
Anti-Slug Control with Non-Linear State 
Estimation

Terese Vardenær Syre

Master of Science in Engineering Cybernetics

Supervisor: Morten Hovd, ITK
Co-supervisor: Esmaeil Jahanshahi, IKP

Sigurd Skogestad, IKP

Department of Engineering Cybernetics
Norwegian University of Science and Technology





Abstract

In o�shore production, the two-phase mixture of oil and gas is transported
from the seabed oil wells to the surface facilities by pipelines and risers. The
two-phase �ow can have di�erent �ow regimes, where severe slugging is one
undesirable �ow regime and an e�ective solution is needed to prevent it. The
recommended solution is active control of the top-side choke valve.

Previously, controllability analysis is done of two-phase �ow in a 4-state
pipeline-riser model. This analyze concludes that the best way to control
the choke valve is by using the subsea pressure measurement combined with
topside �ow measurement. However, the subsea pressure might be di�cult
to measure correctly because the pipeline is placed under tough conditions,
hundredth or even thousands of meters under sea level. One possibility is to
combine topside pressure with topside �ow measurement and use for estima-
tion of states or other sub-sea measurements that are normally not available.

Simulation studies are done in MATLAB of di�erent anti-slug control solu-
tions. Linear Kalman �lter, extended Kalman �lter (EKF) and unscented
Kalman �lter (UKF) are used for state estimation and combined with con-
trollers such as PI, LQR and MPC. The input to the system is �ow rate of
gas and liquid, and the nominal choke opening. The input disturbance to
the process is change in the �ow rate of gas and liquid imitating slug �ow.

As expected, when only topside measurements are used, because of the highly
nonlinear system dynamics the linear Kalman �lter fails in stabilizing the
system. The EKF works good when the system has low input disturbance,
while the UKF is the best nonlinear �lter when the system has high input
disturbance. However, when the nominal choke opening is increased, the
UKF combined with a controller fails. The LQR controller combined with
UKF shows slightly better results than the PI and MPC controller combined
with the same �lter for state estimation. There is also potential in using the
high-gain observer in control strategies.
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Sammendrag

I o�shore produksjon blir miks av olje og gass transportert på havbunnen til
produksjonsenheter på havover�aten gjennom rørledninger. Denne miksen
av olje og gass kan ha forskjellige strømningsmåter, hvor "slugging" er en
uønsket strømningsmåte. Mye tid og krefter er brukt for å forhindre slik
strømning siden den kan gjøre store skader på produksjonsenhetene. Den
anbefalte løsningen er kontroll av ventilen inn til produksjonsenheten.

Tidligere har det blitt ut ført kontrollerbarhetsanalyse av en modell basert
på 4 tilstander av tofase strømning i en L-formet rørledning fra havbun-
nen til vannover�aten. Denne analysen konkluderer med at den enkleste
måten å unngå slugging er å måle trykket i rørledningen på havbunnen kom-
binert med strømningen ut av ventilen. Men det kan være vanskelig å få
gode målinger ved havbunnen, rørledningene kan være plassert hundre- eller
kanskje tusenvis av meter under havover�aten. En løsning er å kombinere
målinger i rørledningen ved havover�aten til å estimere trykket ved bunn av
rørledningen å bruke denne estimerte verdien i reguleringsløsningen.

Simuleringer av forskjellige reguleringsløsninger er gjort i MATLAB. Lineært
Kalman �lter, "extended Kalman �lter" (EKF) og "unscented Kalman �lter"
(UKF) er brukt til tilstandsestimering og kombinert med kontrollere som PI,
LQR og MPC. Inputen til systemet er strømningsrate for gass og væske, og
den nominelle ventilåpningen. Inputforstyrrelsen til systemet er variasjon i
strømningsraten for gass og væske som etterligner slugging.

Som forventet, på grunn av ulinearitetene i systemet, blir ikke lineært Kalman
�lter tilstrekkelig når målinger fra havover�aten blir brukt. EKF virker best
lokalt, altså når det er liten inputforstyrrelse, mens UKF er det beste ulineære
�lteret når systemet får økt inputforstyrrelse. Men, når den nominelle ven-
tilåpningen blir økt klarer ikke UKF kombinert med en regulator å stabilisere
systemet. LQR kombinert med UKF viser litt bedre resultater enn LQR kom-
binert med PI eller MPC. Videre er det også potensiale i å bruke "high-gain
observer" i reguleringsløsningen for anti-slug kontroll.
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Problem Formulation

Master Project Proposals on Anti-Slug Multiphase Flow

Control.

"In o�shore production, the two-phase mixture of oil and gas is transported
from the seabed oil wells to the surface facilities by pipelines and risers. Two-
phase �ow can be in di�erent �ow regimes; severe slugging is one �ow regime
which is undesirable in o�shore production and an e�ective solution is needed
to prevent it. Active control of the top-side choke valve is the recommended
solution. Di�erent control strategies can be used for stabilization of this
system. Finding a simple and robust solution is motivation for this research."

Anti-slug Control With Non-Linear State Estimation

"Based on the results from the controllability analysis it is known that using
top-side measurements is very di�cult. This is because of RHP-zeros in
dynamic of the top pressure. However, one possibility is to combine top
pressure with one �ow measurement and use them for estimation of states
or other sub-sea measurements that are not normally available. Because of
highly nonlinear nature of the system, linear estimation techniques such as
Kalman Filter will fail in more real conditions. Nonlinear estimation such as
Unscented Kalman Filter can be tested in conditions that Kalman Filter fails.
Having the states estimated, the optimal stated feedback is one immediate
control solution. However, it is known that if choke valve saturates on fully-
open or fully-closed, the control system fails. It can be taken care of by
considering a constraint on valve opening which leads to use of MPC.

• Studying about Kalman �lter (KF), extended Kalman �lter (EKF) and
unscented Kalman �lter (UKF).

• Becoming familiar with simpli�ed models for severe-slugging.

• Using KF, UKF or EKF with PI or LQR for control of nonlinear model
with only topside pressure measurements for the estimator.

• Using KF, UKF or EKF with PI or LQR for control of nonlinear model
with subsea pressure measurements for the estimator.

• Using EKF+MPC and UKF+MPC (constraint on valve opening (0<U<1)

• Evaluating performance of di�erent approaches."
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Chapter 1

Introduction

In an o�shore oil�eld, pipelines and risers transfer multiphase mixture of oil,
gas and water from oil wells at seabed to the surface processing facilities. A
more and more upcoming trend is connecting subsea wells to either remote
wellhead platforms or directly to on-shore processing plants. As a result,
more and longer multiphase pipelines are used. The development of slugs
of liquid in multiphase pipelines is a major, and expensive, challenge for
oil producers. Slugging is varying or irregular �ows of gas and liquids in
pipelines. A way to prevent slugging is by reducing the opening of the top-
side choke valve. However, this conventional solution increases the back
pressure of the valve and reduces the production rate from the oil wells.

The goal of this master thesis is to make a control system to stabilize �ow
and avoid slugs in the pipeline by adjusting the position of the choke valve.
Here, the 4 state model developed by Esmaeil Jahanshahi and Sigurd Sko-
gestad is used [2]. This model is for an L-shaped pipeline-riser, where the 4
states correspond to the mass of the gas and the liquid, in the pipeline and
the riser. The best way to decide the choke valve position is by knowing
the pressure in the pipeline. But, the pipeline might be hundreds or even
thousands of meters under sea level where there are tough conditions for
pressure measurements. Therefore, an observer will be used to estimate the
pressure in the pipeline, and this estimate will be used in a controller to �nd
the optimal choke position.

Previously, controllability analysis of the pipeline-riser model is performed[3][4].
The conclusion of the work is that a �lter, based on the pressure at the top
of the riser combined with either the volume �ow rate or the mass �ow, gives
the best estimate value of the pressure in the pipeline.
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Chapter 2

Background

2.1 Background

Multiphase �ow and its behavior has been a concern in o�shore oil and gas
industry, since the beginning. One common undesired �ow variation is slug
�ow, in which the liquid �ows intermittently along the pipes in concentrated
mass, called a slug. Slugging has been recognized as a serious problem and
much e�ort has been put into prevention of this problem. The unstable
behavior of slug �ow has a negative impact on the production facilities. The
worst case scenario is when severe slugging causes platform trips and plant
shutdowns.

This section is an introduction to two-phase �ow and riser slugging. As there
are several di�erent types of slug �ows, these will be explained. The goal of
this project is to avoid slugging by the use of a controller that stabilizes
the �ow. The controllability analysis [3] concludes that measurement of the
pressure in the pipeline (P1) give good results in anti-slug control. However,
the pressure deep below sea level is di�cult to measure, so this is estimated
used an observer.

2.1.1 Multiphase Flow

Multiphase �ow refers to any �uid �ow consisting of more than one compo-
nent, and is an important topic in oil and gas industry. Multiphase pipelines
connecting remote wellhead platforms to subsea wells are a common feature.
In the future, long-distance tie-back pipelines connecting subsea processing
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Chapter 2. Background

units to on-shore processing plants will be more common. Development of
such pipelines are turning the spotlight on one of the biggest challenges in-
volved in operating o�shore processing facilities and subsea separation units:
control of the disturbances in the feed to the separation process [5]. Since a
relatively small change in operating conditions changes the behavior of the
�ow in pipelines drastically, a lot of time and e�ort has been spent studying
multiphase �ow.

2.1.2 Slug Flow

Multiphase �ow in pipelines frequently involves the formation of slugs. Slugs
are plugs of liquid or gas that travel through the pipeline. They are unwanted
because they can create signi�cant pressure �uctuations. The slugs can be
formed due to transient e�ects related to pigging, start-up, blow-down and
changes in pressure or �ow rates. Slug �ow can occur on di�erent time- and
length scales depending on the slug formation. An example of slug can be
liquid plugs that are accumulated at the bottom of the riser until su�cient
pressure is generated behind it to push the liquids over the top of the riser.

The unstable behavior of slug �ow in multiphase pipelines has a negative im-
pact on the operation on production facilities. Normal problems are �aring,
reduced operating capacity and stress on valves and bends. Separator and
compressor trains will also face problems because of the uneven pressure in
the riser during slug �ow. The worst case scenario is plant shutdown, which
is extremely expensive. The di�erent slug �ows can be put into di�erent
categories:

• Hydrodynamic slugging develops in horizontal parts of the pipeline.
They are relatively short, typically less than 500 pipe diameters [1].

• Terrain slugging is caused by low-points in the pipeline topography.
The blockage in the low-point initiates the slug until the pressure in
the compressed gas is large enough to overcome the hydrostatic head
of the liquid. Figure 2.1 shows how terrain slug is generated.

• Transient slugging is caused by increased liquid �ow rates at pipeline
exit to processing facilities in response to changes in operating condi-
tions.

4



2.1. Background

Figure 2.1: Terrain slug generation[1]

2.1.3 Anti-Slug Control

The role of anti-slug control systems is to completely remove slugs by stabi-
lizing an unstable �ow regime. Anti-slug control has the following de�nition
[6]:

De�nition 1.1 An anti-slug controller is a controller that stabilizes a de-
sired, non-oscillatory �ow regime that exists at the same boundary conditions
as riser slugging and thereby avoids the formation of riser slugging in the sys-
tem.

Some of the advantages of anti-slug control with the choke valve as actuator
are:

• cheaper than implementing new equipment,

• completely removes slug �ow, which results in less strain on the system,

• reduces maintenance expenses.
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2.2 Previous Work

There are several techniques applied to avoid slugs. One approach is to de-
sign the system to avoid slugs altogether. This can be done by changing the
pipeline topology, increase the size of the separator, adding a slug catcher or
installing gas lift. Another technique is to let the pipeline gas be transferred
to the riser at a point above the riser-base, a technique known as self-gas
lifting[7]. However, since thise methods involves changing the design, it usu-
ally costly.

There have been many approaches to feedback control since the end of 1970's,
see chapter on previous work in [6](and its references). One of the �rst key
concepts was to avoid riser slugging by automatically adjusting the topside
choke valve position, based on an algorithm with a pressure and �ow mea-
surement in the riser as input. About 10 years later, the PI-controller based
on upstream pressure measurement, to avoid riser slugging, was used. Both
approaches were based on experimental work, and did not result in any re-
ported industrial application.

In 1996, another technique was introduced. This technique was to implement
a control system that used the topside choke valve to keep the pressure at
the riser base at or above the peak pressure in the riser slug cycle, thus
preventing liquid accumulation in the bottom of the riser. This introduces an
extra pressure drop in the system due to the high setpoint for the controller.
This removes the riser slugging, but it did so by automating the old choking
strategy rather than a�ecting the stability of the �ow regimes in the pipeline.
So, there is still unstable �ow, but the choke is adjusted to avoid slug.

In the last two decades, solutions which have resulted in industrial application
have been proposed. The �rst industrial implementation of anti-slug control
is reported by ABB[5], where the new control system is applied on the Hod-
Valhall pipeline, and it manages to stabilize an unstable operating point.
This operating point, where the �ow in the pipeline is steady, exists at the
same boundary condition as would normally result in riser slugging. Further,
in 2005 engineers from Statoil [8] successfully applied advanced control for
the inlet facilities, where active slug control for two long multiphase �ow lines
is combined with model predictive control (MPC) to handle slugs entering
the inlet separators.

6



Chapter 3

Modelling Pipeline Riser Flow

3.1 The Pipeline Riser Model

This model is based on the mass conservation law for individual phases in
the pipeline and the riser[2]. The mass conservation of gas and liquid in the
pipeline and riser results in this model:

ṁG1 = wG,in − wG,lp
ṁL1 = wL,in − wL,lp
ṁG2 = wG,lp − wG,out
ṁL2 = wL,lp − wL,out (3.1)

where lp indicates low-point.

The state variables of the system are as following

• mG1, mass of gas in the pipeline

• mL1, mass of liquid in the pipeline

• mG2, mass of gas in the riser

• mL1, mass of liquid in the riser

The mass �ow in the low point wG,lp and wL,lp are described by the rate of
�ow of liquid through an ori�ce, called an "ori�ce equation" [9],

wG,in = KGAG
√
ρG1∆PG (3.2)

wL,in = KLAL
√
ρL1∆PL

7
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The variables in the model are; pressure drop over the low-point ∆P , the
opening area A, a tuning parameter K and the density for the gas and liquid
in the pipeline ρ1 with index G and L for hence gas and liquid.

Figure 3.1: Simpli�ed representation of desired �ow regime

Figure 3.2: Simpli�ed representation of liquid blocking leading to riser slug-
ging

In Figure 3.1, when the liquid is not blocking at the low-point (h1<hc), the
gas will �ow from volume in the pipeline (VG1) to the volume in the riser
(VG2) with a mass rate wG,lp[kg/s]. Moreover, when the liquid level in the

8



3.1. The Pipeline Riser Model

pipeline section is above the critical level (h1>hc), liquid blocks the low-point
and the gas �ow rate at the low-point is zero, wG,lp = 0 h1 ≥ hc, as seen in
Figure 3.2. This leads to riser slugging.

All the model equations can be found in[2].

3.1.1 Controllability Analysis

A controllability analysis of this system has been performed [3]. The control-
lability analysis concludes that for multiple input multiple output (MIMO)
control with one pressure measurement from the pipeline (P1), combined
with choke �ow rates(Q) gives the best ability to control the system. In
many cases the subsea measurement is not available. Then combining the
top side measurements gives satisfactory result. The ability to control the
system is dependent on the disturbance in the system. For instance the input
rate of liquid (wL,in) and gas (wG,in) into the system, or measurement noise.
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Chapter 4

Theory

4.1 State Space Representation

A state space model is a mathematical model of a process, where the process
state x is represented by a vector of �nite dimensionality. The state space
usually consists of two models, a process model and a measurement model.
The �rst model is a representation of the dynamics that describes how the
state propagates in time as a function of external inputs, the second model
describes how a vector of numerical measurements y are related to the process
states.

The most general discrete form of state space representation is the nonlinear
model

xk+1 = f(xk, uk, wk), (4.1)

yk = h(xk, uk, vk), (4.2)

where x is the state vector, u is the input, k is the discrete time variable,w
and v are the stochastic noise for the process and measurement vectors re-
spectively.

The discrete linear process can be modeled as

xk+1 = Fkxk +Bkuk + h(wk), (4.3)

where h(wk) is the input disturbance. The measurements of the process have
the relationship

yk = Hkxk +Dkuk + vk, (4.4)

11



Chapter 4. Theory

where Fk, Bk, Hk and Dk are matrices describing the discrete system dy-
namics. vk is the measurement noise. If the system has nonlinear dynamics,
the matrices can be found by linearization[10].

4.2 Observers

The goal of an observer is to estimate the state xk based on our knowledge
of the noisy system dynamics and the available noisy measurements. For a
linear system with noisy measurements, an optimal observer (with respect to
expected observer error) is the Kalman �lter.

4.2.1 Kalman Filter

In 1960 R.E Kalman presented a new way of formulating the minimum mean
square error (MMSE) �ltering problem [11]. The Kalman �lter uses state
space representation that makes it e�cient to handle multiple input, multiple
output (MIMO) systems. The Kalman �lter estimates the internal states
of linear dynamics using series of noisy input measurements. It is a two-
step process, where the �rst step is a prediction step and the second step
is an update step. The model is linear and the input is Gaussian, and the
output will also be Gaussian. As a result, the mean vector x̂ and P̂ will be
su�cient to describe the system. x̂ is the state estimate, k is the discrete time
variable and P̂ is the covariance matrix which contains information about the
accuracy of the estimate,

Pk = E[eke
T
k ] = E[(xk − x̂k)(xk − x̂k)T ]. (4.5)

First, we predict the a priori state vector x and covariance matrix P :

x̂−k+1 = Fkx̂k +Bkuk, (4.6)

P−k+1 = FkPkF
T
k +Qk,

By using the measurement y, we update the Kalman gain K, a posteriori
state vector x, and the covariance matrix P :

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1, (4.7)

x̂k = x̂−k +Kk(yk − (Hkx̂
−
k +Dkuk)),

12



4.2. Observers

Pk = (I −KkHk)P
−
k .

Qk and Rk are the covariance for the process and measurement noise respec-
tively. The system has initial conditions, x̂−0 and P−0 . Kk is the Kalman gain
which minimize the mean-square estimation error.

4.2.1.1 Properties of the Linear Kalman Filter

If wk and vk are zero-mean, uncorrelated, and white, then the Kalman �lter is
the best linear solution to the above problem. This means, the Kalman �lter
is the best �lter that is a linear combination of the measurements. However,
there may be a nonlinear �lter that gives a better solution.

4.2.2 Extended Kalman Filter

Unfortunately, most processes are not linear and they need to be linearized
before they can be estimated with the linear Kalman �lter. The extended
Kalman �lter tries to solve this. The idea is to linearize the nonlinear system
around a trajectory that is updated with the state estimates resulting from
the measurements.

1. The system and measurement equations are given as follows:

xk+1 = f(xk, uk, wk),

yk = h(xk, uk, vk),

wk ∼ (0, Qk)

vk ∼ (0, Rk) (4.8)

where x is the state, y is the measurement, u is the system and mea-
surement input, w and v are the process and measurement noise with
zero expected value and covariance Q and R.

2. Initialize the �lter as follows:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )((x0 − x̂+
0 )T ] (4.9)

3. For k = 1, 2, · · · , perform the following

13
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(a) Compute the Jacobian, which is the �rst order term of its Taylor
expansion evaluated around the point of interest[12]:

Fk−1 =
∂fk−1

∂x
|x̂+k−1

(4.10)

Lk−1 =
∂fk−1

∂w
|x̂+k−1

(4.11)

(b) Perform the time update of the state estimate and estimation-
error covariance as follows:

P−k = Fk−1P
+
k−1F

T
k−1 +Qk−1L

T (4.12)

x̂−k = fk−1(x̂+
k−1, uk−1, 0) (4.13)

(c) Compute the following partial derivative matrices

Hk =
∂hk
∂x
|x̂−k (4.14)

Mk =
∂hk
∂v
|x̂−k (4.15)

(d) Perform the measurement update of the state estimate and esti-
mation error covariance as follows:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1 (4.16)

x̂+
k = x̂−k +Kk[yk − hk(x̂−k , uk−1, 0)] (4.17)

P+
k = (I −KkHk)P

−
k (4.18)

4.2.2.1 Properties of the Extended Kalman Filter

The EKF is probably the most widely used estimation algorithm for nonlinear
systems. However, many decades of experience has shown that it is di�cult
to tune, and only reliable for systems that are almost linear on the time
scale of the updates. Further, it is also di�cult to implement, much because
of the Jacobian. The Jacobian needs to exist, and calculating the Jacobian
produces many pages of dense algebra that must be converted to code. This
might introduce human coding errors that are hard to debug since you do not
know which performance to expect [13]. Because the Jacobian is based on
the �rst order Taylor expansion, the EKF is accurate to the �rst order[11].
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Figure 4.1: The principle of Unscented Kalman Filter[13].

4.2.3 Unscented Kalman Filter

The Unscented Kalman �lter is developed to address the de�ciencies of al-
gorithms with linearization. It is known for derivative-free optimization and
therefore better performance in systems that are categorized as "highly non-
linear". To overcome the di�culties with linearization the unscented trans-
formation was developed as a method to propagate mean and covariance
information through nonlinear transformations. The parameterization of the
unscented transformation is designed to satisfy the following principle [14].

The information contained in the mean vector and covariance matrix of the
random vector x is captured accurately by the unscented transformation in a
way that permits the propagation of this information through the nonlinear
equation y = f(x) in a computationally e�cient manner.

This requirement is satis�ed by generating a set of sigma points. Sigma points
are a set of points chosen according to a speci�c, deterministic algorithm,
so that their mean and covariance are x̄ and

∑
x. Further, the nonlinear

function is applied to each point, in turn, to yield a cloud of transformed
points. The principle of the transformation can be seen in Figure 4.1.

• L: dimension of the state,

• α: small positive constant determining the spread of the sigma points
around the mean value of the state: 0.001 < α < 1 ,

• β: parameter incorporating prior knowledge on the distribution of the
state,
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• κ: scaling parameter: [1 ∞),

• index: c is for covariance and m is for mean.

γ = L+ λ

λ = α2(L+ κ)− L

W
(m)
0 =

λ

L+ λ

W
(c)
0 =

λ

L+ λ
+ (1− α2 + β)

W
(m)
i = W

(c)
i =

λ

2(L+ λ)
for i = 1, 2, . . . , 2L. (4.19)

The algorithm is described in steps 1-4 below:

1. We have an L-state discrete-time nonlinear system given by

xk+1 = f(xk, uk, wk)

yk = h(xk, uk, vk)

wk ∼ (0, Qk)

vk ∼ (0, Rk) (4.20)

2. The UKF is initialized as follows:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )((x0 − x̂+
0 )T ] (4.21)

3. The following time update equations are used to propagate the state
estimate and covariance from one measurement to the next.

(a) To propagate from time step (k−1) to k, �rst choose sigma points

x
(i)
k−1. The sigma points should be picked using the current best

guess for the mean x+
k−1 and covariance P+

k−1:

x̂
(i)
k−1 =

[
x̂k−1

x̂+
k−1 + x̃(i)

]
i = 1, . . . 2n (4.22)

where

x̃(i) = (
√
γP+

k−1)Ti i = 1, . . . n

x̃n+i = −(
√
γP+

k−1)Ti i = 1, . . . n (4.23)
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(b) Use the known f(·) to transform the sigma points into x̂
(i)
k vectors.

x̂
(i)
k = f(x̂

(i)
k−1, uk, tk) (4.24)

(c) Combine the x̂
(i)
k vectors to obtain the a priori state estimate at

time k.

x̂−k =
2n∑
i=1

W
(m)
i x̂

(i)
k (4.25)

(d) Estimate of the a priori error covariance, with the process Qk−1.

P−k =
2n∑
i=1

W
(c)
i (x̂

(i)
k − x̂

−
k )(x̂

(i)
k − x̂

−
k )T +Qk−1 (4.26)

4. Next, implement the measurement-update equations

(a) Chose sigma points x̂
(i)
k with appropriate changes since the current

best guess for the mean and covariance of xk are x̂
−
k and P−k :

x
(i)
k =

[
x̂k

x̂+
k + x̃(i)

]
i = 1, . . . 2n (4.27)

where

x̃(i) = (
√
γP−k )Ti i = 1, . . . n

x̃n+i = −(
√
γP−k )Ti i = 1, . . . n (4.28)

(b) Now, use the know nonlinear measurement equation h(·) to trans-
form the sigma points into ŷ

(i)
k vectors (predicted measurements).

ŷ
(i)
k = h(x̂

(i)
k , uk, tk) (4.29)

(c) Combine the ŷ
(i)
k vectors to obtain the predicted measurement at

time k.

ŷk =
2n∑
i=1

W
(m)
k ŷ

(i)
k (4.30)
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(d) Estimate the covariance of the predicted measurement. To take
the measurement noise into account, Rk should be added to the
expression.

Py,k =
2n∑
i=1

W
(c)
k (ŷ

(i)
k − ŷk)(ŷ

(i)
k − ŷk)

T +Rk (4.31)

(e) Further, the cross covariance between x̂−k and ŷk should be esti-
mated

Pxy,k =
2n∑
i=1

W
(c)
k (x̂

(i)
k − x̂

−
k )(ŷ

(i)
k − ŷk)

T (4.32)

(f) Finally, the measurement update of the state estimate can be per-
formed using the Kalman �lter equations

Kk = PxyP
−1
y

x̂+
k = x̂−k +Kk(yk − ŷk)

P+
k = P−k −KkPyK

T
k (4.33)

4.2.3.1 Properties of the Unscented Kalman Filter

For processes and measurements that have Gaussian error distribution and
the prior state is Gaussian, the UKF is accurate to the third order. For
non-Gaussian distributions, the UKF is accurate to at least the second order
[14]. Hence, the UKF is more accurate than the EKF.

4.2.3.2 Unscented Kalman Filter with Forgetting Factor

Another tuning parameter for the UKF is forgetting factor. The forgetting
factor is used to scale the a posteriori covariance P̂+.

P+
k =

P+
k

ff
(4.34)

The a posteriori covariance is used in eq. 4.23 to make sigma points. When
the forgetting factor is higher than one (ff > 1) the covariance reduces
and it "forgets" some of its covariance, hence the observer gain is decreased.
Further, if the forgetting factor is less than one (ff < 1), the covariance is
arti�cially increased and the observer gain is increased. A disadvantage of
increased observer gain is that it becomes sensitive to noise.
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4.3 High-Gain Observer

In the end of my thesis work the high-gain observer was investigated in
cooperation with my supervisor Esmaeil Jahanshahi, and it is included for
completeness. The high-gain observer guarantees that the output feedback
controller recovers the performance of the state feedback controller when the
observer gain is su�ciently high. The observer gain is designed so that the
observer is robust to uncertainties in modeling of the nonlinear functions.
The structure of the high-gain observer is:

ˆ̇z1 = f1(ẑ) (4.35)
ˆ̇z2 = f2(ẑ)

ˆ̇z3 = f3(ẑ) +
1

ε
(y − ŷ)

ˆ̇z4 = f4(ẑ)

where

• z1, mass of gas in the pipeline(x1)

• z2, mass of liquid in the pipeline(x2)

• z3, Pressure at top of riser (P2)

• z4, mass of liquid in the riser(x4)

and 1
ε
is the high-gain. The high-gain observer is essentially the model that

we have transformed in to the observability form[15]. For this, we used top-
pressure P2, which is the measured output, in place of x3(mass of gas inside
the riser) as observer state.

P2 =
ax3

b− x4

(4.36)

We need only to derive the time derivative of the top-pressure by using partial
derivatives:

f3(ẑ) =
dP2

dt
(4.37)

f3(ẑ) =
∂P2

∂x3

ẋ3 +
∂P2

∂x4

ẋ4

19



Chapter 4. Theory

where

∂P2

∂x3

=
a

b− x4

(4.38)

∂P2

∂x4

=
ax3

(b− x4)2
(4.39)

and a and b are model constants. The MATLAB code can be found in
Appendix A.2. More theory about the high-gain nonlinear observer can be
found in [15] chapter 12.5 and in [16].
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4.4 Controllers

4.4.1 PI-controller

The PI controller is widely used in the industry, but it can only be used for
single input, single output (SISO) cases.

• P, proportional (Kp): Increased Kp makes the rise time decrease, but
the overshoot increase and the stability margin decrease.

• I, integrator (Ki): Increased Ki decrease the rise time, but increase
the overshoot, increase settling time and the stability margin decrease.
The steady state error is eliminated.

The PI-controller integrates the input error to the controller and multiplies it
with an integration gain Ki. This is added to the input error and multiplied
with the proportional gain Kp.

e(k) = y − reference
I = I + e(k)Ts

u(k) = Kp(e(k) +KiI) (4.40)

where Ts is the time step. The desired closed loop dynamics is obtained
by adjusting the tuning parameters Kp and Ki. This controller is fast and
eliminates the steady state error. Tuning can be done by trial and error, or
by simple analytical tuning rules[17].

4.4.2 Linear Quadratic Regulator

In LQR control, it is assumed that the plant dynamics are linear and known,

xk+1 = Fkxk +Bkuk (4.41)

and that you have a deterministic initial value problem: given the system in
eq. (4.41) with a non-zero initial state x(0), �nd the optimal input signal
uk which takes the system to the zero state x = 0 in an optimal manner, by
minimizing the quadratic cost function

J =
i∑

k=1

xTkQxk + uTkRuk. (4.42)
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This requires that the pair (Fk, Bk) is stabilizable (its state can be transferred
to the origin from any initial state in in�nite time).

Q and R are symmetric positive-de�nite weight matrices for the states x and
the input u respectively. The task is to minimize the cost function, so if R is
high, using the input u will be expensive, and you will get slow response. By
having a high value on the �rst element on Q compared to the other diagonal
elements, the controller will prioritize the �rst state. Further, if Q is much
greater than R, you will get a fast response. The optimal Q and R are in
many cases found by trial and error.

The optimal solution is uk = −Klqrxk, where

Klqr = R−1BTX (4.43)

and X is the symmetric positive de�nite solution of the Riccati equation [18]

F TX +XF −XBR−1BTX +Q = 0 (4.44)

4.4.3 Linear Quadratic Gaussian Controller

The principle is much the same for the LQG controller as for the LQR. The
name LQG comes from a linear model, an integral (or sum) quadratic cost
function, and Gaussian white noise processes to model disturbance signals
and noise.

x̂(k + 1) = Fkx̂(k) +Bku(k) + wk (4.45)

y(k) = Hkx̂(k) +Dku(k) + vk (4.46)

and the process and measurement noise, wk and vk, are uncorrelated zero-
mean Gaussian stochastic processes. Usually, a linear Kalman �lter is used
to model the process state x̂. The solution to the LQG problem is known as
the Separation Theorem[18], and it consists of �rst determining the K_lqr
in eq. (4.43), then �nding the optimal state estimate x̂ given by a Kalman
�lter. The principal of the controller is shown in Figure 4.2.
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Figure 4.2: LQG-controller, which consists of LQR and Kalman Filter[18]

4.4.4 Model Predictive Control

The more advanced Model Predictive Controller (MPC) will now be ad-
dressed. The MPC is one of the controllers which has made signi�cant impact
on the process industry. The MPC is a controller which

• uses a multivariable process model to predict future behavior,

• solves mathematical optimization problems of the predicted future per-
formance, and

• handles multiple constraints on inputs, states and outputs.

One of the main reasons for its success in the process industry is the con-
straint handling. For instance, a choke valve and �ow rate have saturation
characteristics, because the valve can only be 100% open and the �ow rate
might have maximum values due to �xed pipe diameters. When the process
operates at its constraints it is often running at its most pro�table condition.
In addition, the MPC is a controller which is easy to understand, and has few
tuning parameters. However, since the MPC controller is based on a model
of the plant, it is important to always have a model of the system which
are good enough, but not to complex. If the model is to complex, you will
use too much computational time on the model when optimizing. To have a
robust system, the plant should not be operated exactly at the real limits of
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its capability, due to unexpected disturbances. But, the better the control
system is, the closer to the constraints you can operate.

In the unconstrained case the MPC controller reduces to an LQR controller
which optimizes over a horizon. Therefore, the main reason for widespread
use of MPC in place of the LQR is that it o�ers a straightforward and
transparent approach to handling multiple constrains.

Figure 4.3: MPC principle[19]

The basic idea for the optimization problem is illustrated in Figure 4.3.

1. At time instant k, solve the quadratic programming (QP) (see Section
4.4.4.8) problem to obtain an optimal, feasible input sequence.

2. Apply the �rst input to the process.

3. Set k = k + 1, and repeat the previous steps.

4.4.4.1 Linear MPC

This MPC implementation is taken from Predictive Control: with Constraints
By J.M. Maciejowski[20]. The process to be controlled is described by a
discrete state space model
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xk+1 = Fkxk +Bkuk

yk = Hkxk +Dkuk (4.47)

where Fk and Bk are discrete time process dynamics. Fk can be either stable,
or unstable, but we assume that the pair (Fk, Bk) is stabilizable.

The objective we want to obtain by control is to optimize performance by
minimizing:

V (k) =

Hp∑
i=Hw

(xk − x0)TQ(xk − x0) +
Hu−1∑
i=0

(uk − uk−1)TR(uk − uk−1) (4.48)

subject to

xmin ≤ x ≤ xmax (4.49)

∆umin ≤ ∆u ≤ ∆umax (4.50)

umin ≤ u ≤ umax (4.51)

where ∆u is the input change, u is the input and k is the discrete time
variable. xk is given by eq. (4.47) which is based on x0 and the previous
calculated uk−1. As in Section 4.4.2, Q and R are positive de�nite tuning
parameters. Further, the state must be detectable trough Q (all unobservable
states are stable). In all cases we want (xk−x0)→ 0. Hu and Hp are tuning
parameters called the control- and prediction horizon. For simplicity, we will
assume that the control and prediction horizon will be equal. Another tuning
parameter is Hw, and this is when you start predicting. Further, the state
space dynamics is represented without index k to save space.

4.4.4.2 Prediction

Assume that we know nothing about any disturbance or measurement noise.
In order to solve the predictive control problem, we must have a way of
computing the predicted values of the controlled variables, x(k + i|k). By
writing out eq.(4.47)
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x(k + 1|k) = Fx(k) +Bu(k|k)

x(k + 2|k) = Fx(k + 1|k) +Bu(k + 1|k)

= F 2x(k) + FBu(k|k) +Bu(k + 1|k)
...

x(k +Hp|k) = Fx(k +Hp − 1|k) +Bu(k +Hp − 1|k)

= FHpx(k) + FHp−1Bu(k|k) + . . .+ u(k +Hp − 1|k)

(4.52)

and

u(k|k) = ∆u(k|k)− u(k − 1)

u(k + 1|k) = ∆u(k + 1|k) + ∆u(k|k)− u(k − 1)
...

u(k +Hu − 1|k) = ∆u(k +Hu − 1|k) + . . .+ ∆u(k|k) + u(k − 1)

(4.53)

Finally, we can write this as matrix form: x(k + 1|k)
...

x(k +Hu + 1)

 = Ψx(k) + Υu(k − 1) + Θ

 ∆u(k|k)
...

∆u(k +Hu − 1|k)

 (4.54)

where

Ψ =

 F
...

FHu

 ,Υ =

 B
...∑Hu−1

i=0 F iB


and

Θ =


B 0 . . . 0

F + F 0B B . . . 0
...

...
. . .

...∑Hu−1
i=0 F iB

∑Hu−2
i=0 F iB . . . B

 (4.55)
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4.4.4.3 Using an Observer

If we cannot measure the full state vector, or if the output consists of some
linear combinations of the states, then an observer can be used to estimate
the state vector. If an observer is used in the MPC, then the x needs to be
replaced with x̂ since you use the estimated x in the MPC formulation. More
about observers in Section 4.2. Your MPC formulation will now be

V (k) =

Hp∑
i=Hw

(x̂k − x0)TQ(x̂k − x0) +
Hu−1∑
i=0

(uk − uk−1)TR(uk − uk−1) (4.56)

subject to

xmin ≤ x̂ ≤ xmax (4.57)

∆umin ≤ ∆u ≤ ∆umax (4.58)

umin ≤ u ≤ umax (4.59)

4.4.4.4 Solving Predictive Control Problems

We can rewrite the cost function which we want to minimize

V (k) = ‖X(k)− T (k)‖2
Q + ‖∆U(k)‖2

R (4.60)

where

X(k) =

x(k +Hw|k)
...

x(k +Hp|k)

 T (k) =

x0(k +Hw|k)
...

x0(k +Hp|k)



∆U(k) =

 ∆û(k|k)
...

∆û(k +Hu − 1|k)

 (4.61)

The weighting matrices Q and R are given by

Q =


Q(Hw) 0 . . . 0

0 Q(Hw + 1) . . . 0
...

...
. . .

...
0 0 . . . Q(Hp)

 (4.62)
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and

R =


R(0) 0 . . . 0

0 R(1) . . . 0
...

...
. . .

...
0 0 . . . R(Hu − 1)

 (4.63)

They are tuned the same way as described in Section 4.4.2.

Recall from eq. (4.54) that X has the form

X(k) = Ψx(k) + Υu(k − 1) + Θ∆U(k) (4.64)

De�ne

ε(k) = T (k)−Ψx(k)−Υu(k − 1) (4.65)

This can be thought of as "tracking error" in the sense of the di�erence
between T (k) which is the future target trajectory, and the "free response"
of the system. The response that would occur over the prediction horizon if
no input changes were made, ∆u = 0, is the "free response". If the tracking
error is zero, ε = 0, then it will be correct to set ∆u = 0.

Thus we have,

V (k) = ‖X(k)− T (k)‖2
Q + ‖∆U(k)‖2

R

= ‖Θ∆U(k)− ε(k)‖2
Q + ‖∆U(k)‖2

R

= [∆U(k)TΘT − ε(k)T ]Q[Θ∆U(k)− ε(k)]

+∆U(k)TR∆U(k)

= ε(k)TQε(k)−∆U(k)TG+ ∆U(k)TH∆U(k) (4.66)

where

G = 2ΘTQε(k) and H = ΘTQΘ +R (4.67)

and neither G nor H depends on ∆U(k)

This has the form

V (k) = const−∆U(k)TG+ ∆U(k)TH∆U(k). (4.68)

To clarify the dimensions are summarized in Table 4.1.
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Matrix Dimensions
Q m(Hp −Hw + 1)×m(Hp −Hw + 1)
R lHu × lHu

Ψ m(Hp −Hw + 1)× n
Υ m(Hp −Hw + 1)× l
Θ m(Hp −Hw + 1)× lHu

ε m(Hp −Hw + 1)× 1
G lHu × 1
H lHu × lHu

Table 4.1: This table shows the dimensions on the matrices and vectors
involved in computing the optimal input vector. The plant has l inputs, n
states, and m controlled outputs.

4.4.4.5 Unconstrained Optimization

The solution to the unconstrained optimization problem is straight forward.
To �nd the optimal input change, ∆U(k), �nd the gradient of the cost func-
tion V (k) and set it to zero. From eq. (4.68) we �nd

∇∆U(k)V = −G+ 2H∆U(k) (4.69)

which gives the optimal set of future input moves

∆U(k)opt =
1

2
H−1G (4.70)

For each calculation of ∆U(k) only the �rst elements corresponding to the
number of plant inputs of ∆U(k) are applied, then ∆U(k) is recalculated.
This has the form

∆u(k)opt = [Il, 0l . . . , 0l]∆U(k)opt (4.71)

where Il is the l × l identity matrix, and 0l is the l × l zero matrix.

4.4.4.6 Comments on the MPC

• In eq. (4.54), the calculation of Ψ involves computing F i, and i can be
quite large. If the plant is stable or unstable, some elements in F i might
become extremely high or small compared to others. Since computers
work with �nite-precision arithmetic, the results might become wrong.
One way to handle this problem is "pre-stabilizing" the plant[20].
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Chapter 4. Theory

• As described earlier, Q and R are important tuning parameters for the
MPC. The value of the prediction horizon Hp, control horizon Hu and
working horizon Hw needs to be considered. Hp and Hu a�ect the close
loop performance and the computational complexity. Generally, shorter
horizons gives lower complexity optimization problem and hence lower
computational load for the online optimization problem, while longer
horizons gives better performance, at the cost of higher computational
load.

4.4.4.7 Constrained Optimization

Now we consider the case when constraints are present. They are written in
the form

E

[
∆U(k)

1

]
≤ 0 (4.72)

F

[
U(k)

1

]
≤ 0 (4.73)

G

[
Z(k)

1

]
≤ 0 (4.74)

where U(k) = [ũ(k|k)T , . . . , ũ(k + Hu − 1|k)T ]T . The ũ is used to indicate
that it is not yet the optimal u. We want to end up with constraints for the
optimization problem expressed in terms of ∆U(k)

Ω∆U(k) = w. (4.75)

Suppose F has the form

F = [F1, F2, . . . , FHu , f ], (4.76)

where q is the number of constraints on u, and each Fi is of the size q ×m,
and f has the size q × 1. To illustrate 0 ≤ u1 ≤ 1 gives q = 2. Now, eq.
(4.73) can be written as:

Hu∑
i=1

Fiũ(k + i− 1|k) + f ≤ 0. (4.77)

Since

ũ(k + i− 1|k) = u(k − 1) +
i−1∑
j=0

∆ũ(k + j|k) (4.78)
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we can write eq. (4.73) as

Hu∑
j=1

Fj∆ũ(k|k) +
Hu∑
j=2

Fj∆ũ(k + 1|k)

+ . . .+ FHu∆ũ(k +Hu − 1|k) +
Hu∑
j=1

Fju(k − 1) + f ≤ 0 (4.79)

By de�ning Fi =
∑Hu

j=i Fj and F = [F1, . . . ,FHu ] we only have to summarize
to see that we have converted eq. (4.73) into a linear inequality constraint
on ∆U(k).

F∆U(k) ≤ −F1U(k − 1)− f (4.80)

Equation (4.74) is treated similarly:

G

[
Ψx(k) + Υu(k − 1) + Θ∆U(k)

1

]
≤ 0 (4.81)

Now, letting G = [Γ, g] where g is the last column of G, this can be written
in the desired form as

ΓΘ∆U(k) ≤ −Γ[Ψx(k) + Υu(k − 1)]− g (4.82)

The only remaining constraint to handle is the simplest one, eq. (4.72), we
write

W∆u(k) ≤ w (4.83)

Finally, we can summarize

 FΓΘ
W

∆U(k) ≤

 −F1u(k − 1)− f
−Γ[Ψx(k) + Υu(k − 1)]− g

w

 (4.84)

If an observer is used, replace x by x̂.

Now, we have obtained the following constrained optimization problem:

minimize ∆U(k)TH∆U(k)−GT∆U(k) (4.85)

subject to the inequality constraints in eq. (4.84). This is a standard opti-
mization problem know as quadratic programming (QP), which can be solved
with standard algorithms.
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4.4.4.8 Solving Quadratic Programming Problems with Constraints

There are several software programs that can be used to solve QP problems,
for instance MATLAB and Microsoft Excel. MATLAB [21] has a build-in
function quadprog which solves the problem and gives you the optimal input.
In quadprog you can decide which algorithm that should be used, for example
Active-Set or interior-point method. These are brie�y described in [20], and
more carefully derived in [22].

Even though the QP problem has a global solution that exists, hence it is
convex[22], it might be infeasible because of the constraints. There are several
approaches to solve this problem:

• Implement soft constraints

• Actively manage the constraint de�nition at each k

• Actively manage the horizons at each k

• Use non-standard solution algorithms

Recommended literature on MPC and examinations of these solutions can
be found in [20] and [19].
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Implementation

As mentioned in Section 4.2 about Kalman �lters, there is an assumption
that the process and measurement noise are white with zero mean. However,
to simulate a more realistic case, and to be able to generate slug �ow into
the anti-slug controller the process noise is not set to be like this. Figure 5.1
presents an input that generates slug �ow.
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Figure 5.1: Gas and liquid �ow into the system
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The �les for simulating the system are found on the CD.

For simulation of the nonlinear model the MATLAB function ode15s [21] is
used. The state for the nonlinear model includes one steady-state part x0

plus one deviation part dx. Further, linear controllers are used, they work
with the deviation part dx, therefor the steady-state part x0 is removed when
states are used in the controller.

5.1 Tuning Parameters

Tuning of the observers and controllers are not the main focus of this thesis.
Because of the nonlinearity in the system, the time steps need to be small
and the simulation is very time consuming. In compromise between time
and performance simulations are done to �nd the best values for the tuning
parameters.

5.2 Matlab Code

5.2.1 Controllers

PI Controller:

%% I n i t i a l i z a t i o n
Kp = 0 . 1 ; %% Kp=1 i s a l s o used .
Ki = 0 . 0001 ;

%% in s i d e loop

% ============== PI Cont r o l l e r ==================
P1_hat (k−1)=y_hat (1 , k−1);
e (k−1) = P1_hat (k−1) − y0 ( 1 ) ;
I = I + e (k−1)∗Ts ;
u_c(k−1) = Kp∗( e (k−1)+Ki∗ I ) ;

\% Saturate s the c o n t r o l l e r betwEen [ 0 1 ] .
i f (u_c(k−1)<−u_pc(k−1))

u_c(k−1)=−u_pc(k−1);
end
i f (u_c(k−1)>(1−u_pc(k−1)))

u_c(k−1)=1−u_pc(k−1);
end
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LQR Controller

% ============== LQR Cont r o l l e r ==================
Q_lqr=1e−3∗diag ( [ 1 0 1 0 ] ) ;
R_lqr=1e9 ;
N_lqr=ze ro s ( 4 , 1 ) ;
[ K_lqr , S , e ] =d lqr (F ,B, Q_lqr , R_lqr , N_lqr ) ;

u_c(k−1)=−K_lqr∗x_hat ( : , k−1);

\% Saturate s the c o n t r o l l e r between [ 0 1 ] .
i f (u_c(k−1)<−u_pc(k−1)) ;

u_c(k−1)=−u_pc(k−1);
end
i f (u_c(k−1)>(1−u_pc(k−1) ) ) ;

u_c(k−1)=1−u_pc(k−1);
end

MPC Controller

Code for initialization of the MPC can be found in appendix A.4.

% ============== MPC Cont r o l l e r ==================
%% Formulate H and G.

x_prev=x_hat ( : , k−1);
u_control_prev=u_MPC(k−1);

T=repmat ( [ 0 0 0 0 ] ' ,Hu , 1 ) ;
EPS=T−Psi ∗x_prev−Gamma∗u_control_prev ; %eq . 4 .62
H=Theta '∗Q_MPC∗Theta+R_MPC; %eq . 4 .64
H=(H+H' ) / 2 ; %To ensure symmetry/compensate

f o r numerica l i n a c c u r a c i e s
G=2∗Theta '∗Q_MPC∗EPS; %eq . 4 .64

%% Formulate c on s t r a i n t s as eq . 4 .81

% Ff %1s t l i n e , l e f t s i d e
GcFi=Gcons∗Theta ; %2nd l i n e , l e f t s i d e

% W %3rd l i n e , l e f t s i d e

%Eps=−Psi ∗x_prev−Gamma∗u_control_prev ; %2nd l i n e r i g h t s ide ,
midle part

ohm1=−f 1 ∗u_control_prev−f ; %1s t l i n e , r i g h t s i d e
g1=Gcons∗EPS−g ; %2nd l i n e , r i g h t s i d e

% w %3rd l i n e , r i g h t s i d e

OhmL=[Ff ; GcFi ;W] ; % Total vector , l e f t s i d e o f c on s t r a i n t s
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OhmR = [ ohm1 ; g1 ; w ] ; % Total vector , r i g h t s i d e o f c on s t r a i n t s
% OhmL∗deltaU<=OhmR, evt . Ax<=b

%% Quadratic program , cons t ra ined case :
[ delU ( : , k ) , f va l , exFlag , output , lambda ] = quadprog (H, −0.5∗G,

OhmL,OhmR, [ ] , [ ] , [ ] , [ ] , [ ] , optionsQP ) ;

%% Input to s imu la t i on o f p lant
u_MPC(1 ,1)=0;
u_MPC(1 , k ) = delU (1 , k)+u_MPC(1 , k−1); % Add up to t o t a l c on t r o l

( deltaU computed )
i f (u_MPC(k)>1−u (1 , k ) )

u_MPC(k)=1−u (1 , k ) ;
e l s e i f (u_MPC(k)<−u (1 , k ) )

u_MPC(k)=−u (1 , k ) ;
end

Simulation

% =========== Simulat ion o f System ===============
u_in ( : , k )=[u (1 , k)+u_c(k−1); u_n(2 , k ) ; u_n(3 , k ) ] ;
u_no_noise ( : , k )=[u (1 , k)+u_c(k−1); u (2 , k ) ; u (3 , k ) ] ;

[ tt , xt ]=ode15s (@v4_new_4d_model , [ k−1;k ] , x ( : , k−1)+x0 ,
opt ions , u_in ( : , k ) , ' d e r i v a t i v e s ' , par ) ;

x ( : , k)= xt ( end , : ) ' − x0 ;
yt=v4_new_4d_model (k , xt ( end , : ) ' , u_in ( : , k ) , ' measurements ' , par ) ;
y ( : , k ) = yt+n_m( : , k ) ;

5.2.2 Observers

The process noise is wk and the output noise is vt = Ew +Mv

vt = Ew +Mv

var(vt) = var(Ew +Mv)

= Exp((Ew +Mv)(Ew +Mv)′)

= Exp(Ew +Mv)(w′E ′ + v′M ′)

= Exp(Eww′E ′ + Ewv′M ′ +Mvw′E ′ +Mvv′M ′)

= EQnE + ENnM ′ +MNn′E ′ +MRnM ′

R = EQn+Hn+Hn′ +MRnM ′ (5.1)

where
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• E is the matrix corresponding to the noisy process input wG,in and
wL,in.

• M is the matrix corresponding to the noisy stochastic measurement
input.

Kalman Filter
Simulink was used to implement the linear KF. To simulate with the nonlin-
ear function as for the EKF and UKF, an S-Function was used. The Simulink
diagram is attach in Appendix A.2.

Extended Kalman Filter

% =========== Extended Kalman F i l t e r ===============
% p .409 in Optimal State Est imation . By Dan J . Simon
%3a )
%F =expm(A∗Ts)
%BL=(F−I ) inv (A)B
%L =BL( : , s en so r s )

%b)
P_pri=F∗P∗F'+Q;

[ tt , xt ]=ode15s (@v4_new_4d_model , [ k−1;k ] , x_hat ( : , k−1)+x0 ,
opt ions , u_no_noise ( : , k ) , ' d e r i v a t i v e s ' , par ) ;

x_hat_pri ( : , k)= xt ( end , : ) ' − x0 ;
yt=v4_new_4d_model (k , xt ( end , : ) ' , u_no_noise ( : , k ) ,

' measurements ' , par ) ;
y_hat_pri ( : , k ) = yt ( 1 : 3 ) ;
% y_hat_pri i s c a l c u l a t ed based on x_hat_pri .

%c )
%H=C( sensor s , : ) ;
%M=eye ( l ength ( s en so r s ) ) ;

%d)
K=P_pri∗H' / (H∗P_pri∗H'+R) ;
x_hat ( : , k)= x_hat_pri ( : , k ) + K∗( y ( sensor s , k )

− y_hat_pri ( sensor s , k ) ) ;
y_hat ( : , k ) = v4_new_4d_model ( t ( k ) , x_hat ( : , k)+x0 ,

u_no_noise ( : , k ) , ' measurements ' , par ) ;
P=(eye ( s i z e (P_pri))−K∗H)∗P_pri ;

Unscented Kalman Filter

%%%% I n i t i a l i z a t i o n o f UKF %%%%
f f = . 9 8 ;
L = 4 ;
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alpha=1;
beta=0;
kapa=1;
lambda=alpha ^2∗(L+kapa)−L ;
gama=sq r t (L+landa ) ;
Wc=[lambda /(L+lambda)+(1−alpha^2+beta ) , ones (1 ,2∗L)∗ lambda/

(2∗ (L+lambda ) ) ] ;
Wm=[lambda /(L+lambda ) , ones (1 ,2∗L)∗ lambda /(2∗ (L+lambda ) ) ] ;
Wc1=ones (L , 1 )∗Wc;
Wc2=ones (2 ,1 )∗Wc;
Wm1=ones (L , 1 )∗Wm;
Wm2=ones (2 ,1 )∗Wm;

%%%% Ins i d e loop%%%%
% =========== Choosing Sigma Points ===============

xhatk_1 = x_e ( : , k−1)+x0 ;
[RSK, p]= cho l ( (gamma^2) ∗ Pk_1 ) ;
i f p==0,

SK = RSK' ;
e l s e

SK=sq r t ( abs ( (gamma^2) ∗ Pk_1 ) ) ;
end

Xk_1=[xhatk_1 , xhatk_1∗ ones (1 ,L)+SK , xhatk_1∗ ones (1 ,L)−SK ] ;
%eq . 4 . 2 5

%================== Propagation o f Sigma Points =============
Xk = ze ro s (L,2∗L+1);
f o r j =1:2∗L+1,

[ tt , xt ]=ode15s (@v4_new_4d_model , [ k−1;k ] ,Xk_1( : , j ) ,
opt ions , u_in_noNoise ( : , k ) , ' d e r i v a t i v e s ' , par ) ;

Xk ( : , j ) = xt ( end , : ) ' ; %eq . 4 . 2 7
end

xhatk_=sum( (Xk) . ∗Wm1, 2 ) ; %eq . 4 . 2 8
temp1=Xk−xhatk_∗ ones (1 ,2∗L+1);
Pk_=Wc1.∗ temp1∗temp1 '+Q_KF;% eq . 4 . 2 9
%=============== Measurement Update ====================

SK=cho l ( (gamma^2) ∗ Pk_ ) ' ;
Xk=[xhatk_ , xhatk_∗ ones (1 ,L)+SK , xhatk_∗ ones (1 ,L)−SK ] ;

%eq . 4 . 3 0
Yk = ze ro s (2 ,2∗L+1);
f o r j =1:2∗L+1,

y_k = v4_new_4d_model ( t ( k ) ,Xk ( : , j ) , u_in_noNoise ( : , k ) ,
' measurements ' , par ) ; %eq . 4 . 3 2

Yk ( : , j )= y_k( s en so r s ) ;
end
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yhatk_=sum(Wm2.∗Yk,2) ;% eq . 4 .33

Pxkyk=Wc1. ∗ (Xk−xhatk_∗ ones (1 ,2∗L+1))∗(Yk−
yhatk_∗ ones (1 ,2∗L+1)) ';% eq . 4 . 3 5

temp1=Yk−yhatk_∗ ones (1 ,2∗L+1);
Pyk_yk_=Wc2.∗ temp1∗temp1 '+R_KF; % eq . 4 . 3 4

Kk=Pxkyk/Pyk_yk_ ; % eq . 4 .36

xhatk=xhatk_+Kk∗( y ( sensor s , k)−yhatk_);% eq . 4 .36

x_e ( : , k)=xhatk−x0 ;
y_hat ( : , k)=v4_new_4d_model ( t ( k ) , xhatk , u_in_noNoise ( : , k ) ,

' measurements ' , par ) ;

Pk=Pk_−Kk∗Pyk_yk_∗Kk';% eq 4 .36

p11 (k , : )= diag (Pk ) ' ;
Pk_1=Pk/ f f ;
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Chapter 6

Results

All simulations are done with the nonlinear model in Chapter 3. The mea-
surement noise is generated with the randn() function in MATLAB for each
time step, consequently the output have a lot of noise. To improve the plots,
only the 10'th sample is shown for the subsea pressure P1, topside pressure
P2 and mass rate Wout. However, the noise characteristic of the choke valve
is important, so every sample is plotted for u. All simulations have nominal
choke valve opening u = 0.10 if nothing else is mentioned.

For simplicity some notation;

• "PI +Observer, P2 and Wout, 3%" means a PI controller based on P̂1

from an observer with 3% input disturbance. Further, P2 and W are
measured.

• "Controller+Observer, P1 and Wout, 5%" orMPC+Observer means
a controller based on x̂ from an observer with 5% input disturbance.
Further, P1 and W are measured.
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3% disturbance 5% disturbance 3% disturbance 5% disturbance
PI
LQR
MPC
PI
LQR
MPC
PI
LQR
MPC
PI
LQR
MPC
LQR
PI

Yes
Yes

Nominal u=0.10

Yes

Yes
Yes

Using subsea measurement and 
mass rate(P1 and Wout)

Using  topside measurements(P2 

and Wout)

Yes
Yes
--

EKF Estimate

Linear KF 
Estimate

Direct 
measure-

ment Yes

No, fig A.4
No, fig A.3
No, fig 6.1

--
No
No

Yes

Yes, fig 6.2

Yes

High-Gain 
Observer**

Yes
Yes
----

-- -- Yes

UKF Estimate Yes

Yes
YesYes

Yes

Yes Yes, fig 6.3
Yes

--

No, fig 6.4
No

--
Yes
Yes
Yes

No
No

Yes
Yes, fig 6.11 &6.12

Yes fig 6.5
Yes, fig 6.6 & 6.8

Yes, fig 6.7

Table 6.1: Summary of the results, Yes means it works, No means it does
not work, and −− means it is not investigated. **See section 4.3.

3% disturbance 5% disturbance 3% disturbance 5% distrubance
PI Yes -- No --
LQR Yes No -- --
MPC No -- -- --
PI Yes Yes Yes, fig A.5 No
LQR Yes No Yes No, fig 6.9
MPC Yes No Yes, fig A.6 No

Using  topside 
measurements(P2 and Wout)

UKF 
Estimate

EKF 
Estimate

Nominal u=0.12
Using subsea measurement and 

mass rate(P2 and Wout)

Table 6.2: Summary of the results, Yes means it works, No means it does
not work, and −− means it is not investigated.
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6.1 Simulation Results
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Figure 6.1: PI+EKF, P2 and Wout,5%

In Figure 6.1, the system is controlled with a PI controller based on the EKF
estimate of P̂1. This system is stable for about 3 hours, but the input is
noisy. Further, after about 3.5h, the combination of low WL,in and low WG,in

makes the system unstable (Figure 5.1).
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Figure 6.2: PI+EKF, P2 and Wout, 3%
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Figure 6.3: PI+UKF, P2 and Wout, 3%
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As seen in Table 6.1, the PI controller is the only controller which can stabilize
the system with EKF or UKF, with topside measurements and 3% input
disturbance. In Figure 6.2 and 6.3 the simulations are shown. Both control
solutions give good results.
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Figure 6.4: LQR+EKF, P2 and Wout, 3%

Small oscillations can be seen after about 3.5h in Figure 6.4. This means that
although the input disturbance is reduced to 3%, LQR+EKF gets unstable
for a short period. However, the system recover when the combination of low
input of WL,in and low WG,in changes to low input of WL,in and high WG,in.
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Another observation from Table 6.1 is the performance of the UKF. The UKF
using only topside measurements, combined with PI, LQR or MPC (Figure
6.5-6.7) stabilizes the system, even with 5% input disturbance.
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Figure 6.5: PI+UKF, P2 and Wout, 5%
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Figure 6.6: LQR+UKF, P2 and Wout, 5%
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Figure 6.7: MPC+UKF, P2 and Wout, 5%
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Figure 6.8: LQR+UKF, P2 and Wout, 5%, the control system is turned on
after 1 hour1.

As seen in Figure 6.8, the LQR+UKF using topside measurements, is able
to stabilize the unstable slug-�ow. The control system is turned on after 1
hour.

1Make notice on the di�erent scales compared to �gure 6.1-6.7
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Figure 6.9: LQR+UKF, P2 and Wout, 5%, nominal choke valve u = 0.12, the
control system is turned on after 1 hour1.

Further, the system input is changed, and the nominal choke valve position
is increased from u = 0.10 to u = 0.12. In Figure 6.9, it can be seen that the
system cannot handle the input combination at 3.5 hours.
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Figure 6.10: PI+EKF, P1 and Wout, 3%, nominal choke valve u = 0.15

Moreover, if the subsea pressure and topside �ow are used as measurements,
the PI+EKF is able to stabilize the the system with nominal choke valve
increased to u = 0.15.
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LQR and High-Gain2 Observer with 5% Disturbance
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Figure 6.11: High-gain+LQR, P2, 5% The control system is stared after
simulating 1 hour1.

Promising results are shown in Figure 6.11. The unstable slug �ow is stabi-
lized when the control system is started after 1 hour.

2In cooperation with supervisor Esmaeil Jahanshahi
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Figure 6.12: High-gain+LQR, P2 , 5%, nominal choke valve u = 0.12. The
control system is stared after simulating 1 hour1.

In Figure 6.12, the high-gain is again simulated with LQR. For this simulation
the operating point is changed from u = 0.10 to u = 0.12. This change makes
the system unstable.
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6.2 Comparison of the controllers

As seen from Table 6.1, the best nonlinear estimator is the UKF. Comparison
is done of the accuracy of the estimators by calculating root mean square error
between the estimated state and the state. Then, the root mean square error
is calculated to between the output and the steady-state value to check the
controller performance. The comparison is done with 5% input disturbance,
and topside measurements.

Root Mean Square Estimation Error

RMSE =

√√√√1

k

k∑
i=1

(x(i)− x̂(i))2 (6.1)

x1 x2 x3 x4

UKF+PI 7.59 0.8 2.89 50.13
UKF+LQR 7.09 0.65 2.67 46.25
UKF+MPC 8.16 0.71 3.1 53.96
High-Gain+LQR 10.61 2.15 3.51 61.34

Table 6.3: RMSE for the state estimation

Root Mean Square Output Error

Error =

√√√√1

k

k∑
i=1

(y(i)− yss)2 (6.2)

P1 P2 Wout

UKF+PI 0.509 0.283 1.271
UKF+LQR 0.624 0.323 0.435
UKF+MPC 0.675 0.409 0.544
High-Gain+LQR 0.884 0.479 0.995

Table 6.4: RMSE output error

None of the controllers are signi�cant better than others. However, we can
see slightly better results for the UKF+LQR.
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Chapter 7

Discussion

Active control of the choke valve is the recommended solution for anti-slug
control. In this thesis work state estimation is performed and used in the
control solution. The linear Kalman �lter, extended Kalman �lter (EKF)
and unscented Kalman �lter (UKF) were used for state estimation, using
top-side measurements, with a controller to stabilize the system.

As expected, the linear Kalman �lter fails in stabilizing the system when only
topside measurements are used, even when the input disturbance is reduced
from 5% to 3%. Therefore, we move to nonlinear state estimation.

In Figure 6.1, the PI+EKF is not able to stabilize the system when the
input disturbance is 5% and the nominal values of WL,in and WG,in are low.
However, when the input disturbance is reduced to 3%, the system is stable.
This can be seen in Figure 6.2. The same unstable behavior, with 5% input
disturbance, can be seen for LQR+EKF and MPC+EKF, Figure A.3 and
A.4 in the appendix. Further, LQR+EKF has less noisy input compared
to PI+EKF and MPC+EKF. In contrast to PI+EKF, the PI+UKF can
stabilize the system (both with 5% input disturbance). This can be seen in
Figure 6.5.

As a conclusion, the EKF is working �ne with 3% input disturbance because
it is based on �rst order Taylor series, which gives a good approximation
locally (i.e. small disturbance), but for large disturbance it is not working.

The only controller which stabilizes the system with EKF for 3% input distur-
bance is the PI controller. The two other controllers (LQR and MPC) where
not able to stabilize the system in this case. For comparison, PI+EKF and
PI+UKF are shown in Figure 6.2 and 6.3. They have much the same perfor-
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mance, but the estimated P1 and P2 are closer to the set-point for the UKF.
Further,Wout has less noise for EKF. In Figure 6.4, the LQR+EKF controller
has small oscillations after about 3.5 hours which recovers when the amount
of gas increases in the input to the pipeline. Because of the oscillations, the
controller is not very robust, and is marked as No in Table 6.1.

The UKF is the �lter which works in most cases, as seen in Table 6.1. The
performance of the UKF is improved with the implemented forgetting factor
less than one. By having the forgetting factor less than one, the covariance
is arti�cially increased and the observer gain K is increased. But with large
observer gain, the system becomes sensitive to noise. In Figure 6.5-6.7, the
di�erent controllers can be compared. The PI and MPC controller have
some noise on choke valve opening, however, a solution to this can be to
implement a low-pass �lter. Moreover, the UKF combined with LQR is able
to stabilize the unstable system when the controller is turned on after one
hour, as seen in Figure 6.8. But, when the nominal choke valve opening is
increased from u = 0.10 to u = 0.12 the system gets unstable because of the
input disturbances, as seen in Figure 6.9. The Q and R for LQR tuning is
set so the R is much higher than Q, which gives a slow controller response.

As a result, we can conclude that since the UKF is accurate to the third order,
it can cover more nonlinearity when large disturbances occur. With ff < 1,
we increased observer gain and much faster estimation makes the separa-
tion principle better, since the observer is much faster than the controller.
However, the system is sensitive to noise and it is not very robust, since an
increase in the nominal choke valve opening makes the system unstable.

Moreover, to check the robustness of the di�erent control systems, simula-
tions are done with u = 0.12, as seen in Table 6.2. In Figure A.5 and A.6, the
PI+UKF and MPC+UKF, with 3% input disturbance, nominal choke valve
opening u = 0.12 and topside measurements are simulated. The PI+UKF is
only marginally stable, while MPC+UKF is stable. Both the PI+UKF and
MPC+UKF fails if the input disturbance is increased to 5% while the choke
opening is remained on u = 0.12.

As discussed earlier, the idea for implementing MPC was to have e�cient
constraint handling. One important characteristic of the choke valve is that
it cannot be more than fully open. This means that there is a constraint in the
system 0 < Z < 1. However, the system is not close to have the choke fully
open when the system is stable. Moreover, we tried tightening the bounds on
∆Z, the change in the choke valve, but without improved results. Further,
for MPC tuning the R was tuned much higher than Q. This means that it is
"costly" to use the input, and we will get a slow controller. This is the same
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strategy as for the LQR tuning. Further, for simplicity, the control horizon
and prediction horizon, were set to be equal each other hence, Hu = 15 and
Hp = 15. The value was found as a compromise between system performance
and simulation time.

As seen in Table 6.1 and 6.2, there is no trouble with controlling the sys-
tem when the subsea pressure is measured. This is as expected from the
controllability analysis done of the model [3]. Moreover, in Figure 6.10, it
can be seen that the PI+EKF is able to stabilize the system with u = 0.15.
This results in a higher choke valve opening, which might result in a more
pro�table production. Higher values than u = 0.15 is tested for PI+EKF,
but without stable results.

The high-gain observer in Figure 6.11, stabilizes the unstable �ow when top-
side pressure is measured. The estimated output is close to the set-point,
and shows good performance. There is room for further research on this
observer in anti-slug control solutions. Moreover, as for the LQR+UKF,
when the nominal value of the choke opening is increased to u = 0.12, the
high-gain+LQR with 5% input disturbance gets unstable, as seen in Figure
6.12.

In Table 6.3 the accuracy of the estimator is calculated, and in Table 6.4
the performance of the controller is calculated. Both are calculated by the
root mean square error method. The LQR+UKF is slightly better than the
other solutions. Further, high-gain + LQR shows the highest values, which
is because of its sensitivity to noise.

7.1 Challenges

There have been quite a few challenges throughout this master work. First,
the choice of solver and its operation point. In the beginning, the "�xed step
solver" (FSS) implemented by my supervisor was used. This is a faster solver
compared to ode15s. The reason that we switched to the ode15s solver was
that when the simulations did not work in the beginning, we were not sure
if something was wrong with the control strategy, or with the solver. The
linear Kalman �lter implementation in MATLAB was not working either, so
Simulink implementation was tested with success.

Further, the tuning was a challenge. Simulations took up to 40 minutes
each, so tuning estimators and controllers was very time consuming. Time
was also spent on deciding which MPC formulation that will perform the
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best in this case and of course the implementation. There are a lot of tuning
parameters for the UKF. Without luck, a lot of e�ort was made in tuning the
UKF parameters, when topside measurements were used, to get good UKF
performance with ff = 1.
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Chapter 8

Conclusion

There has been done research on anti-slug control with nonlinear state es-
timation in this thesis. From the controllability analysis of the L-shaped
pipeline-riser model it is concluded that the subsea pressure measurement
and �ow measurement are the best measurements for active control of the
choke valve. However, since the subsea measurement is not always avail-
able, the topside pressure and �ow measurements are used in nonlinear state
estimation to estimate states and other control variables.

Simulation studies of di�erent control strategies have shown that the EKF
works good locally, while the UKF with forgetting factor works best for high
input disturbance, hence it is more robust. The LQR controller has slightly
better performance compared to the MPC and PI. However, this might be a
result of di�erent tuning. Further, to use the high-gain observer in control
has a great potential, and needs further research. The UKF+LQR and high-
gain+LQR are stable, with measurements of topside pressure and mass rate
with 5% input disturbance, for u = 0.10 but for u = 0.12 the control solution
is unstable, which gives us the conclusion that they are not robust.

Further work for anti-slug control with nonlinear state estimation is more
investigation on control strategies with high-gain observer. Another possi-
bility can be to implement an MPC which tries to maximize the choke valve
opening, while still make sure that the choke valve is not more than fully
open. This can be a pro�table solution because the larger choke opening,
the more is produced. Further, for noisy choke valve opening, a low-pass
�lter can be tried out.
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Appendix A

Appendix

A.1 Attached CD

The attached CD contains the �les to run the simulations. The folder "P1
and W" means subsea pressure and mass rate as sensors, while "P2 and W"
means topside pressure and mass rate as sensors. To simulate with 5% input
disturbance load wG_wL_nm, while simulating with 3% input disturbance
requires loading wG_wL_nm3percent.
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A.2 Simulink Diagram

Figure A.1: Simulink Diagram for LQG
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A.2. Simulink Diagram

Figure A.2: Nonlinear Plant
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A.3 Figures from the Result Section
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Figure A.3: LQR+EKF, P2 and Wout, 5%
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Figure A.4: MPC+EKF, P2 and Wout, 5%
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Figure A.5: PI+UKF, P2 and Wout, 3%, u = 0.12
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Figure A.6: MPC+UKF, P2 and Wout, 3% , u = 0.12
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A.4 MATLAB Code

MPC initialization

%% I n i t i a l i z e MPC

%%Dimensions

Hu=15; %Control hor i zon
Hp=Hu; %Pred i c t i on hor i zon
Hw=1; %When you s t a r t c o n t r o l l i n g

%Table 3 .1 in Pr ed i c t i v e Control with c on s t r a i n t s by Maciejowski
l =1; %inputs
n=4; %Stat e s
m=4; %Contro l l ed outputs , z=cx , c=eye ( 4 ) ;
Q_MPC=ze ro s (m∗(Hp−Hw+1) ,m∗(Hp−Hw+1)) ;
R_MPC=ze ro s ( l ∗Hu, l ∗Hu) ;
Ps i=ze ro s (m∗(Hp−Hw+1) ,n ) ;
Gamma=ze ro s (m∗(Hp−Hw+1) , l ) ;
Theta=ze ro s (m∗(Hp−Hw+1) , l ∗Hu) ;

%I n i t i a l i z e c on s t r a i n t s matrix
Ff = ze ro s (2∗Hu,Hu) ;
%f1 = ze ro s (2∗Hu, 1 ) ;
f = ze ro s (2∗Hu, 1 ) ;
Gcons = ze ro s (2∗Hu,Hu) ;
g1 = ze ro s (2∗Hu, 1 ) ;
%g = ze ro s (2∗Hu, 1 ) ;
W = ze ro s (2∗Hu,Hu) ;
w = ze ro s (2∗Hu, 1 ) ;

%Weighting on the d i f f e r e n t s t a t e s and input .
Q_MPCd=1∗diag ( [ 100 1 1 1 ] ) ;
R_MPCd=1e3 ;
Q_MPC=blkd iag2 (Q_MPCd,Hu) ;
R_MPC=blkd iag2 (R_MPCd,Hu) ;

%% Formulation o f c on s t r a i n t s

b i a s=u ( 1 , 1 ) ;
uMax=1; %uMin<u<uMax
uMin=0; %

uMax=uMax−b ia s ;
uMin=uMin−b ia s ;
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v i o l a t i o n =0.5 ;
zMax1=v i o l a t i o n ∗x0 ( 1 ) ;
zMin1=−v i o l a t i o n ∗x0 ( 1 ) ;
zMax2=v i o l a t i o n ∗x0 ( 2 ) ;
zMin2=−v i o l a t i o n ∗x0 ( 2 ) ;
zMax3=v i o l a t i o n ∗x0 ( 3 ) ;
zMin3=−v i o l a t i o n ∗x0 ( 3 ) ;
zMax4=v i o l a t i o n ∗x0 ( 4 ) ;
zMin4=−v i o l a t i o n ∗x0 ( 4 ) ;
uRateMax=1e−1;
uRateMin=−1e−1;

%% Ff i s 1 . l i n e on l e f t s i d e o f c on s t r a i n t (P)
f o r j = 1 :Hu,

f (2∗ ( j −1)+1 ,1) = −uMax ;
f (2∗ j , 1 ) = uMin ;
f o r i = j :Hu,

Ff (2∗ i −1, j ) = 1 ;
Ff (2∗ i , ( j −1)+1: j ) = −1;

end
end

f1 = Ff (1 : 2∗Hu, 1 ) ;

constZ=[−zMax1 ; zMin1;−zMax2 ; zMin2;−zMax3 ; zMin3;−zMax4 ; zMin4 ] ;
g=repmat ( constZ ,Hu , 1 ) ;

f o r i = 1 :Hu∗m,
Gcons (2∗ i −1, i ) = 1 ;
Gcons (2∗ i , i ) = −1;

end

%%W and w matr i ce s in c on s t r a i n t s
%%W i s 3 . l i n e on l e f t s i d e o f c on s t r a i n t
f o r i = 1 :Hu,

w(2∗ i −1 ,1) = uRateMax ;
w(2∗ i , 1 ) = −uRateMin ;
W(2∗ i −1, i ) = 1 ;
W(2∗ i , i ) = −1;

end

x = ze ro s (4 , nf +1);
x ( : , 1 ) = 0.001∗ x0 ;
y = ze ro s ( s i z e ( y0 , 1 ) , nf ) ;
y ( : , 1 ) = y0 ;
u_in=ze ro s (3 , nf ) ;
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Implementation of High-Gain Observer

u_in ( : , k ) = u ( : , k−1)+[u_c(k− 1 ) ; 0 ; 0 ] ;
[~ , z t ]=ode15s (@v1_new_4d_Observer , [ k−1;k ] , z_e ( : , k−1) , opt ions ,

u_in ( : , k ) , y ( sensor s , k ) , ' d e r i v a t i v e s ' , par , ep ) ;
z_e ( : , k ) = zt ( end , : ) ' ;
x_e ( : , k ) = v1_new_4d_Observer ( t , z_e ( : , k ) , u_in ( : , k ) ,

y ( sensor s , k ) , ' measurements ' , par , ep ) ;
y_k = v4_new_4d_model ( t ( k ) , x_e ( : , k ) , u_in ( : , k ) , ' measurements ' , par ) ;
y_e ( : , k)=y_k ( 1 : 3 ) ;

function v1_new_4d_Observer

f unc t i on [ sys ] = v1_new_4d_Observer ( t , x_hat , u ,y_m, output , par , ep )

% Observer based on the 4− s t a t e p ip e l i n e−r i s e r model
% By : Esmaeil Jahanshahi
% May 2012 , NTNU, Norway

% x1_hat : Mass o f gas in the p i p e l i n e (m_G1)
% x2_hat : Mass o f l i q u i d in the p i p e l i n e (m_L1)
% x3_hat : Mass o f gas in the r i s e r (m_G2)
% x4_hat : Mass o f l i q u i d in the r i s e r (m_L2)

[ zdot , xhat ] = v1_new_4d_Observer0 (x_hat , u ,y_m, par , ep ) ;

i f i s e q u a l ( output , ' d e r i v a t i v e s ' )
sys =zdot ;
i f ~ i s r e a l ( sys )

d i sp ( ' Complex ' )
sys=0∗ sys ;

end
e l s e i f i s e q u a l ( output , ' measurements ' )

sys = xhat ;
end

end

function v1_new_4d_Observer0

f unc t i on [ zdot , xhat ] = v1_new_4d_Observer0 ( z , u ,y_m, par , ep )

% Observer based on the 4− s t a t e p ip e l i n e−r i s e r model
% By : Esmaeil Jahanshahi
% May 2012 , NTNU, Norway
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A.4. MATLAB Code

% z1 : Mass o f gas in the p i p e l i n e (m_G1)
% z2 : Mass o f l i q u i d in the p i p e l i n e (m_L1)
% z3 : Pressure at top o f r i s e r (P_rt )
% z4 : Mass o f l i q u i d in the r i s e r (m_L2)

x1 = z ( 1 ) ;
x2 = z ( 2 ) ;
P2_t = z ( 3 ) ;
x4 = z ( 4 ) ;

u1 = u ( 1 ) ;
w_G_in = u ( 2 ) ;
w_L_in = u ( 3 ) ;

a = par .R∗par .T2∗par . rho_L/par .M_G;
b = par . rho_L∗par .V2 ;

% rho_G1_norm = par .P1_norm∗par .M_G/( par .R∗par .T1 ) ;
% Alpha_L1_av = w_L_in∗rho_G1_norm/(w_L_in∗rho_G1_norm +

w_G_in∗par . rho_L ) ;
h1ss = par . k_h∗par . Alpha_L1_av∗par . hc ;
x2ss = par .V1∗par . rho_L∗par . Alpha_L1_av ;
h1 = h1ss + s i n ( par . theta )∗ ( x2 − x2ss )/ ( par .A1∗

(1−par . Alpha_L1_av)∗ par . rho_L ) ;
h1 = max(h1 , 0 ) ;

V_G2 = par .V2 − x4/par . rho_L ;

P1 = x1∗par .R∗par .T1/( par .M_G∗( par .V1 − x2/par . rho_L ) ) ;
rho_G1 = x1 /( par .V1 − x2/par . rho_L ) ;

Us l in = w_L_in/( par .A1∗par . rho_L ) ;
Re1=par . rho_L∗Usl in ∗(2∗ par . r1 )/ par . v i s l ;
Lambda1=0.0056 + 0.5∗Re1^(−0.32) ;
Fric_pipe=0.5∗par . Alpha_L1_av∗Lambda1∗par . rho_L∗Usl in^2

∗par . L1/(2∗ par . r1 ) ;

%P2_t = x3∗par .R∗par .T2/( par .M_G∗V_G2) ;
%P2_t = max(P2_t , par . P0 ) ;
x3 = P2_t∗(b − x4 )/ a ;

rho_G2 = x3/V_G2;
Alpha_L2_av = x4 /( par . rho_L∗par .V2 ) ;
rho_mix_av = ( x3+x4 )/ par .V2 ;
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Usl2 = w_L_in/( par . rho_L∗par .A2 ) ;
Usg2 = w_G_in/(rho_G2∗par .A2 ) ;
Um = Usl2+Usg2 ;

Re2=rho_mix_av∗Um∗(2∗ par . r2 )/ par . v i s l ;
Lambda2=0.0056 + 0.5∗Re2^(−0.32) ;
F r i c_r i s e r =0.5∗Alpha_L2_av∗Lambda2∗rho_mix_av∗Um^2∗

( par . L2+par . L3 )/(2∗ par . r2 ) ;

A_g = (h1<par . hc )∗ ( par .A1/par . hc ^2)∗( par . hc − h1 )^2 ;

A_l = par .A1 − A_g;

P2_b = P2_t + rho_mix_av∗par . g∗par . L2 + Fr i c_r i s e r ;

w_G1 = par .K_g∗A_g∗ s q r t ( rho_G1∗max(0 ,P1−Fric_pipe−P2_b ) ) ;
w_L1 = par .K_o∗A_l∗ s q r t ( par . rho_L∗max(0 ,P1−Fric_pipe+

par . rho_L∗par . g∗h1−P2_b ) ) ;

Alpha_Lb = 1 − A_g/par .A1 ;

i f (Alpha_Lb<=Alpha_L2_av)
Alpha_Lb=Alpha_L2_av ;

end

Alpha_Lt = 2∗Alpha_L2_av − Alpha_Lb ;

i f (Alpha_Lt>Alpha_L2_av)
Alpha_Lt = Alpha_L2_av ;

e l s e i f (Alpha_Lt<0)
Alpha_Lt = 0 ;

end

Alpha_Lmt = Alpha_Lt∗par . rho_L/(Alpha_Lt∗par . rho_L +
(1−Alpha_Lt )∗rho_G2 ) ;

rho_t = Alpha_Lt∗par . rho_L + (1−Alpha_Lt )∗rho_G2 ;

% i f ( z >0.95)
% par .Cd = 0 . 9 5 ;
% end

%ORF = abs (1/( z^2∗par .Cd^2) −1);
%w_mix_out = par .A2∗ s q r t (2∗ rho_t∗max(0 ,P2_t−par . P0)/ORF) ;
w_mix_out = par .K_pc∗u1∗ s q r t ( rho_t∗max(0 ,P2_t−par . P0 ) ) ;
%Q_out = w_mix_out/rho_t ;
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w_L_out = Alpha_Lmt∗w_mix_out ;
w_G_out = (1 − Alpha_Lmt)∗w_mix_out ;

dx1 = w_G_in − w_G1;
dx2 = w_L_in − w_L1;
dx3 = w_G1 − w_G_out ;
dx4 = w_L1 − w_L_out ;

y_hat = P2_t/1 e5 ; % Unit conver s i on from Pa to Bar

dz1 = dx1 ;
dz2 = dx2 ;
dz4 = dx4 ;
dz3 = ( a ∗(b−x4 )∗dx3 + a∗x3∗dz4 ) / ( ( b−x4)^2)+ (1/ ep )

∗(y_m−y_hat ) ;

zdot = [ dz1 ; dz2 ; dz3 ; dz4 ] ;

xhat = [ x1 ; x2 ; x3 ; x4 ] ;
end
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