT?2);

o)

% Upper path, 3rd HX
Q3—(wlx (T3-T2));

Q3+ (par.wh3* (Th3out—Th3)) ;

Q3— (UA3%DeltaT3);

o)

% Lower path, 4th HX
Q4— (wl* (T4—T3));

Q4+ (par.whédx (Thdout—Th4));

Q4— (UA4%DeltaT4);

o)

% Lower path,
Q5— (w2+ (T5-T0) ) ;

5th HX

Q5+ (par.wh5* (Th5out—Thb) ) ;

Q05— (UA5%DeltaTh) ;

o)

% Mass balance

wl+w2—w0;

[o)

% Energy balance

(wO*xTend)— (wlxT4)— (w2xT5) ];

o° oo

o\°

o°  o°

o\

o° oo

o°

o°  o°

o\°

o°  oe

o\

((((Th50ut—T0)"1/3)+ ((Th5-T5)"1/3))/2)"3;

Cold Stream, wl
Hot Stream, whl

HX Design Equation

Cold Stream, wl
Hot Stream, wh2
HX Design Equation

Cold Stream, wl
Hot Stream, wh3

HX Design equation

Cold stream, w2
Hot stream, whid

HX design equation

Cold stream, w2
Hot stream, whi

HX design equation
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HEN_Constraints_41_DJT.m

HEN_Constraints function 4:1 HEN for simulations with the

,_.
o\

Jaeschke temp

w0
o\

Nonlinear constraints for optimizing a HEN

IS
o\

Includes mass, energy and steady state balances and the

Jaeschke temp

7 function [Cineq, Res] = HEN_Constraints_41_DJT (x,par)

9 % Defining state variables

10 Tend = x(1); Tl = x(2); T2 = x(3); T3 = x(4); T4 = x(5); TS5 =
x(6);

11 Thlout x(7); Th2out = x(8); Th3out = x(9); Thdout = x(10);

12 Thbout = x(11);

13 wl = x(12); w2 = x(13);

14 Ql = x(14); Q2 x(15); 03 = x(16); 04

x(17); Q5 = x(18);

15

16 % Defining parameteres

17 w0 = par.w0;

18 whl = par.whl; wh2 = par.wh2; wh3 = par.wh3; wh4 = par.wh4;
wh5 = par.whb5;

19 Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4;
ThS5 = par.Th5;

20 TO = par.TO;

21 UAl = par.UAl; UA2
UAS5 = par.UA5;

par.UA2; UA3 par.UA3; UA4 par.UA4;

22 DeltaTmin = par.DeltaTmin;

23 Pl = par.Pl; P2 = par.P2; P3 = par.P3; P4 = par.P4; P5 = par.P5;
24

25

26

27 %% INEQUALITY CONSTRAINTS

28

o\

29 HX1

30 Cineql —(Thl-Tl1-DeltaTmin); % HOT SIDE HXI1

31 Cineg2 = —(Thlout—T0-DeltaTmin); % COLD SIDE HXI
32
33 % HX2
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34

35

36

37

38

39
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41

42
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44

45

46

47

48

49
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51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Cineqg3 — (Th2—T2-DeltaTmin); % HOT SIDE HX2

Cinegd4 = —(Th2out—-T1l-DeltaTmin); % COLD SIDE HX2
% HX3

Cinegb = —(Th3-T3-DeltaTmin); % HOT SIDE HX3
Cineg6 = —(Th3out—T2-DeltaTmin); % COLD SIDE HX3
% HXA4

Cineq7 = —(Th4-T4-DeltaTmin); % HOT SIDE HX4
Cineg8 = —(Thd4out—T3-—DeltaTmin); % COLD SIDE HX4
$ HX 5

Cineqg9 = —(Th5-T5-DeltaTmin); % HOT SIDE HX5
Cinegl0 = —(Th5out—T0—DeltaTmin); % COLD SIDE HX5
Cineq =

[Cinegl;Cineg2;Cineg3;Cineg4;Cineg5;Cineg6; Cineg7;Cineg8; ...
Cineg9;CineqlO];
Cineg = [];

%% MODEL EQUATIONS

% % AMTD

% DeltaTl = 0.5x((Thlout—T0)+ (Thl1-T1));

% DeltaT2 = 0.5% ((Th2out—T1)+ (Th2-T2));

% DeltaT3 = 0.5 ((Th3out—T2)+ (Th3-T3));

% DeltaT4 = 0.5%((Thd4out—T3)+(Th4—T4));

% DeltaT5 = 0.5x ((Th5out—T0)+ (Th5-T5)) ;

$UNDERWOOD APPROXIMATION

DeltaTl = ((((Thlout—T0)"1/3)+((Thl-T1)"1/3))/2)"3;
DeltaT2 = ((((Th2out—T1)"1/3)+((Th2-T2)"1/3))/2)"3;
DeltaT3 = ((((Th3out—T2)"1/3)+ ((Th3-T3)"1/3))/2)"3;
DeltaT4 = ((((Thd4out—T3)"1/3)+((Th4—T4)"1/3))/2)"3;
DeltaT5 = ((((Th5out—T0)"1/3)+((Th5-T5)"1/3))/2)"3;

%% JAESCHKE TEMPERATURES
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112

113

114

)

% Upper path

JT11 = P1x(T1-TO0) "2/ (Thl-TO0);

JT12 = P2* ((T2-T1)* (T2+T1—2+«T0—JT11))/ (Th2-T1);
JT13 = P3* ((T3—T2)* (T3+T2—2+«T0—JT12))/ (Th3-T2);
JT14 = P4* ((T4—T3)* (T4+T3—2+T0—JT13))/ (Thd—T3);

% Lower path
JT21 = P5% (T5—T0) "2/ (Th5-TO0) ;

%% EQUALITY CONSTRAINTS
Res = [ % Upper path, 1st HX
Ql— (Wl (T1—T0));
Ql+ (par.whlx (Thlout—Thl));

Ql1— (UAl+DeltaTl);

o°

Cold Stream, wl

o\°

Hot Stream, whl

o\°

HX Design Equation

[

% Upper path, 2nd HX

Q2— (Wl (T2—-T1)); % Cold Stream, wl
Q2+ (par.wh2+* (Th2out—Th2) ) ; % Hot Stream, wh2
Q02— (UA2xDeltaT2); % HX Design Equation

Q

% Upper path, 3rd HX
Q3— (Wl (T3—T2)); % Cold Stream, wl
Q03+ (par.wh3* (Th3out—Th3)); Hot Stream, wh3
Q03— (UA3%DeltaT3);

o\°

o\°

HX Design equation

% Lower path, 4th HX

Q4— (wlx (T4—T3));

Q4+ (par.whd* (Thdout—Th4) ) ;
Q4— (UA4+«DeltaTid) ;

o\°

Cold stream, w2

o\°

Hot stream, whi4

o\

HX design equation

% Lower path, 5th HX

Q5— (w2 (T5=T0)) ;

Q5+ (par.wh5* (Th5out—Thb) ) ;
Q05— (UA5«DeltaTbh) ;

o\°

Cold stream, w2

o\

Hot stream, whi4

o\

HX design equation

[

$ Mass balance

wl+w2—w0;
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115

116

117

118

119

120

121

% Energy balance

(wOxTend)— (wl*T4)— (w2+T5) ;

o)

% Jaeschke temperature

(JT11+JT12+JT13+JT14)—-JT21];

end

Object_41.m

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

% Object function to be minimized

% for the 4:1 HEN

function[J] = Object_41 (x,par)

o\°

Unscale variables

o\°

X = X.*par.sc.Xx;
% Defining parameters

Pl = par.Pl;

P2 = par.P2;

P3 = par.P3;

P4 = par.P4;

P5 = par.P5;

% Defining outlet variables

TO

par.TO0;

wl = x(12);
w2 = x(13);

Tl = x(2);
T2 = x(3);
T3 = x(4);
T4 = x(5);
TS5 = x(6);

Tend = x(1);
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% Cost function

J = —(P1*x(T1-TO0)*wl + P2x (T2—T1)*wl + P3% (T3—T2)*wl +
P4% (T4—T3) »wl + P5x (T5-TO0) xw2);

J = J/1000;

o\

end
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Six Heat Exchangers in Series and One in Parallel

RunHEN_61.m

1 %% Model to simulate a steady state 6:1 HEN

¥
o\

Topology to be investigated:

3
00 000000000000000000000000000000000000000000000000000000
4 ©00000000000006000000000606 000000000 000000000606060606000600060000
o o
5 ) 1 2 3 4 5 6 o
o o
6 % 0 0 0 0 0 0 %
o o
7 o . . o
o o
8 © 0 =
o o
9 % 7 5
9909000000000000000000000000000000000000000000000000000000
10 OO0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOOOO©O™©

11

12 close all;

13 clear all;

14 clc;

15

16 $% Parameters

17

18 % Heat Capacity rates

19 par.w0 = 100; % [kW/degC] w= miCpi
20 par.whl = 50; % [kW/degC]
21 par.wh2 = 30; % [kW/degC]
22 par.wh3 = 15; % [kW/degC]
23 par.whd4 = 25; % [kW/degC]
24 par.whb5 = 40; % [kW/degC]
25 par.wh6 = 35; % [kW/degC]
26 par.wh7 = 30; % [kW/degC]
27

28 % Hot stream inlet temperature
20 par.Thl = 190; % [degC]

30 par.Th2 = 203; % [degC]

31 par.Th3 = 220; % [degC]

32 par.Thd = 235; %[degC]

33 par.Thb = 240; %$[degC]

34 par.Thée = 245; % [degC]

35 par.Th7 = 225; % [degC]

36

37 % Cold stream inlet temperture
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75

par.T0 = 130; % [degC]

% UA values for each heat exchanger
par.UAl = 5; % [kWm2/degC]
par.UA2 = 7; % [kWm2/degC]
par.UA3 = 10; % [kWm2/degC]
par.UA4 = 12; % [kWm2/degC]
par.UA5 = 9; % [kWm2/degC]
par.UA6 = 8; % [kWm2/degC]
par.UA7 = 11; % [kWm2 /degC]

[

% Operating prices for each heat exchanger

par.Pl = 1; $[$/kW]
par.pP2 = 1.2; S [$/kW]
par.P3 = 1.3; S [S/kW]
par.P4 = 1.5; S[S/kW]
par.P5 = 1.4; $[$/kW]
par.P6 = 1.7; $[S/kwW]
par.P7 = 1.5; S[S/kW]

Q

% Scaling vector

par.sc.x = [200%xones(15,1);100;100;500x0nes(7,1)1;

% Defining parameters

Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4;
Th5 = par.Th5;

Th6 = par.Th6; Th7

TO = par.TO;

par.Th7;

%% OPTIMAL OPERATION

o\

Guessing outlet variables
x0 = [Tend T1 T2 T3 T4 T5 T6 T7 Thl Th2 Th3 Th4 Th5 Th6 Th7
wl w2
Q1 Q02 03 04 05 Q6 Q7]
x0 = [148 131 133 138 138 140 145 150 188 198 200 215 190 230
200 50 50
59 137 297 333 200 250 3001';

o

o\

[)

% Minimizing cost function based on equality constraints

106




77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

107

108

109

110

111

112

113

114

115

% using fmincon
A= []; b= 1[1; Req = []; Beq = [];
LB = Oxones(24,1); UB = infxones (24,1);

options = optimset ('display', "iter', ...

'MaxFunEvals', 9000, 'TolCon',1le—10, 'TolX',1le—10);

[x,J,exitflag] = fmincon (@ (x)Object_61(x,par),x0,A,b,RAeq,Beq, ...

LB, UB, @ (x) HEN_Constraints_61 (x,par),options);
exitflag

% RESULTS
% Outlet temperatures
Tend = x(1);

Tl = x(2); T2 = x(3); T3 = x(4); T4 = x(5); T5 = x(6); T6 =

Thlout = x(9); Th2out = x(10); Th3out = x(11); Thdout = x(12);
Th5out = x(13); Th6out = x(14); Th7out = x(15);
% Split

wl = x(16); w2 = x(17);

Q

% Heat transfer

QL = x(18); Q2 = x(19); Q3 = x(20); 04 = x(21); Q5 = x(22);
Q6 = x(23); Q7 = x(24);

% Split ratio

wl_rat = wl/par.w0;

w2_rat = w2/par.w0;

% Delta Ts

DeltaT_hotl = Thl — T1;
DeltaT_hot2 = Th2 — T2;
DeltaT_hot3 = Th3 — T3;
DeltaT_hot4 = Thd — T4;
DeltaT_hot5 = Th5 — T5;
DeltaT_hot6 = Thé6 — T6;
DeltaT_hot7 = Th7 — T7;
DeltaT_coldl = Thlout — TO;
DeltaT_cold2 = Th2out — T1;
DeltaT_cold3 = Th3out — T2;
DeltaT_cold4 = Thdout — T3;
DeltaT_cold5 = Thbout — T4;
DeltaT_cold6 = Theout — T5;
DeltaT_cold7 = Th7out — TO;
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116

o

117 % Displaying the results

118 display([' Tend [degC] = '])
119 disp (Tend)
120 display ([' T1 T2 T3 T4 T5
T6 T7 [degC]'])
121 disp ([Tl T2 T3 T4 T5 T6 T71])
122 display ([ Thlout Th2out Th3out Th4out Th5out
Thoéout Th7out [degC]'])

123 disp([Thlout Th2out Th3out Thdout Th5out Thoout Th7out])
124 display ([ wl w2'])
125 disp([wl w2])
126 display([' wl ratio w2 ratio [%]'])
127 disp([wl_rat w2_rat])
128 display ([' DeltaT hot side '])
120 display ([ HX1 HX2 HX3 HX4 HX5
HX6 HX7 1)
130 disp([DeltaT_hotl DeltaT_hot2 DeltaT_hot3 DeltaT_hot4
DeltaT_hot5 DeltaT_hot6 DeltaT_hot7])
131 display([' DeltaT cold side '])
132 display ([' HX1 HX2 HX3 HX4 HX5
HX6 HX7 1)
133 disp ([DeltaT_coldl DeltaT_cold2 DeltaT_cold3 DeltaT_cold4
DeltaT_cold5 DeltaT_cold6 DeltaT_cold7])
134
135
136 %% OPERATION USING THE JAESCHKE TEMPERATURE

137

o\

138 Guessing outlet variables

139 $ x0 = [Tend T1 T2 T3 T4 T5 T6 T7 Thl Th2 Th3 Th4 Th5 Th6 Th7
wl w2

140 % 01 Q02 03 Q4 Q5 Q6 Q7]

141 x0 = [148 131 133 138 138 140 145 150 188 198 200 215 190 230
200 50 50

142 59 137 297 333 200 250 3001';

143

144 % Defining parameters

145 Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4;
Th5 = par.Th5;

146 Th6 = par.Thé6; Th7

par.Th7;
147 TO = par.TO0;
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149
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155

156

157

158

159

161

162

163

164

166

167

168

170

171

172

174

175

176

177

179

180

181

182

o\

Minimizing cost function based on equality constraints and

Jaeschke temp

o°

using fmincon

A= 1[]; b =1[]; Reg = []; Beqg = [];
LB = Oxones(24,1); UB = infxones (24,1);
options = optimset ('display', "iter', ...

'MaxFunEvals', 9000, 'TolCon',1le—10, '"TolX',1e—10);

[xDJT, J,exitflag] =
fmincon (@ (x)Object_61 (x,par),x0,A,b,Aeq,Beq, ...
LB, UB, @ (x) HEN_Constraints_61_DJT (x,par),options);
exitflag

% RESULTS

% Outlet temperatures

Tend_DJT = xDJT (1);

T1_DJT = xDJT(2); T2_DJT = xDJT(3); T3_DJT = xDJT(4); T4_DJT =
xDJT (5); T5_DJT = xDJT(6); T6_DJT = xDJT(7); T7_DJT = xDJT(8);

Thlout_DJT = xDJT(9); Th2out_DJT = xDJT (10); Th3out_DJT =
xDJT (11); Thdout_DJT = xDJT(12);

ThS5out_DJT = xDJT(13); Thé6out_DJT = xDJT(14); Th7out_DJT =
xDJT (15) ;

% Split

wl_DJT = xDJT(16); w2_DJT = xDJT(17);

% Heat transfer

Q1_DJT = xDJT(18); Q2_DJT = xDJT(19); Q3_DJT = xDJT(20);
Q4_DJT = xDJT(21); Q5_DJT = xDJT (22);

Q6_DJT = xDJT (23); Q7_DJT = xDJT(24);

% Split ratio

wl_rat_DJT = wl_DJT/par.w0;

w2_rat_DJT = w2_DJT/par.w0;

% Delta Ts

DeltaT_hotl_DJT = Thl — T1_DJT;

DeltaT_hot2_DJT = Th2 — T2_DJT;

DeltaT_hot3_DJT = Th3 — T3_DJT;

DeltaT_hot4_DJT = Th4 — T4_DJT;

DeltaT_hot5_DJT = Th5 — T5_DJT;
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191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

209

DeltaT_hot6_DJT Th6 — T6_DJT;
DeltaT_hot7_DJT = Th7 — T7_DJT;
DeltaT_coldl_DJT = Thlout_DJT — TO;
DeltaT_cold2_DJT = Th2out_DJT — T1_DJT;
DeltaT_cold3_DJT = Th3out_DJT — T2_DJT;
DeltaT_cold4_DJT = Thdout_DJT — T3_DJT;
DeltaT_cold5_DJT = ThbSout_DJT — T4_DJT;

DeltaT_cold6_DJT = Thoout_DJT — T5_DJT;
DeltaT_cold7_DJT = Th7out_DJT — TO;

[

% Displaying the results

display([' Tend [degC] = '])
disp (Tend)
display ([' T1 T2 T3 T4 T5
T6 T7 [degC]'])
disp ([T1_DJT T2_DJT T3_DJT T4_DJT T5_DJT T6_DJT T7_DJT])
display ([ Thlout Th2out Th3out Thdout Th5out
Thoout Th7out [degC]'])

disp ([Thlout_DJT Th2out_DJT Th3out_DJT Th4out_DJT Thbout_DJT
Thé6out_DJT Th7out_DJT])
display ([’ wl w2'1)
disp ([wl_DJT w2_DJT])
display([' wl ratio w2 ratio [%]'])
disp([wl_rat_DJT w2_rat_DJT])
display ([' DeltaT hot side '])
display ([' HX1 HX2 HX3 HX4 HX5
HX6 HX7 ")
disp([DeltaT_hotl_DJT DeltaT_hot2_DJT DeltaT_hot3_DJT
DeltaT_hot4_DJT DeltaT_hot5_DJT DeltaT_hot6_DJT
DeltaT_hot7_DJT])
display([' DeltaT cold side '])
display ([ HX1 HX2 HX3 HX4 HX5
HX6 HX7 1)
disp ([DeltaT_coldl_DJT DeltaT_cold2_DJT DeltaT_cold3_DJT
DeltaT_cold4_DJT DeltaT_cold5_DJT DeltaT_cold6_DJT
DeltaT_cold7_DJT])
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HEN_Constraints_61.m

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

o\

HEN_Constraints function 6:1 HEN for simulations of optimal

operation

o\°

Nonlinear constraints for optimizing a HEN

o\°

Includes mass, energy and steady state balances

function [Cineq, Res] = HEN_Constraints_61 (x,par)
% Defining state variables

Tend = x(1);

Thlout = x(9); Th2out = x(10); Th3out = x(11); Thdout = x(12);
Th5out x(13); Theout = x(14); Th7out x (15);

wl = x(16); w2 = x(17);

Ql = x(18); Q2 = x(19); Q3 = x(20); 04 = x(21); Q5 = x(22);

Q6 x(23); Q7 x(24);

Q

% Defining parameters

Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; Th4 = par.Th4;
Th5 = par.Th5;

Th6é = par.Th6; Th7 = par.Th7;

TO = par.TO;

UAl = par.UAl; UA2 = par.UA2; UA3 = par.UA3; UA4 = par.UA4;

UA5 = par.UA5;

UA6 = par.UA6; UA7 par.UA7;

%% INEQUALITY CONSTRAINTS
Cineq = [1;

%% MODEL EQUATIONS

% AMTD

DeltaTl 0.5%x ((Thlout—T0)+ (Thl-T1));
DeltaT2 = 0.5%((Th2out—T1)+ (Th2-T2));
DeltaT3 = 0.5% ((Th3out—T2)+ (Th3—T3));
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76

DeltaT4 = 0.5% ((Thd4out—T3)+ (Th4—-T4));
DeltaT5 = 0.5% ((Th50out—T4)+ (Th5-T5));
DeltaT6 = 0.5% ((Th6out—T5)+ (Th6-T6));
DeltaT7 = 0.5% ((Th70out—T0)+ (Th7-T7));
$UNDERWOOD APPROXIMATION

DeltaTl = ((((Thlout—T0)"1/3)+((Thl-T1)
DeltaT2 = ((((Th2out—T1)"1/3)+((Th2-T2)
DeltaT3 = ((((Th3out—T2)"1/3)+((Th3-T3)
DeltaT4 = ((((Thd4out—T3)"1/3)+((Th4-T4)
DeltaT5 = ((((Th5out—T4)"1/3)+ ((Th5-T5)
DeltaT6 = ((((Th6out—T5)"1/3)+((Th6-T6)
DeltaT7 = ((((Th7out—T0)"1/3)+((Th7-T7)

EQUALITY CONSTRAINTS

Res = [

% Upper path, 1st HX
Ql— (wl* (T1-=TO0));

Ql+ (par.whlx (Thlout—Thl));

Q01— (UAl+DeltaTl) ;

o)

% Upper path, 2nd HX
Q2— (wlx (T2—-T1));

Q2+ (par.wh2« (Th2out—Th2) ) ;

02— (UA2+DeltaT2) ;

Q

% Upper path, 3rd HX
Q3—(wlx (T3—T2));

Q3+ (par.wh3% (Th3out—Th3)) ;

Q03— (UA3xDeltaT3);

o

% Lower path, 4th HX
Q4— (wl* (T4—T3));

Q4+ (par.whédx (Thd4out—Th4) ) ;

Q4— (UA4xDeltaT4d);

o)

% Lower path, 5th HX
Q5—(wl* (T5-T4));
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~1/3)
~1/3)
~1/3)
~1/3)

o\°

o\°

o\°
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o o

o\

o\

wl
whl

Cold Stream,
Hot Stream,

HX Design Equation

wl
wh2

Cold Stream,
Hot Stream,

HX Design Equation

wl
wh3

Cold Stream,
Hot Stream,

HX Design equation

w2
whi4

Cold stream,
Hot stream,

HX design equation

Cold stream, w2
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Q05+ (par.wh5* (Th5out—Thb) ) ;
Q5— (UA5%DeltaTh);

Hot stream, whd

o\°

HX design equation

% Upper path, 6th HX

Q06— (wl* (T6—T5)) ;

Q6+ (par.wh6* (Th6eout—Tho6) ) ;
Q6— (UA6xDeltaTb) ;

o

Cold stream, wl

o\

Hot stream, whl

o\

HX Design Equation

% Lower path, 7th HX

Q7— (w2x (T7—T0) ) ;

Q7+ (par.wh7« (Th7out—Th7));
Q7— (UA7+xDeltaT7);

o\°

Cold stream, wl

o\

Hot stream, whl

o\

HX Design Equation

% Mass balance
par.wl0—(wl+w2) ;

% Energy balance;

par.wOxTend— (WlxT6+w2%T7)];

end

HEN_Constraints_61_DJT.m

10

11

12

13

14

% HEN_Constraints function 6:1 HEN for simulations with the

Jaeschke temp

% Nonlinear constraints for optimizing a HEN
% Includes mass, energy and steady state balances and the

Jaeschke temp

o\
o\

function [Cineq, Res] = HEN_Constraints_61_DJT (x,par)
% Defining state variables

Tend = x(1);

Thlout = x(9); Th2out = x(10); Th3out = x(11); Thdout = x(12);
Th5out x(13); Theout = x(14); Th7out = x(15);
wl = x(16); w2 = x(17);
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15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Q1 = x(18); Q2 = x(19); Q3 = x(20); Q4 = x(21); Q5

Q6 = x(23); Q7 = x(24);

% Defining parameters

Thl = par.Thl; Th2 = par.Th2; Th3 = par.Th3; Th4d =

Th5 = par.Th5;

Th6 = par.Thé; Th7 = par.Th7;

TO = par.TO;

UAl = par.UAl; UA2 = par.UA2; UA3 = par.UA3; UA4 =

UA5 = par.UA5;

UA6 = par.UA6; UA7 = par.UA7;

Pl = par.Pl; P2 = par.P2; P3 = par.P3; P4 = par.P4;

P6 = par.P6; P7 = par.P7;

%% INEQUALITY CONSTRAINTS

Cineq = [];

%% MODEL EQUATIONS

% AMTD

DeltaTl = 0.5%((Thlout—T0)+(Thl-T1));

DeltaT2 = 0.5% ((Th2o0ut—T1)+ (Th2-T2));

DeltaT3 = 0.5% ((Th3out—T2)+(Th3-T3));

DeltaT4 = 0.5% ((Th4out—T3)+(Th4-T4));

DeltaT5 = 0.5% ((Thb5out—T4)+ (Th5-T5));

DeltaT6 = 0.5% ((Th6out—T5)+ (Th6—T6)) ;

DeltaT7 = 0.5% ((Th70ut—T0)+(Th7-T7));

$UNDERWOOD APPROXIMATION

DeltaTl = ((((Thlout—T0)"1/3)+((Thl-T1)"1/3))/2)"3
DeltaT2 = ((((Th2out—T1)"1/3)+((Th2-T2)"1/3))/2)"3
DeltaT3 = ((((Th3out—T2)"1/3)+((Th3—-T3)"1/3))/2)"3
DeltaT4 = ((((Thd4out—T3)"1/3)+((Th4-T4)"1/3))/2)"3
DeltaT5 = ((((Th5out—T4)"1/3)+((Th5-T5)"1/3))/2)"3
DeltaT6 = ((((Th6out—T5)"1/3)+((Th6-T6)"1/3))/2)"3
DeltaT7 = ((((Th7out—T0)"1/3)+((Th7-T7)"1/3))/2)"3
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X (22);

par.Th4;

par.UA4;

P5

par.P5;




54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

%% JAESCHKE TEMPERATURES

% Upper path
JT11 = P1%(T1-TO0)"2/(Th1l-TO);

(
JT12 = P2x ((T2-T1) * (T24T1—-2xT0—-JT11
JT13 = P3% ((T3—T2) *» (T3+T2—2+T0—JT12
JT14 = P4% ((T4—-T3) * (T4+T3—-2+xT0—-JT13
JT15 = P5* ((T5—T4) » (T5+T4—2+T0—JT14
JT16 = P6x ((T6—T5) * (T6+T5—2+T0—-JT15

o

% Lower path
JT21 = P7+(T7—T0) "2/ (Th7-T0) ;

%% EQUALITY CONSTRAINTS

Res = [

<)

% Upper path, 1st HX
Ql—(wl* (T1-TO));

Ql+ (par.whl« (Thlout—Thl));
Q01— (UAlxDeltaTl) ;

o)

% Upper path, 2nd HX

Q2— (Wl (T2—-T1));

Q2+ (par.wh2x* (Th2o0ut—Th2)) ;
Q2— (UA2+DeltaT2);

[o)

% Upper path, 3rd HX

Q3— (wl=* (T3—T2));

Q3+ (par.wh3« (Th3out—Th3)) ;
Q03— (UA3xDeltaT3);

% Lower path, 4th HX

Q4— (wl* (T4—=T3));

Q4+ (par.whid* (Thdout—Th4)) ;
Q4— (UA4+DeltaTid);

% Lower path, 5th HX
Q5—(wl* (T5-T4));
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Th2-T1)
Th3-T2)
Th4—-T3);
Th5-T4)
Th6—T5)

o°  oe

o

o°  o°

o\°

o°  o°

o

o0 o

o

o\

14
4

4

4

Cold Stream, wl
Hot Stream, whl

HX Design Equation

Cold Stream, wl
Hot Stream, wh2
HX Design Equation

Cold Stream, wl
Hot Stream, wh3

HX Design equation

Cold stream, w2
Hot stream, whi4

HX design equation

Cold stream, w2




95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

111

112

113

114

115

116

117

118

Q5+ (par.whb* (Thb5out—Thb) ) ;
Q05— (UAS5+DeltaTh);

% Upper path, 6th HX

Q6— (wl* (T6—T5));

Q6+ (par.wh6* (Theout—Tho6) ) ;
Q6— (UA6xDeltaTb) ;

% Lower path, 7th HX

Q7— (w2 (T7—T0Q) ) ;

Q7+ (par.wh7« (Th7out—Th7));
Q7— (UA7xDeltaT7);

o

% Mass balance

par.wl0— (wl+w2) ;

% Energy balance;
par.wl0*«Tend— (wlxT6+w2+T7)

Q

% Jaeschke temperature

o\°

o\°

o°  oe

o\°

o\

o\

Hot stream, whid

HX design equation

Cold stream, wl
Hot stream, whl

HX Design Equation

Cold stream, wl
Hot stream, whl

HX Design Equation

(JT11+JT12+4JT13+JT14+JT15+JT16)—JT21];

end

Object_61.m

10

11

12

13

% Object function to be minimized

% for the 6:1 HEN

function[J] = Object_61(x,par)

Unscale variables

o\

o

X = X.*par.sc.Xy;

% Defining parameters
Pl = par.P1l;
P2 = par.P2;
P3 = par.P3;
P4 = par.P4;
P5 = par.P5;
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14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

P6
P7

)
°

TO

wl
w2

Tl
T2
T3
T4
T5
T6
T7

o

°

J

J

en

par.P6;
= par.P7;

Defining outlet variables

par.TO0;

Cost function
= —(P1x (T1-TO)*wl + P2 (T2—-T1)*wl + P3x(T3—T2)+*wl +
P4% (T4—T3)+wl + P5% (T5-T4)*wl + P6x (T6—T5)*wl + P7%(T7—T0)*w2);
= J/1000;
d
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Case II: Two Heat Exchangers in Parallel

OptCalc.m

1 % Optimal operation of a 1:1 HEN and

©
o\

operation using the Jaeschke temperature.

Simulations are based on the NTU—method

w0
o\

o
o\

Topology to be investigated

00 00000000000000000000000000000000
8 3355555555555 %5%5%5%5%%5%5%5%5%5%5%5%5%%5%%%
o o
9 5 1 5
o o
0 % 0 %
o o
11 % _ _ %
o o
12 % 0 %
o Q
13 % 2 %
©000000000000000000000000000000000
14 OO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO©O©OO
15
16
17 clc;

18 clear all;
19 close all;

20

o\

21 Defining parameters

22

o\°

23 Cases evaluated

24 % Vector parameters: [TO0O wO whl wh2 Thlin Th2in UAl UA2]
25

130 100 50 50 203 248 10 30];

130 100 50 50 203 248 31.1 93.9]1;

130 50 100 100 203 248 10 301;

130 100 50 50 203 248 100 3001;

130 100 400 100 203 248 1000 1007;

130 100 400 100 203 248 1000 1000];

26 casel =
27 casell =
28 caselll =
29 caselV =
30 caseV =
31 caseVlI =
32

33 % Select case
34 casesel = casel;
35

[

36 % Operation parameters

Q

37 TO = casesel(l); % Feed stream temperature [degC]
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38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

o\°

w0 = casesel (2); [kW/K]

[

% Utility parameters

whl = casesel(3); % Hot stream 1 Heat Capacity rate [kW/K]
wh2 = casesel(4); % Hot stream 2 Heat Capacity rate [kW/K]
Thlin = casesel (5); % Hot stream 1 Temperature [degC]
Th2in = casesel (6); % Hot stream 2 Temperature [degC]

Q

% Design parameters
UA1l = casesel (7);
UA2 = casesel (8);

o\

[kW/K]
[kW/K]

o\

Q

% Number of iterations

N=1000;

n = zeros(N,1);
Tl=n; T2=n; Thl=n; Th2=n; Tmix=n; el=n; ehl=n; e2=n; eh2=n;

Cl=n; C2=n; NTUl=n; NTU2=n; U=n;

% Calculating HX based on the NTU-method for all splits
ranging [0,1]:
for i=1:N

u = 1/N;
U(i)=u;

o\

Calculating outlet temperatures and info about HEs

o\

(only u is changing)
[T HE] = TempCalc(TO0,w0,UAl,UA2,Thlin,whl,Th2in,wh2,u);

T1(i)=T(1); T2(1)=T(2); Thl(i)=T(3); Th2(i)=T(4);
Tmix (1)=T(5); el(i)=HE(1l); ehl(i)=HE(2); e2(1)=HE(3);
eh2 (1)=HE (4); Cl(i)=HE(5); C2(i)=HE(6); NTUl (i)=HE(7);

NTU2 (i) =HE (8) ;

end

% RESULTS

Q

% Finding optimal split
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78 [Tmixm,nr]=max (Tmix) ;

79

g0 split=U(nr);

81 T1lm=T1 (nr);

82 Thlm=Thl (nr);

83 T2m=T2 (nr) ;

84 Th2m=Th2 (nr);

85 Tmixm

86 split

87

88 % Finding the self—optimizing split

89

90 % Jaeschke Temperature for HX1l and HX2

91 JT = (T1-TO0).”2./(Thlin—T0) — (T2—-TO0)."2./(Th2in—TO);

92

93 [JTmin,nr2]=min (abs (JT)) ;

94

95 JT_opt=JT (nr);

96 JTsplit=U(nr2);

97 T1JT=T1 (nxr2);

98¢ Th1lJT=Thl (nr2);

99 T2JT=T2 (nr2);

100 Th2JT=Th2 (nr2) ;

101 JTmin;

102 JTTmax=Tmix (nr2) ;

103 JTTmax

104 JTsplit

105

106 % Jaeschke temperature in the presence of measurement errors, max
107

108 JTTmax_vec = [];

109 TempLoss = [];

110

111 nTO = 0;

112 nThl
113 nTh2 = 0;
114 nTl = 0;
115 nT2 = 0;

I
o
~

116
117 M = 1000;

118
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119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

154

155

156

Q

% Simulating HX with measurement errors, with given
Measurement errors
% (data file Measurement_Errors.m)

for j=1:M;

load Measurement_Errors

nT0 = noise(l,J);
nThl = noise(2,73);
nTh2 = noise(3,3);
nTl = noise (4, 3);

nT2

noise (5, 7);

% Implementing the noise in the control variable

JT_noise = ((T1+nT1l)—(T0+nTO0))."2./((Thlin+nThl)—(TO0+nTO0))
— ((T24nT2)—(T0+nTO0)) .”2./ ((Th2in+nTh2)— (T0+nTO0)) ;

[JTmin_noise,nr3] = min (abs (JT_noise));

JT_noise_split = U(nr3);

JTnoiseTmax = Tmix (nr3);

JTTmax_vec (j) = JTnoiseTmax;

TempLoss (j) = Tmixm—JTnoiseTmax;
noise(:,J) = [nTO0, nThl, nTh2, nTl, nT2]"';

end
% Worst case loss and avergae loss
WCloss = max (TempLoss) ;

AVGloss = sum(TempLoss) /M;

WCloss

AVGloss

[

% % Calculating temperature difference on each side of each HX

dTcoldl=Thl1l-TO0;
dThot1l=Thlin—T1;

dTcold2=Th2-T0;
dThot2=Th2in—-T2;
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158

159

160

161

162

163

164

166

167

168

169

170

171

172

173

174

175

176

178

179

180

181

182

183

184

185

186

187

188

190

191

192

193

194

195

196

197

198

o

% Calculating errors from AMID approximation

[eUl eU2 eAM1l eAM2] = ErrorCalc(dTcoldl, dThotl, dTcold2, dThot2);
% Calculating the AMTD approximation valid range..

thetal dThotl./dTcoldl;

theta2 = dThot2./dTcold2;

o

PLOTTING THE RESULTS

o\

Temperature and control variable profile with split u

o\

return

h = figure;

o\

return

o\

figure (1)
160; ylend
—60; y2end

ylstart 210; ylstep = 10;

60; y2step = 60;

y2start

split = [split split];
JTs = [JTIsplit JTsplit];
yll = [ylstart ylend];
y22 = [y2start y2end];

[AX,H1,H2] = plotyy(U,JT,U,Tmix);

set (get (AX(2), 'Ylabel'), 'String', ...
'T_{end} [ \circC]','fontsize',12)

set (get (AX (1), 'Ylabel'"), 'String', ...

'Controlled variable, JT [ \circC]', 'fontsize',12)
axis (AX(2),[0 1 ylstart ylend]);
axis (AX (1), [0 1 y2start y2end]);
set (AX(2),'YLim', [ylstart ylend])
set (AX(2), 'YTick',ylstart:ylstep:ylend)
set (AX (1), 'YLim', [y2start y2end])
set (AX (1), 'YTick',y2start:y2step:y2end)
(

H1l, 'linewidth', 2)

set (H2, "linewidth', 2)

xlabel ('Split, u', 'fontsize',12);

hold on;

H3 = plot (JTs,y22, 'Color', 'k', 'LineStyle', '—", "LineWidth',2);
hold on

122




199

200

201

202

203

204

205

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

H4 = plot(split,y22, 'Color','r', 'LineStyle','—", "LineWidth',2);

set (H3, "parent',AX (1)) ;
% hold on;
grid on;

print (h, '—depsc', 'CaselIId_optCalc.eps');

% Validity of AMTD approximation

UB = [1.4 1.4]; % Upper AMTD limit
IB = [(1/1.4) (1/1.4)1; % Lower AMTD limit
s = [0 17;

k = figure;

% figure (6);

plot (U, theta2,U, thetal, 'Linewidth', 2);

xlabel ('Split, u', 'fontsize',12);

ylabel ('\theta_{1}/\theta_{2}"', 'fontsize',12);

% legend('HX_{1,2}','HX {1,1}', "fontsize',12);

axis ([0 1 0 21);

% Using hline.m to include upper and lower bounds:
hline([1/1.4 1.4],{'m','m"}, {"AMID LB', 'AMTD UB'})

hold on;

plot (splitline, solid, 'Color', 'r', 'LineStyle', '—"', "LineWidth', 2);
legend ('HX_{1,2}',"HX_{1,1}"','Optimal split', 'fontsize',11l);
print (k, '—depsc', 'AMID_CaseIIb.eps');

TempCalc.m

1

10

11

% TempCalc function to calculate HX with the NTU—-method

function [T HE] = TempCalc(TO,w0,UAl,UA2,Thlin,whl, ...
Th2in,wh2,u)

% Cold stream heat capacity rates
wl = uxw0;

w2 = (1—u)*w0;

% Number of transit units (NTU)

NTUl = UAl/wl;
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12 NTU2 = UA2/w2;

13

14 % Heat capacity ratios
15 Cl = wl/whil;

16 C2 w2/wh2;

17
18 % Preventing from singular solutions
19 1£(C1>0.999 && C1<1.001)

20 C1=0.999;

21 end

22

23 1f(C2>0.999 && C2<1.001)

24 C2=0.999;

25 end

26

[

27 % Calculating the effectiveness of HXs

28 el = (l—exp(—NTUl*(Cl—1)))/ (Cl—exp (—NTULlx (C1-1)));
20 e2 = (l—exp(—NTU2* (C2—1)))/ (C2—exp (—NTU2* (C2—1))) ;
30 ehl = elxCl;
31 eh2 = e2xC2;

32

[

33 % Calculating outlet temperatures

34 Tl = elxThlin + (1l—el) «*TO;

35 T2 = e2xTh2in + (1—e2)*TO0;
36 Thl = (1—ehl)*Thlin + ehlxTO;
37 Th2 = (1—eh2)*Th2in + eh2xTO0;

383 Tmix = uxT1l+ (1l—u) *T2;

39

490 T = [T1 T2 Thl Th2 Tmix];

41 HE = [el ehl e2 eh2 Cl1 C2 NTUl NTU2];

ErrorCalc.m

o

1 % ErrorCalc function to calculate errors associated with using the

[

2 % AMTD and Underwood approximation

4 function [eUl eU2 eAMl eAM2] = ErrorCalc (dTcoldl, dThotl,
dTcold2, dThot2)
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7 %$Logarithmic mean temperature difference
8 LMl = (dThotl—dTcoldl)./log(dThotl./dTcoldl);
9 LM2 (dThot2—dTcold2) ./log(dThot2./dTcold?2);

10
11 $Arithmetic mean temperature difference

12 AM1 = (dTcoldl+dThotl) ./2;

13 AM2 = (dTcold2+dThot2)./2;

14

15 % Underwood temperature difference

16 UL = ((((dTcoldl).”(1/3))+((dThotl) .~(1/3)))./2)."3;
17 U2 = ((((dTcold2).”(1/3))+((dThot2) .~ (1/3)))./2)."3;
18

19 %AMTD error

20 eAM1 = (AM1-LM1)./LM1%100;

21 eAM2 = (AM2-LM2)./LM2x100;

22

23 %$Underwood error

24 eUl = (Ul-LM1)./LM1%100;
25 eU2 = (U2—LM2) ./LM2%100;
26

27 end

hline.m

1 function hhh=hline(y,inl, in2)
2 % function h=hline(y, linetype, label)

4 % Draws a horizontal line on the current axes at the location
specified by 'y'. Optional arguments are

5 % 'linetype' (default is 'r:') and 'label', which applies a
text label to the graph near the line. The

6 % label appears in the same color as the line.

8 % The line is held on the current axes, and after plotting the
line, the function returns the axes to

9 % its prior hold state.

o\

10

o

11 The HandleVisibility property of the line object is set to

"off", so not only does it not appear on
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12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

o\

o\

o\°

o o°  oe

o\

o°  oe

o\

0 o° o0 oo oo oo oP

o\

legends, but it is not findable by using findobj.
Specifying an output argument causes the function to

return a handle to the line, so it can be manipulated or
deleted. Also, the HandleVisibility can be

overridden by setting the root's ShowHiddenHandles property

to on.

h = hline (42, 'g', 'The Answer')

returns a handle to a green horizontal line on the current
axes at y=42, and creates a text object on

the current axes, close to the line, which reads "The Answer".

hline also supports vector inputs to draw multiple lines at

once. For example,

hline([4 8 12],{'g','x','b"'},{"'11"', "lab2"', 'LABELC'})

draws three lines with the appropriate labels and colors.

By Brandon Kuczenski for Kensington Labs.

brandon_kuczenski@kensingtonlabs.com

8 November 2001

if length(y)>1 % vector input

for I=1l:length(y)
switch nargin
case 1
linetype='r:"';
label="";
case 2
if ~iscell (inl)
inl={inl};
end
if I>length(inl)
linetype=inl{end};
else
linetype=inl{I};
end
label="";

case 3
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48

49

50

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

if ~iscell (inl)
inl={inl};
end
if ~iscell (in2)
in2={in2};
end
if I>length(inl)
linetype=inl{end};
else
linetype=inl{I};
end
if I>length(in2)
label=in2{end};
else
label=in2{I};
end
end
h(I)=hline(y(I),linetype,label);
end
else
switch nargin
case 1
linetype='r:"';
label="";
case 2
linetype=inl;
label="";
case 3
linetype=inl;
label=in2;

end

g=ishold(gca);
hold on

x=get (gca, 'xlim");

h=plot (x, [y v],linetype);
if ~isempty(label)
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89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

108

109

end

yy=get (gca, '"ylim');
yrange=yy (2)—yy (1) ;
yunit=(y—yy (1)) /yrange;
if yunit<0.2
text (x(1)+0.85x(x(2)—x(1)),y+0.02xyrange, label, ...
'color',get (h, 'color'))
else
text (x(1)+0.85% (x(2)—x(1)),y—0.02+«yrange, label, ...
'color',get (h, 'color'))
end

end

if g==

hold off

end

set (h, 'tag', 'hline', "handlevisibility','off') % this last
part is so that it doesn't show up on legends

)

% else

if nargout

end

hhh=h;
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C.2 Dynamic Analysis Scripts

Dynamic Case I: Two Heat Exchangers in Parallel

Run.m

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

o\

RUN FILE FOR DYNAMIC SIMULATION OF THE

o\

Topology to be investigated:

o\
o\

o\°
o
o\

o
|
|
|
|
|
|
|
|

o\

o°
o\°

o\
N O
o\

clear all;
close all;
clc;
% Calling parameters from Data.m file
[TO, Thl,Th2, ...
mO, ml, m2,mhl,mh2. ..
rho_0, hc, CpO,...
Vwall, rho_wall, Cp_wall, ...
P1l, P2] = Data;

sim('dynamic_11_1")

o\
o\

TUNING OF CONTROLLER

10% STEP CHANGE INLET MASS FLOW COLD
TUNING PLOT

t0 = 800;

tend = 1800;

o oo oP
o°  oe

o\
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1:1 HEN
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36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

N 0 O 0 o0 o o o° o°  oe

o

o\

A A o o O O o o° oo oo

o

o\

o o0 oo o° oe

o\

o\

o\

o\

o\

cvl 0 = —6;
cvl_end = 1;

cvl_step = 1;

ml_0 = 9;
ml_end = 11;
ml_step = 0.5;

k = figure;

[AX,H1,H2] = plotyy(t,cvl,t,ml);

set (get (AX (1), 'Ylabel'), 'String', 'Controlled variable, JT
[~{\circ}C]"', 'fontsize',12)

set (get (AX(2), 'Ylabel'), 'String', 'Mass flow m_1 to upper
path [kg/sec]', 'fontsize',12)

axis (AX (1), [t0 tend cvl_0 cvl_end]);

axis (AX(2), [t0 tend ml_0 ml_end]);

set (AX (1), 'YLim', [cv1l_0 cvl_end])

set (AX (1), 'YTick',cvl_0:cvl_step:cvl_end)
set (AX (2),'YLim', [m1_0 ml_end])

set (AX(2),'YTick',ml_0:ml_step:ml_end)
xlabel ('Time [sec]', 'fontsize',12)

set (H1, 'linewidth', 2)
set (H2, 'linewidth', 2)
grid on

print (k, '—depsc', 'tune_1ll.eps');

IMPLEMENTING FILTERS — SIMULATING BEHAVIOR WITH AND WITHOUT
FILTE

% Without Filter

cvl_noAF = cvl;

ul_noAF = ul;

Tl_noAF = T1;

T2_noAF = T2;

Tend_noAF = Tend;

save no_filter

% With Filter

cvl_AF = cvl;
ul_AF = ul;
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74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

o\°

T1_AF T1;
T2 _AF = T2;
Tend_AF = Tend;

o\°

o

o\

save filter

o\

PLOTING THE RESULTS

t0 = 800;
tend = 2000;

cvl 0 = —3.5;
cvl_end = 1;

cvl_step = 0.1;

% CONTROLLED VARIABLE PROFILES

k = figure;

plot (t,cvl_noAF, 'b',t,cvl_AF, 'r', 'LineWidth', 2)

legend ('Without filter', 'With filter')

xlabel ('Time [sec]','fontsize',12);

ylabel ('Controlled variable, JT ["“{\circ}C]','fontsize',612)
axis([t0 tend cvl_0 cvl_end])

grid on

[

% print (k,'—depsc', 'CV_11l.eps');

% SPLIT
i = figure;

plot (t,ul_noAF, 'b',t,ul_AF, 'r', 'Linewidth', 2)
legend ('Without filter', 'With filter')

xlabel ('Time [sec]', 'fontsize',12)

ylabel ('Split u (Upper path)', "fontsize',12)
axis ([t0 tend 0 0.36])

grid on

o

% print (i, '—depsc', 'Split_1l.eps');

\

% TEMPERATURE PROFILES
J = figure;
plot (t,T1_AF,t,T2_AF,t,Tend_AF, 'LineWidth', 2)

xlabel ('Time[sec] ', "fontsize',12)

131




115 ylabel ('Temperature [“{\circ}C]', 'fontsize',12)
116 axis ([t0 tend 195 2207)

117 legend ('T_{1,1}','"T_{1,2}",'T_{end}")

118 grid on

Q

119 $ print (j,'—depsc','T_1l.eps');

Data.m

\o

1 % DATA FILE
2 % STREAM AND HEAT EXCHANGER DATA FOR THE 1:1 HEN

4 function [TO,Thl,Th2, ...

5 m0, ml, m2,mhl, mh2. ..

6 rho_0, hc, CpO,...

7 Vwall, rho_wall, Cp_wall, ...
8 P1l, P2] = Data

10

11 % COLD STREAM

12 TO = 130; % Inlet cold stream temperature [degC]

13 rho_0 = 1000; % Density cold stream [kg/m3]

14 hc = 0.17; % Heat transfer coeffsient cold fluid (water)
[kW/m2degC]

15 mO = 38; % Mass flow cold stream [kg/sek]

16 Cp0 = 2.5; % Heat capacity cold stream [kJ/kgdegC]

17 ml m0x0.2553; % Bypass to upper branch, start value for
simulation

18 m2 = mO—ml; % Bypass to lower branch, start value for simulation

19

20 % HEAT EXCHANGER 1

21 Thl = 203; % Inlet hot stream temperature [degC]

22 mhl = 30; % Mass flow hot stream [kg/sek]

23 Pl = 1; % Price constant

24

25 % HEAT EXCHANGER 2
26 Th2 = 248; % Inlet hot stream temperature [degC]

27 mh2 = 21.67; % Mass flow hot stream [kg/sek]
28 P2 = 1; % Price constant

29

30 % HEAT EXCHANGER DATA
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31 m_wall = 3000; % Wall weight HXers [kg]

32 rho_wall = 7850; % Wall density CS [kg/m3] %7850

33 Vwall = m_wall/rho_wall; % Volume walls [m3]

3¢ Cp_wall = 0.49; % Heat capacity walls CS [kW/kgdegC]
35

36 end

Dynamic.m

1 % DYNAMIC FUNCTION AND STATE EQUATIONS FOR THE 1:1 HEN

\

3 function xprime = Dynamic(t,X,U,N, HXindex)
5 % Defining the outlet varibles

¢ Th_out = X(1:N);

7 Twall = X (N+1:2%N);

8 Tc_out = X (2%N+1:3%N);

10 % Defining inlet parameters from Simulink

11 Th in(1l) = U(1);

12 mh_in = U(2);
13 Tc_in(l) = U(3);
14 mO_in = U(4);

15
16 $ Calling parameters from Data.m file

17z [TO,Thl,Th2, ...

18 mO, ml,m2,mhl,mh2, ...
19 rho_0, hc, CpO, ...
20 Vwall, rho_wall, Cp_wall] = Data;
21

22

23 1f HXindex == 1

24 Cph = 2;

25 wh = Cph+*mh_in;

26 rho_h = rho_0;

27 hh = 1.31xhc;

28 U = (hhxhc)/ (hh+hc);

29 Vhot = mh_in/rho_h;

30 Vcold = mO_in/rho_0;

31 w0 = m0_in*CpO0;
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32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Ai = 250;

elseif HXindex ==
Cph = 3;
wh = Cph+*mh_in;
rho_h = rho_0;
hh = 1.1xhc;
U = (hhxhc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = m0_in*Cp0;
Ai = 700;

end

% STATE EQUATIONS

% Hot stream

dThotdt (1) =
(Th_in(1)—Th_out (1)— ((UxAi)/ (wh*N) ) x (Th_out (1)—Twall(N)) ...
* (mh_1inxN) / (rho_hx*Vhot)) ;

% Wall

dTwalldt (1) = (hhx (Th_out (N)—Twall(1l))—hc* (Twall(1l)—Tc_out(1l))) ...

* (A1/ (rho_wall*Cp_wall*Vwall));

o

% Cold stream

dTcolddt (1)

=(Tc_in(1)—Tc_out (1)— ((U%Ai)/ (wO*N) ) (Tc_out (1)—Twall(l))) ...

* ((m0_inx*N) / (rho_0*Vcold)) ;

for i = 2:N
J = N—i+1;
dThotdt (1) = (Th_out (i—1)—Th_out (1)— ((U*xAi1)/ (wh*N)) ...
* (Th_out (1)—Twall (j)) * (mh_in«N) / (rho_h=*Vhot)) ;

end
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71

73

74

75

76

77

78

79

80

81

82

for 3 = 2:N
i = N—-j+1;
dTwalldt (j) =

(hh* (Th_out (1)—Twall (j))—hc* (Twall (j)—Tc_out (3))) ...

* (Ai/ (rho_wall+Cp_wallxVwall));
dTcolddt (j)=(Tc_out (j—1)—Tc_out (J)— ((UxAi) / (WO*N)) ...
* (Tc_out (J)—Twall (j)) * ((mO_inxN) / (rho_0+Vcold))) ;

end

xprime = [dThotdt, dTwalldt, dTcolddt];

end

HX1.m

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

% HEAT EXCHANGER 1

function [sys,x0] = HX1(t,x,u,flaqg)

HXindex = 1; % HX number

N = 10; % Model order

if abs(flag) ==

sys = Dynamic (t, x,u,N,HXindex) ;

elseif abs(flag) == 3
sys(l,1l) = x(N); % Outlet hot temperature
sys(2,1) = x(3«N); % Outlet cold temperature (Tend)

elseif flag ==

x0 = ssvar (HXindex,N);

sys = [3%N,0,2,4,0,01;
else

sys = [];

end
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25 end

HX2.m

1 % HEAT EXCHANGER 2

3 function [sys,x0] = HX2(t,x,u,flaqg)

5 HXindex 2; % HX number

6 N = 10; % Model order

o 1f abs(flag) == 1

10 sys = Dynamic(t,x,u,N,HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3xN); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N) ;

18 sys = [3%N,0,2,4,0,01;

19

20 else

21 sys = [1;

22

23 end

24

25 end

sSsvar.m

1 % STEADY STATE VARIABLES FOR EACH HEAT EXCHANGER
2 % IN THE 1:1 HEN

4 function [x0] = ssvar (HXindex, N)

6 if HXindex ==
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10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

x0 = [202.

201.

200.

199.
.5784
.2197
192.
187.
182.
174.
156.
.5020
.5028
.2660
189.
193.
196.
198.
199.
201.
132.
150.
163.
.0288
181.
187.
191.
194.
197.
199.

197
195

168
177
184

174

elseif HXindex ==

x0 = [238

4350
6831
6825
3507

0806
9029
3430
9436
5233

3478
1663
0355
1914
8113
0286
3926
3702
8786

6556
3864
6925
9281
3593
18611];

.5844
229.
219.
210.

1347
6505
1320




49

50

51

53

54

55

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

end

200

181

152
142

171

200

150
160

.5788
190.
.3683
171.
162.
.2900
.1443
151.
le6l.
.3324
180.
190.
.2047
209.
219.
228.
130.
140.
.5587
.2929
169.
179.
189.
198.
208.
217.

9910

7107
0179

9090
6383

9914
6155

7592
2791
7645
9841
7891

9919
6558
2846
8787
4380
9627];
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Dynamic Case II: Two Heat Exchangers in Series Parallel to One Heat

Exchanger

Run.m

RUN FILE FOR DYNAMIC SIMULATION OF THE 2:1 HEN

-
o\°

3 % Topology to be investigated:
4

9900000000000000000000000000000000
5 OO0OO0OO0OOOOOOOOOOOOOOOOODOOOOOOOOOOOOOO™©
6 % 1 2 %
7% 0 0 %
8 % _ _— %
9 % 0 %
10 % 3 %

O 0 O o O [<ie) [l e] 0o O
11 0000000000000 000000000000000000000
12
13 clear all;
14 close all;
15 clc;
16
o

17 % Calling parameters from Data.m

18 [TO,Thl, Th2,Th3...

19 mO, ml, m2,mhl, mh2,mh3...

20 rho_0, hc, CpO, ...

21 Vwall, rho_wall, Cp_wall, ...
22 filterk, filtert, ...

23 P1l, P2, P3] = Data;

24
25
26 % SIMULINK FILE FOR SIMULATION WITH THE MODIFIED CV

27 % sim('dynamic_21_1_1")

28

\

29 % SIMULINK FILE FOR SIMULATION WITH THE ORIGINAL CV
30 sim('dynamic_21_1")

31

32

33

o\°

% TUNING OF CONTROLLER
% 10% STEP CHANGE INLET MASS FLOW COLD STREAM
% TUNING PLOT

34

o\

35

o\

36
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37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

O o o0 o o o o O o o o° o° o°

o\

o\

N 0 O o0 o0 do oo o° e o

o\

o\

0 0 o o0 o0 o oo o

o\

t0 = 800;
tend = 1800;

cvl 0 = 1le7;
cvl_end = 3e7;

cvl_step = 0.5e7;

ml_0 = 28;
ml_end = 34;
ml_step = 1;

k = figure;

[AX,H1,H2] = plotyy(t,cvl,t,ml);

set (get (AX (1), 'Ylabel'), 'String', 'Controlled variable, JT
[~{\circ}C]"', 'fontsize', 12)

set (get (AX(2), 'Ylabel'), 'String', '"Mass flow m_1 to upper
path [kg/sec]', 'fontsize',12)

axis (AX (1), [t0 tend cvl_0 cvl_end]);

axis (AX (2), [t0 tend ml_0 ml_end]);

set (AX (1), 'YLim', [cvl_0 cvl_end])

set (AX (1), 'YTick',cvl_O:cvl_step:cvl_end)
set (AX(2),'YLim', [m1_0 ml_end])

set (AX (2), 'YTick',ml_0O:ml_step:ml_end)
xlabel ('Time [sec]', 'fontsize',12)

set (H1, 'linewidth', 2)
set (H2, 'linewidth', 2)
grid on

print (k, '—depsc', 'tune_21_numJT.eps');

% IMPLEMENTING FILTERS — SIMULATING BEHAVIOR WITH AND
WITHOUT FILTER

% Without Filter

cvl_noAF = cvl;

ul_noAF = ul;

Tl_noAF = T1;

T2_noAF = T2;

T3_noAF = T3;

Tend_noAF = Tend;

save no_filter
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75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

107

108

109

110

111

112

113

114

115

o0 o0 oo o oP

o\

o\

t0

% With Filter
cvl_AF = cvl;
ul_AF = ul;
T1_AF = T1;
T2_AF = T2;
T3_AF = T3;
Tend_AF = Tend;

save filter

PLOTING THE RESULTS

= 800;

tend = 2000;

cvl_0 = —5;

cvl_end = 5;

cvl_step = 5;

o

o0 o0 o°  oe

o\°

A o0 o o O o° o° o

oe

% RESULTS FOR THE CASE WITH COOLING HX (MOD. CV)

X

% TEMPERATURE PROFILES W/ COOLING TH2

h = figure;

figure (1)

plot(t,T1,t,T2,t,Th2_d, 'LineWidth', 2)

xlabel ('Time [sec]', 'fontsize',12);

ylabel ('Temperature [ \circC]', 'fontsize',12);
legend ('T_{1,1}"','T_{2,1}",'Th_{2,1}")

axis ([t0 tend 170 2601])

grid on

[

% print (h, '—depsc', 'T_coolHX2_numJT_Tunel.eps');
% SPLIT PROFILE W/ COOLING TH2

j = figure;

figure (2)

plot (t,ul, 'LinewWidth', 2)

xlabel ('Time [sec]', 'fontsize',12);
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116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

o0 do oo oe

o\°

o\

0 o0 o o A A o° J° o° o° o°

o\

0 o0 0 A A 0 O oo oo oe

o\°

%

1

ylabel ('Split u', 'fontsize',12);
% legend('T1','T2"', 'Th2")

axis ([t0 tend 0 117)

grid on

[o)

% print (j, '—depsc', 'Split_coolHX2_numJT_Tunel.eps');

o\

RESULTS FOR THE ORIGINAL CASE (ORG. CV)

o\

CONTROLLED VARIABLE PROFILE WITHOUT FILTER
k = figure;

% figure (3)

plot (t,cvl, 'LineWidth', 2)

% h=BreakXAxis (t,cvl,—1e7,—-5000,1000);
legend ('Without AF', 'With AF'")

title('CVv (J1-J2)")

o\

o\

xlabel ('Time [sec]', 'fontsize',12);

ylabel ('Mod. control variable, JT ["“{\circ}C”4]','fontsize',6 12)

axis ([t0 tend cvl_0 cvl_end])
grid on

print (k, '—depsc', 'CV_coolHX2_ fullplot_Tune2Z.eps');

o\°

SPLIT WITHOUT FILTER

o\

figure (3)

i = figure;

plot (t,ul, 'LineWidth', 2)

% legend ('Without AF', 'With AF')

% title('CVv (J1-J2)")

xlabel ('Time [sec]', 'fontsize',12)

ylabel ('Split u (Upper path)', 'fontsize',12)
axis ([t0 tend 0.1 0.8])

grid on

print (i, '—depsc', 'Split_21.eps');

CONTROLLED VARIABLE PROFILE WITH FILTER

= figure;

plot (t,cvl_noAF, 'b',t,cvl_AF, 'r', 'LineWidth', 2)

legend ('Without filter', 'With filter')
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157 xlabel ('Time [sec]', 'fontsize',12);

158 ylabel ('Controlled variable, JT ["{\circ}C]', 'fontsize',12)
159 axis ([t0 tend cvl_0 cvl_end])

160 grid on

161 % print (l,'—depsc', 'CV_filter_21.eps');

162

163 % SPLIT WITH FILTER

164 1 = figure;

165 plot (t,ul_noAF, 'b',t,ul_AF,'r', 'LineWidth',2)
166 legend('Without filter','With filter')

167 xlabel ('Time [sec]', 'fontsize',12)

168 ylabel ('Split u (Upper path)', 'fontsize',12)

169 axis([t0 tend 0.3 0.601])

170 grid on

171 % print (i, '—depsc', 'Split_filter_21l.eps');

172

173 % TEMPERATURE PROFILES WITH FILTER

174 j = figure;

175 plot(t,T1_AF,t,T2_AF,t,T3,t,Tend_AF, 'LineWidth', 2)
176 xlabel ('Time[sec]', "fontsize',12)

177 ylabel ('Temperature [“{\circ}C]', 'fontsize',12)
178 axis([t0 tend 160 2101])

179 legend ('T_{1,1}','T_{2,1}','"T_{1,2}"','T_{end}")
180 grid on

Q

181 % print (j,'—depsc','T_21l.eps');

Data.m

1 % DATA FILE
2 % STREAM AND HEAT EXCHANGER DATA FOR THE 2:1 HEN

4 function [TO,Thl,Th2,Th3...

5 m0,ml, m2,mhl, mh2,mh3...

6 rho_0, hc, CpO,...

7 Vwall, rho_wall, Cp_wall, ...
8 filterk, filtert, ...

9 P1l, P2, P3] = Dataj;

10
11

12 % COLD STREAM DATA
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13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

TO

= 130; % Inlet cold stream temperature [degC]

rho_0 = 1000; % Density cold stream [kg/m3]

hc

mO

= 0.10; % Heat transfer coeffsient cold fluid (water)
[kW/m2degC]
= 64; % Mass flow cold stream [kg/sek]

Cp0 = 2.5; % Heat capacity cold stream [kJ/kgdegC]

ml

m2

o

°

mO0x0.4522; % Bypass to upper branch, start value for

simulation

= mO—ml; % Bypass to lower branch, start value for simulation

HEAT EXCHANGER 1

Thl = 203; % Inlet hot stream temperature [degC]

mhl = 30; % Mass flow hot stream [kg/sec]
Pl = 1; % Price constant

%

HEAT EXCHANGER 2

Th2 = 255; % Inlet hot stream temperature [degC]
mh2 = 13.5; % Mass flow hot stream [kg/sec]

P2

\o

°

= 1; % Price constant

HEAT EXCHANGER 3

Th3 = 248; % Inlet hot stream temperature [degC]
mh3 = 21.67; % Mass flow hot stream [kg/sec]

P3

\o

°

Q

= 1; % Price constant

HEAT EXCHANGER DATA

m_wall = 3000; % Wall weight HXers [kg]
rho_wall = 7850; % Wall density CS [kg/m3] %7850
Vwall = m_wall/rho_wall; % Wall volume [m3]

Cp_wall = 0.49; % Heat capacity wall CS [kW/kgdegC]

end

Dynamic.m

3

)

°

DYNAMIC FUNCTION AND STATE EQUATIONS FOR THE 2:1 HEN

function xprime = Dynamic (t,X,U,N,HXindex)
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11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

[

% Defini
Th_out
Twall

Tc_out

o

% Defini

Th_in(1l) = U(1);
mh_in = U(2);
Tc_in(1l) = U(3);
mO_in = U(4);
% Calling additional parameters from Data.m
[TO, Thl, Th2,Th3. ..
m0,ml, m2,mhl, mh2,mh3. ..
rho_0, hc, CpO,...
Vwall, rho_wall, Cp_wall, ...
filterk, filtert, ...
P1l, P2, P3] = Dataj;
if HXindex == 1
Cph = 2;
wh = Cph+*mh_in;
rho_h = rho_0;
hh = 1.089+hc;
U = (hhxhc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = mO0_in*CpO0;
Ai = 341;
elseif HXindex ==
Cph = 2;
wh = Cphxmh_in;
rho_h = rho_0;
hh = 1.025+hc;
U = (hhxhc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = mO0_in*CpO0;

ng outlet variables
X(1:N);
X(N+1:2%N);

X (2*xN+1:3%N) ;

ng inlet parameters from Simulink
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78

79

80

81

82

83

84

Ai = 6l6;

else HXindex ==
Cph = 3;
wh = Cph+*mh_in;
rho_h = rho_0;
hh = 1.070+hc;
U = (hhxhc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = m0_in*Cp0;
Ai = 1118;

end

\

% STATE EQUATIONS

% Hot stream

dThotdt (1) =
(Th_in(1)—Th_out (1)— ((UxA1) / (wh*N)) * (Th_out (1)—Twall (N)) ...
* (mh_1inxN) / (rho_hxVhot)) ;

% Wall

dTwalldt (1) = (hhx (Th_out (N)—Twall(1l))—hc* (Twall(1l)—Tc_out(l))) ...

* (Ai/ (rho_wall+«Cp_wallxVwall));

[

% Cold stream

dTcolddt (1)

=(Tc_in(1)—Tc_out (1)— ((U*xA1)/ (wO*N) ) * (Tc_out (1)—Twall(l))) ...

* ((m0_inx*N) / (rho_0x*Vcold)) ;

for i = 2:N
J = N—1i+1;
dThotdt (1) = (Th_out (i—1)—Th_out (1)— ((U*A1)/ (wh*N)) *...
(Th_out (1)—Twall (J)) * (mh_in*N) / (rho_h=*Vhot) ) ;

end
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87

88

89

90

91

92

93

94

95

96

for j = 2:N
i = N—j+1;
dTwalldt (j) =
(hhx (Th_out (1)—Twall (j))—hcx (Twall (j)—Tc_out (3j))) ...
*x (A1/ (rho_wall«Cp_wall*Vwall));
dTcolddt (j)=(Tc_out (j—1)—Tc_out (J)—((UxA1)/ (WOxN) ) *. ..
(Tc_out (j)—Twall (j)) * ((m0_in=*N) / (rho_0xVcold)));
end

$ Outlet variables

xprime = [dThotdt, dTwalldt, dTcolddt];

end

HX1.m

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

% HEAT EXCHANGER 1

function [sys,x0] = HX1(t,x,u,flaqg)

HXindex = 1; % HX number

N = 10; % Model order

if abs(flag) ==
display('flag = 1")
sys = Dynamic (t, x,u,N,HXindex) ;
disp(sys)

elseif abs(flag)
display('flag = 3")

sys(l,1) = x(N); % Outlet hot temperature
sys(2,1) = x(3«xN); % Outlet cold temperature (Tend)
disp (sys)

elseif flag

display('flag = 0")

x0 = ssvar (HXindex,N) ;
sys = [3x%N,0,2,4,0,0];
disp (sys)
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25

26 else

27 sys = [1;
28

20 end

30

31 end

HX2.m

1 % HEAT EXCHANGER 2

3 function [sys,x0] = HX2(t,x,u,flag)

5 HXindex = 2; % HX number

6 N = 10; % Model order

9 if abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3«N); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N);

18 sys = [3xN,0,2,4,0,0];

19

20 else

21 sys = [];

22

23 end

24

25 end

HX3.m

1 % HEAT EXCHANGER 3
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3 function [sys,x0] = HX3(t,x,u, flaqg)

5 HXindex = 3; % HX number

6 N = 10; % Model order

9 1f abs(flag) ==
10 sys = Dynamic (t, x,u,N,HXindex) ;
11

12 elseif abs(flag) ==

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3%xN); % Outlet cold temperature (Tend)

15

16 elseif flag ==

17 x0 = ssvar (HXindex,N) ;
18 sys = [3%N,0,2,4,0,01;
19

20 else

21 sys = [1;

22

23 end

24

25 end

ssvar.m

1 % STEADY STATE VARIABLES FOR EACH HEAT EXCHANGER
2 % IN THE 2:1 HEN

4 function [x0] = ssvar (HXindex, N)
5

6 if HXindex ==

7

8 x0 = [198.3549

9 193.7732
10 189.2542
11 184.7968
12 180.4004
13 176.0641
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14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

171.
167.
163.
159.
145.
149.
153.
157.
161.
165.
169.
.0012
178.
182.
130.
134.
137.
141.
145.
149.
153.
157.
161.
165.

174

elseif HXindex == 2

x0 = [234.
217.
205.
.4616

195

187.
182.
177.
.1237
171.
169.
167.
169.
.1054

174

171

7870
5684
4074
3032
4507
3629
3294
3508
4278
5614
7523

3089
6763
3653
0685
8231
6297
4890
4017
3687
3906
4683
60247;

0031
7572
1873

9366
1142
6093

4268
3401
5332
0914
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56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

173
177.
181
187.
194
203.
215.
165.
166.
168.
169
171
174
178
183.
189
197

else HXindex ==

x0 = [235.
222.
211
200.
190
180.
171
163
155
148.
139.
146
153.
161.
170.
179.

.7083

0724

.4204

0398

.3026

6894
8213
6811
6977
0116

.7098
.9046
L7412
.4074

1458

.2699
.18487;

0515
8678

.4038

6169

L4672

9169

.9308
.4754
.5194

0334
6122

.5695

9637
8220
1736
0494
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96

97

98

99

100

101

102

104

105

106

107

108

109

110

111

112

113

end

188.

198

143

158

184

204

4824

.5076
209.
220.
130.
136.

1621
4854
6014
9932

.71862
151.

0056

.6782
166.
175.

8324
4985

.7086
194.

4969

.8996];
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Dynamic Case III: Three Heat Exchangers in Series Parallel to

Heat Exchangers

Run.m

Two

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

o\°

RUN FILE FOR DYNAMIC SIMULATION OF

o\

Topology to be investigated:

©00000000000000000000000000000000000
OO0OOOO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOO©O©ODO
o

% 1 2 3

o

% 0 0 0

o

> o o
o

% 0 0

o

% 4 5

0 00000000000000000000000000000000000
5555555555555 5%55555%5%555%5%55%5%5%%%

clear all;

close all;

clc;

% Calling parameters from Data.m fil

[TO, Thl, Th2,Th3, Th4, Th5, ...

o

e

THE 3:2 HEN

oo o oe

o\

o

mO,ml,m2,mhl,mh2,mh3,mh4,mh5, ...

rho_0, hc,Cp0, ...

Vwall,rho_wall,Cp_wall, ...

P1,P2,P3,P4,P5] Data;

sim('dynamic_32")

% % TUNING OF CONTROLLER

$ % 10% STEP CHANGE INLET MASS FLOW COLD
% % TUNING PLOT

% t0 = 800;

$ tend = 2000;

$ cvl_0 = —5;

% cvl_end 10;
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38

39
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41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

o0 e o o0 oo do o

o\

o\

0 o 0 A A 0 o oo o oe

o\

o

0 o0 o0 o0 oo oo oP

o\°

o o° o° o° oe

o\

cvl_step = 3;

ml 0 = 16;
ml_end = 20;
ml_step = 1;

[AX,H1,H2] = plotyy(t,cvl,t,ml);

set (get (AX (1), 'Ylabel'), 'String', 'Controlled variable, JT
[“{\circ}C]"', 'fontsize',12)

set (get (AX(2),'Ylabel'), 'String', '"Mass flow m_1 to upper
path [kg/sec]', 'fontsize',12)

axis (AX (1), [t0 tend cvl_0 cvl_end]);
axis (AX (2), [t0 tend ml_0 ml_end]);

set (AX (1), '"YLim', [cv1l_0 cvl_end])

set (AX (1), 'YTick',cvl_0O:cvl_step:cvl_end)
set (AX (2),'YLim', [m1_0 ml_end])

set (AX(2),'YTick',ml_0O:ml_step:ml_end)
xlabel ('Time [sec]', 'fontsize',12)

set (H1, 'linewidth', 2)
set (H2, 'linewidth', 2)
grid on

print (k, '—depsc', "tune_32.eps');

IMPLEMENTING FILTERS — SIMULATING BEHAVIOR WITH AND WITHOUT
FILTE
% Without Filter

cvl_noAF = cvl;
ul_noAF = ul;
Tl_noAF = T1;

T2_noAF = T2;
Tend_noAF = Tend;

save no_filter

% With Filter
cvl_AF = cvl;
ul_AF = ul;
T1_AF = T1;
T2_AF = T2;
T3_AF = T3;
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110
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115

o\°

T4_AF T4;
T5_AF = T5;
Tend_AF = Tend;

o° o0 oe

o\

save filter

o\

PLOTING THE RESULTS

t0 = 800;
tend = 3000;

cvl 0 = —0.5;
cvl_end = 3;

cvl_step = 0.1;

% CONTROLLED VARIABLE PROFILE

k = figure;

plot (t,cvl_noAF, 'b',t,cvl_AF, 'r', 'LineWidth', 2)

legend ('Without filter', 'With filter')

xlabel ('Time [sec]','fontsize',12);

ylabel ('Controlled variable, JT ["“{\circ}C]','fontsize',612)
axis([t0 tend cvl_0 cvl_end])

grid on

[

% print (k, '—depsc', 'CV_32.eps');

% SPLIT
i = figure;

plot (t,ul_noAF, 'b',t,ul_AF, 'r', 'Linewidth', 2)
legend ('Without filter', 'With filter')

xlabel ('Time [sec]', 'fontsize',12)

ylabel ('Split u (Upper path)', "fontsize',12)
axis([t0 tend 0.3 0.38])

grid on

o

% print (i, '—depsc', 'Split_32.eps');

\

% TEMPERATURE PROFILES

J = figure;
plot(t,Tl1_AF,t,T2_AF,t,T3_AF,t,T4_AF,t,T5_AF,t, ...
Tend_AF, 'LineWidth', 2)
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116

117

118

119

120

121

xlabel ('Time[sec] ', "fontsize',12)

ylabel ('Temperature [~{\circ}C]', 'fontsize',12)

axis ([t0 tend 145 195])

legend ('T_{1,1}','T_{2,1}"','"T_{3,1}','T_{1,2}','T_{2,2}','T_{end}")
grid on

[

% print (j,'—depsc', 'T_32.eps');

Data.m

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

% DATA FILE
% STREAM AND HEAT EXCHANGER DATA FOR THE 3:2 HEN

function [TO,Thl,Th2,Th3,Th4,Th5, ...
mO,ml, m2,mhl,mh2,mh3, mh4,mh5, ...
rho_0, hc,CpQ, ...
Vwall, rho_wall,Cp_wall, ...
P1,P2,P3,P4,P5] = Data

% COLD STREAM

TO = 130; % Inlet cold stream temperature [degC]

rho_0 = 1000; % Density cold stream [kg/m3]

hc = 0.10; % Heat transfer coeffsient cold fluid (water)
[kW/m2degC]

m0 = 60; % Mass flow cold stream [kg/sek]

Cp0 = 2.5; % Heat capacity cold stream [kJ/kgdegC]

ml = m0%x0.2828; % Bypass to upper branch, start value for

simulation

m2 = mO0—ml; % Bypass to lower branch, start value for simulation

%$ HEAT EXCHANGER 1
Thl = 190; % Inlet hot stream temperature [degC]
mhl = 25; % Mass flow hot stream [kg/sec]

Pl = 1; % Price constant

% HEAT EXCHANGER 2
Th2 = 203; % Inlet hot stream temperature [degC]
mh2 = 15; % Mass flow hot stream [kg/sec]

P2 = 1; % Price constant
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30 % HEAT EXCHANGER 3
31 Th3 = 220; % Inlet hot stream temperature [degC]
32 mh3

7.5; % Mass flow hot stream [kg/sec]
33 P3 = 1; % Price constant
34

35 % HEAT EXCHANGER 4

X

36 Thd = 220; % Inlet hot stream temperature[degC]
37 mhd = 17.5; % Mass flow hot stream [kg/sec]

38 P4 = 1; $ Price constant

39

40 % HEAT EXCHANGER 5

41 Th5 = 248; % Inlet hot stresm temperature [degC]
42 mhb5

10; % Mass flow hot stream [kg/sec]

43 P5 = 1; % Price constant

44

45 % HEAT EXCHANGER DATA

46 m_wall = 3000; % Wall weight HXers [kqg]

47 rho_wall = 7850; % Wall density CS [kg/m3] %7850
48 Vwall = m_wall/rho_wall; % Volume walls [m3]

49 Cp_wall = 0.49; % Heat capacity walls CS [kW/kgdegC]
50

51

52

53 end

Dynamic.m

,_.
X

% DYNAMIC FUNCTION AND STEADY STATE EQUATIONS FOR THE 3:2 HEN
3 function xprime = Dynamic (t,X,U,N, HXindex)

5 % Defining the outlet variables

6 Th_out = X(1:N);

7 Twall = X (N+1:2%N);

8 Tc_out = X (2#«N+1:3%N);

10 $ Defining inlet parameters from Simulink

11 Th_in(1l) = U(1);
12 mh_in = U(2);
13 Tc_in(l) = U(3);
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15

16

17

18

19

20
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22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

mO_in = U(4);

% Calling parameters from Data.m file

[TO, Thl,Th2, Th3,Th4, Th5, ...
m0, ml, m2,mhl, mh2,mh3,mh4,mh5, ...
rho_0,hc,CpQ, ...
Vwall, rho_wall,Cp_wall, ...
P1,P2,P3,P4,P5] = Data;

if HXindex ==
Cph = 2;
wh = Cph*mh_in;
rho_h = rho_0;
hh = 1.109xhc;
U = (hh*hc)/ (hh+hc) ;
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = m0_in=*CpO0;
Al = 112.5;

elseif HXindex ==

Cph = 2;

wh = Cph*mh_in;
rho_h = rho_0;

hh = 1.088xhc;

U = (hh*hc)/ (hh+hc) ;
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = mO0_in=*CpO0;

Al = 102;

elseif HXindex ==
Cph = 2;
wh = Cphs*mh_in;
rho_h = rho_0;
hh = 1.07+*hc;
U = (hhxhc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
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w0 = mO0_in*Cp0;
Ai = 85;

elseif HXindex ==

Cph = 4;

wh = Cph+*mh_in;
rho_h = rho_0;

hh = 1.068x+hc;

U = (hhxhc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = mO0_in*Cp0;

Ai = 800;

else HXindex ==

end

Cph = 2;

wh = Cph+*mh_in;
rho_h = rho_0;

hh = 1xhc;

U = (hhxhc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = mO0_in*CpO0;

Ai = 765;

% STATE EQUATIONS

[

% Hot stream

dThotdt (1) = (Th_in(1)—Th_out (1)— ((U*A1)/ (WhxN)) ...
(Th_out (1)—Twall (N)) * (mh_inxN) / (rho_hxVhot)) ;

% Wall
dTwalldt (1) =

(hh* (Th_out (N)—Twall (1) )—hc* (Twall(l)—Tc_out (1l)))*...

(A1/ (rho_wall*Cp_wallxVwall));
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o

% Cold stream

dTcolddt (1)

=(Tc_in(1)—Tc_out (1)— ((UxAi)/ (wOxN) ) * (Tc_out (1)—Twall (1)))*...

((mO_1inxN) / (rho_0xVcold)) ;

for i = 2:N
J = N—i+1;
dThotdt (1) = (Th_out (i—1)—Th_out (1)— ((U*xA1)/ (wh*N)) ...
(Th_out (1)—Twall (J)) * (mh_in*N) / (rho_h=*Vhot)) ;

end

for 3 = 2:N
i = N—j+1;
dTwalldt (j) =
(hh* (Th_out (1)—Twall (j))—hcx* (Twall (j)—Tc_out (j))) ...
(Ai/ (rho_wall*Cp_wallxVwall));
dTcolddt (j)=(Tc_out (j—1)—Tc_out (J)—((UxA1i)/ (WOxN) ) *. ..
(Tc_out (j)—Twall (J)) * ((mO_in*N) / (rho_0%Vcold)));

end

xprime = [dThotdt, dTwalldt, dTcolddt];

HX1.m

10

11

12

13

% HEAT EXCHANGER 1

function [sys,x0] = HX1(t,x,u,flaqg)

HXindex
N = 10; % Model order

1; % HX number

\

if abs(flag) ==

sys = Dynamic (t,x,u,N, HXindex) ;

elseif abs(flag) ==
sys(l,1) = x(N); % Outlet hot temperature
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14 sys(2,1) = x(3xN); % Outlet cold temperature (Tend)

15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N) ;
18 sys = [3%N,0,2,4,0,01;
19

20 else

21 sys = [1;

22

23 end

24

25 end

HX2.m

1 % HEAT EXCHANGER 2

3 function [sys,x0] = HX2(t,x,u,flag)

5 HXindex = 2; % HX number

6 N = 10; % Model order

9 1f abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3%N); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N) ;

18 sys = [3xN,0,2,4,0,0];

19

20 else

21 sys = [1;

22

23 end

24

25 end
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HX3.m

1 % HEAT EXCHANGER 3

3 function [sys,x0] = HX3(t,x,u,flag)

5 HXindex = 3; % HX number

6 N = 10; % Model order

9 if abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3«N); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N);

18 sys = [3xN,0,2,4,0,0];

19

20 else

21 sys = [1;

22

23 end

24

25 end

HX4 .m

1 % HEAT EXCHANGER 4

3 function [sys,x0] = HX4(t,x,u,flaqg)

5 HXindex 4; % HX number

6 N = 10; % Model order

o 1f abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;
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11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3%xN); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N) ;

18 sys = [3%N,0,2,4,0,01;

19

20 else

21 sys = [1;

22

23 end

24

25 end

HX4.m

1 % HEAT EXCHANGER 4

3 function [sys,x0] = HX4(t,x,u,flaqg)

5 HXindex = 4; % HX number

6 N = 10; % Model order

\

o 1f abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3%xN); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N) ;

18 sys = [3%N,0,2,4,0,01;

19

20 else

21 sys = [];

22
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23 end
24

25 end

Ssvar.m

1 % STEADY STATE VARIABLES FOR EACH HEAT EXCHANGER
2 % IN THE 3:2 HEN

4 function [x0] = ssvar (HXindex, N)
6 if HXindex ==

7

8 x0 = [188.0976
9 186.1641
10 184.1991
11 182.2021
12 180.1724
13 178.1097
14 176.0132
15 173.8826
16 171.7172
17 169.5165
18 150.9158
19 153.4152
20 155.8744
21 158.2941
22 160.6750
23 163.0177
24 165.3228
25 167.5908
26 169.8225
27 172.0183
28 130.2877
29 133.1182
30 135.9033
31 138.6437
32 141.3400
33 143.9931
34 146.6036
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35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

149.
151.
154.

elseif HXindex == 2

x0 = [200
197.
195
193.
190.
188
186
183.
181.
179.
167
169
171
173
175
177
179.
181
183.
186.
154
156.
157
159
161
163.
164.
166
168
170.

1722
6996
18631];

.4704

9864

.5472

1520
8000

.4904
L2224

9953
8084
6609

.5396
.4645
L4247
.4209
.4538
.5241

6323

L7792

9656
1921

.3516

0343

L7479
.4930
.2701

0799
9229

.7997
.7110

65747 ;
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76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

108

109

110

111

112

113

114

115

116

elseif HXindex

elseif HXindex

184

176

[215.3492
211.
207.
203.
200.
196.
194.
191.
188.
186.
178.
180.
182.

.2613

186.

188.

190.

193.

196.

199.

170.

171.

172.

173.

174.

0567
0951
4387
0641
9495
0750
4219
9733
7134
9982
6139
3645

3165
5433
9559
5701
4025
4714
7429
6693
6731
7608
9392

.2160
177.
179.
180.
182.

5994
0984
7224
482171;

[210.3670
201.

3865
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117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

154

155

156

193.
.2092
177.
171.
164.
158.
.4334
.3094
139.
144.
148.
154.
159.
165.
171.
178.
186.
194.
.3561
134.
L2726
142.
.3813
.4379
157.
163.
169.
176.

185

153
148

130

138

147
152

elseif HXindex == 5

x0 = [219
202

178

0143

9328
1493
8253
9296

6279
1211
9407
1106
6561
6045
9851
8293
1709
0458

1756

6673

8618

6799

9206
6149];

.5400
.4055
192.
185.
182.
179.
.5328

0895
8787
1394
8882
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158

159

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

178

179

180

181

182

183

184

end

177.
177
176.
176.
176.
177
177
178.
180.
182.
186.
193.
204.
176.
176.
176.
177.
177.
178
179.
181.
184.
189.

7168

.2255

9297
7750
9686

.2901
.8241

7110
1842
6312
6955
4462
6590
6204
7117
8634
1154
5339

L2291

3837
3015
4870

777971 ;
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Dynamic Case I'V: Four Heat Exchangers in Series Parallel to One Heat

Exchanger

Run.m

RUN FILE FOR DYNAMIC SIMULAITON OF THE 4:1 HEN

-
o\°

3 % Topology to be investigated:
4

99000000000000000000000000000000000000000000
5 OO0OO0OOO0OOOOOOOOOOOOOOODOOOOOOOOOOOOOOOOOOOOOOO©O™DO
6 % 1 2 3 4 %
7% 0 0 0 0 %
8 % _ _— %
9 % 0 %
10 % 5 %

11
12
13 clear all;
14 close all;
15 clc;
16

o

17 % Calling parameters from Data.m file

18 [TO,Thl, Th2,Th3,Th4,Th5, ...

19 mO,ml,m2,mhl,mh2,mh3,mh4,mh5, ...
20 rho_0, hc,Cp0, ...

21 Vwall,rho_wall,Cp_wall, ...

22 P1,P2,P3,P4,P5] = Data;

23

24

25

26 sim('dynamic_41")

27

28

20 $ % TUNING OF CONTROLLER

30 $ % 10% STEP CHANGE INLET MASS FLOW COLD STREAM

31 % % TUNING PLOT
32 % t0 = 800;

33 % tend = 2200;
34 %

35 % cvl_0 = —20;

36 % cvl_end = 0;
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37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

o\

cvl_step = 4;

o\

o\

ml_0 = 38;
ml_end = 44;

o\

o\°

ml_step = 2;

o\

[

% figure (1)

o\

o\

k = figure;

o\

[AX,H1,H2] = plotyy(t,cvl,t,ml);
set (get (AX (1), 'Ylabel'), 'String', 'Controlled variable, JT

[“{\circ}C]', 'fontsize',12)

o\

o\

set (get (AX(2), 'Ylabel'), 'String', '"Mass flow m_1 to upper
path [kg/sec]', 'fontsize',12)

axis (AX (1), [t0 tend cvl_0 cvl_end]);

axis (AX(2), [t0 tend ml_0 ml_end]);

o\

o\

% set (AX (1), 'YLim', [cvl_0 cvl_end])

% set (AX(1l),'YTick',cvl_0O:cvl_step:cvl_end)
% set (AX(2),'YLim', [m1_0 ml_end])

% set (AX(2),'YTick',ml_0O:ml_step:ml_end)

% xlabel ('Time [sec]', '"fontsize',12)

o\

set (H1, 'linewidth', 2)
set (H2, 'linewidth', 2)

o\

o\

grid on

o\

print (k, '—depsc', 'tune_41l.eps');

o\°

PLOTTING THE RESULTS

t0 = 800;
tend = 5000;

cvl 0 = —1;
cvl_end = 1;

cvl_step = 0.5;

u_0 = 0.75;
u_end = 0.80;

X

% CONTROL VARIABLE PROFILES
h = figure;
plot (t,cvl, 'LineWidth', 2)

xlabel ('Time [sec]', 'fontsize',12)
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76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

ylabel ('Controlled variable, JT [*{\circ}C]', 'fontsize',b 12)
axis([t0 tend cvl_0 cvl_end])
grid on

Q

% print (h, '—depsc', 'CV_41.eps');

% SPLIT
j = figure;

plot (t,ul, 'LineWidth', 2)

xlabel ('Time [sec]', 'fontsize',12)

ylabel ('Split u (Upper path)', 'fontsize',12)
axis([t0 tend u_0 u_end])

grid on

Q

% print (j,'—depsc', 'Split_41.eps');

% TEMPERATURE PROFILES

k = figure;

plot(t,T1,t,T2,t,T3,t,T4,t,T5,t,Tend, 'LineWidth', 2)

legend ('T_{1,1}"','T_{2,1}","T_{3,1}y",'"T_{4,1}y",'"T_{(1,2}',"'T_{end}")
xlabel ('Time [sec]', "fontsize',12)

ylabel ('Temperature [*{\circ}C]', 'fontsize',12)

axis ([t0 tend 130 165])

% print (k,'—depsc', 'T_41.eps');

Data.m

1

% DATA FILE
% STREAM AND HEAT EXCHANGER DATA FOR THE 4:1 HEN

function [TO,Thl,Th2,Th3,Th4,Th5, ...
m0,ml, m2,mhl, mh2,mh3,mh4,mh5, ...
rho_0, hc,CpQ, ...
Vwall, rho_wall,Cp_wall, ...
P1,P2,P3,P4,P5] = Data

% COLD STREAM

TO = 130; % Inlet cold stream temperature [degC]

rho_0 = 1000; % Density cold stream [kg/m3]

hc = 0.10; % Heat transfer coeffsient cold fluid (water)
[kW/m2degC]
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15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

mO0
Cp0

ml

m2

% H
Thl
mhl
P1

% H
Th2
mh2
P2

% H
Th3
mh3
P3

$ H
Th4
mh4
P4

% H
Th5
mhb
P5

s H

m_w

= 50; % Mass flow cold stream [kg/sek]

= 2; % Heat capacity cold stream [kJ/kgdegC]

mOx0.7767; % Bypass to upper branch,

simulation

= mO—ml; % Bypass to lower branch, start value for simulation

EAT EXCHANGER 1
= 190; % Inlet hot stream temperature
= 25; % Mass flow hot stream [kg/sec

= 1; % Price constant

EAT EXCHANGER 2
= 203; % Inlet hot stream temperature
= 15; % Mass flow hot stream [kg/sec]

= 1.2; % Price constant

EAT EXCHANGER 3

[

= 220; % Inlet hot stream temperature

start value for

[degC]

]

[degC]

[degC]

= 7.5; % Mass flow hot stream [kg/sec]

= 1.3; % Price constant

EAT EXCHANGER 4

= 235; % Inlet hot stream temperature

[degC]

= 12.5; % Mass flow hot stream [kg/sec]

= 1.5; % Price constant

EAT EXCHANGER 5

= 210; % Inlet hot stream temperature

35; % Mass flow hot stream [kg/sec]

= 1.4; % Price constant

EAT EXCHANGER DATA
all = 3000; % Wall weight HXers [kg]

rho_wall = 7850; % Wall density CS [kg/m3
11 = m_wall/rho_wall; % Volume walls [m3]

Vwa

Cp_

end

wall = 0.49; % Heat capacity walls CS

[degC]

] %7850

[kW/kgdegC]
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Dynamic.m

1

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

\

function xprime = Dynamic (t,X,U,N,HXindex)

% Defining the outlet varibles
Th_out = X (1:N);

Twall = X (N+1:2%N);

Tc_out = X (2xN+1:3%N);

% Defining inlet parameters from Simulink
Th_in(1l) = U(1);

mh_in = U(2);

Tc_in (1) = U(3);

mO_in = U(4);

% Calling parameters from Data.m file

[TO, Thl, Th2, Th3, Th4, Th5, . ..

mO,ml,m2,mhl,mh2,mh3,mh4,mh5, ...

rho_0, hc,Cp0, ...
Vwall, rho_wall,Cp_wall, ...
P1,P2,P3,P4,P5] = Data;

if HXindex == 1
Cph = 2;
wh = Cph+*mh_in;
rho_h = rho_0;
hh = 1.2xhc;
U = (hhxhc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = m0_in*CpO0;
Ai = 19;

elseif HXindex ==
Cph = 2;
wh = Cphxmh_in;
rho_h = rho_0;
hh = 1.42xhc;
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40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

72

73

74

75

76

T

78

79

80

U = (hh*hc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0O;
w0 = mO0_in*CpO0;

Ai = 29.5;

elseif HXindex ==

Cph = 2;

wh = Cphxmh_in;
rho_h = rho_0;

hh = 1.389xhc;

U = (hhxhc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = m0_in*Cp0;

Ai = 43.7;

elseif HXindex ==

Cph = 2;

wh = Cphxmh_in;
rho_h = rho_0;

hh = 0.70xhc;

U = (hh*hc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = m0_in*Cp0;

Ai = 103;

else HXindex ==

Cph = 2;

wh = Cphxmh_in;
rho_h = rho_0;

hh = 1.43xhc;

U = (hhxhc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = mO0_in*CpO0;

Ai = 38.3;
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81
82
83 end
84

85

X

86 % STATE EQUATIONS
87
88 % Hot stream
g9 dThotdt (1) =
(Th_in(1)—Th_out (1)— ((UxA1) / (wh*N) ) * (Th_out (1)—Twall (N)) *...
90 (mh_inxN) / (rho_hxVhot)) ;
91
92 % Wall
93 dTwalldt (1) =
(hh* (Th_out (N)—Twall (1) )—hc* (Twall (1)—Tc_out(1l)))*...
94 (Ai/ (rho_wall*Cp_wallxVwall));
95

96 % Cold stream

97 dTcolddt (1)

=(Tc_in(1)—Tc_out (1)— ((UxAi)/ (WwO*N) ) x (Tc_out (1)—Twall(l))) *...

98 ((m0O_inxN) / (rho_0*Vcold)) ;

99

100

101 for 1 = 2:N

102 J = N—1i+1;

103 dThotdt (i) = (Th_out (i—1)—Th_out (i)— ((UxAi)/ (Wh*N))*...
104 (Th_out (1)—Twall (J)) * (mh_in*N) / (rho_h=*Vhot) ) ;

105 end

106

o7 for j = 2:N

108 i = N—j+1;
109 dTwalldt (3) =
(hh* (Th_out (1)—Twall (j))—hc+* (Twall (j)—Tc_out (j))) ...
110 (Ai/ (rho_wall*Cp_wallxVwall));
111 dTcolddt (j)=(Tc_out (j—1)—Tc_out (J)— ((UxAi) / (WO*N) ) *...
112 (Tc_out (j)—Twall(j))* ((m0_inxN)/ (rho_0xVcold)));
113 end

114

115 xprime = [dThotdt, dTwalldt, dTcolddt];
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HX1.m

1 % HEAT EXCHANGER 1

3 function [sys,x0] = HX1(t,x,u,flag)

5 HXindex = 1; % HX number

6 N = 10; % Model order

9 if abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3«N); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N);

18 sys = [3xN,0,2,4,0,0];

19

20 else

21 sys = [1;

22

23 end

24

25 end

HX2.m

1 % HEAT EXCHANGER 2

3 function [sys,x0] = HX2(t,x,u, flaqg)

2; % HX number

5 HXindex

6 N = 10; % Model order

o 1f abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;
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11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3%xN); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N) ;

18 sys = [3%N,0,2,4,0,01;

19

20 else

21 sys = [1;

22

23 end

24

25 end

HX3.m

1 % HEAT EXCHANGER 3

3 function [sys,x0] = HX3(t,x,u,flaqg)

5 HXindex = 3; % HX number

6 N = 10; % Model order

\

o 1f abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3%xN); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N) ;

18 sys = [3%N,0,2,4,0,01;

19

20 else

21 sys = [];

22
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23 end
24

25 end

HX4.m

1 % HEAT EXCHANGER 4

3 function [sys,x0] = HX4(t,x,u,flag)

5 HXindex = 4; % HX number

6 N = 10; % Model order

9 if abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3«N); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N);

18 sys = [3xN,0,2,4,0,0];

19

20 else

21 sys = [];

22

23 end

24

25 end

HX5.m

1 % HEAT EXCHANGER 5

3 function [sys,x0] = HX5(t,x,u,flag)

[)

5 HXindex = 5; % HX number
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6 N = 10; % Model order

9o 1f abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;

11

12 elseif abs(flag) ==

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3%N); % Outlet cold temperature (Tend)
15

16 elseif flag ==

17 x0 = ssvar (HXindex,N) ;

18 sys = [3%N,0,2,4,0,01;

19

20 else

21 sys = [1;

22

23 end

24

25 end

ssvar.m

1 % STEADY STATE VARIABLES FOR EACH HEAT EXCHANGER
2 % IN THE 4:1 HEN

5 function [x0] = ssvar (HXindex, N)
6

7 if HXindex ==

8

9 x0 = [189.4314
10 188.8645
11 188.2992
12 187.7357
13 187.1738
14 186.6137
15 186.0552
16 185.4984
17 184.9432
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18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

56

57

184.
161.
162.
162.
163.
163.
164.
164.
165.
165.
166.
130.
130.
130.
.2135
131.
132.
132.
132.
133.
133.

131

elseif HXindex == 2

x0 = [201.
200.
198.
197.
195.
194.
192.
.6260
.2890
188.
166.
167.
168.
169.
.2220
.2852
.3628

191
190

170
171
172

3897
9307
4168
9043
3933
8838
3758
8692
3641
8605
3584
0389
4293
8208

6074
0025
3988
7962
1949
594771;

5099
0399
5896
1589
7474
3550
9812

9701
1107
1177
1385
1732
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59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

173
174

134

134

135

136

137
138

elseif HXindex == 3

x0 = [215.
.5147
206.
202.
198.
.3568
190.
.4956
.3330
.3365
163.
165.
.7889
170.
.4036
174.
.5443
.3305
L2711
.3748
139.
L7276

210

194

187

184

181

167

172

177

180

183

186

139

.4552
.5624
175.
133.
.2144
.7862
.3658
135.
.5488
137.
. 7643
.3845
139.

6848
6504

9533

1524

013217;

1294
1425
0001

0753

8336

6465
6618

0340

9046

0750
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100

101

102

103

104

105

106

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

137

138

139

140

140.
141.
141.
142.
143.
144.
145.
146.

elseif HXindex ==

x0 = [231

217

211

171

185

154

4164
1434
9107
7205
5753
4775
4297

434871,

.2829
227.
224.
220.
.5336
214.
.2828
208.
205.
202.
169.
.3663
173.
175.
176.
178.
180.
183.
.2210
187.
146.
147.
148.
149.
150.
151.
153.
.2503
155.

6813
1915
8101

3589

3022
4141
6158
6252

1633
0178
9318
9071
9457
0496

4619
5318
5329
5660
6323
7328
8685
0406

4988
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141

142

143

144

145

146

147

148

149

150

151

152

153

154

156

157

158

159

161

162

163

164

166

168

169

170

171

172

173

174

175

176

178

156

elseif HXindex == 5

end

x0 = [209
208
207

207.
.2009
.3665
.5055
203.
202.
.7534
.3595
L2179
176.
.7633
.4540

206
205
204

201
172
174

177
179

181.
182.
L2177
.7082
187.
.3264
.4886
.5528
.5220
.3990
145.
147.

184
185

130
133
136
139
142

150

155

.78721;

.2873
.5518
L7927

0093

6169
6998

0185

0922
6796

1524

1868
8880

.5055
153.
.49947;

0418
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Dynamic Case V: Six Heat Exchangers in Series Parallel to One Heat

Exchanger

Run.m

RUN FILE FOR DYNAMIC SIMULATION OF THE 6:1 HEN

H
o\

2
3 % Topology to be investigated:
4
999000000000000000000000000000000000000000000000000000000
5 OO0OO0OOOOOOOOOOOOOOODOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOOOO©O©ODO
6 % 1 2 3 4 5 6 %
7% 0 0 0 0 0 0 %
s % _ _— %
9 % 0 %
10 % 7 %
©9000000000000000000000000000000000000000000000000000000
11 OO0OO0OO0OOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOOOOOOOOOOOOO©OO™O
12
13 clear all;
14 close all;
15 clc;
16
17 [TO,Thl,Th2,Th3,Th4,Th5,Th6,Th7...
18 mO,ml,m2,mhl,mh2,mh3,mh4,mh5,mh6,mh7...
19 rho_0,hc,CpO. ..
20 Vwall, rho_wall,Cp_wall...
21 P1,P2,P3,P4,P5,P6,P7] = Data
22
23
24

25 sim('dynamic_61")

26
27

28 % % TUNING OF CONTROLLER

29 % % 10% STEP CHANGE INLET MASS FLOW COLD STREAM
30 % % TUNING PLOT

31 % t0 = 800;

32 % tend = 2400;

33 %

34 % cvl_0 = —43;

35 % cvl_end = 7;

3 % cvl_step = 10;
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37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

o\°

o\

ml 0 = 40;
ml_end = 48;

o

oe

ml_step = 2;

o\°

o\

k = figure;

o\

[AX,H1,H2] = plotyy(t,cvl,t,ml);
set (get (AX (1), 'Ylabel'), 'String', 'Controlled variable, JT
[“{\circ}C]"', 'fontsize',12)

set (get (AX(2), 'Ylabel'), 'String', 'Mass flow m_1 to upper

oe

o\

path [kg/sec]', 'fontsize',12)

$ axis (AX (1), [t0O tend cvl_0 cvl_end]);

$ axis (AX(2), [t0 tend ml1_0 ml_end]);

$ set (AX(1),'YLim', [cv1_0 cvl_end])

% set (AX (1), 'YTick',cvl_0:cvl_step:cvl_end)
% set (AX(2),'YLim', [m1_0 ml_end])

% set (AX(2), 'YTick',ml_0O:ml_step:ml_end)

$ xlabel ('Time [sec]', 'fontsize',12)

% set (H1, 'linewidth', 2)
% set (H2, 'linewidth', 2)
% grid on

% print (k,'—depsc', "tune_61.eps');

o\

PLOTTING THE RESULTS

t0 = 800;
tend = 5000;

cvl 0 = —1.5;
cvl_end = 1.5;
cvl_step = 0.5;

u_0 = 0.82;
u_end = 0.8601;

% CONTROLLED VARIABLE PROFILES

h = figure;

plot (t,cvl, 'LineWidth', 2)

xlabel ('Time [sec]', 'fontsize',12)

ylabel ('Controlled variable, JT [“{\circ}C]"','fontsize',12)
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76 axis ([t0 tend cvl_0 cvl_end])

77 grid on

78 % print (h, '—depsc', 'CV_61l.eps');

79

80 % SPLIT

g1 J = figure;

g2 plot(t,ul, 'LinewWidth', 2)

83 xlabel('Time [sec]','fontsize',12)

84 ylabel ('Split u (Upper path)', 'fontsize',12)

85 axis([t0 tend u_0 u_end])

86 grid on

87 % print (j,'—depsc', 'Split_6l.eps');

88

89 % TEMPERATURE PROFILES

90 k = figure;

91 plot(t,T1,t,T2,t,T3,t,T4,t,T5,t,T6,t,T7,t,Tend, 'LinewWidth', 2)
92 legend('T_{1,1}','T_{2,1}','"T_{3,1}',"'T_{4,1}"',"'T_{5,1}"',...
93 'T_{6,1}','T_{1,2}','T_{end}")

94 xlabel('Time [sec]'

, 'fontsize',12)
95 ylabel ('Temperature ["{\circ}C]', 'fontsize',12)
96 axis ([t0 tend 130 175])

97 % print (k,'—depsc','T_61l.eps');

Data.m

1 % DATA FILE
2 % STREAM AND HEAT EXCHANGER DATA FOR THE 6:1 HEN

5 function [TO0,Thl,Th2,Th3,Th4,Th5,Th6,Th7, ...

6 mO0,ml,m2,mhl,mh2,mh3, mh4,mh5,mh6,mh7, ...
7 rho_0,hc,Cp0, ...

8 Vwall, rho_wall,Cp_wall, ...

9 P1,P2,P3,P4,P5,P6,P7] = Data

10
11

12 % COLD STREAM

13 TO = 130; % Inlet cold stream temperature [degC]
14 rho_0 = 1000; % Density cold stream [kg/m3]
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15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

hc
mO
Cp0

ml

m2

= 0.10; % Heat transfer coeffsient cold fluid (water)

[kW/m2degC]

= 50; % Mass flow cold stream [kg/sek]

= 2; % Heat capacity cold stream [kJ/kgdegC]

m0x0.8299;

simulation

)

% Bypass to upper branch, start value for

= mO0—ml; % Bypass to lower branch, start value for simulation

% HEAT EXCHANGER 1

Thl
mhl
Pl

\

Th2
mh2
P2

= 190; % Inlet hot stream temperature [degC]

= 25; % Mass flow hot stream [kg/sec]

[o)

= 1; % Price constant

% HEAT EXCHANGER 2

= 203; % Inlet hot stream temperature [degC]

= 15; % Mass flow hot stream [kg/sec]

= 1.2; % Price constant

% HEAT EXCHANGER 3

Th3
mh3
P3

= 220; % Inlet hot stream temperature [degC]

= 7.5; % Mass flow hot stream [kg/sec]

= 1.3; % Price constant

% HEAT EXCHANGER 4

Th4
mh4
P4

= 235; % Inlet hot stream temperature [degC]

= 12.5; % Mass flow hot stream [kg/sec]

= 1.5; % Price constant

% HEAT EXCHANGER 5

Th5
mh5
P5

= 240; % Inlet hot stream temperature [degC]

= 20; % Mass flow hot stream [kg/sec]

= 1.4; % Price constant

% HEAT EXCHANGER 6

Tho
mh6
P6

= 245; % Inlet hot stream temperature [degC]

= 17.5; % Mass flow hot stream [kg/sec]

= 1.7; % Price constant

% HEAT EXCHANGER 7

Th7
mh7

= 225; % Inlet hot stream temperature [degC]

= 15; % Mass flow hot stream [kg/sec]
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54

55

56

57

58

59

60

61

62

P7 = 1.5; % Price constant

$ HEAT EXCHANGER DATA
m_wall = 3000; % Wall weight HXers [kqg]
rho_wall = 7850; % Wall density CS [kg/m3] %7850

Vwall = m_wall/rho_wall; % Volume walls [m3]

Cp_wall = 0.49; % Heat capacity walls CS [kW/kgdegC]

end

Dynamic.m

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

% DYNAMIC FUNCTION AND STATE EQUATIONS FOR THE 6:1 HEN

function xprime = Dynamic (t,X,U,N, HXindex)
% Defining the outlet varibles

Th_out = X(1:N);

Twall = X (N+1:2%N);

Tc_out = X (2%N+1:3%N);

% Defining inlet parameters from Simulink
Th_in(1l) = U(1);

mh_in = U(2);

Tc_in (1) = U(3);

mO_in = U(4);

% Calling parameters from Data.m file

[TO, Thl,Th2,Th3, Th4, Th5, Th6, Th7, ...
mO,ml,m2,mhl,mh2,mh3,mh4,mh5,mh6,mh7, ...
rho_0, hc,CpQ, ...
Vwall, rho_wall,Cp_wall, ...
P1,P2,P3,P4,P5,P6,P7] = Data;

if HXindex ==
Cph = 2;
wh = Cph*mh_in;
rho_h = rho_0;
hh = 1.10+*hc;
U = (hh*hc)/ (hh+hc);
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29 Vhot = mh_in/rho_h;

30 Vcold = mO_in/rho_0;
31 w0 = m0_in*Cp0;
32 Ai = 20.5;

33
34

35 elseif HXindex ==

36 Cph = 2;

37 wh = Cph+*mh_in;

38 rho_h = rho_0;

39 hh = 1.08xhc;

40 U = (hhxhc) / (hh+hc);
41 Vhot = mh_in/rho_h;
42 Vcold = mO_in/rho_0;
43 w0 = mO0_in*Cp0;

44 Ai = 28.3;

45
46

47 elseif HXindex ==

48 Cph = 2;

49 wh = Cph+*mh_in;

50 rho_h = rho_0;

51 hh = 1.08xhc;

52 U = (hh*hc)/ (hh+hc);
53 Vhot = mh_in/rho_h;
54 Vcold = mO_in/rho_0;
55 w0 = mO_inx*Cp0;

56 Al = 42.6;

57
58

50 elselif HXindex ==

60 Cph = 2;

61 wh = Cph+*mh_in;

62 rho_h = rho_0;

63 hh = 1.07+hc;

64 U = (hhxhc)/ (hh+hc);
65 Vhot = mh_in/rho_h;
66 Vcold = mO_in/rho_0;
67 w0 = mO_inxCpO0;

68 Ai = 49.95;

69
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70

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

107

108

109

110

elseif HXindex ==

Cph = 2;

wh = Cph*mh_in;
rho_h = rho_0;

hh = 1.10%hc;

U = (hh*hc)/ (hh+hc);
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = mO0_in*CpO0;

Ai = 36.5;

elseif HXindex ==

Cph = 2;

wh = Cph*mh_in;
rho_h = rho_0;

hh = 1.10%hc;

U = (hh*hc)/ (hh+hc) ;
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = mO0_in=*CpO0;

Al = 32.5;

else HXindex ==

end

Cph = 2;

wh = Cph*mh_in;
rho_h = rho_0;

hh = 1.109+hc;

U = (hh*hc)/ (hh+hc) ;
Vhot = mh_in/rho_h;
Vcold = mO_in/rho_0;
w0 = mO0_in*CpO0;

Ai = 45.5;

% STATE EQUATIONS

190




111

o

112 % Hot stream

113 dThotdt (1) = (Th_in(1)—Th_out (1)—((U*xAi)/ (wh*N))x*...
114 (Th_out (1)—Twall (N)) * (mh_in=*N) / (rho_h=*Vhot));

115

116 % Wall

117 dTwalldt (1) =

(hh* (Th_out (N)—Twall (1l))—hc* (Twall(l)—Tc_out (1l)))*...
118 (A1/ (rho_wall*Cp_wallxVwall));
119

120 $ Cold stream

121 dTcolddt (1)

=(Tc_in(1)—Tc_out (1)— ((UxAi)/ (wOxN))* (Tc_out (1)—Twall(l)))*...
122 ((mO_inxN) / (rho_0*Vcold)) ;
123
124
125 for i = 2:N
126 J = N—i+1;
127 dThotdt (1) = (Th_out (i—1)—Th_out (1)— ((U*Ai)/ (Wh*N)) ...
128 (Th_out (1)—Twall (j)) * (mh_in=*N) / (rho_h=*Vhot)) ;

129 end
130

131 for j = 2:N

132 i = N—j+1;
133 dTwalldt (j) =
(hhx (Th_out (i)—Twall (j))—hcx* (Twall (j)—Tc_out (j))) *...
134 (Ai/ (rho_wall*Cp_wallxVwall));
135 dTcolddt (j)=(Tc_out (j—1)—Tc_out (J)— ((UxAi) / (WOxN) ) %. ..
136 (Tc_out (j)—Twall (j)) * ((m0_in=N) / (rho_0xVcold)));
137 end
138
139 xprime = [dThotdt, dTwalldt, dTcolddt];
HX1.m

1 % HEAT EXCHANGER 1

3 function [sys,x0] = HX1(t,x,u,flag)

5 HXindex = 1; % HX number
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6 N = 10; % Model order

o 1f abs(flag) == 1
10 sys = Dynamic(t, x,u,N,HXindex) ;
11

12 elseif abs(flag) ==

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3xN); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N) ;

18 sys = [3%N,0,2,4,0,01;

19

20 else

21 sys = [];

22

23 end

24

25 end

HX2.m

1 % HEAT EXCHANGER 2

3 function [sys,x0] = HX2(t,x,u,flag)

5 HXindex 2; % HX number

6 N = 10; % Model order

\

o 1f abs(flag) == 1
10 sys = Dynamic (t,x,u,N, HXindex) ;
11

12 elseif abs(flag) ==

13 sys(l,1) = x(N); % Outlet hot temperature

14 sys(2,1) = x(3%N); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N) ;
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18 sys = [3%N,0,2,4,0,01;

19

20 else

21 sys = [1;
22

23 end

24

25 end

HX3.m

1 % HEAT EXCHANGER 3

3 function [sys,x0] = HX3(t,x,u,flaqg)

5 HXindex = 3; % HX number

6 N = 10; % Model order

9 1f abs(flag) == 1

10 sys = Dynamic (t,x,u,N, HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3«N); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N);

18 sys = [3xN,0,2,4,0,0];

19

20 else

21 sys = [1;

22

23 end

24

25 end
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HX4.m

1 % HEAT EXCHANGER 4

3 function [sys,x0] = HX4(t,x,u,flag)

5 HXindex = 4; % HX number

6 N = 10; % Model order

9 if abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3«N); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N);

18 sys = [3xN,0,2,4,0,0];

19

20 else

21 sys = [1;

22

23 end

24

25 end

HX5.m

1 % HEAT EXCHANGER 5

3 function [sys,x0] = HX5(t,x,u, flaqg)

5 HXindex 5; % HX number

6 N = 10; % Model order

o 1f abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;
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11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3%xN); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N) ;

18 sys = [3%N,0,2,4,0,01;

19

20 else

21 sys = [1;

22

23 end

24

25 end

HX6.m

1 % HEAT EXCHANGER 6

3 function [sys,x0] = HX6(t,x,u,flaqg)

5 HXindex = 6; % HX number

6 N = 10; % Model order

\

o 1f abs(flag) == 1

10 sys = Dynamic (t, x,u,N,HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature
14 sys(2,1) = x(3%xN); % Outlet cold temperature (Tend)
15

16 elseif flag == 0

17 x0 = ssvar (HXindex,N) ;

18 sys = [3%N,0,2,4,0,01;

19

20 else

21 sys = [];

22
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23 end
24

25 end

HX7 .m

1 % HEAT EXCHANGER 7

3 function [sys,x0] = HX7(t,x,u,flag)

5 HXindex = 7; % HX number

6 N = 10; % Model order

9 if abs(flag) ==

10 sys = Dynamic (t, x,u,N,HXindex) ;

11

12 elseif abs(flag) == 3

13 sys(l,1) = x(N); % Outlet hot temperature

14 sys(2,1) = x(3«N); % Outlet cold temperature (Tend)

15

16 elseif flag ==

17 x0 = ssvar (HXindex,N);
18 sys = [3%N,0,2,4,0,0];
19

20 else

21 sys = [];

22

23 end

24

25 end

SsSvar.m

1 % STEADY STATE VARIABLES FOR EACH HEAT EXCHANGER
2 % IN THE 6:1 HEN

4 function [x0] = ssvar (HXindex,N)
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

if HXindex ==

x0 = [189

188
187

186

185

184
158

159

160

161

161

162

162

130
130

131

133

elseif HXindex ==

x0 = [201

195
194

L4271
188.
.2871
.7201
187.
.5917
186.
L4711
184.
.3582
.4909
158.
.4261
159.
L3677
160.
.3158
L7923
.2704
.7502
130.
.4060
.7765
131.
.5212
131.
132.
132.
133.
.4055];

8561

1549

0305

9137

9577

8961

8409

0368

1482

8955
2711
6479
0261

.5136
200.
198.
197.
L7736
.3886

0480
6031
1783

197




47

48

49

51

52

53

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

193.
191.
190.
189.
162.
.2459
164.
165.
166.
167.
168.
169.
170.
171.
133.
133.
134.
135.
135.
136.
136.
.2407
137.
138.

163

137

elseif HXindex == 3

x0 = [215.
.3961
205.
201.
197.
194.
190.
187.
183.
180.
160.

210

0230
6766
3491
0402
3173

1878
1431
1119
0945
0912
1020
1271
1669
4566
9745
4999
0327
5730
1211
6770

8125
39257,

0666

9744
7884
8254
0736
5217
1591
9757
9619
5241
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88

89

90

91

92

93

94

96

97

98

99

100

101

102

103

104

105

106

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

162

164

166

173

178

138

139

140

142

144

145

elseif HXindex == 4

x0 = [231
227

220

217
214

204

176
178
180

187

.3875
.3558
.4349
168.
170.
.4011
175.
L7232
181.
.4513
139.
.7283
L4212
141.
141.

6310
9508

9893

6110

0723

1531
9262

.7428
143.
.5165

.4789];

6054

.2098
.5417
223.
.5563
.2314
.0136
210.
207.
.9690
202.
174.
L7276
.7043
.7467
182.
185.
L2912
189.

9918

8995
8857

1462
8146

8572
0379

6195
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129

130

131

132

133

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

156

157

158

159

161

162

163

164

166

167

168

169

192.
194.
145.
146.
147.
148.
149.
150.
151.
152.
154.
.2435];

155

elseif HXindex == 5

x0 = [238

233

225

197

0253
5111
5698
5094
4802
4833
5198
5909
6975
8410
0226

.2897
236.
234.
.2655
231.
230.
228.
226.
.2363
223.
191.
192.
193.
194.
196.
.3184
198.
199.
201.
202.
155.
156.
157.
157.
158.

5973
9227

6257
0031
3974
8085

6805
1307
3423
5668
8042
0547

5954
8860
1902
5082
3259
1590
0009
8516
7114
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170 159.5802

171 160.4583
172 161.3456
173 162.2423
174 163.1485];
175

176 elseif HXindex ==

177

178 x0 = [243.3016
179 241.6237
180 239.9663
181 238.3289
182 236.7115
183 235.1137
184 233.5353
185 231.9760
186 230.4357
187 228.9141
188 197.6308
189 198.7678
190 199.9189
191 201.0841
192 202.2636
193 203.4577
194 204.6664
195 205.8899
196 207.1285
197 208.3824
198 163.2190
199 163.9331
200 164.6560
201 165.3878
202 166.1286
203 166.8784
204 167.6375
205 168.4060
206 169.1838
207 169.9713];
208

209 elseif HXindex ==

210

201




211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

231

232

233

234

235

236

238

239

240

241

242

243

end

x0 = [223

220.
218.
216.
214.
212.
209.
207.
204.
201.
168.

171

175.
179.
182.
185.
189.
192.
195.

198

130.
135.
140.
145.
149.
154.
158.
162.
166.
170.

.0233
9773
8595
6675
3987
0504
6198
1039
4999
8046
0086
.8484
5582
1424
6052
9507
1829
3057
3227
.2375
5288
6380
5741
3430
9505
4019
7025
8575
8718
75027 ;
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D Simulink Block Diagrams

Simulink block diagrams for all dynamic cases are given in the following Section.
The longest networks of four and six heat exchangers in series tended to give a very
small figure. The dynamic case I with two heat exchangers in parallel (Figure D.1)
is big enough to be read without difficulties and represents the repeating pattern

for bigger networks.
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Dynamic Case II Block Diagram: dynamic_21_1.mdl
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Figure D.2: Simulink block diagram Dynamic case 11
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Dynamic Case II-a Block Diagram: dynamic_21_1_1.mdl

Figure D.3: Simulink block diagram Dynamic case II-a
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Dynamic Case III Block Diagram: dynamic_32.mdl

Figure D.4: Simulink block diagram Dynamic case 111
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Dynamic Case IV Block Diagram: dynamic_41.mdl

Figure D.5: Simulink block diagram Dynamic case IV
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Dynamic Case V Block Diagram: dynamic_61.md1l
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Figure D.6: Simulink block diagram Dynamic case V
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