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Abstract

In offshore production, the two-phase mixture of o0il and gas is transported
from the seabed oil wells to the surface facilities by pipelines and risers. The
two-phase flow can have different flow regimes, where severe slugging is one
undesirable flow regime and an effective solution is needed to prevent it. The
recommended solution is active control of the top-side choke valve.

Previously, controllability analysis is done of two-phase flow in a 4-state
pipeline-riser model. This analyze concludes that the best way to control
the choke valve is by using the subsea pressure measurement combined with
topside flow measurement. However, the subsea pressure might be difficult
to measure correctly because the pipeline is placed under tough conditions,
hundredth or even thousands of meters under sea level. One possibility is to
combine topside pressure with topside flow measurement and use for estima-
tion of states or other sub-sea measurements that are normally not available.

Simulation studies are done in MATLAB of different anti-slug control solu-
tions. Linear Kalman filter, extended Kalman filter (EKF) and unscented
Kalman filter (UKF) are used for state estimation and combined with con-
trollers such as PI, LQR and MPC. The input to the system is flow rate of
gas and liquid, and the nominal choke opening. The input disturbance to
the process is change in the flow rate of gas and liquid imitating slug flow.

As expected, when only topside measurements are used, because of the highly
nonlinear system dynamics the linear Kalman filter fails in stabilizing the
system. The EKF works good when the system has low input disturbance,
while the UKF is the best nonlinear filter when the system has high input
disturbance. However, when the nominal choke opening is increased, the
UKF combined with a controller fails. The LQR controller combined with
UKF shows slightly better results than the PT and MPC controller combined
with the same filter for state estimation. There is also potential in using the
high-gain observer in control strategies.
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Sammendrag

I offshore produksjon blir miks av olje og gass transportert pa havbunnen til
produksjonsenheter pa havoverflaten gjennom rgrledninger. Denne miksen
av olje og gass kan ha forskjellige strgmningsmater, hvor "slugging" er en
ugnsket strgmningsmate. Mye tid og krefter er brukt for a forhindre slik
stromning siden den kan gjgre store skader pa produksjonsenhetene. Den
anbefalte lgsningen er kontroll av ventilen inn til produksjonsenheten.

Tidligere har det blitt ut fert kontrollerbarhetsanalyse av en modell basert
pa 4 tilstander av tofase strgmning i en L-formet rgrledning fra havbun-
nen til vannoverflaten. Denne analysen konkluderer med at den enkleste
maten a unnga slugging er a male trykket i rgrledningen pa havbunnen kom-
binert med strgmningen ut av ventilen. Men det kan veere vanskelig a fa
gode malinger ved havbunnen, rgrledningene kan vaere plassert hundre- eller
kanskje tusenvis av meter under havoverflaten. En lgsning er & kombinere
malinger i rgrledningen ved havoverflaten til a estimere trykket ved bunn av
rgrledningen & bruke denne estimerte verdien i reguleringslgsningen.

Simuleringer av forskjellige reguleringslgsninger er gjort i MATLAB. Linezert
Kalman filter, "extended Kalman filter" (EKF) og "unscented Kalman filter"
(UKF) er brukt til tilstandsestimering og kombinert med kontrollere som PI,
LQR og MPC. Inputen til systemet er strgmningsrate for gass og vaeske, og
den nominelle ventilapningen. Inputforstyrrelsen til systemet er variasjon i
stremningsraten for gass og vaeske som etterligner slugging.

Som forventet, pa grunn av ulinearitetene i systemet, blir ikke linezert Kalman
filter tilstrekkelig nar malinger fra havoverflaten blir brukt. EKF virker best
lokalt, altsa nar det er liten inputforstyrrelse, mens UKF er det beste ulineare
filteret nar systemet far gkt inputforstyrrelse. Men, nar den nominelle ven-
tilapningen blir gkt klarer ikke UKF kombinert med en regulator a stabilisere
systemet. LQR kombinert med UKF viser litt bedre resultater enn LQR kom-
binert med PI eller MPC. Videre er det ogsa potensiale i a bruke "high-gain
observer" i reguleringslgsningen for anti-slug kontroll.
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Problem Formulation

Master Project Proposals on Anti-Slug Multiphase Flow
Control.

"In offshore production, the two-phase mixture of oil and gas is transported
from the seabed oil wells to the surface facilities by pipelines and risers. Two-
phase flow can be in different flow regimes; severe slugging is one flow regime
which is undesirable in offshore production and an effective solution is needed
to prevent it. Active control of the top-side choke valve is the recommended
solution. Different control strategies can be used for stabilization of this
system. Finding a simple and robust solution is motivation for this research.”

Anti-slug Control With Non-Linear State Estimation

"Based on the results from the controllability analysis it is known that using
top-side measurements is very difficult. This is because of RHP-zeros in
dynamic of the top pressure. However, one possibility is to combine top
pressure with one flow measurement and use them for estimation of states
or other sub-sea measurements that are not normally available. Because of
highly nonlinear nature of the system, linear estimation techniques such as
Kalman Filter will fail in more real conditions. Nonlinear estimation such as
Unscented Kalman Filter can be tested in conditions that Kalman Filter fails.
Having the states estimated, the optimal stated feedback is one immediate
control solution. However, it is known that if choke valve saturates on fully-
open or fully-closed, the control system fails. It can be taken care of by
considering a constraint on valve opening which leads to use of MPC.

e Studying about Kalman filter (KF), extended Kalman filter (EKF) and
unscented Kalman filter (UKF).

e Becoming familiar with simplified models for severe-slugging.

e Using KF, UKF or EKF with PI or LQR for control of nonlinear model
with only topside pressure measurements for the estimator.

e Using KF, UKF or EKF with PI or LQR for control of nonlinear model
with subsea pressure measurements for the estimator.

e Using EKF+MPC and UKF+MPC (constraint on valve opening (0<U<1)

e Evaluating performance of different approaches.”
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Chapter 1

Introduction

In an offshore oilfield, pipelines and risers transfer multiphase mixture of oil,
gas and water from oil wells at seabed to the surface processing facilities. A
more and more upcoming trend is connecting subsea wells to either remote
wellhead platforms or directly to on-shore processing plants. As a result,
more and longer multiphase pipelines are used. The development of slugs
of liquid in multiphase pipelines is a major, and expensive, challenge for
oil producers. Slugging is varying or irregular flows of gas and liquids in
pipelines. A way to prevent slugging is by reducing the opening of the top-
side choke valve. However, this conventional solution increases the back
pressure of the valve and reduces the production rate from the oil wells.

The goal of this master thesis is to make a control system to stabilize flow
and avoid slugs in the pipeline by adjusting the position of the choke valve.
Here, the 4 state model developed by Esmaeil Jahanshahi and Sigurd Sko-
gestad is used [2]. This model is for an L-shaped pipeline-riser, where the 4
states correspond to the mass of the gas and the liquid, in the pipeline and
the riser. The best way to decide the choke valve position is by knowing
the pressure in the pipeline. But, the pipeline might be hundreds or even
thousands of meters under sea level where there are tough conditions for
pressure measurements. Therefore, an observer will be used to estimate the
pressure in the pipeline, and this estimate will be used in a controller to find
the optimal choke position.

Previously, controllability analysis of the pipeline-riser model is performed|3][4].
The conclusion of the work is that a filter, based on the pressure at the top
of the riser combined with either the volume flow rate or the mass flow, gives
the best estimate value of the pressure in the pipeline.
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Chapter 2

Background

2.1 Background

Multiphase flow and its behavior has been a concern in offshore oil and gas
industry, since the beginning. One common undesired flow variation is slug
flow, in which the liquid flows intermittently along the pipes in concentrated
mass, called a slug. Slugging has been recognized as a serious problem and
much effort has been put into prevention of this problem. The unstable
behavior of slug flow has a negative impact on the production facilities. The
worst case scenario is when severe slugging causes platform trips and plant
shutdowns.

This section is an introduction to two-phase flow and riser slugging. As there
are several different types of slug flows, these will be explained. The goal of
this project is to avoid slugging by the use of a controller that stabilizes
the flow. The controllability analysis [3] concludes that measurement of the
pressure in the pipeline (P;) give good results in anti-slug control. However,
the pressure deep below sea level is difficult to measure, so this is estimated
used an observer.

2.1.1 Multiphase Flow

Multiphase flow refers to any fluid flow consisting of more than one compo-
nent, and is an important topic in oil and gas industry. Multiphase pipelines
connecting remote wellhead platforms to subsea wells are a common feature.
In the future, long-distance tie-back pipelines connecting subsea processing
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units to on-shore processing plants will be more common. Development of
such pipelines are turning the spotlight on one of the biggest challenges in-
volved in operating offshore processing facilities and subsea separation units:
control of the disturbances in the feed to the separation process [5]. Since a
relatively small change in operating conditions changes the behavior of the
flow in pipelines drastically, a lot of time and effort has been spent studying
multiphase flow.

2.1.2 Slug Flow

Multiphase flow in pipelines frequently involves the formation of slugs. Slugs
are plugs of liquid or gas that travel through the pipeline. They are unwanted
because they can create significant pressure fluctuations. The slugs can be
formed due to transient effects related to pigging, start-up, blow-down and
changes in pressure or flow rates. Slug flow can occur on different time- and
length scales depending on the slug formation. An example of slug can be
liquid plugs that are accumulated at the bottom of the riser until sufficient
pressure is generated behind it to push the liquids over the top of the riser.

The unstable behavior of slug flow in multiphase pipelines has a negative im-
pact on the operation on production facilities. Normal problems are flaring,
reduced operating capacity and stress on valves and bends. Separator and
compressor trains will also face problems because of the uneven pressure in
the riser during slug flow. The worst case scenario is plant shutdown, which
is extremely expensive. The different slug flows can be put into different
categories:

e Hydrodynamic slugging develops in horizontal parts of the pipeline.
They are relatively short, typically less than 500 pipe diameters [1].

o Terrain slugging is caused by low-points in the pipeline topography.
The blockage in the low-point initiates the slug until the pressure in
the compressed gas is large enough to overcome the hydrostatic head
of the liquid. Figure 2.1 shows how terrain slug is generated.

e Transient slugging is caused by increased liquid flow rates at pipeline
exit to processing facilities in response to changes in operating condi-
tions.
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Figure 2.1: Terrain slug generation|1]

2.1.3 Anti-Slug Control

The role of anti-slug control systems is to completely remove slugs by stabi-
lizing an unstable flow regime. Anti-slug control has the following definition

[6]:

Definition 1.1 An anti-slug controller is a controller that stabilizes a de-
sired, non-oscillatory flow regime that exists at the same boundary conditions
as riser slugging and thereby avoids the formation of riser slugging in the sys-

tem.

Some of the advantages of anti-slug control with the choke valve as actuator
are:

e cheaper than implementing new equipment,
e completely removes slug flow, which results in less strain on the system,

e reduces maintenance expenses.
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2.2 Previous Work

There are several techniques applied to avoid slugs. One approach is to de-
sign the system to avoid slugs altogether. This can be done by changing the
pipeline topology, increase the size of the separator, adding a slug catcher or
installing gas lift. Another technique is to let the pipeline gas be transferred
to the riser at a point above the riser-base, a technique known as self-gas
lifting|7]. However, since thise methods involves changing the design, it usu-
ally costly.

There have been many approaches to feedback control since the end of 1970’s,
see chapter on previous work in [6](and its references). One of the first key
concepts was to avoid riser slugging by automatically adjusting the topside
choke valve position, based on an algorithm with a pressure and flow mea-
surement in the riser as input. About 10 years later, the PI-controller based
on upstream pressure measurement, to avoid riser slugging, was used. Both
approaches were based on experimental work, and did not result in any re-
ported industrial application.

In 1996, another technique was introduced. This technique was to implement
a control system that used the topside choke valve to keep the pressure at
the riser base at or above the peak pressure in the riser slug cycle, thus
preventing liquid accumulation in the bottom of the riser. This introduces an
extra pressure drop in the system due to the high setpoint for the controller.
This removes the riser slugging, but it did so by automating the old choking
strategy rather than affecting the stability of the flow regimes in the pipeline.
So, there is still unstable flow, but the choke is adjusted to avoid slug.

In the last two decades, solutions which have resulted in industrial application
have been proposed. The first industrial implementation of anti-slug control
is reported by ABB[5], where the new control system is applied on the Hod-
Valhall pipeline, and it manages to stabilize an unstable operating point.
This operating point, where the flow in the pipeline is steady, exists at the
same boundary condition as would normally result in riser slugging. Further,
in 2005 engineers from Statoil [8] successfully applied advanced control for
the inlet facilities, where active slug control for two long multiphase flow lines
is combined with model predictive control (MPC) to handle slugs entering
the inlet separators.
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Modelling Pipeline Riser Flow

3.1 The Pipeline Riser Model

This model is based on the mass conservation law for individual phases in
the pipeline and the riser|2]. The mass conservation of gas and liquid in the
pipeline and riser results in this model:

mgr = W@ in — Wa,ip

mri = Wrin — WLip

mG’Q = Wgq,p — WG, out

Mra = Wrip — WL out (3.1)

where [p indicates low-point.
The state variables of the system are as following
® Mg, mass of gas in the pipeline
e my1, mass of liquid in the pipeline
® Mo, mass of gas in the riser
e my, mass of liquid in the riser

The mass flow in the low point wg,, and wy,, are described by the rate of
flow of liquid through an orifice, called an "orifice equation" [9],

Wa,in = KaAcovVpaiAFPg (3.2)
Wrim = KpApV/priAPL

7
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The variables in the model are; pressure drop over the low-point AP, the
opening area A, a tuning parameter K and the density for the gas and liquid
in the pipeline p; with index G and L for hence gas and liquid.

Choke valve with opening Z
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Figure 3.1: Simplified representation of desired flow regime
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Figure 3.2: Simplified representation of liquid blocking leading to riser slug-
ging

In Figure 3.1, when the liquid is not blocking at the low-point (h;<h.), the
gas will flow from volume in the pipeline (Vi) to the volume in the riser
(Vaz) with a mass rate wep[kg/s]. Moreover, when the liquid level in the

8
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pipeline section is above the critical level (h;>h,), liquid blocks the low-point
and the gas flow rate at the low-point is zero, wg;, =0 hy > he, as seen in
Figure 3.2. This leads to riser slugging.

All the model equations can be found in[2].

3.1.1 Controllability Analysis

A controllability analysis of this system has been performed [3]. The control-
lability analysis concludes that for multiple input multiple output (MIMO)
control with one pressure measurement from the pipeline (P;), combined
with choke flow rates(Q) gives the best ability to control the system. In
many cases the subsea measurement is not available. Then combining the
top side measurements gives satisfactory result. The ability to control the
system is dependent on the disturbance in the system. For instance the input
rate of liquid (wr, ;») and gas (we ) into the system, or measurement noise.
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Chapter 4

Theory

4.1 State Space Representation

A state space model is a mathematical model of a process, where the process
state z is represented by a vector of finite dimensionality. The state space
usually consists of two models, a process model and a measurement model.
The first model is a representation of the dynamics that describes how the
state propagates in time as a function of external inputs, the second model
describes how a vector of numerical measurements y are related to the process
states.

The most general discrete form of state space representation is the nonlinear
model

Tp+1 = f(xkaukawk)a (4-1)
Y = h(l’k, Uk, 'Uk), (42)

where z is the state vector, u is the input, %k is the discrete time variable,w
and v are the stochastic noise for the process and measurement vectors re-
spectively.

The discrete linear process can be modeled as

Trr1 = Frrr + Brug + h(wk), (43)

where h(wy) is the input disturbance. The measurements of the process have
the relationship
Y = Hk[L’k + Dkuk + Vg, (44)

11
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where F}, By, H, and D, are matrices describing the discrete system dy-
namics. v, is the measurement noise. If the system has nonlinear dynamics,
the matrices can be found by linearization[10].

4.2 (Observers

The goal of an observer is to estimate the state z; based on our knowledge
of the noisy system dynamics and the available noisy measurements. For a
linear system with noisy measurements, an optimal observer (with respect to
expected observer error) is the Kalman filter.

4.2.1 Kalman Filter

In 1960 R.E Kalman presented a new way of formulating the minimum mean
square error (MMSE) filtering problem [11]. The Kalman filter uses state
space representation that makes it efficient to handle multiple input, multiple
output (MIMO) systems. The Kalman filter estimates the internal states
of linear dynamics using series of noisy input measurements. It is a two-
step process, where the first step is a prediction step and the second step
is an update step. The model is linear and the input is Gaussian, and the
output will also be Gaussian. As a result, the mean vector  and P will be
sufficient to describe the system. 7 is the state estimate, k is the discrete time
variable and P is the covariance matrix which contains information about the
accuracy of the estimate,

First, we predict the a priori state vector x and covariance matrix P:
JA},;'_I = Fki’k + Bkuk, (46)

P];+1:FkPkF]31+Qk7

By using the measurement y, we update the Kalman gain K, a posteriori
state vector z, and the covariance matrix P:

K, =P, HF (H P, HI + R,) ™, (4.7)
fi’k = Z)AS,; + Kk(yk — (Hki‘]; + Dkuk>>>

12
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P, = (I — KuH,)Py .

Qi and Ry are the covariance for the process and measurement noise respec-
tively. The system has initial conditions, Z; and F; . K} is the Kalman gain
which minimize the mean-square estimation error.

4.2.1.1 Properties of the Linear Kalman Filter

If w;, and v, are zero-mean, uncorrelated, and white, then the Kalman filter is
the best linear solution to the above problem. This means, the Kalman filter
is the best filter that is a linear combination of the measurements. However,
there may be a nonlinear filter that gives a better solution.

4.2.2 Extended Kalman Filter

Unfortunately, most processes are not linear and they need to be linearized
before they can be estimated with the linear Kalman filter. The extended
Kalman filter tries to solve this. The idea is to linearize the nonlinear system
around a trajectory that is updated with the state estimates resulting from
the measurements.

1. The system and measurement equations are given as follows:

T = f(an, u, wi),
ye = h(zg, ug,vg),
w, ~ (0,Qk)

(0, Ry) (4.8)

Vi

where z is the state, y is the measurement, v is the system and mea-
surement input, w and v are the process and measurement noise with
zero expected value and covariance () and R.

2. Initialize the filter as follows:

Ty = E(xo)
B = El(xo— i) ((xo — 27)"] (4.9)
3. For k=1,2,---  perform the following

13
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4.2.2.1

Compute the Jacobian, which is the first order term of its Taylor
expansion evaluated around the point of interest|12]:

0 fr—1
Fr1 = O ’i:—l (4.10)
0 fr—1
Ly, = X 4.11
o = Uy (2.11)

Perform the time update of the state estimate and estimation-
error covariance as follows:

P, = F. Pr FL +Qu . L" (4.12)
Ty = fea(@,up-1,0) (4.13)

Compute the following partial derivative matrices

ohy

H, = L 4.14
b 5 I (4.14)
Ohy,
M, = —Z|._ 4.1
e = 5l (4.15)

Perform the measurement update of the state estimate and esti-
mation error covariance as follows:

Ky = Py Hy(HyP;Hy + Ry,)™ (4.16)
& = &y 4 Kilyr — hu(@y, ug—1,0)] (4.17)
Pl = (I - KHy)P (4.18)

Properties of the Extended Kalman Filter

The EKF is probably the most widely used estimation algorithm for nonlinear
systems. However, many decades of experience has shown that it is difficult
to tune, and only reliable for systems that are almost linear on the time
scale of the updates. Further, it is also difficult to implement, much because
of the Jacobian. The Jacobian needs to exist, and calculating the Jacobian
produces many pages of dense algebra that must be converted to code. This
might introduce human coding errors that are hard to debug since you do not
know which performance to expect [13]. Because the Jacobian is based on
the first order Taylor expansion, the EKF is accurate to the first order[11].
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Nonlinear
Transformation

Figure 4.1: The principle of Unscented Kalman Filter|13].

4.2.3 Unscented Kalman Filter

The Unscented Kalman filter is developed to address the deficiencies of al-
gorithms with linearization. It is known for derivative-free optimization and
therefore better performance in systems that are categorized as "highly non-
linear". To overcome the difficulties with linearization the unscented trans-
formation was developed as a method to propagate mean and covariance
information through nonlinear transformations. The parameterization of the
unscented transformation is designed to satisfy the following principle [14].

The information contained in the mean vector and covariance matriz of the
random vector x is captured accurately by the unscented transformation in a
way that permits the propagation of this information through the nonlinear
equation y = f(x) in a computationally efficient manner.

This requirement is satisfied by generating a set of sigma points. Sigma points
are a set of points chosen according to a specific, deterministic algorithm,
so that their mean and covariance are  and »_,. Further, the nonlinear
function is applied to each point, in turn, to yield a cloud of transformed
points. The principle of the transformation can be seen in Figure 4.1.

e L: dimension of the state,

e «: small positive constant determining the spread of the sigma points
around the mean value of the state: 0.001 < a <1,

e [3: parameter incorporating prior knowledge on the distribution of the
state,

15
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e x: scaling parameter: [1 00),

e index: ¢ is for covariance and m is for mean.

v = L+ A
AN = o*(L+k)—L
" A
W= T
A %H—l—(l—anLﬁ)
W}m):m@:ﬁ for i=1,2,...,2L. (4.19)

The algorithm is described in steps 1-4 below:
1. We have an L-state discrete-time nonlinear system given by
T = f(@g, up, wy)
Y = h('xkaukavk)
v ~ (0, Ry) (4.20)
2. The UKF is initialized as follows:

5 = E(xo)

B = El(zo— &) ((zo — 27)"] (4.21)
3. The following time update equations are used to propagate the state
estimate and covariance from one measurement to the next.

(a) To propagate from time step (k—1) to k, first choose sigma points

$1(21~ The sigma points should be picked using the current best
guess for the mean x;l and covariance P,:lz

) _ | Tk  _
T 1= |:i‘2>_1 + ,fj(l):| 1= 1, ...2n (422)

where

iD= (yPEDT i=1,...n
Pt = —(W/yPE)T i=1,...n (4.23)
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(b) Use the known f(-) to transform the sigma points into i‘,(f) vectors.

2 = @0, ) (4.24)

(c) Combine the :Ac,(f) vectors to obtain the a priori state estimate at
time k.

2n
iy =y Wi (4.25)
i=1
(d) Estimate of the a priori error covariance, with the process Q1.

2n
Pe =Y WD - i@l — i)+ Qe (420)
=1

4. Next, implement the measurement-update equations

(a) Chose sigma points 55,(;) with appropriate changes since the current

best guess for the mean and covariance of x; are 2, and P, :

(@) _ T -

where

ito= —(W/yP) i=1,...n (4.28)

(b) Now, use the know nonlinear measurement equation h(-) to trans-

form the sigma points into g),(:) vectors (predicted measurements).

(c) Combine the g),(:) vectors to obtain the predicted measurement at
time k.

2n
=y Wiy (4.30)
=1
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(d) Estimate the covariance of the predicted measurement. To take
the measurement noise into account, Rj should be added to the
expression.

2n
P =S WGP — )@ — 3)" + R (431)
i=1

(e) Further, the cross covariance between &, and g should be esti-
mated

2n
Poyie =Y W@ — i) @ — )" (4.32)
=1

(f) Finally, the measurement update of the state estimate can be per-
formed using the Kalman filter equations

K, = PP/
i = 2+ Kelyr — k)
Pl = P, - K.P,K{ (4.33)

4.2.3.1 Properties of the Unscented Kalman Filter

For processes and measurements that have Gaussian error distribution and
the prior state is Gaussian, the UKF is accurate to the third order. For
non-Gaussian distributions, the UKF is accurate to at least the second order
[14]. Hence, the UKF is more accurate than the EKF.

4.2.3.2 Unscented Kalman Filter with Forgetting Factor

Another tuning parameter for the UKF is forgetting factor. The forgetting
factor is used to scale the a posteriori covariance PT.

_ B
S
The a posteriori covariance is used in eq. 4.23 to make sigma points. When
the forgetting factor is higher than one (ff > 1) the covariance reduces
and it "forgets" some of its covariance, hence the observer gain is decreased.
Further, if the forgetting factor is less than one (ff < 1), the covariance is
artificially increased and the observer gain is increased. A disadvantage of

increased observer gain is that it becomes sensitive to noise.

P (4.34)
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4.3 High-Gain Observer

In the end of my thesis work the high-gain observer was investigated in
cooperation with my supervisor Esmaeil Jahanshahi, and it is included for
completeness. The high-gain observer guarantees that the output feedback
controller recovers the performance of the state feedback controller when the
observer gain is sufficiently high. The observer gain is designed so that the
observer is robust to uncertainties in modeling of the nonlinear functions.
The structure of the high-gain observer is:

Y= 40 (1.35)
z = fa(2)
o= B+ -9

e

where
e z;, mass of gas in the pipeline(z)
e 2, mass of liquid in the pipeline(xs)
e 23, Pressure at top of riser (FP2)
e 2, mass of liquid in the riser(z,)

and % is the high-gain. The high-gain observer is essentially the model that
we have transformed in to the observability form[15]. For this, we used top-
pressure P, which is the measured output, in place of x3(mass of gas inside
the riser) as observer state.

axrs
P, = 4.36
2 b— Ty ( )
We need only to derive the time derivative of the top-pressure by using partial

derivatives:

R

f(2) = —= (4.37)
o 0P 0P

f3(2) = O T3 + 02, Ty
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where
aPQ a
S 4.38
8;1:3 b— Ty ( )
8P2 axrs
— = — 4.39
61‘4 (b — I4)2 ( )

and a and b are model constants. The MATLAB code can be found in
Appendix A.2. More theory about the high-gain nonlinear observer can be
found in [15] chapter 12.5 and in [16].
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4.4 Controllers

4.4.1 Pl-controller

The PI controller is widely used in the industry, but it can only be used for
single input, single output (SISO) cases.

e P, proportional (K,): Increased K, makes the rise time decrease, but
the overshoot increase and the stability margin decrease.

e I integrator (K;): Increased K; decrease the rise time, but increase
the overshoot, increase settling time and the stability margin decrease.
The steady state error is eliminated.

The PI-controller integrates the input error to the controller and multiplies it
with an integration gain K. This is added to the input error and multiplied
with the proportional gain K.

e(k) = y—reference
= I+e(k)Ts
u(k) = Kpy(e(k)+ KiI) (4.40)

where T's is the time step. The desired closed loop dynamics is obtained
by adjusting the tuning parameters K, and K;. This controller is fast and
eliminates the steady state error. Tuning can be done by trial and error, or
by simple analytical tuning rules|17].

4.4.2 Linear Quadratic Regulator

In LQR control, it is assumed that the plant dynamics are linear and known,

and that you have a deterministic initial value problem: given the system in
eq. (4.41) with a non-zero initial state x(0), find the optimal input signal
ug, which takes the system to the zero state x = 0 in an optimal manner, by
minimizing the quadratic cost function

J = Z ri Qxy, + ui Ruy,. (4.42)

k=1
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This requires that the pair (Fy, By,) is stabilizable (its state can be transferred
to the origin from any initial state in infinite time).

@ and R are symmetric positive-definite weight matrices for the states x and
the input u respectively. The task is to minimize the cost function, so if R is
high, using the input u will be expensive, and you will get slow response. By
having a high value on the first element on () compared to the other diagonal
elements, the controller will prioritize the first state. Further, if ) is much
greater than R, you will get a fast response. The optimal () and R are in
many cases found by trial and error.

The optimal solution is u, = — K-k, where
K, =R 'B'X (4.43)
and X is the symmetric positive definite solution of the Riccati equation [18]

F'X+XF—-XBR'B"'X+Q=0 (4.44)

4.4.3 Linear Quadratic Gaussian Controller

The principle is much the same for the LQG controller as for the LQR. The
name LQG comes from a linear model, an integral (or sum) quadratic cost
function, and Gaussian white noise processes to model disturbance signals
and noise.

z(k+1) = Fua(k)+ Bru(k) + wg (4.45)

and the process and measurement noise, w, and v, are uncorrelated zero-
mean Gaussian stochastic processes. Usually, a linear Kalman filter is used
to model the process state Z. The solution to the LQG problem is known as
the Separation Theorem|[18], and it consists of first determining the K lgr
in eq. (4.43), then finding the optimal state estimate & given by a Kalman
filter. The principal of the controller is shown in Figure 4.2.
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i Yy
> Plant
X
Deterministic X . o
linear quadratic ¢ | Kalman Filter
regulator * I i svst N
constant. — K, dynamic system

Figure 4.2: LQG-controller, which consists of LQR and Kalman Filter|18]

4.4.4 Model Predictive Control

The more advanced Model Predictive Controller (MPC) will now be ad-
dressed. The MPC is one of the controllers which has made significant impact
on the process industry. The MPC is a controller which

e uses a multivariable process model to predict future behavior,

e solves mathematical optimization problems of the predicted future per-
formance, and

e handles multiple constraints on inputs, states and outputs.

One of the main reasons for its success in the process industry is the con-
straint handling. For instance, a choke valve and flow rate have saturation
characteristics, because the valve can only be 100% open and the flow rate
might have maximum values due to fixed pipe diameters. When the process
operates at its constraints it is often running at its most profitable condition.
In addition, the MPC is a controller which is easy to understand, and has few
tuning parameters. However, since the MPC controller is based on a model
of the plant, it is important to always have a model of the system which
are good enough, but not to complex. If the model is to complex, you will
use too much computational time on the model when optimizing. To have a
robust system, the plant should not be operated exactly at the real limits of
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its capability, due to unexpected disturbances. But, the better the control
system is, the closer to the constraints you can operate.

In the unconstrained case the MPC controller reduces to an LQR controller
which optimizes over a horizon. Therefore, the main reason for widespread
use of MPC in place of the LQR is that it offers a straightforward and
transparent approach to handling multiple constrains.

Reference

Past outputs L Optimized outputs

m Optimized inputs

Past Present Future

Figure 4.3: MPC principle[19]

The basic idea for the optimization problem is illustrated in Figure 4.3.

1. At time instant k, solve the quadratic programming (QP) (see Section
4.4.4.8) problem to obtain an optimal, feasible input sequence.

2. Apply the first input to the process.
3. Set k =k + 1, and repeat the previous steps.

4.4.4.1 Linear MPC

This MPC implementation is taken from Predictive Control: with Constraints
By J.M. Maciejowski[20]. The process to be controlled is described by a
discrete state space model
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Tpy1 = Frpap + Bruy,

where Fj, and B, are discrete time process dynamics. Fj can be either stable,
or unstable, but we assume that the pair (F}, By) is stabilizable.

The objective we want to obtain by control is to optimize performance by
minimizing:

Hp Hy—1
V(k) = Z (xx — m0)" Q(x — o) + (up — up—1)" R(up, — ugp_y) (4.48)
i=H, i=0
subject to
AtUpin < Au < Alpas (4.50)
Umnin S Uu S Umazx (451)

where Aw is the input change, u is the input and k is the discrete time
variable. xj is given by eq. (4.47) which is based on xy and the previous
calculated ug_1. As in Section 4.4.2, () and R are positive definite tuning
parameters. Further, the state must be detectable trough ) (all unobservable
states are stable). In all cases we want (zy —zo) — 0. H, and H, are tuning
parameters called the control- and prediction horizon. For simplicity, we will
assume that the control and prediction horizon will be equal. Another tuning
parameter is H,, and this is when you start predicting. Further, the state
space dynamics is represented without index £k to save space.

4.4.4.2 Prediction

Assume that we know nothing about any disturbance or measurement noise.
In order to solve the predictive control problem, we must have a way of
computing the predicted values of the controlled variables, z(k + i|k). By
writing out eq.(4.47)
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z(k+1|k) = Fux(k)+ Bu(klk)
z(k+2lk) = Fx(k+ 1|k)+ Bu(k + 1]k)
= F%x(k) + FBu(k|k) + Bu(k + 1|k)

z(k+ Hplk) = Fuz(k+ H,— 1k)+ Bu(k+ H, — 1|k)

= Fa(k)+ Fo ' Bu(klk) + ... +u(k + H, — 1|k)

and

u(klk) = Au(klk) —u(k —1)
uk+1k) = Au(k+ 1k) + Au(k|k) —u(k — 1)

uwk+ H,—1k) = Au(k+ H,—1k)+ ...+ Au(k|k) + u(k —

Finally, we can write this as matrix form:

z(k + 1|k) Au(k|k)
: =Uz(k)+Yulk—1)+0O :
z(k+H,+1) Au(k + H, — 1|k)
where
F B
v=| : |,T=
. Hi=1 g
FH Zz 0 B
and
B 0 ... 0
F+F°B B ... 0
Zm*F% Zm”F% ... B

26
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4.4.4.3 Using an Observer

If we cannot measure the full state vector, or if the output consists of some
linear combinations of the states, then an observer can be used to estimate
the state vector. If an observer is used in the MPC, then the x needs to be
replaced with Z since you use the estimated x in the MPC formulation. More
about observers in Section 4.2. Your MPC formulation will now be

Hp Hy,—1
V()= > (& — 20) Qx — x0) + Y (un — ur—1) " R(up — w—y) (4.56)
i=Hy, i=0
subject to
Tmin S T S Tmazx (457)
Atpin < Au < AUpgs (4.58)
Umin S U S Umaz (459)

4.4.4.4 Solving Predictive Control Problems

We can rewrite the cost function which we want to minimize

V(k) = IX (k) = T(k)lg + |1AU (K% (4.60)
where
x(k + Hylk) zo(k + Hy|k)
X(k) = : T(k) = :
z(k+ H,|k) xo(k + Hplk)
Au(klk)
AU(k) = : (4.61)

Ak + H, — 1]k)

The weighting matrices Q and R are given by

Q(H.,) 0 0
Q= ? Q(H"f wy o (? (4.62)
0 0 ... QH,)
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and
R(O) 0 0
0 R ... 0
R=| . U : (4.63)
0 0 ... R(H,—1)

They are tuned the same way as described in Section 4.4.2.

Recall from eq. (4.54) that X has the form

X (k) = Wa(k) + Yu(k — 1) + OAU (k) (4.64)

Define
e(k)=T(k)— VYx(k) — Tulk —1) (4.65)

This can be thought of as "tracking error" in the sense of the difference
between T'(k) which is the future target trajectory, and the "free response"
of the system. The response that would occur over the prediction horizon if
no input changes were made, Au = 0, is the "free response". If the tracking
error is zero, € = 0, then it will be correct to set Au = 0.

Thus we have,
V(k) = [X(k)=TH)g+ |AUE)|;
= [©AU(k) — (k)] + AU (K) |17
= [AU(k)TO" —£(k)"]Q[OAU(K) — £(k)]

+AU(K)TRAU (k)
= e(k)'Qe(k) — AU(K)TG + AU (K)THAU (k) (4.66)

where

G=20"Qes(k) and H=0"QO+R (4.67)
and neither G nor H depends on AU (k)
This has the form

V (k) = const — AU (k)G + AU (k)" HAU (k). (4.68)

To clarify the dimensions are summarized in Table 4.1.
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Matrix Dimensions
Q m(H,—H,+1)xm(H,—H,+1)
R [(H,xIlH,
UV m(H,—H,+1)xn
T m(H,—-H,+1)xlI
© m(H,—H,+1)xIH,
e m(Hy,—H,+1)x1
G [H,x1
H [H,xIlH,

Table 4.1: This table shows the dimensions on the matrices and vectors
involved in computing the optimal input vector. The plant has [ inputs, n
states, and m controlled outputs.

4.4.4.5 Unconstrained Optimization

The solution to the unconstrained optimization problem is straight forward.
To find the optimal input change, AU (k), find the gradient of the cost func-
tion V(k) and set it to zero. From eq. (4.68) we find

VavwV = -G+ 2HAU (k) (4.69)

which gives the optimal set of future input moves

1
AU (K) opt = 5H—lc: (4.70)
For each calculation of AU(k) only the first elements corresponding to the
number of plant inputs of AU(k) are applied, then AU (k) is recalculated.

This has the form
Au(k)opt = [11,0; ..., 0] AU (k) opr (4.71)

where [; is the [ x [ identity matrix, and 0; is the [ x [ zero matrix.

4.4.4.6 Comments on the MPC

e In eq. (4.54), the calculation of ¥ involves computing F*, and 4 can be
quite large. If the plant is stable or unstable, some elements in F* might
become extremely high or small compared to others. Since computers
work with finite-precision arithmetic, the results might become wrong.
One way to handle this problem is "pre-stabilizing" the plant|20].
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e As described earlier, () and R are important tuning parameters for the
MPC. The value of the prediction horizon H,, control horizon H, and
working horizon H,, needs to be considered. H, and H, affect the close
loop performance and the computational complexity. Generally, shorter
horizons gives lower complexity optimization problem and hence lower
computational load for the online optimization problem, while longer

horizons gives better performance, at the cost of higher computational
load.

4.4.4.7 Constrained Optimization

Now we consider the case when constraints are present. They are written in

the form
E {A[Jl(’ﬂ <0 (4.72)
P [U (1’f>] <0 (4.73)
C lZ(lk)] <0 (4.74)

where U(k) = [a(klk)T,... a(k + H, — 1|k)"]*. The @ is used to indicate
that it is not yet the optimal u. We want to end up with constraints for the
optimization problem expressed in terms of AU (k)

QAU (k) = w. (4.75)

Suppose F' has the form
F=[F,F,...,Fy, fl, (4.76)

where ¢ is the number of constraints on u, and each F; is of the size ¢ x m,
and f has the size ¢ x 1. To illustrate 0 < u; < 1 gives ¢ = 2. Now, eq.
(4.73) can be written as:

Hy
> Fi(k+i—1k) + f <0. (4.77)
i=1
Since -
a(k+i—1lk) = u(k — 1)+ Y _ Ad(k + j|k) (4.78)
7=0
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we can write eq. (4.73) as

H, H,
S FAa(klk) + Y FAi(k + 1[k)
j=1

Jj=2

Hu
+. 4 Py, Au(k+ H, = 1|k) + Y Fu(k—1)+f<0 (4.79)
j=1

By defining F; = Zf;l Fj and F = [F4,..., Fu,] we only have to summarize

to see that we have converted eq. (4.73) into a linear inequality constraint
on AU(k).
FAU(k) < -FUk-1)—f (4.80)

Equation (4.74) is treated similarly:

Wa(k) + YTu(k — 1) + OAU (k)

¢ 1

<0 (4.81)

Now, letting G = [I', g|] where g is the last column of G, this can be written
in the desired form as

I'OAU (k) < —T[Vx(k) + Yu(k—1)] —g (4.82)

The only remaining constraint to handle is the simplest one, eq. (4.72), we
write

WAu(k) <w (4.83)
Finally, we can summarize
F —flu(k — 1) — f
el AU(k) < | -T[Vx(k) + Tu(k—1)] —g¢ (4.84)
14 w

If an observer is used, replace x by z.

Now, we have obtained the following constrained optimization problem:
minimize AU(k)THAU (k) — GTAU (k) (4.85)

subject to the inequality constraints in eq. (4.84). This is a standard opti-
mization problem know as quadratic programming (QP), which can be solved
with standard algorithms.
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4.4.4.8 Solving Quadratic Programming Problems with Constraints

There are several software programs that can be used to solve QP problems,
for instance MATLAB and Microsoft Excel. MATLAB|21] has a build-in
function quadprog which solves the problem and gives you the optimal input.
In quadprog you can decide which algorithm that should be used, for example
Active-Set or interior-point method. These are briefly described in [20], and
more carefully derived in [22].

Even though the QP problem has a global solution that exists, hence it is
convex|22], it might be infeasible because of the constraints. There are several
approaches to solve this problem:

e Implement soft constraints

e Actively manage the constraint definition at each &
e Actively manage the horizons at each k

e Use non-standard solution algorithms

Recommended literature on MPC and examinations of these solutions can
be found in [20] and [19].
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Implementation

As mentioned in Section 4.2 about Kalman filters, there is an assumption
that the process and measurement noise are white with zero mean. However,
to simulate a more realistic case, and to be able to generate slug flow into
the anti-slug controller the process noise is not set to be like this. Figure 5.1
presents an input that generates slug flow.

Inflow rate of gas (w
04 :

Gi n)

0.38

Z o =
=3

5 —\:

2° 034f

time (h)

Inflow rate of quuis(wLm)

95

W, (kg/s)

85 *

8 L L L L L L L L
0 05 1 15 2 25 3 35 4 45
time (h)

Figure 5.1: Gas and liquid flow into the system
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The files for simulating the system are found on the CD.

For simulation of the nonlinear model the MATLAB function odel5s[21] is
used. The state for the nonlinear model includes one steady-state part xg
plus one deviation part dz. Further, linear controllers are used, they work
with the deviation part dx, therefor the steady-state part zq is removed when
states are used in the controller.

5.1 Tuning Parameters

Tuning of the observers and controllers are not the main focus of this thesis.
Because of the nonlinearity in the system, the time steps need to be small
and the simulation is very time consuming. In compromise between time
and performance simulations are done to find the best values for the tuning
parameters.

5.2 Matlab Code

5.2.1 Controllers

PI Controller:

%% Initialization
Kp = 0.1; %% Kp=1 is also used.
Ki = 0.0001;

%% inside loop

% PI Controller
P1 hat(k—1)=y hat(1,k—1);
e(k—1) = P1_hat(k—1) — y0(1);
I =1+ e(k—1)*Ts;

u c(k—1) = Kp*(e(k—1)+KixI);

\% Saturates the controller betwEen [0 1].

if (u_c(k—1)<—u_pc(k—1))
u_c(k—=1)=—u_pc(k—1);

end

if (u_c(k—1)>(1—u_pc(k—-1)))
u_c(k—-1)=1-u_pc(k—-1);

end
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LQR Controller

% LQR Controller
Q lar=le—3xdiag ([1 0 1 0]);
R _Iqr=1e9;

N lqr=zeros (4,1);
[K lgr,S,e] =dlqr(F,B,Q lgr,R lqr,N lqr);

u_c¢(k—=1)=—K Iqr*x_hat(:,k—1);

\% Saturates the controller between [0 1].

if (u_c(k—1)<—u_pc(k—1));
u_c(k—=1)=—u_pc(k—-1);

end

if(u c(k—1)>(1—u_pc(k—1)));
u_c(k—1)=1-u_pc(k—-1);

end

MPC Controller
Code for initialization of the MPC can be found in appendix A.4.

% MPC Controller

%% Formulate H and G.
x_prev=x_hat (: ,k—1);
u_control prev=u MPC(k—1);

T=repmat ([0 0 0 0]’,Hu,1);
EPS=T-Psi*x_prev—Gammaxu_control prev; %eq. 4.62

H-Theta’+Q MPCx Theta+R MPC; %eq. 4.64

H=HH")/2; %To ensure symmetry/compensate
for numerical inaccuracies

G=2xTheta’*xQ MPC+EPS; %eq. 4.64

%% Formulate constraints as eq. 4.81

% Ff %1st line , left side
GcFi=Gceons*Theta; %2nd line , left side

% W %3rd line , left side
%Eps=Psi*x _prev—Gammaxu _control prev; %2nd line right side,

midle part

ohml=f1*u_control prev—f; %1st line, right side
g1=Gcons*EPS—g; %2nd line , right side

% w %3rd line , right side
OhmlL=[Ff; GcFi;W]; % Total vector, left side of constraints
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OhmR — [ohml; gl; w]; % Total vector, right side of constraintg
% OhmLxdeltaU<=OhmR, evt. Ax<=b

%% Quadratic program, constrained case:
[delU (:,k),fval ,exFlag ,output ,lambda] = quadprog(H, —0.5xG,
OhmL,ObmR, [],[] ,[],[] ,[] ,optionsQP );

%% Input to simulation of plant
u MPC(1,1)=0;
u MPC(1,k) = delU(1,k)+u MPC(1,k—1); % Add up to total control

(deltaU computed)
1-u(1.k))
u_MPC(k)=1—u ;
k)<—

if (u_MPC(k)> 1
(1,k);
elseif (uMPC u(l,

k
k
k))

(1.
u_MPC(k)=—u(1,k);

end

Simulation

% ————— Simulation of System
u_in(:,k)=[u(1,k)+u_c(k—1); u n(2,k); u n(3,k)];

u_no_mnoise (:,k)=[u(l,k)+u_c(k—-1); u(2,k); u(3,k)];

[tt ,xt]=0delds(@v4_new_4d_model,[k—1;k] ,x(:,k—1)+x0,
options ,u_in(:,k),  derivatives ', par);
x(:,k)= xt(end,:)’ —x0;
yt=v4 new 4d model(k,xt (end,:)’ ,u_in(:,k),’ measurements’, par)
y(:,k) = ytm_m(:,k);

5.2.2 QObservers

The process noise is wy and the output noise is vt = Fw + Mv

vt = Bw+ Mv
var(Ew + Mv)
Exp((Ew + Mv)(Ew + Mv)")
= FEap(Fw+ Mv)(w'E"+ v M")
= FEazp(Eww'E"+ Ewv'M' + Mvw'E" + Mvv'M")
= FEQnE+ ENnM' + MNn'E'+ MRnM'
R = EQn+ Hn+ Hn'+ MRnM' (5.1)

var(vt)

where
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e [ is the matrix corresponding to the noisy process input wg;, and
WL in-

e M is the matrix corresponding to the noisy stochastic measurement
input.

Kalman Filter

Simulink was used to implement the linear KF. To simulate with the nonlin-
ear function as for the EKF and UKF, an S-Function was used. The Simulink
diagram is attach in Appendix A.2.

Extended Kalman Filter

% ————— Extended Kalman Filter
% p.409 in Optimal State Estimation. By Dan J. Simon
%3a)

%F =expm (AxTs)
%BL=(F-I)inv (A)B
%L —BL(:, sensors)

%b)
P pri=F«PxF’+Q;

[tt ,xt]=0delbs(@v4 new 4d model,[k—1;k],x hat (:,k—1)+x0,
options ,u_no_noise (:,k),’derivatives ’,par);

x_hat_pri(:,k)= xt(end,:)’ —x0;

yt=v4 new_4d_ model(k,xt(end,:)’,u_no_ noise(:,k),
"measurements ’, par);

y_hat pri(:,k) = yt(1:3);

% y_hat_pri is calculated based on x hat pri.

%c)
%H-C(sensors ,:);
%VEeye (length (sensors));

Yod)
K=P pri«H’/(H«P _prixH’+R);
x_hat (:,k)= x_hat_pri(:,k) + K«(y(sensors ,k)
— y_hat_ pri(sensors ,k));
y_hat(:,k) = v4 new_4d model(t(k),x hat(:,k)+x0,
u_no_noise(:,k),’ measurements’,par);
P=(eye(size (P_pri))—K«H)«P _pri;

Unscented Kalman Filter

9%9%9%% Initialization of UKF %%%%
ff = .98;
L = 4;
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alpha=1;

beta=0;

kapa=1;

lambda=alpha ~2x(Ltkapa)—L;

gama—sqrt (L+landa);

Wc=[lambda /(L+lambda)+(1—alpha~2+beta) , ones(1,2xL)xlambda/
(2% (L+lambda))];

Win=[lambda /(L+lambda) , ones(1,2+L)xlambda/(2x*(L+lambda))];
Wcl=ones (L,1)*Wec;

Wc2=ones (2,1)*Wc;
Wml=ones (L, 1) «Wn;
Wm2-ones (2,1) *Wn;

%7%J% Inside loop%y%h

% ———————— Choosing Sigma Points
xhatk 1 = x_e(:,k—1)+x0;
[RSK, p|=chol( (gamma~2) *x Pk 1 );

if p==0,
SK = RSK’;
else
SK=sqrt (abs( (gamma~2) % Pk_1 ));
end

Xk 1=[xhatk 1 , xhatk 1xomnes(1,L)+SK , xhatk 1xones(1,L)—SK ];
%eq.4.25

% Propagation of Sigma Points
Xk = zeros(L,2xL+1);
for j=1:2xL+1,
[tt ,xt]=0del5s(@Qv4 new 4d model,[k—1;k] , Xk 1(:,j),
options ,u_in_ noNoise (:,k), ’derivatives ’,par);
Xk(:,j) = xt(end,:) 7; %eq.4.27

end

xhatk —sum ((Xk).*Wml,2); %eq.4.28
templ=Xk—xhatk xones(1,2xL+1);

Pk _=Wcl.xtemplstempl’+Q KF;% eq.4.29
% Measurement Update

SK=chol ( (gamma“~2) % Pk )’;
Xk=[xhatk , xhatk *ones(1,L)+SK , xhatk #ones(1,L)-SK];
%eq.4.30
Yk = zeros(2,2xL+1);
for j=1:2«L+1,
y_k = v4 _new_4d model(t (k) ,Xk(:,j),u_in_ noNoise (:,k),
"measurements’ ,par); %eq.4.32
Yk(:,j)= y_k(sensors);
end
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yhatk =sum (Wm2.xYk,2);% eq. 4.33
Pxkyk=Wecl.* (Xk—xhatk #ones(1,2xL+1))*(Yk—
yhatk xones(1,2xL+1))";% eq.4.35
templ=Yk—yhatk *ones(1,2xL+1);
Pyk yk =Wc2.xtemplxtempl’+R_KF; % eq.4.34
Kk=Pxkyk /Pyk_yk ; % eq. 4.36
xhatk=xhatk +Kkx(y(sensors ,k)—yhatk );% eq. 4.36
x_e(:,k)=xhatk—x0;
y_hat (: ,k)=v4 new 4d model(t (k),xhatk ,u_in_ noNoise(: k),
‘measurements ’, par);
Pk=Pk —Kkx*Pyk yk *Kk’;%eq 4.36

pll(k,:)=diag(Pk) ’;
Pk _1=Pk/ff;
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Chapter 6

Results

All simulations are done with the nonlinear model in Chapter 3. The mea-
surement noise is generated with the randn() function in MATLAB for each
time step, consequently the output have a lot of noise. To improve the plots,
only the 10’th sample is shown for the subsea pressure P, topside pressure
P, and mass rate W,,;. However, the noise characteristic of the choke valve
is important, so every sample is plotted for u. All simulations have nominal
choke valve opening v = 0.10 if nothing else is mentioned.

For simplicity some notation;

e "PI + Observer, Py and Wy, 3%" means a PI controller based on P
from an observer with 3% input disturbance. Further, P, and W are
measured.

e "Controller +Observer, P, and Wy, 5%" or M PC'+ Observer means
a controller based on Z from an observer with 5% input disturbance.
Further, P, and W are measured.
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Nominal u=0.10
Using subsea measurement and| Using topside measurements(P,
mass rate(P; and W) and W)
3% disturbance 5% disturbance [3% disturbance 5% disturbance
Direct PI Yes
measure- [LQR Yes
ment MPC Yes
Pl Yes Yes No No
Linear KF  [LQR Yes Yes No No
Estimate |MPC - -- -- --
Pl Yes Yes Yes, fig 6.2 No, fig 6.1
LQR Yes Yes No, fig 6.4 No, fig A.3
EKF Estimate |MPC Yes Yes No No, fig A.4
PI Yes Yes Yes, fig 6.3 Yes fig 6.5
LQR Yes Yes Yes Yes, fig 6.6 & 6.8
UKF Estimate|MPC Yes Yes Yes Yes, fig 6.7
High-Gain |LQR -- -- Yes Yes, fig 6.11 &6.12
Observer** |PI -- - Yes Yes

Table 6.1: Summary of the results, Yes means it works, No means it does
not work, and —— means it is not investigated. **See section 4.3.

Nominal u=0.12

Using subsea measurement and
mass rate(P, and W)

Using topside
measurements(P, and W)

3% disturbance [5% disturbance |3% disturbance |5% distrubance
Pl Yes - No -
EKF LQR Yes No -- --
Estimate |MPC No -- - -
Pl Yes Yes Yes, fig A.5 No
UKF LQR Yes No Yes No, fig 6.9
Estimate |[MPC Yes No Yes, fig A.6 No

Table 6.2: Summary of the results, Yes means

not work, and —— means it is not investigated.
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6.1.

Simulation Results

6.1

0.8
0.6
0.4

0.2

53

49.5

In Figure 6.1, the system is controlled with a PI controller based on the EKF
estimate of P;. This system is stable for about 3 hours, but the input is
noisy. Further, after about 3.5h, the combination of low Wi, ;,, and low Wg 4,

Simulation Results

Opening of choke valve (Z)

Input with Control
----- Nominal Input

Pressure at top of riser (Pz)

time (h)

kg/sec

721

69

68.5

Pressure at inlet of pipeline (Pl)

Measured
Estimated
----- Set-Point

Mass flow of choke (w_ )
out

time (h)

Figure 6.1: PI+EKF, P, and W,,;,5%

makes the system unstable (Figure 5.1).
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Opening of choke valve (2) Pressure at inlet of pipeline (Pl)

1 put with Control 72
Nominal Input
715
038
0.6
N
0.4
0.2 69 Mef'isured
Estimated
6851 —  —  Set-Point
0
0 1 2 3 4 0 1 2 3 4
Pressure at top of riser (Pz) Mass flow of choke (Wom)
58 105
52.5

kg/sec

8

50 75

49.5 7
0 1 3 4 0 1 3 4

2 2
time (h) time (h)

Figure 6.2: PI+EKF, P, and W, 3%

Opening of choke valve (Z) Pressure at inlet of pipeline (P1)

1 Input with Control 72
Nominal Input
715

0.8

0.6 ~ 705
[

0.4

0.2 69 Megsured
Estimated
685 —  —  Set-Point

0 1 2 3 4 0 1 2 3 4

)

Pressure at top of riser (Pz) Mass flow of choke (wULIt

10.5

10

9.5

kal/sec
©

0 1 2 3 4 0 1 2 3 4
time (h) time (h)

Figure 6.3: PI4+UKF, P, and W, 3%
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Asseen in Table 6.1, the PI controller is the only controller which can stabilize
the system with EKF or UKF, with topside measurements and 3% input
disturbance. In Figure 6.2 and 6.3 the simulations are shown. Both control

solutions give good results.

Opening of choke valve (Z)

1 Input with Control
----- Nominal Input
0.8
0.6
N

0.4
0.2

0

0 1 2 3 4

Pressure at top of riser (P2)

53

50

49.5

time (h)

kg/sec

721

69

68.5

1051

10

Pressure at inlet of pipeline (Pl)

Measured
Estimated
----- Set-Point

1 2 3 4

Mass flow of choke (w_ )
out

time (h)

Figure 6.4: LQR+EKF, P, and W,,;, 3%

Small oscillations can be seen after about 3.5h in Figure 6.4. This means that
although the input disturbance is reduced to 3%, LQR+EKF gets unstable
for a short period. However, the system recover when the combination of low
input of Wy, ;, and low Wg ;, changes to low input of Wi ;, and high W ;.

45



Chapter 6. Results

Another observation from Table 6.1 is the performance of the UKF. The UKF
using only topside measurements, combined with PI, LQR or MPC (Figure
6.5-6.7) stabilizes the system, even with 5% input disturbance.

Opening of choke valve (2)

Input with Control
Nominal Input

0.8

0.6

0.4

0.2

{aa

P

ressure at top of riser (Pz)

53

52.5

52

51

50.5

50

49.5

0 1 2 3 4

time (h)

Pressure at inlet of pipeline (Pl)

72

715

68.51

Measured
Estimated

kg/sec

----- Set-Point

1 2 3 4

Mass flow of choke (w_ )
out

time (h)

Figure 6.5: PI+UKF, P, and W, 5%
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Opening of choke valve (Z) Pressure at inlet of pipeline (P1)

1 Input with Control 72
Nominal Input 75
0.8
7
0.6 L 705
N [N SR
< 70
04
695
Measured
02 69 Estimated
68.5L| — — '~ Set-Point
0
0 1 2 3 4 0 1 2 3 4
Pressure at top of riser (Pz) Mass flow of choke (wom)
53
525
52
5 515
51
505
50 75
495 7
0 1 2 3 4 0 1 2 3 4
time (h) time (h)
Figure 6.6: LQR+UKF, P, and W, 5%
Opening of choke valve (2) Pressure at inlet of pipeline (P1)
1 Input with Control 72
————— Nominal Input
0.8
06
N
0.4
Measured
02 M 69 Estimated
T 685+ — —" Set-Point
0
0 1 2 3 4 0 1 2 3 4
Pressure at top of riser (Pz) Mass flow of choke (wom)
53
o
@
Q0
(=
X
7
0 1 2 3 4 0 1 2 3 4
time (h) time (h)

Figure 6.7: MPC+UKF, P, and W, 5%
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Opening of choke valve (Z) Pressure at inlet of pipeline (Pl)

80
1 Input with Control
----- Nominal Input 8
o8l 76 1]
74
0.6} =
N 8 72
70 —
68
Measured
66 Estimated
----- Set-Point
64 | | L | L L
0 1 2 3 4
Pressure at top of riser (Pz) Mass flow of choke (woul)
57 25 .
20
o 15}
g 3
] 5 !
=~ 10 4 i
1 '!'M_"""“'"“"‘"D"‘"“"\'F'NF'"F‘
|
5 i

time (h) time (h)

Figure 6.8: LQR+UKF, P, and W,,;, 5%, the control system is turned on
after 1 hour!.

As seen in Figure 6.8, the LQR+UKF using topside measurements, is able
to stabilize the unstable slug-flow. The control system is turned on after 1
hour.

! Make notice on the different scales compared to figure 6.1-6.7
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Opening of choke valve (Z) Pressure at inlet of pipeline (Pl)
80
1 Input with Control 78
----- Nominal Input
76
0.8
74
0.6 = 72
N
< 70
0.4 68
02 66 Measured
. —_ 64 Estlmatgd
----- Set-Point
0 62 : -
1 2 3 1 2 3 4
Pressure at top of riser (P2) Mass flow of choke (wout)
56 45 .
40 1
55 :
35
30
® 25
LY
220

time (h)

time (h)

Figure 6.9: LQR+UKF, P, and W, 5%, nominal choke valve u = 0.12, the

control system is turned on after 1 hour!.

Further, the system input is changed, and the nominal choke valve position
is increased from v = 0.10 to u = 0.12. In Figure 6.9, it can be seen that the
system cannot handle the input combination at 3.5 hours.
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Opening of choke valve (Z)

1 Input with Control
----- Nominal Input
081
061
N
041
0
0 1 2 3 4
Pressure at top of riser (P2)
5251
52

49.5

491

0 1 2 3 4
time (h)

S 695 Mt i M

Pressure at inlet of pipeline (Pl)

715

71

705

70

69
68.5
Measured
68| Estimated
----- Set-Point
0 1 2 3 4
Mass flow of choke (woul)
11 T
105

kg/sec

0 1 2 3 4
time (h)

Figure 6.10: PI+EKF, P, and W, 3%, nominal choke valve u = 0.15

Moreover, if the subsea pressure and topside flow are used as measurements,
the PI+EKF is able to stabilize the the system with nominal choke valve

increased to u = 0.15.
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LQR and High-Gain? Observer with 5% Disturbance

Opening of choke valve (2) Pressure at inlet of pipeline (Pl)

80

Input with Control

----- Nominal Input 78
0.8 76
74
872
70 ~
68
Measured
66 Estimated
----- Set-Point
64 T LI T L L L
0 1 2 3 4
Pressure at top of riser (Pz) Mass flow of choke (wout)
56 30 :
55 25
54 20
[S]
g b3
o 215
X
0] i _FWA,..—MW
5

time (h) time (h)

Figure 6.11: High-gain+LQR, P,, 5% The control system is stared after
simulating 1 hour!.

Promising results are shown in Figure 6.11. The unstable slug flow is stabi-
lized when the control system is started after 1 hour.

2In cooperation with supervisor Esmaeil Jahanshahi
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Opening of choke valve (2) Pressure at inlet of pipeline (Pl)

80
1 Input with Control
) 78l
----- Nominal Input
761
0.8
74
0.6} L 72
N ©
< 70
04} sl
02} ] 661 Measured
_ _ 64 Estlmatgd
----- Set-Point
0 62 . . . .
0 1 2 3 4 0 1 2 3 4
Pressure at top of riser (Pz) Mass flow of choke (woul)
56 35 .
551 301
25+
541
o
Q
53| 0
(2]
4
52
Slu-jd}/n_—.
o W ‘
0 1 2 3 4 1 2 3 4
time (h) time (h)

Figure 6.12: High-gain+LQR, P, , 5%, nominal choke valve u = 0.12. The
control system is stared after simulating 1 hour!.

In Figure 6.12, the high-gain is again simulated with LQR. For this simulation
the operating point is changed from v = 0.10 to u = 0.12. This change makes
the system unstable.
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6.2 Comparison of the controllers

As seen from Table 6.1, the best nonlinear estimator is the UKF. Comparison
is done of the accuracy of the estimators by calculating root mean square error
between the estimated state and the state. Then, the root mean square error
is calculated to between the output and the steady-state value to check the
controller performance. The comparison is done with 5% input disturbance,

and topside measurements.

Root Mean Square Estimation Error

RMSE = \| > (x(i) — (1))
=1
£ Z2 T3 Ty
UKF+PI 759 0.8 |289]50.13
UKF+LQR 7.09 |0.65 | 2.67 | 46.25
UKF+MPC 816 | 0.71 | 3.1 | 53.96
High-Gain+LQR | 10.61 | 2.15 | 3.51 | 61.34

Table 6.3: RMSE for the state estimation

Root Mean Square Output Error

1
Error = E ZZI (y(l) - yss>2
Pl P2 Waut
UKF+PI 0.509 | 0.283 | 1.271
UKF+LQR 0.624 | 0.323 | 0.435
UKF+MPC 0.675 | 0.409 | 0.544
High-Gain+LQR | 0.884 | 0.479 | 0.995

Table 6.4: RMSE output error

None of the controllers are significant better than others. However, we can
see slightly better results for the UKF+LQR.
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Chapter 7

Discussion

Active control of the choke valve is the recommended solution for anti-slug
control. In this thesis work state estimation is performed and used in the
control solution. The linear Kalman filter, extended Kalman filter (EKF)
and unscented Kalman filter (UKF) were used for state estimation, using
top-side measurements, with a controller to stabilize the system.

As expected, the linear Kalman filter fails in stabilizing the system when only
topside measurements are used, even when the input disturbance is reduced
from 5% to 3%. Therefore, we move to nonlinear state estimation.

In Figure 6.1, the PI+EKF is not able to stabilize the system when the
input disturbance is 5% and the nominal values of Wy, ;, and W ;, are low.
However, when the input disturbance is reduced to 3%, the system is stable.
This can be seen in Figure 6.2. The same unstable behavior, with 5% input
disturbance, can be seen for LQR+EKF and MPC+EKF, Figure A.3 and
A4 in the appendix. Further, LQR+EKF has less noisy input compared
to PI+EKF and MPC+EKF. In contrast to PI+EKF, the PI4+UKF can
stabilize the system (both with 5% input disturbance). This can be seen in
Figure 6.5.

As a conclusion, the EKF is working fine with 3% input disturbance because
it is based on first order Taylor series, which gives a good approximation
locally (i.e. small disturbance), but for large disturbance it is not working.

The only controller which stabilizes the system with EKF for 3% input distur-
bance is the PI controller. The two other controllers (LQR and MPC) where
not able to stabilize the system in this case. For comparison, PI+-EKF and
PI4+UKF are shown in Figure 6.2 and 6.3. They have much the same perfor-
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mance, but the estimated P, and P, are closer to the set-point for the UKF.
Further, W, has less noise for EKF. In Figure 6.4, the LQR+EKF controller
has small oscillations after about 3.5 hours which recovers when the amount
of gas increases in the input to the pipeline. Because of the oscillations, the
controller is not very robust, and is marked as No in Table 6.1.

The UKF is the filter which works in most cases, as seen in Table 6.1. The
performance of the UKF is improved with the implemented forgetting factor
less than one. By having the forgetting factor less than one, the covariance
is artificially increased and the observer gain K is increased. But with large
observer gain, the system becomes sensitive to noise. In Figure 6.5-6.7, the
different controllers can be compared. The PI and MPC controller have
some noise on choke valve opening, however, a solution to this can be to
implement a low-pass filter. Moreover, the UKF combined with LQR is able
to stabilize the unstable system when the controller is turned on after one
hour, as seen in Figure 6.8. But, when the nominal choke valve opening is
increased from u = 0.10 to u = 0.12 the system gets unstable because of the
input disturbances, as seen in Figure 6.9. The ) and R for LQR tuning is
set so the R is much higher than (), which gives a slow controller response.

As a result, we can conclude that since the UKF is accurate to the third order,
it can cover more nonlinearity when large disturbances occur. With ff < 1,
we increased observer gain and much faster estimation makes the separa-
tion principle better, since the observer is much faster than the controller.
However, the system is sensitive to noise and it is not very robust, since an
increase in the nominal choke valve opening makes the system unstable.

Moreover, to check the robustness of the different control systems, simula-
tions are done with v = 0.12, as seen in Table 6.2. In Figure A.5 and A.6, the
PI+UKF and MPC+UKF, with 3% input disturbance, nominal choke valve
opening u = 0.12 and topside measurements are simulated. The PI4+-UKF is
only marginally stable, while MPC+UKEF is stable. Both the PI+UKF and
MPC-+UKEF fails if the input disturbance is increased to 5% while the choke
opening is remained on u = 0.12.

As discussed earlier, the idea for implementing MPC was to have efficient
constraint handling. One important characteristic of the choke valve is that
it cannot be more than fully open. This means that there is a constraint in the
system 0 < Z < 1. However, the system is not close to have the choke fully
open when the system is stable. Moreover, we tried tightening the bounds on
AZ, the change in the choke valve, but without improved results. Further,
for MPC tuning the R was tuned much higher than ). This means that it is
"costly" to use the input, and we will get a slow controller. This is the same
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strategy as for the LQR tuning. Further, for simplicity, the control horizon
and prediction horizon, were set to be equal each other hence, H, = 15 and
H,, = 15. The value was found as a compromise between system performance
and simulation time.

As seen in Table 6.1 and 6.2, there is no trouble with controlling the sys-
tem when the subsea pressure is measured. This is as expected from the
controllability analysis done of the model [3]. Moreover, in Figure 6.10, it
can be seen that the PI+EKF is able to stabilize the system with v = 0.15.
This results in a higher choke valve opening, which might result in a more
profitable production. Higher values than v = 0.15 is tested for PI+EKF,
but without stable results.

The high-gain observer in Figure 6.11, stabilizes the unstable flow when top-
side pressure is measured. The estimated output is close to the set-point,
and shows good performance. There is room for further research on this
observer in anti-slug control solutions. Moreover, as for the LQR+UKF,
when the nominal value of the choke opening is increased to v = 0.12, the
high-gain+LQR with 5% input disturbance gets unstable, as seen in Figure
6.12.

In Table 6.3 the accuracy of the estimator is calculated, and in Table 6.4
the performance of the controller is calculated. Both are calculated by the
root mean square error method. The LQR+UKF is slightly better than the
other solutions. Further, high-gain + LQR shows the highest values, which
is because of its sensitivity to noise.

7.1 Challenges

There have been quite a few challenges throughout this master work. First,
the choice of solver and its operation point. In the beginning, the "fixed step
solver" (FSS) implemented by my supervisor was used. This is a faster solver
compared to odel5s. The reason that we switched to the odel5s solver was
that when the simulations did not work in the beginning, we were not sure
if something was wrong with the control strategy, or with the solver. The
linear Kalman filter implementation in MATLAB was not working either, so
Simulink implementation was tested with success.

Further, the tuning was a challenge. Simulations took up to 40 minutes
each, so tuning estimators and controllers was very time consuming. Time
was also spent on deciding which MPC formulation that will perform the
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best in this case and of course the implementation. There are a lot of tuning
parameters for the UKF. Without luck, a lot of effort was made in tuning the
UKF parameters, when topside measurements were used, to get good UKF
performance with ff = 1.
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Chapter 8

Conclusion

There has been done research on anti-slug control with nonlinear state es-
timation in this thesis. From the controllability analysis of the L-shaped
pipeline-riser model it is concluded that the subsea pressure measurement
and flow measurement are the best measurements for active control of the
choke valve. However, since the subsea measurement is not always avail-
able, the topside pressure and flow measurements are used in nonlinear state
estimation to estimate states and other control variables.

Simulation studies of different control strategies have shown that the EKF
works good locally, while the UKF with forgetting factor works best for high
input disturbance, hence it is more robust. The LQR controller has slightly
better performance compared to the MPC and PI. However, this might be a
result of different tuning. Further, to use the high-gain observer in control
has a great potential, and needs further research. The UKF+LQR and high-
gain+LQR are stable, with measurements of topside pressure and mass rate
with 5% input disturbance, for v = 0.10 but for © = 0.12 the control solution
is unstable, which gives us the conclusion that they are not robust.

Further work for anti-slug control with nonlinear state estimation is more
investigation on control strategies with high-gain observer. Another possi-
bility can be to implement an MPC which tries to maximize the choke valve
opening, while still make sure that the choke valve is not more than fully
open. This can be a profitable solution because the larger choke opening,
the more is produced. Further, for noisy choke valve opening, a low-pass
filter can be tried out.
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Appendix A

Appendix

A.1 Attached CD

The attached CD contains the files to run the simulations. The folder "P1
and W" means subsea pressure and mass rate as sensors, while "P2 and W"
means topside pressure and mass rate as sensors. To simulate with 5% input
disturbance load wG _wL nm, while simulating with 3% input disturbance
requires loading wG _wL nm3percent.
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A.2 Simulink Diagram
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Figure A.1: Simulink Diagram for LQG
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sndng

EUBISUCD

() moy4 =By

F 3

TIUESUTD

() mol4 owgswnjon

e

{Zd} smnssaug do)

sndu|

[
A A A

giusisuog

uoppuny-5

&

Tz
%

{14} =mss314 13|U]

O

Z30BdSyop O

[ o

oedsuo oL

zd

gEoedswio oL

S

gaoedswop 01

&

- L]

45T P MU

_M_ HIUEISUC]

gsosdspop, o

F Y

{ppmimiesg)

o

pE0BdIo 0L

{anjen 3904D) 7

Nonlinear Plant

Figure A.2

65



Appendix A. Appendix

A.3 Figures from the Result Section
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Figure A.4: MPC+EKF, P, and W, 5%
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A.4 MATLAB Code

MPC initialization

%% Initialize MPC
Y%%Dimensions

Hu=15; %Control horizon
Hp=Hu; %Prediction horizon
Hw=1; %When you start controlling

%Table 3.1 in Predictive Control with constraints by Maciejowski
1=1; %inputs

n=4; %States

m=4; %Controlled outputs ,z=cx, c=eye(4);
Q_MPC=zeros (mx (Hp—Hw+1) ,m«(HpHw+1));

R _MPC=zeros (1*Hu, | *Hu);

Psi=zeros (m«(Hp—Hw+1),n);

Gamma—zeros (mx (Hp—-Hw+1),1);

Theta=zeros (mx(Hp—Hw+1),1«Hu);

%Initialize constraints matrix

Ff = zeros(2xHu,Hu);
%fl = zeros(2xHu,1);
f = zeros (2xHu,1);

Gceons = zeros (2«Hu,Hu);
gl = zeros (2xHu,1);
%g = zeros (2xHu,1);
W = zeros (2xHu,Hu);
w = zeros (2xHu,1);

%Weighting on the different states and input.
Q_MPCd-1xdiag ([100 1 1 1]);

R_MPCd=1e3;

Q_MPC=blkdiag2 (Q _MPCd,Hu);

R_MPC=blkdiag2 (R_MPCd, Hu);

%% Formulation of constraints

bias=u(1,1);
uMax=1; %uMin<u<uMax
uMin=0; %

uMax=uMax—bias ;
uMin=uMin—bias ;
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violation =0.5;
zMaxl=violation*x0(1);
zMinl=violation*x0(1)
zMax2=violation*x0(2);
zMin2=violation xx0 (2)
zMax3=violationxx0 (3);
(3)
4);
(4)

?
)

zMin3=—violation xx0 ;

zMax4=violation xx0 (
zMind=violation xx0
uRateMax=1e —1;
uRateMin=—1e —1;

)

%% Ff is 1. line on left side of constraint (P)
for j = 1:Hu,
f(2%(j—1)+1,1) = —uMax;

f(2%j,1) — uMin;
for i = j:Hu,
Ff(2xi—1,j) =1,
Ff(2xi,(j—1)+1:j) = —1;
end
end
f1 = Ff(1:2+Hu,1);

constZ=[—zMax1; zMinl;—zMax2;zMin2;—zMax3;zMin3;—zMax4;zMin4 |;
g=repmat (constZ ,Hu,1);

for i = 1:Hu*m,
Gceons(2xi—1,i) = 1;
Gceons(2xi,i) = —1;
end

%% W and w matrices in constraints
%% W is 3. line on left side of constraint
for i = 1:Hu,

w(2xi—1,1) = uRateMax;
w(2%i,1) = —uRateMin ;
W(2xi—-1,i) = 1;
W(2xi,i) = -1,

end

x = zeros (4,nf+1);
x(:,1) = 0.001%x0;

y = zeros(size(y0,1),nf);
y(:,1) = y0;

u_in=zeros (3,nf);
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Implementation of High-Gain Observer

u_in(:,k) = u(:,k=1)+fu_c(k—-1);0;0];
[T,zt]=odelbs(@vl new_ 4d Observer,[k—1;k],z e(:,k—1),0options,
u_in(:,k),y(sensors k), derivatives ’,par,ep);
z_e(:,k) = zt(end,:)’;
_e(:,k) = vl _new_4d_ Observer(t,z e(:,k),u_in(:,k),
y(sensors ,k), ’measurements’ ,par,ep);
y_k = v4 new_4d model(t(k),x e(:,k),u in(:,k),  measurements’,par)

y_e(:,k)=y_k(1:3);

function v1_new 4d_Observer

function [sys] = vl new_ 4d Observer(t,x hat,u,y m,output,par,ep)

% Observer based on the 4—state pipeline—riser model
% By: Esmaeil Jahanshahi
% May 2012, NINU, Norway

% x1_hat: Mass of gas in the pipeline (m_ G1)

% x2 hat: Mass of liquid in the pipeline (m_LI)
% x3 _hat: Mass of gas in the riser (m_G2)

% x4 _hat: Mass of liquid in the riser (m_L2)

[zdot ,xhat] = vl new_4d_ ObserverO(x_hat,u,y m,par,ep);

if isequal (output,’derivatives ’)
sys =zdot;
if Tisreal(sys)
disp (’Complex )
sys=0xsys;
end
elseif isequal (output,’ measurements’)
sys = xhat;
end

end

function vl _new 4d_Observer(

function [zdot,xhat] = vl new 4d_ Observer0(z,u,y m,par,ep)

% Observer based on the 4—state pipeline—riser model
% By: Esmaeil Jahanshahi
% May 2012, NINU, Norway
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% z1: Mass of gas in the pipeline (m_GIl)

% z2: Mass of liquid in the pipeline (m_L1)
% 2z3: Pressure at top of riser (P_rt)

% 74: Mass of liquid in the riser (m_L2)

x1 = z(1);
x2 = z(2);
P2 t = 2z(3);
x4 = z(4);
ul = u(1);

a = par.Rxpar.T2«par.tho_L/par.M G;
b = par.rho_ Lxpar.V2;

% rho Gl norm = par.Pl normspar.M G/(par.Rxpar.T1);

% Alpha L1 av = w_L_inxrho G1_norm/(w_L_ inxrho G1 norm +
w_G_inxpar.rho L);

hlss = par.k _hxpar.Alpha L1 avspar.hc;

x2ss = par.Vlkspar.rho Lxpar.Alpha L1 av;

hl = hlss + sin(par.theta)*(x2 — x2ss)/(par.Alx
(1—par.Alpha L1 av)xpar.rho L);

hl = max(h1,0);

V_G2 = par.V2 — x4/par.rho_L;

P1 = xl1xpar.R«par.T1/(par.M G«(par.V1l — x2/par.rho_L));
rho G1 = x1/(par.V1 — x2/par.rho_L);

Uslin = w_L_in/(par.Alxpar.rho_L);

Rel=par.rho LxUslin*(2«par.rl)/par.visl;

Lambdal=0.0056 + 0.5xRel”~(—0.32);

Fric_pipe=0.5%par.Alpha L1 avxLambdalxpar.rho L%Uslin "2
xpar.L1/(2«par.rl);

%P2_t = x3xpar.Rxpar.T2/(par M G+xV_G2);
%P2 t — max(P2_t,par.P0);
x3 = P2 _tx(b — x4)/a;

rho G2 = x3/V_G2;

Alpha L2 av = x4 /(par.rho_Lxpar.V2);
rho_mix_av = (x3+x4)/par.V2;
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Usl2 = w_L in/(par.rtho Lxpar.A2);
Usg2 = w_G_in/(rho_G2xpar.A2);
Un = Usl2+Usg2;

Re2=rho_mix_av«Umx(2«par.r2)/par. visl;

Lambda2=0.0056 + 0.5%*Re2"(—0.32);

Fric_riser=0.5xAlpha L2 avxLambda2xrho mix av*Um"2x
(par.L2+par.L3)/(2«par.r2);

A g = (hl<par.hc)*(par.Al/par.hc”2)*(par.hc — hl)"~2;

A 1 = par.Al — A _g;

P2 b = P2 t + rho mix avspar.gpar.L2 + Fric riser;

w_Gl = par.K_gxA gxsqrt (rho Glsmax(0,P1-Fric_pipe—P2 b));

w_L1 = par.K oxA lxsqrt(par.rho Lsmax(0,P1-Fric_ pipe+
par.rho Lxpar.g+hl-P2 b));

Alpha Ib =1 — A g/par.Al;

if (Alpha Lb<=Alpha L2 av)
Alpha Lb=Alpha L2 av;
end

Alpha Lt = 2%Alpha L2 av — Alpha Lb;

if (Alpha Lt>Alpha L2 av)
Alpha Lt = Alpha L2 av;
elseif (Alpha Lt<0)
Alpha Lt = 0;
end

Alpha Lmt = Alpha Ltxpar.rho L/(Alpha Ltspar.rho L +
(1—Alpha Lt)xrho G2);
rho t = Alpha Ltxpar.rho L + (1—Alpha Lt)*rho G2;

% if(z>0.95)
% par.Cd = 0.95;
% end

%ORF = abs(1/(z"2xpar.Cd~2) —1);

%w_mix_out = par.A2xsqrt(2+«rho_t*max(0,P2 t—par.P0)/ORF);
w_mix_out = par.K pcxulxsqrt (rho txmax(0,P2 t—par.P0));
%Q out = w_mix_out/rho_t;
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w_L out = Alpha Lmtsw_ mix out;
w_G _out = (1 — Alpha Lmt)+w_mix out;

dxl = w G in — w_Gl;
dx2 = w L in — w_LI1;
dx3 = w Gl — w_G_out;
dx4 = w_L1 — w_L out;

y_hat = P2 t/1e5; % Unit conversion from Pa to Bar

dzl = dx1;
dz2 = dx2;
dz4 = dx4;

dz3 = (ax(b—x4)xdx3 + a*x3xdzd)/((b—x4)"2)+ (1/ep)
*(y_m—y_hat );

zdot = [dzl;dz2;dz3;dz4];

xhat = [x1; x2; x3; x4];
end
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