
Diploma Thesis

Real-Time Model Predictive Control

Thomas Haugan

Automatic Control Laboratory

Swiss Federal Institute of Technology

ETH Zentrum - ETL I26, CH 8092 Zürich, Switzerland

tel. +41-1-632 6679, fax +41-1-632 1211

June 13, 2001

Student: Thomas Haugan

Supervisors: A. Bemporad, F. Borrelli, D. Mignone

Professors: M. Morari, S. Skogestad

Abstract

The primary objective of this project is to extend the Model Predictive Control (MPC)

toolbox for real-time use. The basic MPC algorithm is coded in “C” and interfaced with

Simulink by use of a S-function structure. Such extension of the toolbox enables the

real-time implementation of MPC by using xPC Target, which is a host-target prototyp-

ing environment shipped with MATLAB R12. Additionally the xPC setup is compared

against the Real-Time Toolbox. The Real-Time Toolbox is a package created by a third-

party vendor of MATLAB for connecting MATLAB and Simulink to the real world.

The MPC is tested on the “Ball & Plate”, available in the lab at Institut für Automatik

(IFA) at ETH. The “Ball & Plate” is consisting of a ball rolling over a gimbal-suspended

plate which is actuated by two independent motors. The results of this study show that

the Real-Time Toolbox introduces a delay in the data acquisition card and has an excessive

demand of CPU power. This causes a system overload and eventually a crash. The xPC

Target constellation produces less noise, and has a smaller delay than the Real-Time Tool-

box. As a result from this, the xPC Target is suggested used as standard hardware setup

for real-time implementation of MPC. Simulation and testing show a successful extension

of the MPC toolbox for real-time use. Further optimization of the code and QP-solver is

recommended.

The result of this study will be used as part of the work in extending the MPC toolbox,

currently licensed to over 1000 users, and to decide upon the best strategy for implemen-

tation of MPC for real-time use.

Contents

1 Introduction 6

2 Theory 7

2.1 Model Predictive Control (MPC) . 7

2.1.1 Kalman filter . 10

3 Experimental setup 13

3.1 “Ball & Plate” system . 13

3.1.1 Model of “Ball & Plate” . 14

3.2 Control task . 18

3.2.1 Real-Time Toolbox . 18

3.2.2 xPC Target . 19

3.3 S-function in Simulink . 19

3.4 Programming in C . 21

4 Real-time implementation of MPC 24

4.1 Extension of the MPC toolbox for real-time use 24

4.1.1 Approach 1: MEX-file . 24

4.1.2 Approach 2: S-function . 25

4.2 Implementation of MPC using Real-Time Toolbox 25

4.3 Implementation of MPC by target-host constellation, xPC Target 25

5 Results from MPC implemented on “Ball & Plate” 26

5.1 Simulation of M-file S-function and S-function in “C” 26

5.2 MPC implemented with Real-Time toolbox 28

5.2.1 Step response of “Ball & Plate” with Real-Time Toolbox 28

5.2.2 Anticipative versus non-Anticipative action 28

5.2.3 Calculation time in output stage . 35

5.2.4 Call to C-function from original MPC algorithm 35

5.2.5 S-function written in C . 38

5.3 MPC implemented with xPC Target . 40

5.3.1 Step response of “Ball & Plate” with xPC Target 40

5.3.2 Tracking of reference . 40

5.4 Calibration . 46

1

5.5 Noise . 48

6 Discussion 52

6.1 Theoretical assumptions . 52

6.2 Extension of MPC toolbox . 52

6.3 MPC implemented with Real-Time Toolbox 53

6.3.1 Calculation time . 54

6.3.2 Anticipative versus non-Anticipative action 54

6.3.3 Algorithms written in “C” . 55

6.4 MPC implemented with xPC Target . 55

6.5 Noise . 57

7 Conclusion 58

8 Recommendations 60

Acknowledgements 61

List of symbols 62

Bibliography 63

A MEX-function 65

B C-function (MPC2) 72

C DANTZIG-routine 80

D S-function written in C 88

E Photos of “Ball & Plate” system 114

2

List of Figures

2.1 Receding horizon control . 8

2.2 Predictive control structure . 8

3.1 Ball & Plate system. 14

3.2 TCP/IP network connection . 14

3.3 Block diagram of Motor, Plate and transmission 15

5.1 Step response with original algorithm, x-direction. 27

5.2 Step response with original algorithm, y-direction. 27

5.3 Step response with S-function written in C, x-direction. 27

5.4 Step response with S-function written in C, y-direction. 28

5.5 Step response with S-function written in C, x-direction. 28

5.6 Controller output compared to reference, anticipative action. 30

5.7 Controller output compared to reference, non-anticipative action. 30

5.8 Tracking of a square reference, anticipative action. 30

5.9 Tracking of a square reference, non-anticipative action. 31

5.10 Tracking of a circle reference, non-anticipative action. Angular frequency

ω = π
3 rad/s . 31

5.11 Tracking of a circle reference, anticipative action. Angular frequency ω =
π
3 rad/s . 31

5.12 Tracking of a circle reference, non-anticipative action. Angular frequency

ω = π
2 rad/s . 32

5.13 Tracking of a circle reference, anticipative action. Angular frequency ω =
π
2 rad/s . 32

5.14 Tracking of a circle reference, non-anticipative action. Angular frequency

ω = π rad/s . 32

5.15 Tracking of a circle reference, anticipative action. Angular frequency ω =

π rad/s . 33

5.16 Tracking of a circle reference, non-anticipative action. Angular frequency

ω = 5
4π rad/s . 33

5.17 Tracking of a circle reference, anticipative action. Angular frequency ω =
5
4π rad/s . 33

5.18 Tracking of a circle reference, non-anticipative action. Angular frequency

ω = 6
4π rad/s . 34

3

5.19 Tracking of a circle reference, anticipative action. Angular frequency ω =
6
4π rad/s . 34

5.20 Tracking of circle trajectory with M-file S-function calling C-algorithm . . . 36

5.21 Controller output in X- and Y-position when tracking a circle with angular

velocity of π
2 rad/s. M-file S-function calling C-algorithm 37

5.22 Tracking of circle trajectory with S-function written in C 38

5.23 Controller output in X- and Y-position when tracking a circle with angular

velocity of π
2 rad/s. S-function written in “C” 39

5.24 Step response with xPC Target, x-direction. 40

5.25 Tracking of square-reference with weighting = {0,1,[10 0]} 41

5.26 Controller output with weighting = {0,1,[10 0]} 41

5.27 Tracking of square-reference with weighting = {0,1,[1 0]} 42

5.28 Controller output with weighting = {0,1,[1 0]} 42

5.29 Tracking of square-reference with weighting = {0,10,[1 0]} 42

5.30 Controller output with weighting = {0,10,[1 0]} 43

5.31 Tracking of circle-reference with angular velocity = 1 rad/s 44

5.32 Controller output with angular velocity = 1 rad/s 44

5.33 Tracking of circle-reference with angular velocity = π
2 rad/s 44

5.34 Controller output with angular velocity = π
2 rad/s 45

5.35 Tracking of circle-reference with angular velocity = π rad/s 45

5.36 Controller output with angular velocity = π rad/s 45

5.37 Linearized plot of true angles and measured values, alpha-laser 46

5.38 Error between the measured voltage and the linearized model, alpha-laser . 47

5.39 Error between the measured voltage and the linearized model, beta-laser . . 47

5.40 Error between the measured voltage and the linearized model, delta-laser . 47

5.41 Error between the measured voltage and the linearized model, gamma-laser 48

5.42 Ball positions during noise measurements. 48

E.1 Photo of “Ball & Plate” system. 114

E.2 Photo of “Ball & Plate” system. 114

E.3 Photo of “Ball & Plate” system. 115

E.4 Photo of ball tracking a circle reference. 115

4

List of Tables

3.1 Physical constraints on Ball & Plate system 13

3.2 Physical reasons for model of Ball & Plate 15

3.3 Simulation stages . 20

3.4 Functions called during simulation . 21

5.1 Quality criteria for comparison of algorithms. 26

5.2 Parameters during anticipation experiments 29

5.3 Elapsed computation time in output stage of original algorithm 35

5.4 Elapsed computation time in output stage of M-file S-function calling C-

function . 35

5.5 Parameter-settings for MPC-controller during experiments 36

5.6 Statistics on ball position, tracking a circle with M-file S-function calling

C-function . 37

5.7 Parameter-settings for MPC-controller during experiments 38

5.8 Statistics on ball position, tracking a circle with C S-function 39

5.9 Parameters for tracking of a square with C S-function 40

5.10 Parameters for tracking of a circle with C S-function 43

5.11 Statistics on task execution time during tracking of circle 43

5.12 Parameters for Ball & Plate . 46

5.13 Noise in plate angle. 49

5.14 Noise in ball positioning with Real-Time Toolbox. 49

5.15 Noise in ball positioning with xPC Target. 50

5.16 Covariance matrices for “Ball & Plate”. 50

5

Chapter 1

Introduction

This work was carried out at the Institut für Automatik (IFA), ETH Zürich. The primary

purpose was to implement Model Predictive Control for real-time use. The Institut für Au-

tomatik is doing research in real-time implementation of Model Predictive Control. They

developed the official MATLAB toolbox for Model Predictive Control (MPC), and con-

tributed to spark a world-wide interest for this control strategy. MPC is an optimization-

based strategy that uses a system model to predict the effect of a control action applied on

the system, [14]. The advantage of MPC is the ability to handle multivariable constrained

control problems in an optimal way. However, a practical disadvantage is the computa-

tional cost, which tends to limit MPC applications to linear processes with relatively slow

dynamics. The available computational power increases at a still rising rate, which gives

expectation of an implementation of the MPC algorithm on fast processes. In the lab at

IFA, there exists a system called “Ball & Plate”, consisting of a ball rolling over a gimbal-

suspended plate which is actuated by two independent motors. It requires implementation

of control action within few milliseconds, and is therefore suitable for testing the MPC

algorithm with a short sampling time.

The main task in this work consisted of extending the MPC toolbox for real-time use.

The basic algorithm needed to be coded in “C” and interfaced with Simulink. This con-

sisted of coding the output sequence in “C”, having M-file initialization files to do the

necessary matrix buildup. The problem-areas in implementing MPC on a fast system is

discussed. The computational cost of the algorithms in “C” and M-file were compared.

Two available tools involving different platform configurations for implementation of MPC

were tested and compared.

The thesis contains some theory on the MPC strategy, highlighting the basic concepts,

and some general theory of Simulink. Also the idea behind the model of the system is

shown. The results of the study and the discussion of these is thereafter presented.

6

Chapter 2

Theory

2.1 Model Predictive Control (MPC)

On-line optimization is a commonly used tool in the chemical process industry for operat-

ing plants at their maximum performance. Typically, this issue is addressed via a Model

Predictive Control (MPC) framework where at regular time intervals the measurements

from the plant are obtained and an optimization problem is solved to predict the optimal

control actions, [2]. In [14], Morari and Lee states that even though the ideas of Model

Predictive Control can be traced back to the 1960s, a real interest in this field started to

surge only in the 1980s after publication of the first paper on Dynamic Matrix Control

(DMC) by Cutler and Ramaker in 1979. The objective behind development of DMC was

to tackle multivariable constrained control problems typical for oil and chemical indus-

tries. More than fifteen years after DMC appeared in industry, a theoretical basis for this

technique has started to emerge.

The idea of redefining the control objective on-line, which is commonly referred to as

Receding Horizon Control (RHC), forms the basis for the MPC strategy. RHC can be

described by referring to figure 2.1. At present time t = k, the behavior of the process is

considered over a horizon p, [13]. By using a model of the process, the response to changes

in the manipulated variable is predicted. Current and future moves of the manipulated

variables are selected such that the predicted response has certain desirable characteris-

tics. For instance, a commonly used objective is to minimize the sum of squares of the

future errors. An error is here defined as the deviation of the controlled variable from a

desired setpoint. This minimization can also take into account constraints which may be

present on the manipulated variables and the outputs. The idea is appealing, but would

not work very well in practice if the moves of the manipulated variable determined at time

k were applied blindly over the future horizon. The reason for this is that disturbances

and modelling errors may lead to a deviation between the predicted behavior and the

actual observed behavior. In this case, the computed manipulated variable moves are not

appropriate anymore. Therefore, only the first computed move is actually implemented.

At next time step, t = k + 1, a measurement y(k + 1) is taken, the horizon is shifted

7

Timek

SP

y

Error

Future dUs are calculated by the
controller to minimize error

i = Nui = 0 i = P

Recent control moves
influence

Past Future

k+1

y(k+1)

u(k)

Figure 2.1: Receding horizon control

forward by one step, and the optimization is done again over this shifted horizon based

on current system information.

Model-based predictive control algorithms are versatile and robust in applications, out-

performing minimum variance and PID in challenging control situations. In [12], Marlin

has given a general predictive control structure as shown in figure 2.2. Three transfer func-

tions represent the true process with the final element and sensor, Gp(s); the controller,

Gcp(s); and a dynamic model of the process, Gm(s). The feedback signal Em is the dif-

ference between the measured and predicted controlled variable values. The variable Em

is, however, equal to the effect of the disturbance, Gd(s) ∗ D(s), if the model is perfect.

However, the model is never exact, and the feedback signal includes therefore the effect of

CV(s)

D(s)

Em(s)

MV(s)

T
p
(s)

- +

+

-

SP(s)

G
cp

(s

G
p
(s)

G
d
(s)

G
m

(s)

++

Figure 2.2: Predictive control structure

8

the disturbance together with model inaccuracy.

The MPC-block in the new MPC Simulink library is based on the linear state space

model shown in (2.1) and (2.2).

x(k + 1) = Ax(k) +Buu(k) +Bvv(k) +Bdd(k) (2.1)

y(k) = Cx(k) +Dvv(k) +Ddd(k) (2.2)

Here x(k) ∈
� n represents the state of the system, u(k) ∈

� nu are manipulated

variables, v(k) ∈
� nv is a vector of measured disturbances, d(k) ∈

� nd are unmeasured

disturbances and y(k) ∈
� ny is the output vector. The A,Bu,v,d, C and Dv,d matrices are

state matrices describing the system, and the notation u, v and d is the distinction between

manipulated variables, measured disturbance and unmeasured disturbance, respectively.

The MPC-block has a similar approach to the one referred to as Receding Horizon

Control, outlined above. At time t, a measurement of the output y, along with reference

r and disturbance v, is taken into the algorithm . The last control move and the last state

is saved and used in a measurement update (or estimate) of the current state x(t), shown

in 2.3. As the true states x(k), xd(k) are not available to the controller, predictions are

obtained from state estimates.

ŷ = Cm ∗ x̂− +Dvm (2.3)

x̂ = x̂− + L ∗ (y − ŷ)

where L denotes the linear filter gain, see section 2.1.1. y is the measurement at time

t and ŷ is the output estimated. The state estimate is here denoted as x̂. Cm is the

state matrix C, containing only the rows corresponding to the measured states. Dvm is

containing the columns of measured disturbances of the state matrix D, and the rows of

measured outputs. Cm, Dvm and L are created in the initialization section executed before

the output sequence is computed. Thereafter the input sequence

∆U∗ � {δu∗(t), δu∗(t+ 1), . . . , δu∗(t+Nu)} (2.4)

is calculated up to Nu number of steps, minimizing the cost function outlined in equation

(2.5). This takes into account the weighted difference between input u and utarget and

introduces a slack variable ε. To explain the idea behind the introduction of a slack vari-

able, there is a need for distinguish between hard and soft constraints. The constraints

stipulated in (2.5) may render the optimization problem infeasible. Input saturation con-

straints cannot be exceeded, while constraints involving outputs can be violated, although

with undesirable consequences for the controlled system. By treating the constraints in-

volving state components as soft constraints, feasibility of the problem in (2.5) is ensured.

As the inputs are generated by the optimization procedure, the input constraints can

9

always be considered as hard. This procedure prevents the control law from being in-

feasible. The cost function is minimized in a Quadratic Programming (QP) solver, the

DANTZIG-routine. The DANTZIG-routine written by N. L. Ricker is used to find the

optimal solution to the control problem, where the function to be optimized is shown in

equation (2.5).

min
u(k|k),... ,∆u(m−1+k|k)

p−1
∑

i=0

(

nu
∑

j=1

|wu
i,j[uj(k + i|k) − utarget,j(k)]|

2 +

nu
∑

j=1

|w∆u
i,j ∆uj(k + i|k)|2 +

ny
∑

j=1

|wy
i+1,j [yj(k + i+ 1|k) − rj(k + i+ 1)]|2

)

+ ρεε
2 (2.5)

Subject to:

umin
i ≤ u(k + i|k) ≤ umax

i

∆umin
i ≤ ∆u(k + i|k) ≤ ∆umax

i , i = 0, . . . , p− 1

−ε+ ymin
i ≤ y(k + i+ 1|k) ≤ ymax

i + ε

∆u(k + j|k) = 0, j = m, . . . , p

ε ≥ 0

In (2.5), ∗(k+i|k) denotes the value predicted for time (k+i) based on the information

available at time k. wu
i,j is the input weight, w∆u

i,j is the input increment weight and wy
i+1,j

is the output weight. r(k) is the current sample of the output reference. When the future

evolution of r(k) is unknown, the current reference is extended over the whole prediction

horizon p. If the future evolution of the reference is known, the reference is read from a

file, where the time and reference at that time is stored. After calculation of the train of

input increments, a time update of the state is made. This is straightforward by using

(2.6).

x̂−k+1 = Ax̂−k +Buk (2.6)

Then the first computed control move in the train is applied on the system. At next

time-step, the procedure is repeated.

2.1.1 Kalman filter

In practice, it is usually not possible to measure all the disturbances and state variables,

[13]. This is why estimation techniques are used to estimate the state from the measured

input and output sequences. The most popular state estimation technique is the Kalman

filter, first introduced by R. Kalman [8] in 1960 for discrete systems. A year after, the

theory was applied on continous systems by Kalman & Bucy [9]. The technique of Kalman

filters is a very general filtering technique which can be applied to the solution of such

10

problems as estimation, prediction, noise filtering and optimal control, [16]. Kalman fil-

ters can be applied to both stationary and non-stationary processes and can include initial

conditions of processes in estimation, prediction, filtering or stochastic optimal control al-

gorithms.

In [10], Lewis outlines the procedure of Kalman filtering. First step is to determine

how the mean and the covariance of the state xk propagate under the dynamics (2.7).

x(k + 1) = Ax(k) +Bu(k) +Gwk (2.7)

The overbar will in the following be used to denote expected value. Since uk is deterministic

(it is applied to the system), and the noise w is assumed white, the expected mean of the

state can be written as

x̄k+1 = Ax̄k +Buk (2.8)

The state covariance is defined as

Pxk
≡ E{(xk − x̄k)(xk − x̄k)

T } (2.9)

Substituting (2.8) into (2.9), assuming white noise such that E{wjw
T
k } = 0, the state

covariance propagates to

Pxk+1
= APxk

AT +GQGT (2.10)

where Q denotes the known covariance of the process noise. Let the output mean be given

by

ȳk = Cx̄k (2.11)

Then the cross-covariance between state and output is given by(2.12)

Pxkyk
= Pxk

CT (2.12)

In the same manner, it is straight forward algebra to show that the covariance of the

output is given by (2.13)

Pyk
= CPxk

CT +R (2.13)

where R denotes the covariance for the measurement noise.

At this stage, some new notation need to be introduced. Suppose that no measurements

are taken. Let the priori estimation error be denoted as

x̃−k = xk + x̂−k (2.14)

Moreover, let the estimate at time k including the output measurement be denoted as

x̃k = xk + x̂k (2.15)

11

The idea is to find the best linear estimator for the state x that uses all the available

information. The discrete Kalman filter will then consist of two steps, the first is the time

update, by which x̂k−1 is updated to x̂−k . The other is the measurement update by which

the measurement yk at time k is incorporated to provide the updated estimate x̂k. The

time update is straightforward, using (2.16) and (2.17).

x̂−k = Ax̄k−1 +Buk−1 (2.16)

P−
k = APk−1A

T +GQGT (2.17)

Lewis minimizes the mean-square error J = E{x̃T
k x̃k} in order to estimate xk.

x̂k = x̂−k + Pxkyk
P−1

yk
∗ (yk − ȳk) (2.18)

Substituting Pxkyk
,Pyk

and ȳk into (2.18) gives

x̂k = x̂−k + P−
k C

T (CP−
k C

T +R)−1(yk − Cx̂−k) (2.19)

which is the second and last step of the Kalman filtering, the measurement update.

From this it can be shown that the linear Kalman filter gain, L is

L = P−
k C

T (CP−
k C

T +R)−1 = PkC
TR−1 (2.20)

The Kalman filter is a low pass filter which possess both noise rejection and smoothing

properties.

12

Chapter 3

Experimental setup

3.1 “Ball & Plate” system

The “Ball & Plate” system consists of a gimbal-suspended plate actuated by two indepen-

dent motors. The ball position on the plate is detected by four lasers, reflected by mirrors

such that the beams run parallel with the plate. The mirrors run clockwise on a constant

speed, causing the laser beams to scan the plate one at a time. The laser beams pass

through a calibration point once every scan, resetting an internal counter inside the motor

driving the mirrors to zero. A detection is made when the laser beam gets reflected from

the surface of the ball. The counter send the elapsed number of teeth to the converter,

which converts this signal into a voltage spanning from ±1V. The angle-span measured

by using the alpha-, beta-, delta- and gamma-laser between the wall and the ball can then

be calculated, see figure 3.1. The system constraints are outlined in table 3.1.

Table 3.1: Physical constraints on Ball & Plate system

System constraints Value

Angle(α, β) −17 ◦, . . . ,+17 ◦

Position −30 cm, . . . ,+30 cm

Input voltage −10 V, . . . ,+10 V

The software I used during the whole project is listed below.

• Windows 2000 operating system

• MATLAB, Version 6.0.0.88, Release 12

• VISUAL C++, 6.0

• Real-Time Toolbox, Version 3.1

• xPC Target. Toolbox for MATLAB Release 12

13

α

β

x

y

α'
β'

δ

γ

Figure 3.1: Ball & Plate system.

Figure 3.2: TCP/IP network connection

Two different setups for implementing the MPC controller on the system were tested,

namely a target-host constellation and by use of Real-Time Toolbox. The host PC con-

nected to the system was a Pentium 933 mHz with a 40Gb harddisk and 500 Mb RAM. The

target PC was a Pentium 266 MMX, with 98 Mb RAM. Figure 3.2 shows the setup of the

host-target using TCP/IP connection. Photos of the real system is shown in appendix ??.

3.1.1 Model of “Ball & Plate”

The theory in this section is taken from Hermann [6]. In this model it is assumed that

the ball does not slide on the plate, and a kinematic relation is proposed in (3.1).

ẋs − r ∗ sinψ ∗ θ̇ + r ∗ cosψ ∗ sinθ ∗ φ̇ = 0 (3.1)

ẏs + r ∗ sinψ ∗ θ̇ − r ∗ cosψ ∗ sinθ ∗ φ̇ = 0

In total, to describe the Ball & Plate system, there are seven degrees of freedom, namely:

• Angle of the plate: α, β

• Coordinates for ball-position on plate: xs, ys

14

α in rad

w

w'

M

u mot

km

R

1

S

1

ü

k e

η

 Jred

1

S

+

-

Figure 3.3: Block diagram of Motor, Plate and transmission

• Orientation angle of the ball: φ, ψ, θ

However, the system does not have any ability of measuring the orientation of the ball. In

our system, we are interested in the x- and y-position, and the orientation of the ball is

in the following assumed negligible. A simplified model was derived in [6], following some

physical reasons summarized in table 3.2.

Table 3.2: Physical reasons for model of Ball & Plate

Current of motor i = umot−w∗ke

R
ke : electrical constant of motor

Torque M = i ∗ km km : magnetic constant of motor

Acceleration of motor axis ẇ = M∗η
Jred

Jred : moment of inertia

η : efficiency

Angular velocity of plate angle α̇ = w
ü

ü : relation of reduction between axis

of motor and axis of plate

Both the ball and the plate contributes to the moment of inertia Jred. However, the

ball contribution is assumed negligible due to the following reasoning:

• The plate contribution is much larger than the ball due to the difference in mass.

• The motor is powerful.

• The ball contribution can be considered as disturbance on the positioning system.

From this reasoning, the moment of inertia is assumed constant.

Figure 3.3 illustrates the relation between umot and the plate angle α in radians, which

gives two transfer functions, one for α-direction, and one for β-direction, outlined in (3.2)

and (3.3)

H1(s) =
β(s)

U1(s)
=

a1

s(s+ b1)
(3.2)

15

H2(s) =
α(s)

U2(s)
=

a2

s(s+ b2)
(3.3)

The model was identified in [10] and the corresponding state space representation for

each axis is given below.

For alpha-direction:

A =













0 1 0 0

0 0 700 0

0 0 0 1

0 0 0 −34, 69













B =













0

0

0

3, 1119













C =

(

1 0 0 0

0 0 1 0

)

D =

(

0

0

)

The four states are:

x1: y position of the ball [cm]

x2: y velocity of the ball [cm/s]

x3: α angle of the plate [rad]

x4: α angular velocity [rad/s]

The input:

U1: input voltage[V]

The output:

16

y1: y position of the ball [cm]

y2: α angle of the plate [rad]

For beta-direction:

A =













0 1 0 0

0 0 −700 0

0 0 0 1

0 0 0 −33, 18













B =













0

0

0

3, 7921













C =

(

1 0 0 0

0 0 1 0

)

D =

(

0

0

)

The four states are:

x1: x position of the ball [cm]

x2: x velocity of the ball [cm/s]

x3: β angle of the plate [rad]

x4: β angular velocity [rad/s]

The input:

U2: input voltage[V]

The output:

y1: y position of the ball [cm]

y2: β angle of the plate [rad]

17

3.2 Control task

The “Ball & Plate” system is a fast process requiring the control action to be computed

and implemented within few milliseconds. The system is constrained, and the control task

is to let the ball follow given trajectories. In order to solve this task, MPC is one of the

control strategies available. This means solving on-line, at each time step, the optimization

problem outlined in (2.5). Two tools were available in the lab at IFA for implementation

of real-time MPC. The first tool consisted of using the Real-Time Toolbox, provided

by Humusoft. This toolbox is created for interface with Simulink, and consists of a data

acquisition card and software which adds input- and output-blocks to the Simulink library,

see section 3.2.1. The second option was implementation by means of the xPC toolbox,

provided by MathWorks. The xPC toolbox uses a different hardware setup than the

Real-Time Toolbox, and is based on a target-host constellation. xPC needs source code

written in “C” to be able to download the model created in Simulink to the target, see

section 3.2.2. The MPC algorithm existed only as M-file, and there was a need for coding

the algorithm in “C”. The implementation of the MPC algorithm real-time was tested out

on the “Ball & Plate” system.

3.2.1 Real-Time Toolbox

Real-Time Toolbox is provided by Humusoft, a third-party vendor of MATLAB. This

toolbox consists of a data-acquisition card and software supporting this card. The AD

512 data acquisition card is designed for IBM PC compatible computers, and makes it

possible to receive signals, process them in the computer and send an output signal. The

card contains a 100 kHz throughput 12 bit A/D converter with a sample hold circuit.

There are four software selectable input ranges and eight channel input multiplexer, two

independent double buffered twelve bit D/A converters and eight bit digital input/output

port. The software selectable input ranges are ±10V,±5V, 0 − 10V, 0 − 5V . The output

ranges ±10V,±5V, 0−10V, 0−5V are set by jumpers on the card, for each analog output.

The Real-Time Toolbox is a package for connecting Simulink to the real system. It adds

the capability of acquiring data in real time, immediately processing them by Simulink

model and sending them back to the real system. All features are implemented through

the standard graphical user interface of Simulink. The conversion from simulation to real-

time experiments is done by simple means, keeping the basic Simulink scheme made for

simulation. The adapter and driver for the data acquisition card has to be specified before

real-time implementation. In- and Out-blocks for the signals needs to be incorporated

in the model, specifying the channel numbers connected to the system. The real-time

experiment is carried out on the PC, which means that no further downloading of any

code is necessary.

18

3.2.2 xPC Target

xPC Target is a host-target PC solution for prototyping, testing, and deploying real-time

systems, [20]. It is an environment where the host and target computers are different

computers. In this environment a desktop PC is the host computer with MATLAB,

Simulink, and Stateflow (optional) to create models using Simulink blocks and Stateflow

diagrams. After creating a model, simulations in nonreal-time can be run.

With Real-Time Workshop, Stateflow Coder (optional) and a C compiler on the host

computer, the executable code is created. The xPC Target requires the source code of every

Simulink block to be written in “C”. The Simulink scheme to be downloaded must not

contain any call to M-files. Parameters can be passed to a S-function in various ways, by

making initialization files, loading parameters into workspace, or have prior blocks giving

the correct parameters. After creating the executable code, the target application can be

run in real time on a second PC compatible system. There are some special requirements

on the hardware and software, listed below.

• The xPC Target software requires a host PC, target PC, and for I/O, the target PC

must also have I/O boards supported by xPC Target.

• The xPC Target software requires either a Microsoft Visual C/C++ compiler (ver-

sion 5.0 or 6.0) or a Watcom C/C++ compiler (version 10.6 or 11.0). In addition,

xPC Target requires MATLAB, Simulink, and Real-Time Workshop.

The target PC does not require any operating system, like Windows, UNIX or even

DOS, but is instead booted with a floppy. This floppy contains the highly optimized

xPC Target kernel, created on the host computer by typing the command “xpcsetup” in

the common MATLAB prompt. The kernel makes the target ready for downloading of

applications from the host. This application need to have source code written in C. After

downloading the application, the kernel makes the target ready for execution, and it is

ready for real-time use. The application is written into the RAM at designated places by

the kernel.

For communication between the target and the host, there are two options, serial

connection or network connection. Network connection is in general faster, up 10Mbit/s

instead of 100kBaud/s. More important, it does not restrict the distance between host

and target to the length of the serial cable.

3.3 S-function in Simulink

Simulink is a program that runs as a companion to MATLAB, these programs are devel-

oped and marketed by the MathWorks, Inc. Simulink and MATLAB form a package that

serves as a vehicle for modelling dynamic systems. Simulink provides a graphical user

interface (GUI) that is used in building block diagrams, performing simulations, as well

as analyzing results. In Simulink, models are hierarchical, giving the ability of viewing

a system at a high level, and double-clicking on blocks by using the mouse to go down

19

through the design levels. Every block in the Simulink model is driven by a S-function.

An S-function (system-function) is a computer language description of a Simulink block,

[18]. S-functions can be written in MATLAB, C, C++, Ada or Fortran. The S-functions

written in language other than MATLAB is compiled with the MEX (Matlab EXecutable)

utility. This enables MATLAB to run the compiled file in the Simulink environment. The

S-function enables you to interact with Simulink’s equation solvers. The most common

use of a S-function is in solving tasks like: adding new general purpose blocks to Simulink,

adding blocks to represent hardware device drivers, incorporating C-code into simulation

or describing systems as a set of equations.

The execution of a Simulink model proceeds in several stages. The first stage is the

initialization phase. The library blocks are incorporated into the model, signal dimensions

are propagated, sample times, block execution order and allocation of memory. After the

initialization, a simulation loop is entered, where each scan through the loop is a simula-

tion step. For a system with no discrete states, and a fixed sample time, the simulation

loop consists of the calculation of outputs.

In M-file S-functions, the S-function routines are implemented as M-file subfunctions,

[19] . For an M-file S-function, Simulink passes a flag parameter to the S-function. The

flag indicates the current simulation stage. Table 3.3 lists the simulation stages and the

associated flag value for M-file S-functions.

Table 3.3: Simulation stages

Simulation stage Flag (M-file S-function)

Initialization flag = 0

Calculation of next sample hit (optional) flag = 4

Calculation of output flag = 3

Update discrete states flag = 2

Calculation of derivatives flag = 1

End of simulation task flag = 9

Unlike M-file S-functions, there is not an explicit flag parameter associated with each

S-function routine, [19]. In a S-function written in C, Simulink controls execution of the

different sections by calling each S-function routine at the appropriate time in the simu-

lation stage. Table 3.4 describes the functions that Simulink calls during the simulation,

in the order they are called.

One of the advantages of a MEX-file S-function is the direct access to internal data

structure called SimStruct. This is a part of the memory created by Simulink specifically

to each block. This makes it possible to use same initialization file for several blocks in

20

Table 3.4: Functions called during simulation

Simulation stage S-Function routine

Initialization mdlInitializeSizes

mdlInitializeSampleTimes

mdlInitializeConditions

Calculation of outputs mdlOutputs

Update of discrete states mdlUpdate

Calculation of next sample hit(optional) mdlGetTimeofNextTimeHit

Calculation of derivatives mdlDerivatives

End of simulation task mdlTerminate

the same scheme, without having parameters mixed. Another advantage is the access to

MATLAB’s external interface, API, which gives array access and creation functions that

can be used in C MEX-files to manipulate MATLAB arrays.

3.4 Programming in C

C came into being in the years 1969-1973, in parallel with the early development of the

Unix operating system, [17]. The milestones in C’s development as a language during this

period are listed below:

• UNIX developed in 1969 – DEC PDP-7 Assembly Language BCPL – a user friendly

OS providing powerful development tools developed from BCPL. Assembler tedious,

long and error prone.

• A new language “B” as a second attempt. 1970.

• A totally new language “C” a successor to “B”. 1971

• By 1973 UNIX OS almost totally written in “C”.

The most creative period occurred during 1972, with the introduction of the preproces-

sor to incorporate macros with arguments and conditional compilation. Another spate of

changes peaked between 1977 and 1979, when portability of the Unix system was being

demonstrated. In the middle of this second period, the first widely available description

of the language appeared: The C Programming Language, often called the “white book”

or “K&R”. Finally, in the middle 1980s, the language was officially standardized by the

ANSI X3J11 committee, which made further changes. Until the early 1980s, although

compilers existed for a variety of machine architectures and operating systems, the lan-

guage was almost exclusively associated with Unix; more recently, its use has spread much

more widely, and today it is among the languages most commonly used throughout the

21

computer industry.

This fact makes C one of the obligatory languages in the art of programming. In control

purposes, like in PLC-systems, there is an increasing use of C as the basic language instead

of ladder-logic. Programming in C is on a basic level, giving the programmer very much

flexibility in creating algorithms and controlling the computers execution of the code,

Horton [7]. It is a programmer language for general use, with simple ways of expression,

a modern control and data-structure, and a big diversity of operators accessible for the

programmer. The lack of constraints in use makes this language more efficient for many

tasks compared to more heavy programming languages.

Some of C’s characteristics that define the language and also have lead to its popularity

as a programming language are small size, extensive use of function calls, loose typing –

unlike PASCAL, structured language, low level (BitWise) programming readily available

and pointer implementation - extensive use of pointers for memory, array, structures and

functions. Some of the features of C is that it has high-level constructs, it can handle

low-level activities, it produces efficient programs and it can be compiled on a variety of

computers.

C deals with the same sort of objects that most computers do, namely characters,

numbers, and addresses. C is sometimes referred to as a “high-level assembly language.”

C was designed this way so that seemingly-simple constructions expressed in C would not

expand to arbitrarily expensive (in time or space) machine language constructions when

compiled. A simpel and succinctly C program is likely to result in a succinct, efficient

machine language executable. Some features like memory allocation and I/O are not in-

cluded in the C language. However, the usual functions for doing such things are specified

by the ANSI C Standard.

The benefits of C is that it has an extensive library for mathematical computations,

character analysis, input and output functions, hardware structure, and graphics. While

some functions are used more that others, they are all offered and are able to be used by

the best programmers. Why write a code to find square roots or alter strings, when there

are ”header” files that can be used to call these special functions. C is also a relatively

easy language to learn, so that you can also write some programs for your everyday life.

Its main drawback is that it has poor error detection which can make it off putting

to the beginner. However diligence in this matter can pay off handsomely since having

learned the rules of C the programmer can break them. Not many languages allow this.

This, if done properly and carefully, leads to the power of C programming.

A C-code contains the normal loops and if-statements, and has a structure which

makes it easy to follow. An extensive use of pointers prevents the code from allocating

more memory than necessary. First all the variables need to be specified, thereafter

22

allocation of memory for the parameters on the left hand side of equations. Then the

parameters needed is taken into the code, either by means of pointers, or by actually

storing them in allocated memory. It is worthwhile to notice that a pointer points to the

start of the address where the data is stored. It is straightforward to access the rest of

an array when the starting point is known. After calculation and the output taken from

the algorithm, there should always be a cleanup of memory allocated. This is necessary

to prevent a memory buildup, when new memory is allocated every time the algorithm is

run. The code for the C-functions called from Matlab and the DANTZIG-routine is given

in appendix A to C, and the S-function written in C is given in appendix D.

23

Chapter 4

Real-time implementation of MPC

Real-world systems operate under real-time conditions, they are inherently distributed

and dynamic. In order to reflect these properties the controlling hard- and software for

computer-based systems which monitor, control, or simulate real world processes must

in general provide adequate means to cope with time, concurrency, and decentralization.

Real-time implementation of the MPC strategy comprises the idea that at each time step,

an online optimization is carried out, and the computed optimal control move is applied to

the system. The approaches used for implementation of MPC for real-time use is outlined

below.

4.1 Extension of the MPC toolbox for real-time use

The main tasks of this project was extension of the MPC toolbox for real-time use, and

implementation of the MPC on the “Ball & Plate”. The extension of the toolbox consisted

of writing the MPC algorithm in “C”, for later to use the xPC Target package available

with MATLAB R12. The task was limited to code the output sequence from the original

M-file S-function in “C”, having initialization files to load the variables into the common

MATLAB workspace before execution of the code. The initialization M-files are making

use of the structure in the original algorithm. By specifying the state space matrices,

along with weighting, limits, sampling time, covariance and horizons, the matrices needed

for MPC controller is built. Two different approaches were chosen to solve the task of

extending the toolbox, briefly outlined below.

4.1.1 Approach 1: MEX-file

This approach consists of coding case 3 of the MPC-algorithm in “C” and keeping the

M-file S-function as framework for the Simulink block. The calculation of the output

corresponds to the core of the original MPC algorithm. This case 3 of the M-file S-

function is replaced with a call to a function written in “C”. This function is compiled

with the mex utility in MATLAB, which creates an executable file able to be called from

MATLAB. Since the original M-file S-function is kept as framework, the buildup of the

matrices and their initialization and termination is taken care of by Simulink.

24

4.1.2 Approach 2: S-function

Approach 2 is similar to approach 1, but differs in the sense that the framework for driving

the MPC block is a S-function in “C” instead of a M-file. For initialization and the matrix

buildup, the initialization file-name was specified in the initialization pane of the mask.

This initialization file is executed once every time the Simulink model is opened and when

a new simulation is started. Simulink automatically stores the values in the work-space,

locally to each block. This way the matrices resulting from the slightly different state

matrices in the two directions x and y, do not interfere.

4.2 Implementation of MPC using Real-Time Toolbox

Early in the project it was decided to try out Real-Time Toolbox provided by Humusoft,

a third-party provider of MathWorks. This toolbox was tested extensively on the “Ball &

Plate” system, using original algorithm with and without anticipation from file, C-function

called from M-file S-function as well as S-function written in “C”. The results from these

experiments were used to validate the C-code. Noise measurements were carried out in

order to get correct values for the covariance matrices. Two different trajectories were

given to the controller, namely a square and a circle. The limitations of the controller-

performance were tested using various velocities of the ball tracking the reference.

4.3 Implementation of MPC by target-host constellation,

xPC Target

Using the S-function written in “C”, a new Simulink block was created. It consisted of

a masked sub-system calling the MEX-compiled source code. Since only the core of the

algorithm is coded in “C”, two initialization files to be run prior to simulation were created.

All the parameters needed by the S-function were loaded into the common workspace, and

passed to the S-function by specifying them in the “parameters and dialog” box of the

mask.

25

Chapter 5

Results from MPC implemented

on “Ball & Plate”

5.1 Simulation of M-file S-function and S-function in “C”

Simulation to verify that the original algorithm and the S-function in “C” were identical

was carried out. A step change in the input was introduced, having a state space block

with the model of “Ball & Plate” to close the control loop. Rise time and overshoot was

used as quality criteria for comparison of the simulation runs. Table 5.1 shows the criteria

for x- and y-direction for both algorithms. Figure 5.1 and 5.2 shows the step response with

the original algorithm after a step change in the reference has been introduced. Figure 5.3

and 5.4 shows the same response with the S-function in “C”.

Table 5.1: Quality criteria for comparison of algorithms.

Direction Rise time [s] Overshoot

Original algorithm X-axes 1.25 0.221

Y-axes 1.25 0.2201

S-function in “C” X-axes 1.25 0.221

Y-axes 1.25 0.2201

26

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

Time [s]

C
on

tr
ol

 m
ov

e
[V

]

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

Time [s]

X
−

po
si

tio
n

[c
m

]

Step response for original algorithm,X−direction, showing X−position, plate angle, control move

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

Time [s]

P
la

te
 a

ng
le

 [d
eg

]

Figure 5.1: Step response with original algorithm, x-direction.

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

15

Time [s]

C
on

tr
ol

 m
ov

e
[V

]

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

Time [s]

Y
−

po
si

tio
n

[c
m

]

Step response of original algorithm,Y−direction, showing Y−direction, plate angle, control move

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

Time [s]

A
lp

ha
−

an
gl

e
[d

eg
]

Figure 5.2: Step response with original algorithm, y-direction.

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

Time [s]

C
on

tr
ol

 m
ov

e
[V

]

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

Time [s]

X
−

po
si

tio
n

[c
m

]

Step resonse of S−function in C, X−direction, showing X−position, alpha angle, control move

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

Time [s]

A
lp

ha
 a

ng
le

 [d
eg

]

Figure 5.3: Step response with S-function written in C, x-direction.

27

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

15

Time [s]

C
on

tr
ol

 m
ov

e
[V

]

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

Time [s]

Y
−

po
si

tio
n

[c
m

]

Step response of S−function in C, Y−direction, showing Y−position, alpha angle, control move

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

Time [s]

A
lp

ha
 a

ng
le

 [d
eg

]

Figure 5.4: Step response with S-function written in C, y-direction.

5.2 MPC implemented with Real-Time toolbox

5.2.1 Step response of “Ball & Plate” with Real-Time Toolbox

In order to check the lag time of the system with Real-Time Toolbox implemented, a

step input was introduced at time t = 1 seconds and the resulting step response in the

plate angle was measured. The step change of magnitude 1, is converted into the highest

voltage output in the adapter-card, giving full power to the motors. The sampling time

was chosen to be 0.01 seconds. Figure 5.2.1 shows the step response in beta-angle. From

the graph the delay was determined to be approximately 0.035 seconds.

1 1.05 1.1 1.15 1.2 1.25 1.3

0

0.05

0.1

0.15

0.2

0.25

Time [s]

P
la

te
 a

ng
le

 [r
ad

]

Step response in beta−angle with step at t = 1 s

Figure 5.5: Step response with S-function written in C, x-direction.

5.2.2 Anticipative versus non-Anticipative action

Anticipative action can be implemented when the future reference trajectory is known.

This reference trajectory is loaded into a file and can be read from the MPC-block at

each time step. A filename in the GUI of the MPC-block specifies the MAT file where

28

the reference r(t) and the measured disturbance v(t) signals are stored, [3]. The format

is the same as in the From File Simulink block. The first variable saved in the MAT-file

is loaded from disk and is used to build the reference and measured disturbance signals.

The variable is a matrix whose first row is a vector of time t, the following y rows are the

reference r(t), and the following v rows are the measured disturbance v(t). Missing rows

are treated as zeros. The signals are resampled with the MPC controller sampling time

and stored in the MPC block memory. The first (last) sample is used for simulation time

before (after) the specified range of t.

To test the effect of anticipation, experiments were run with both a square and a

circle as the trajectory. Two M-files were created to calculate the reference trajectory and

load the data into a MAT-file. The square was generated by four ramps, giving all the

references along the lines describing the square. The circle was generated by a sinus and a

cosinus term. In order to change the speed of the ball, different fractions were multiplied

with the angular frequency. In the startup of experiments, the ball was placed in center of

the plate with no offset in x- or y-direction. Table 5.2 shows weighting, prediction horizon,

blocking moves and radius of the reference trajectory circle.

Table 5.2: Parameters during anticipation experiments

Parameters Value

Radius of circle 15 cm

U-weight 0

dU-weight 1

Y-weight [50 0]

Ts 0.03 s

Prediction horizon 40

Blocking moves 2

Figure 5.6 and 5.7 shows the controller output superposed on the reference with and

without anticipation. The reference is here represented by a dotted line. Figure 5.8 and

5.9 shows the tracking of a square reference with and without anticipation, respectively.

Figure 5.10 to 5.19 shows the tracking of a circle reference with and without antici-

pation at different angular frequencies.

29

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

R
ef

er
en

ce
 [c

m
]

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

Time [s]

Controller output and reference, x−direction, anticipative action

Figure 5.6: Controller output compared to reference, anticipative action.

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

R
ef

er
en

ce
 [c

m
]

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

Time [s]

Controller output and reference, y−direction, anticipative action

Figure 5.7: Controller output compared to reference, non-anticipative action.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of reference (square), anticipative action

Figure 5.8: Tracking of a square reference, anticipative action.

30

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of reference (square), non−anticipative action

Figure 5.9: Tracking of a square reference, non-anticipative action.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of reference (circle), non−anticipative action

Figure 5.10: Tracking of a circle reference, non-anticipative action. Angular frequency

ω = π
3 rad/s

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of reference (circle), anticipative action

Figure 5.11: Tracking of a circle reference, anticipative action. Angular frequency ω =
π
3 rad/s

31

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of reference (circle), non−anticipative action

Figure 5.12: Tracking of a circle reference, non-anticipative action. Angular frequency

ω = π
2 rad/s

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of the reference (circle), anticipative action

Figure 5.13: Tracking of a circle reference, anticipative action. Angular frequency ω =
π
2 rad/s

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of reference (circle), non−anticipative action

Figure 5.14: Tracking of a circle reference, non-anticipative action. Angular frequency

ω = π rad/s

32

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of reference (circle), anticipative action

Figure 5.15: Tracking of a circle reference, anticipative action. Angular frequency ω =

π rad/s

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of reference (circle), non−anticipative action

Figure 5.16: Tracking of a circle reference, non-anticipative action. Angular frequency

ω = 5
4π rad/s

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

25

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of reference (circle), anticipative action

Figure 5.17: Tracking of a circle reference, anticipative action. Angular frequency ω =
5
4π rad/s

33

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of reference (circle), non−anticipative action

Figure 5.18: Tracking of a circle reference, non-anticipative action. Angular frequency

ω = 6
4π rad/s

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Tracking of reference (circle), anticipative action

Figure 5.19: Tracking of a circle reference, anticipative action. Angular frequency ω =
6
4π rad/s

34

5.2.3 Calculation time in output stage

When applying MPC on a fast system like “Ball & Plate”, the calculation time in the

output stage is an important factor for the controller performance. The computation

time and statistics for the original algorithm is outlined in table 5.3. Similar is shown in

table 5.4 for the algorithm which makes a call to the mex-compiled C-function. In order to

strain the controller, simulations with different prediction horizons, giving more complex

calculations, were carried out. The simulation time was 30 seconds, and statistics on the

elapsed time was run in MATLAB.

Table 5.3: Elapsed computation time in output stage of original algorithm

Mean[s] Min[s] Max[s] Median[s] Std Cov

Pred. horizon=30 0.014735 0.000000 0.050000 0.010000 0.005276 2.8 ∗ 10−5

Pred. horizon=40 0.034555 0.010000 0.060000 0.030000 0.005212 2.7 ∗ 10−5

Pred. horizon=50 0.040400 0.010000 0.061000 0.040000 0.003113 9.7 ∗ 10−6

Pred. horizon=60 0.057230 0.020000 0.080000 0.060000 0.005007 2.5 ∗ 10−5

Table 5.4: Elapsed computation time in output stage of M-file S-function calling C-function

Mean[s] Min[s] Max[s] Median[s] Std Cov

Pred. horizon=30 0.003900 0.000000 0.020000 0.000000 0.004900 2.4 ∗ 10−5

Pred. horizon=40 0.006000 0.000000 0.020000 0.010000 0.004900 2.4 ∗ 10−5

Pred. horizon=50 0.009800 0.000000 0.041000 0.010000 0.002000 4.1 ∗ 10−5

Pred. horizon=60 0.013700 0.010000 0.040000 0.010000 0.004900 2.3 ∗ 10−5

5.2.4 Call to C-function from original MPC algorithm

In this section the M-file algorithm calls the C-function compiled as mex. The initialization

is done in the MATLAB file in case 0. After execution of case 0, Simulink passes flag value

3 to the algorithm. This case contains a call to the mex-compiled C-code. A circle was

given as reference trajectory for the controller. The offset is 0 (zero), and the amplitude

is 10 (ten). The angular frequency, which determines the speed of the ball following the

trajectory was chosen to be π
2 rad/s. The circle trajectory was made by two sinusoidal

curves, one with a phase-shift of π
2 . The experiment was run for a time period of 30 seconds,

with the ball placed at origin at start of simulation. The settings of the parameters for

the MPC-controller is given in table 5.5. Figure 5.20 shows the tracking of the circle with

the M-file S-function calling the algorithm written in C.

35

Table 5.5: Parameter-settings for MPC-controller during experiments

Parameters Value

Prediction horizon 30

Blocking moves 2

Limits(Umin,Umax,dUmin,dUmax,Ymin,Ymax) -10,10,-inf,inf,[-30 -0.2618],[30 0.2618]

Weights(U,dU,Y) 0,1,[50 0]

Ts 0.03

−10 −5 0 5 10

−10

−5

0

5

10

X−position

Y
−

po
si

tio
n

Plot of ball position and reference circle

Figure 5.20: Tracking of circle trajectory with M-file S-function calling C-algorithm

36

From MATLAB, statistics was run on the plots, given in table 5.6 which compares the

statistics for the tracking with the reference circle.

Table 5.6: Statistics on ball position, tracking a circle with M-file S-function calling C-

function

Tracking Reference circle

X Y X Y

min[cm] -11.01 -9.619 -10 -10

max[cm] 10.9 10.78 10 10

median[cm] 0.1572 0.0012 0.03185 -0.9904

mean[cm] 0.0171 0.417 0.005 -0.5479

std 7.177 6.693 6.912 7.216

range[cm] 21.92 20.4 20 20

The controller output in X- and Y-position is plotted in figure 5.21, over the simulation

period of 30 seconds.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1
Controller output, X−direction, tracking circle at angular velocity pi/2

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1
Controller output, Y−direction, tracking circle at angular velocity pi/2

Time [s]

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

Figure 5.21: Controller output in X- and Y-position when tracking a circle with angular

velocity of π
2 rad/s. M-file S-function calling C-algorithm

37

5.2.5 S-function written in C

In this section the original MPC-algorithm is removed, having a S-function written in C

to drive the block. The initialization is specified in the Graphical User Interface (GUI) of

the masked block, running an initialization file before every simulation or experiment is

started. This initialization file does the matrix buildup needed for the controller. As in

section 5.2.4 the reference is a circle, with the parameters for the MPC-controller given

in table 5.7. The settings for the reference trajectory is the same as in section 5.2.4.

Figure 5.22 shows the tracking of the circle with the S-function written in C.

Table 5.7: Parameter-settings for MPC-controller during experiments

Parameters Value

Prediction horizon 30

Blocking moves 2

Limits(Umin,Umax,dUmin,dUmax,Ymin,Ymax) -10,10,-inf,inf,[-30 -0.2618],[30 0.2618]

Weights(U,dU,Y) 0,1,[50 0]

Ts 0.03

−10 −5 0 5 10

−10

−5

0

5

10

X−position

Plot of ball position and reference circle

Y
−

po
si

tio
n

Figure 5.22: Tracking of circle trajectory with S-function written in C

As in the other cases, statistics were run on the plots, given in table 5.8 which compares

the statistics for the tracking with the reference circle.

The controller output in X- and Y-position is plotted in figure 5.23, over the simulation

period of 30 seconds.

38

Table 5.8: Statistics on ball position, tracking a circle with C S-function

Tracking Reference circle

X Y X Y

min -10.77 -9.969 -10 -10

max 10.47 11.76 10 10

median 0.4413 0.6626 0.03185 -0.9904

mean 0.1725 0.7247 0.005 -0.5479

std 7.218 6.819 6.912 7.216

range 21.24 21.73 20 20

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1
Controller output, X−direction, tacking circle at angular velocity pi/2

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1
Controller output, Y−direction, tacking circle at angular velocity pi/2

Tme [s]

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

Figure 5.23: Controller output in X- and Y-position when tracking a circle with angular

velocity of π
2 rad/s. S-function written in “C”

39

5.3 MPC implemented with xPC Target

5.3.1 Step response of “Ball & Plate” with xPC Target

In order to check the lag time of the system with xPC Target implemented, a step input at

time t = 1seconds was introduced and the step response in plate angle measured. The step

input was of magnitude 10, giving full power to the motors. Sampling time was chosen to

be 0.01 seconds. Figure 5.24 shows the step response in beta-angle. From the graph the

delay was determined to be approximately 0.02 seconds.

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

0

0.05

0.1

0.15

0.2

0.25

Step response in beta−angle with xPC Target. Step at t=1 s

Time [s]

P
la

te
 a

ng
le

 [r
ad

]

Figure 5.24: Step response with xPC Target, x-direction.

5.3.2 Tracking of reference

Two different trajectories were given to the controller, a square and a circle. The tracking

of the square and the controller output is plotted in figure 5.25 to 5.30. The experiments

were run for 50 seconds, using point references to determine the square. The parameters

used in the experiments are shown in table 5.9. Different weights were tested in order to

check the algorithm-performance.

Table 5.9: Parameters for tracking of a square with C S-function

Parameter Value

Prediction horizon 35

Blocking moves 2

U-weight 0

δU-weight 1 & 10

y-weight [10 0] & [1 0]

Sampling time 0.04 [s]

40

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20
Tracking of square with weighting = 0,1,[10 0]

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Figure 5.25: Tracking of square-reference with weighting = {0,1,[10 0]}

0 5 10 15 20 25 30 35 40 45 50
−15

−10

−5

0

5

10

15
Controller output with weighting = 0,1,[10 0]

Time [s]

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

Figure 5.26: Controller output with weighting = {0,1,[10 0]}

A circle with radius 10 cm were given to the controller as reference, and experiments

with different tracking velocities were carried out. Figure 5.31 to 5.36 shows tracking of

the circle and controller outputs at different tracking velocities. The parameters used in

the experiments are shown in table 5.10. The statistics on task execution time (TET) , is

shown in table 5.11.

41

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20
Tracking of square with weighting = 0,1,[1 0]

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Figure 5.27: Tracking of square-reference with weighting = {0,1,[1 0]}

0 5 10 15 20 25 30 35 40 45 50
−15

−10

−5

0

5

10

15
Controller output with weighting = 0,1,[1 0]

Time [s]

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

Figure 5.28: Controller output with weighting = {0,1,[1 0]}

−40 −30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20

25
Tracking of square with weigthing = 0,10,[1 0]

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Figure 5.29: Tracking of square-reference with weighting = {0,10,[1 0]}

42

0 5 10 15 20 25 30 35 40 45 50
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Controller output with weigthing = 0,10,[1 0]

Time [s]

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

Figure 5.30: Controller output with weighting = {0,10,[1 0]}

Table 5.10: Parameters for tracking of a circle with C S-function

Parameter Value

Prediction horizon 40

Blocking moves 2

U-weight 0

δU-weight 1

y-weight [10 0]

Sampling time 0.03 [s]

Table 5.11: Statistics on task execution time during tracking of circle

Angular velocity [rad/s] Mean Min Max Std

1 0.0194 0.0193 0.0276 9.1 ∗ 10−4

π
2 0.0196 0.0194 0.0280 0.0010

π 0.0197 0.0194 0.0332 0.0017

43

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15
Tracking of circle with radius 10 cm, angular velocity = 1 rad/s

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Figure 5.31: Tracking of circle-reference with angular velocity = 1 rad/s

0 5 10 15 20 25 30
−15

−10

−5

0

5

10
Controller output with circle reference, radius = 10 cm, angular velocity = 1 rad/s

Time [s]

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

Figure 5.32: Controller output with angular velocity = 1 rad/s

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
Tracking of circle with radius = 10 cm, angular velocity = pi/2 rad/s

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Figure 5.33: Tracking of circle-reference with angular velocity = π
2 rad/s

44

0 5 10 15 20 25 30
−15

−10

−5

0

5

10
Controller output with circle reference, radius = 10 cm, angular velocity = pi/2 rad/s

Time [s]

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

Figure 5.34: Controller output with angular velocity = π
2 rad/s

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

20
Tracking of circle with radius = 10 cm, angular velocity = pi rad/s

X−position [cm]

Y
−

po
si

tio
n

[c
m

]

Figure 5.35: Tracking of circle-reference with angular velocity = π rad/s

0 5 10 15 20 25 30
−15

−10

−5

0

5

10
Controller output with circle reference, radius = 10 cm, angular velocity = pi rad/s

Time [s]

C
on

tr
ol

le
r

ou
tp

ut
 [V

]

Figure 5.36: Controller output with angular velocity = π rad/s

45

5.4 Calibration

In order to handle an existing offset in the positioning of the ball, a calibration of the

system was necessary. The voltage was measured with the ball fixed in different angles

spanning from 10 to 80 degrees. The distance from the laser was chosen to be 0.5 meters.

This procedure was done for all four lasers, namely alpha, beta, delta and gamma. The

linearized plot for the alpha-laser of the measured angle and voltage against real angle is

shown in figure 5.37. This plotting gives the multiplication factor and the summand factor

used to set the relation between measured voltage and real angle. The multiplication factor

is the fraction between the slope of the plot for true angles and the slope of the linearized

plot for measured angles. The offset is the difference between value given by true angle

plot and the linearized measured plot multiplied by the multiplication factor. Figure 5.38

shows the error between the measured voltage and the linearized model, for all the different

angles of alpha. The same is shown for beta, delta and gamma in figure 5.39, 5.40 and

5.41, respectively. For the alpha-laser, the biggest error is approximately 0.155 degrees.

For beta, delta and gamma laser the biggest error is 0.086 degrees, 0.0802 degrees and

0.120 degrees, respectively.

The results of the calibration are given in table 5.12.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
Linearised measured voltage against real angle, alpha−laser

Angle [deg] *10

M
ea

su
re

d
vo

lta
ge

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Linearised measured angle against real angle, alpha−laser

Angle [deg] *10

M
ea

su
re

d
an

gl
e

Figure 5.37: Linearized plot of true angles and measured values, alpha-laser

Table 5.12: Parameters for Ball & Plate

Angle Multiplication factor Summand

α 1.5894 -0.0908

β 1.6242 -0.0829

δ 1.5808 -0.0811

γ 1.6265 -0.0832

46

1 2 3 4 5 6 7 8
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3 Error between real voltage and linearized model [Volt], alpha−laser

Angle [deg] *10

E
rr

or
 [V

]

1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2
x 10

−3 Error between real angle and linearized model [rad], alpha−laser

Angle [deg] *10

E
rr

or
 [V

]

Figure 5.38: Error between the measured voltage and the linearized model, alpha-laser

1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1
x 10

−3 Error between real voltage and linearized model [Volt], beta−laser

Angle [deg] *10

E
rr

or
 [V

]

1 2 3 4 5 6 7 8
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3 Error between real angle and linearized model [rad], beta−laser

Angle [deg] *10

E
rr

or
 [V

]

Figure 5.39: Error between the measured voltage and the linearized model, beta-laser

1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1
x 10

−3 Error between real voltage and linearized model [Volt], delta−laser

Angle [deg] *10

E
rr

or
 [V

]

1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1
x 10

−3 Error between real angle and linearized model [rad], delta−laser

Angle [deg] *10

E
rr

or
 [V

]

Figure 5.40: Error between the measured voltage and the linearized model, delta-laser

47

1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1
x 10

−3 Error between real voltage and linearized model [Volt], gamma−laser

Angle [deg] *10

E
rr

or
 [V

]

1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2
x 10

−3 Error between real angle and linearized model [rad], gamma−laser

Angle [deg] *10

E
rr

or
 [V

]

Figure 5.41: Error between the measured voltage and the linearized model, gamma-laser

5.5 Noise

In order to check the noise in the ball position, the ball was fixed at different positions

on the plate, as shown in figure 5.42. The plate was kept in horizontal mode during the

noise measurements. The measurements were run for 50 seconds, writing the data on x-

and y-position to workspace in MATLAB for statistics. The result of these statistics are

shown in table 5.14 where the position denoted as 2/2, 2/4, ..., 6/6 refers to the relative

position shown in figure 5.42.

alpha-laser

delta-laser gamma-laser

beta-laser

2/2 4/2 6/2

2/4 4/4 6/4

2/6 4/6 6/6

Figure 5.42: Ball positions during noise measurements.

The controller gets two parameters from the decoupled system, the ball position in

cartesian coordinates and the plate angle in radians. The angle-span for the plate is 0.593

radians. The measurements were taken over a time period of 50 seconds, and statistics

were run in MATLAB, shown in table 5.13

The worst-case values for the variance in the noise measurement is taken into the

covariance used to calculate the linear filter gain. The magnitude of the process noise is

48

Table 5.13: Noise in plate angle.

Mean[◦] Min[◦] Max[◦] Standarddev. Variance

Alpha-angle=0 0.1210 −9.8 ∗ 10−4 -0.2074 0.0195 3.8 ∗ 10−4

Beta-angle=0 0.0012 −8 ∗ 10−4 -0.003 4.10 ∗ 10−4 1.7 ∗ 10−7

Alpha-angle=17 17.3424 17.2079 17.4708 0.0214 4.6 ∗ 10−4

Beta-angle=17 17.5614 17.4223 17.6972 0.0300 9.0 ∗ 10−4

Alpha-angle=-17 -17.9194 -18.1410 -17.5746 0.0547 0.0030

Beta-angle=-17 -17.9864 -18.2208 -17.8563 0.0325 0.0011

Table 5.14: Noise in ball positioning with Real-Time Toolbox.

Mean[cm] Min[cm] Max[cm] Median[cm] Standarddev. Covariance

2/2 X-pos. -19.8657 -20.6199 -19.1197 -19.8548 0.2035 0.0414

Y-pos. -19.6616 -20.4003 -18.9761 -19.6096 0.2609 0.0680

4/2 X-pos. -0.1287 -1.0733 0.8124 -0.1475 0.2978 0.0887

Y-pos. -19.6606 -20.4677 -19.0019 -19.6232 0.2938 0.0881

6/2 X-pos. 19.5201 18.1586 20.5224 19.4495 0.3692 0.1363

Y-pos. -19.7059 -21.1507 -18.7057 -19.6440 0.4050 0.1640

2/4 X-pos. -19.9055 -20.7097 -19.3334 -19.8779 0.2548 0.0649

Y-pos. 0.1024 -0.5868 0.7598 0.1305 0.2259 0.0510

4/4 X-pos. -0.1409 -0.6975 0.2822 -0.1359 0.1643 0.0270

Y-pos. 0.1101 -0.5604 0.7330 0.1408 0.2476 0.0613

6/4 X-pos. 19.5698 18.9523 20.1169 19.5795 0.1761 0.0310

Y-pos. 0.0538 -0.9828 0.8957 0.0499 0.300 0.0900

2/6 X-pos. -19.7863 -20.3790 -19.0811 -19.7962 0.2201 0.0484

Y-pos. 19.7782 19.1718 20.4312 19.7758 0.1997 0.0399

4/6 X-pos. -0.0601 -0.6234 0.5412 -0.0598 0.1717 0.0295

Y-pos. 19.7265 18.8105 20.6175 19.6983 0.2820 0.0795

6/6 X-pos. 19.5163 18.9055 19.9825 19.5242 0.1465 0.0215

Y-pos. 19.6917 18.7473 20.4924 19.6647 0.2781 0.0774

49

Table 5.15: Noise in ball positioning with xPC Target.

Mean[cm] Min[cm] Max[cm] Median[cm] Standarddev.

2/2 X-pos. -20.130 -20.5148 -19.7190 -20.1276 0.1292

Y-pos. -20.1578 -20.6600 -19.5246 -20.1481 0.1713

4/2 X-pos. -0.6974 -1.8074 0.0014 -0.6655 0.3267

Y-pos. -20.0822 -20.6804 -19.4724 -20.1001 0.2259

6/2 X-pos. 19.2431 17.6810 20.2165 19.1932 0.3509

Y-pos. -20.0916 -20.9396 -19.2267 -20.1133 0.2406

2/4 X-pos. -20.0937 -20.4515 -19.7239 -20.0980 0.1053

Y-pos. 0.0758 -0.5176 0.6352 0.0666 0.2028

4/4 X-pos. -0.2930 -0.8459 0.2578 -0.2977 0.1710

Y-pos. -0.2479 -0.9612 0.3534 -0.2565 0.2462

6/4 X-pos. 19.5844 18.5628 20.5816 19.5400 0.3238

Y-pos. -0.3700 -1.1611 0.3758 -0.4002 0.2744

2/6 X-pos. -19.9353 -20.3518 -19.3873 -19.9441 0.1438

Y-pos. 19.9258 18.9174 20.8791 19.9223 0.2876

4/6 X-pos. -0.1150 -0.8824 0.5954 -0.1305 0.2098

Y-pos. 19.6628 18.9892 20.3336 19.6252 0.2902

6/6 X-pos. 19.7016 18.8021 20.4324 19.7500 0.2883

Y-pos. 19.4020 18.8066 20.1866 19.3626 0.3037

Table 5.16: Covariance matrices for “Ball & Plate”.

Direction Covariance matrix

X-axes
[

1 ∗ 10−7
]

[

0.136 0

0 1.1 ∗ 10−3

]

Y-axes
[

1 ∗ 10−7
]

[

0.164 0

0 3.0 ∗ 10−3

]

50

represented by the covariance matrix. The resulting covariance matrices for both x- and

y-position are shown in table 5.16. The process noise, represented by the first element of

the covariance matrix was set to a small value (1 ∗ 10−7). It was here assumed that the

noise in measurements of position and plate angle is by far the strongest contributor to

the noise. The validity of this is discussed in section 6.5.

51

Chapter 6

Discussion

6.1 Theoretical assumptions

As mentioned in section 3.1.1, some assumptions were made for the simplified model. This

project task did not include the modelling of the system, and the model was therefore as-

sumed correct throughout the project. However, a motor was changed after the model had

been verified, and this might have caused an inaccuracy in the model of the real system.

Compared to simulation runs, some tuning of weighting parameters was necessary in order

to implement the MPC for real-time use without hurting the constraints. This fact leads

to the recommendation that a verification of the model needs to be carried out.

6.2 Extension of MPC toolbox

Two possible solutions to the problem consisting of how to create, and then pass the nec-

essary parameters to the S-function in “C”, were considered. The first option consisted

of making an initialization file, and specify this in the initialization pane of the masked

S-function written in “C”. Second option was splitting up the Simulink block in two, one

driven by the M-file S-function, the other by the S-function coded in “C”. The first block

will in this constellation create the parameters needed for calculation of the output in the

second block. However, this latter approach was abandoned because of the inefficiency of

calculations when splitting up the Simulink block.

For the QP-solver, an DANTZIG-algorithm written by N.L. Ricker was used. At every

scan through this algorithm, memory for the variables needed is allocated. There was

no deallocation of used memory, which caused the target to crash after approximately 40

scans. It was a considerable memory buildup, which also slowed the algorithm down. The

routine works when using a PC since the MATLAB memory management facility auto-

matically frees all nonpersistent memory whenever a MEX-file completes. This does not

happen on the target since it is only driven by the kernel made in Real-Time Workshop

and has no operating system. Nevertheless, it is in general a good programming practice

52

to deallocate memory as soon as the algorithm is through using it. Doing so generally

makes the entire system run more efficiently. In order to handle the memory buildup,

work vectors needed to be created. The memory for these vectors is allocated in the ini-

tialization section of the S-function, and pointers to this memory are passed down in the

function calls. The sub-functions are then able to access the allocated memory, and there

is no need for further memory allocation. Deallocation of the memory is happening at the

termination stage of the S-function. Simulations on PC show that the time spent in the

calculation of output went considerably down when freeing memory, see section 5.2.3.

6.3 MPC implemented with Real-Time Toolbox

The Real-Time Toolbox has the advantage of easy conversion from a Simulink model to

real-time experiments. It adds the capability of acquiring data in real time, and is sup-

posed to immediately process them by MATLAB commands or a Simulink model in order

to send them back to the outside world. However, it does require a lot of CPU-power in

the data acquisition and processing. The PC was driven by a 933 MHz Pentium 3, and

MATLAB had to be given top priority in the Windows Task Manager. By looking at the

plot of the step response in section 5.2.1, it is clearly seen that the system has a delay of

approximately 0.035 seconds. This corresponds to more than one sampling time, which

contributes to question the toolbox’s capability of implementing MPC real-time. During

the experiments I also encountered an excessive loss of ticks, which limited the controller

performance. Every block in the Real-Time Toolbox has its own timer, and the loss of

ticks is a mechanism use to detect system overload. A tick is lost in the situation when a

timer is due to execute and a request comes to execute the same timer again. Each timer

counts its own lost ticks and when they reach the number specified in its “MaxLostTicks”,

the timer is stopped.

Another feature of the toolbox is that it continues to output the last computed incre-

ment even after experiments have been stopped. The system is driven to constraint, and

there is a risk for stalling the motors. The problem was solved by having a manual switch

in the scheme, giving opportunity to set the output to nil.

As shown in section 5.2.2 the tracking of trajectory for both square and circle is good

when the speed of the ball is low. When slowly increase the speed of the ball, the error

between reference and ball-position gets bigger. The main reason for the decrease in

tracking radius is due to the fact that the plate deflection is increased at high tracking

velocities. The component of gravity directed towards the center of the plate will increase

with increasing plate-deflections, which causes a reduction in tracking radius. However,

the MPC controller tended to be unstable during startup of experiments, which may be a

result of the delay and/or the loss of ticks. This non-consistency happens when the MPC

algorithm calculates a big increment in the control output, and there is a loss of ticks in

53

the next scan. The Real-Time Toolbox responds to this loss of ticks by implementing the

last computed control increment, which results in a too big deflection of the plate. At

next sampling time, the controller has to counter-act this behavior, and an even bigger

increment is calculated. The resulting behavior is unstable.

6.3.1 Calculation time

The Real-Time Toolbox was tested extensively on the “Ball & Plate” system using three

different algorithms, namely the original M-file S-function, call to the MEX-compiled C-

function and the S-function written in C. The main problem with using this toolbox is

concerning the calculation time spent in the algorithm. The loss of ticks, explained above,

causes the toolbox to apply the last calculated control move for next sampling time. This

results in a bad controller performance, and eventually a crash when the maximum number

of ticks is reached. In order to prevent this, the prediction horizon had to be kept lower

than 35 moves. The results in section 5.2.3 clearly shows that the original MPC algorithm

has a too high computational cost with a prediction horizon more than 30. The sampling

time used during the experiments was chosen to be 0.03 seconds. This sampling time was

derived in Moschibroda & Muntwyler [15] from the fastest dynamics of the system, which

determines the slowest possible sampling rate. However, these values give a time horizon

of 0.9 seconds, which is too short in cases where big deflections in the plate angle are

necessary. A too short time horizon prevents the controller from computing the error of a

future overshoot, and the constraints will be violated. A sampling time bigger than 0.03

seconds tends to make the controller performance more sluggish, so a trade off needed to

be carried out.

By comparing the elapsed computation time in table 5.3 with table 5.4, the algorithm

written in “C” is approximately 4 times faster than the original M-file algorithm in solving

identical problems. However, the first scan in the C-code implies memory allocation, and

is the reason why this scan takes considerably more time than the following execution of

the code.

6.3.2 Anticipative versus non-Anticipative action

Anticipative action was tested out solely on the original MPC algorithm, since this feature

has still yet to be implemented in the S-function written in “C”. The MAT-file specified in

the GUI of the MPC-block contains information on how the reference is going to change

and the time associated with the change. The effect of anticipative action is clearly shown

when comparing figure 5.6 and figure 5.7. These figures show the control output compared

to reference given to the controller. The reference is a sinusoid curve in each axes, with a

phase-shift of π
2 rad in order to form a circle. With anticipative action, the control-action

is shifted slightly in time compared to non-anticipative action. This is because the MPC

controller has a priori knowledge on how the reference is going to change, and therefore

incorporates this information in the optimization problem. The optimal solution is to

54

implement a control move slightly before the actual change in reference has taken place.

This is why the chain of control moves is shifted approximately 0.5 seconds in time with a

tracking speed of ω = π
2 rad/s. The advantage of knowing the reference is seen when there

is a fast tracking of the reference. Anticipation has an stabilizing ability on the system

during fast tracking. With angular frequency more than π rad/s, anticipative action has a

better performance with less overshoot and smoother behaviour. The system was clearly

unstable at high tracking speeds, as expected. With an angular frequency greater than

ω = 6
4π rad/s, the controller was hurting the constraints constantly, both with and with-

out anticipation. This is due to hardware constraints, the plate cannot move infinitely fast.

During the testing of the anticipation feature of MPC toolbox, some bugs in the

algorithm were encountered. They were related to how the reference were read from the

file and taken into the algorithm. These have now been fixed for future releases of the

MPC toolbox.

6.3.3 Algorithms written in “C”

In section 5.2.4 and 5.2.5 the performance of the new algorithms is tested on tracking a

circle reference with angular velocity π
2 rad/s. The plots shows the same performance as

the original algorithm without anticipation at the same angular velocity. From these re-

sults and the simulation run in section 5.1 it is concluded that the algorithm is successfully

translated from M-file to function in “C”.

6.4 MPC implemented with xPC Target

During the setup of the target-host constellation, some problems were encountered regard-

ing the linking between S-function and the functions to be called. In order to solve this,

the two files to be called from within the S-function were included in the S-function file.

The subfunctions are called with standard function calling routine. This way there was

no need for the compiler to have any further linking specified. The compiler used in the

xPC Target setup was specified to be “lcc”, a standard compiler shipped by installation

of MATLAB R12.

The xPC Target with Real-Time Workshop was tried out for real-time use on the “Ball

& Plate” system. There are two ways of connecting the target and the host computer,

either by means of serial cable or by TCP/IP. As outlined in section 5.3, the TCP/IP is

in general preferable because of speed and no limitations on distance between computers.

However, in this work a serial cable using the RS232 ports was used for connection. The

reason for doing this was some problems with getting correct IP-addresses. Nevertheless,

the TCP/IP connection should be set up for future work.

The controller parameters needed to be tuned on the target in order to get good per-

55

formance without hurting the constraints. As outlined in section 6.3.1, the time horizon

for the MPC controller needs to exceed 0.9 seconds in order to ensure stability. The time

horizon is influenced by two parameters, namely the prediction horizon and the sampling

time. By increasing the prediction horizon, the complexity of the calculations increases,

which slows the algorithm down and eventually gives an CPU overload on the target. The

peak in task execution time is encountered during the first scan because of the memory

allocation taking place. This scan requires approximately 40 percent more CPU power

than a scan without any memory allocation. When increasing the sampling time, the con-

troller gets more sluggish. After some testing, a prediction horizon of 35 and a sampling

time of 0.04 seconds were chosen as appropriate parameters for having good controller

performance. From this result, it is clear that the target is operating on its limits of

performance. In order to improve this further, the execution of the code could be made

faster, or the processor speed could be increased.

One of the advantages with xPC Target is that it ensures experiments to be run in real

time. This because of the fact that it does not have any operating system, and it gets from

this reason no interrupts during execution of the code. The controller behavior was clearly

more smooth than when using the Real-Time Toolbox. Even though the speed of the host

processor is 3.5 times faster than the target processor, the controller performance of the

target was more stable than with the Real-Time Toolbox, given the same set of parameters.

From the results in section 5.3, it is clear that the weighting has the expected influence

on the controller performance. In general, the controller gets more aggressive when input

horizon is increased, output horizon is decreased, output weight is increased and input

weight is decreased. Due to the fact that the controller was strained with respect to

time horizon, only the ratio between input and output weight was changed. It is shown

that the controller performance gets more sluggish when the ratio between output and

input weight is decreased. The plots of controller output shows that the controller does

not drive the motors as hard when the weighting ratio is deceased. This makes it slower

and the settling time rises from 2 to 5 seconds. Comparison of the tracking of the square

reference in section 5.3 compared to section 5.2.2 seem to show that the Real-Time Toolbox

has a better performance in tracking the square reference. However, the reference in

the two cases are slightly different. In section 5.2.2, the square is described by four

ramps, producing reference positions for the controller to track at each sampling time. In

section 5.3, the square is described as four points, namely the corners of the square. In

this latter case, the controller does not have reference positions along the path between

corners, but is getting step changes in the reference.

6.5 Noise

Having good information about the noise is important for mainly two reasons, it makes

it easier and/or possible to find proper parameters for the MPC-controller, and secondly

56

the design of the linear filter gain makes use of the covariance matrix. The covariance

matrix consists of measurement noise and process noise. Since the linear filter gain is

strongly influencing the calculated control increments through the measurement update

in the algorithm, the controller performance depends on correct values for the covariance

matrix. I chose to measure the noise after the calculation of the cartesian coordinates

instead of measuring angle positions either in radians or degrees. This due to the fact

that the MPC-controller gets the signal in cartesian coordinates, and therefore will get

the noise after the signal from the lasers has propagated through the conversion from

radians to cartesian coordinates. The magnitude of the covariance matrix was increased

with approximately 10 times compared to former groups. The reason for this deviation

in noise compared to former work could originate from several sources. Firstly, the speed

of the motor driving the mirrors is not constant. There was no possibility of measuring

the magnitude of this variation, but during experiments the motor slowed down when the

plate had big deflections. This will cause variations in the positioning of the ball, and

thereby a noisy behavior of the controller. The wiring from the “Ball & Plate” to the PC

is also producing noise. There was a problem with the connection between the system

and the PC since a DB-37 connector needed to be mapped against a DB-25 connector. In

order to solve this two external connectors was used, mapping the right pins. This solution

is not optimal, and could easily be improved by creating a cable with one DB-37 and one

DB-25 connector. The system is not very robust, and the mirrors were displaced several

times, causing the bearing on the mirror-axes to be worn out. With a defect bearing, the

mirror position fluctuates slightly, which results in measurement noise. The measuring

of the position is sensitive to direct light and to the cleanliness of the ball. If the ball

is cleaned thoroughly, and no direct sun-light affects the ball, the noise in positioning is

reduced. As a result from this reasoning, the measurement noise was considered to be

the by far biggest contributor to the total noise. Experiments show that the controller

behavior was smooth when the new values for measurement noise were incorporated in

the covariance matrix.

From comparing table 5.14 and 5.15, it is shown that the noise in the x- and y-

positioning with xPC Target is less than with the Real-Time Toolbox. However, one laser

was malfunctioning when implementation of MPC by xPC Target was carried out, which

resulted in an increase of noise in position 6/2, 6/4 and 6/6, see figure 5.42. As a result

from these noise-measurements and the update of the covariance matrix, the “nervous”

behavior was considerably reduced for both MPC implemented with Real-Time Toolbox

and xPC Target. The Kalman filter is functioning as a low-pass filter, smoothing the

controller performance.

57

Chapter 7

Conclusion

The primary objective of this project was to extend the Model Predictive Control (MPC)

toolbox for real-time use. The basic MPC algorithm was coded in “C” and interfaced

with Simulink by use of a S-function structure. Two tools for implementation of MPC

for real-time use was tested, namely the Real-Time Toolbox and xPC Target. The im-

plementation of MPC by means of the toolbox encountered mainly two problems, a delay

and a system overload. On a fast system like the “Ball & Plate”, which requires the

control action to be implemented within few milliseconds, a delay of 0.035 seconds corre-

sponds to more than one sampling period and causes a “shaking” behavior. In addition,

the toolbox caused a system overload when the execution of the algorithm required more

than one sampling period. The implementation of MPC by this alternative is demanding

on excessive amounts of CPU-power. In order to meet these demands, a PC with a 933

MHz processor was used. However, even though MATLAB was given top priority in the

system manager, the complexity of calculations had to be limited by means of keeping the

prediction horizon in the range of 30 steps. The problems with system overload and delay

leads to the conclusion that the toolbox is not able to implement MPC real-time on a fast

system with characteristics like “Ball & Plate”.

The task of extending the MPC toolbox for real-time use, consisted of creating source

code of the MPC algorithm in “C”, and then interface this with Simulink. The task was

confined to the output sequence of the algorithm, with the initialization done by two ini-

tialization M-files. The results show a successfully extended MPC algorithm for real-time

use. In order to test the weights influence on the controller performance, different ratios

between the output weight (y-weight) and the increment weight (δU -weight) were applied.

The controller performance became clearly more sluggish when this ratio was decreased,

which shows that the controller responds to the weighting in a correct manner. The varia-

tion in the calculation time of the algorithm indicates that the bottle-neck is the Quadratic

Programming (QP) solver. This because of the fact that the only time-consuming varying

factor in the algorithm is the number of iterations in the QP solver, indicating that an op-

timization with respect to time need to be carried out. The routine was slightly modified

with respect to memory allocation in order to be run in the xPC setup. The calculation

58

time required for one scan was considerably reduced when the memory allocation was done

in the initialization section of the S-function.

The xPC Target ensures real-time execution, with considerably less delay and noise

than the Real-Time Toolbox. It is from this reason recommended as standard setup for

implementation of MPC on the “Ball & Plate”.

Zürich, June 13, 2001

Thomas Haugan

59

Chapter 8

Recommendations

From the experiments which show that there is reason for questioning Real-Time Tool-

box’s capability of applying MPC real-time, the xPC Target should be set as framework

for implementing real-time MPC on the “Ball & Plate” system. However, at high com-

putational loads, the target tended to crash because of a CPU overload. To prevent this,

an optimization of the C-code is strongly suggested. Since an extensive use of loops for

matrix calculation is used, different ways of storing the values should be investigated. The

bottle-neck in the algorithm is the DANTZIG-routine. This can be seen from the variation

in the task execution time. Since the size of the parameters are constant during simulation,

the only time-consuming varying factor is the number of iterations. This routine should

be optimized with respect to speed, including efficient ways of copying the parameters

passed in the function call.

The initialization section should also be incorporated in the S-function in “C” to make

the algorithm complete. This would make the MPC toolbox fully extended for use with

xPC Target. A comparison with the already implemented piecewise linear MPC algo-

rithm could also be carried out. When this initialization section is implemented it may be

preferable to split the file into several files to ensure readability of the code. This requires

a new build-file which specifies for the compiler in which order to link the files.

The opportunity to use anticipation from file should also be implemented in the new

algorithm. This feature is stabilizing the system at high tracking velocities, and also tend

to minimize the tracking error.

60

Acknowledgements

I would like to thank the whole IFA, Institut für Automatik at ETH, for the nice and

friendly atmosphere and for providing me with such an interesting project. In particular I

would like to thank Alberto Bemporad for his outstanding support on the MPC algorithm

and in general MPC theory. I really much appreciated his positive and spontaneous way

of supporting. I would also like to thank Francesco Borrelli and Domenico Mignone who

have assisted me greatly during the project. Mato Baotic have been very helpful in issues

regarding C-code, providing me with information on structure of S-functions and helped

with critical debugging problems.

I would also like to thank my professors, Sigurd Skogestad and Manfred Morari for

making it possible for me to do my diploma thesis at ETH. It has indeed been a great

stay here at ETH, and in overall a very nice outcome for me.

Thank you!

61

List of symbols

p Prediction horizon no unit

Nu Control horizon no unit

A State matrix no unit

Bu State matrix, w.r.t. manipulated variables no unit

Bv State matrix, w.r.t. measured disturbance no unit

Bd State matrix, w.r.t. unmeasured disturbance no unit

C State matrix no unit

Dv State matrix, w.r.t. measured disturbance no unit

Dd State matrix, w.r.t. unmeasured disturbance no unit

Dvm State matrix, w.r.t. measured disturbance and measured outputs no unit

ŷ Output estimate no unit

x̂− Priori state estimate no unit

x̂ State estimate no unit

L Linear filter gain no unit

∆u Input increments no unit

ε Slack variable no unit

ρε Weighting for slack variable, by default ρε = 105maxp−1
i=0 {w

u
i , w

∆u
i , wy

i+1} no unit

r Reference no unit

wu Input weight no unit

w∆u Input increment weight no unit

wy Output weight no unit

G Plant model no unit

wk Noise no unit

x̄k Expected mean value of state no unit

E{zzT }Mean-square value no unit

Pxk
State covariance no unit

Pxkyk
Cross covariance between state and output no unit

R Covariance for measurement noise no unit

Q Covariance for process noise no unit

x̃k Estimation error no unit

62

Bibliography

[1] Bemporad, A.,Boricelli, F. and Morari,M. 2001,Handout in MPC-course - Optimiza-

tion, ETH - Institut für Automatik

[2] Bemporad A., Bozinis,N.A., Dua,V., Morari,M. and Pistikopoulos,E.N. 2000. Model

Predictive Control: A multi-parametric programming approach, European Sympo-

sium on Computer Aided Process Engineering-10, Florence, Italy, 301-306

[3] Bemporad, A.,Morari,M. and Ricker,N.L., 2000.The MPC Simulink Library - User

Guide, Version 1, USA:MathWorks Inc.

[4] Bemporad,A. & Morari,M., 1999. Robust model predictive control: a survey, Lecture

Notes in Control and Information Sciences, vol. 245, Springer-Verlag, 207-226

[5] Forster, P. & Weber, M., 1999/00. Regulation anf trajectory tracking of a ball on a

plate., Semester thesis, ETH Zr̈ich

[6] Hermann,O., 1996/97. Regelung eines “Ball & Plate” Systems., Diploma thesis, ETH

Zr̈ich

[7] Horton, I., 1995. Instant C Programming, Chicago USA: Wrox Press Ltd.

[8] Kalman, R.E., 1960. A new approach to Linear Filtering and Prediction Problems,

Trans. ASME J. Basic Eng., 82, 34-35

[9] Kalman, R.E. and Bucy, R.S., 1961. New results in Linear filtering and prediction

theory, Trans. ASME J. Basic Eng., 83, 95-108

[10] Lewis, Frank L., 1992. Applied optimal control & estimation, New Jersey:Prentice

Hall

[11] Levine, William S., 1996. The Control Handbook, New York: CRC Press Inc.

[12] Marlin, Thomas E., 1995. PROCESS CONTROL. Designing processes and control

systems for dynamic performance, New York: McGraw-Hill Inc.

[13] Morari, M., Lee, Jay H. & Garcia, Carlos E. 2000, Model Predictive Control, under

printing at present

[14] Morari, M. & Lee Jay, H., 1999. Model Predicitive control: past, present and futur.

Computers and Chemical Engineering,23, 667-682.

63

[15] Moschibroda, S. & Muntwyler, U., 2000. Regulation and trajectory tracking of a “Ball

& Plate” using MPC, Semester thesis, ETH Zr̈ich

[16] Ogata, K., 1987. Discrete time control systems, New Jersey:Prentice Hall

[17] Ritchie, D.M. (1996). Bell Labs/Lucent Technologies [online]. Available from:

http://cm.bell-labs.com/cm/cs/who/dmr/chist.html [1.june 2001]

[18] The MathWorks Inc., 2000. Simulink : Writing S-Functions, Version 4, USA:The

MathWorks Inc.

[19] The MathWorks Inc., 1997. Using Simulink, Version 2, USA:The MathWorks Inc.

[20] The MathWorks Inc., 2000. xPC Target - user guide, Version 1.1, USA:The Math-

Works Inc.

64

Appendix A

MEX-function

/**

Module: MPC_controller Notices: Written 2001 Thomas Haugan

**/

/* Definition of Simstruct and its associated macros. Includes

mex.h and matrix.h */

#include "mex.h"

#include "matrix.h"

#include <stdlib.h>

/* Gateway function starts here */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

//

//*************** CONSTRUCTING TEMPORARY MXARRAYS *******************//

mxArray *y_tmp,*r_tmp,*v_tmp,*xk1_tmp,*xk2_tmp,*uk1_tmp; mxArray

*yest_tmp,*accum_tmp,*xk_tmp,*zopt_tmp,*uk_tmp;

//

//******************** LOCALS ************************//

real_T *y,*r,*v,*xk1,*xk2,*uk1,*yest,*accum,*xk,*zopt,*uk,t;

real_T Ts,delay,*epsslack,*feasible;

int size_yrd,size_lastx,size_lastu,nym,ny,nv,rows_Cm,size_A,degrees;

int_T i, j, k;

double *u_out,*xk_out,*dnym;

real_T tr,tr_dec,tr_round;

int tr_int,cols_A,cols_L,cols_Cm,rows_L,rows_A;

//

65

// ADDITIONAL PARAMETERS, ARRAY OF POINTERS IN FUNCTION CALL OF

// MPC2

mxArray *plhs_MPC2[3];

const mxArray *prhs_MPC2[22];

//

/****** ACCESS PARAMETERS USED IN MEMORY ALLOCATION **********/

size_yrd = mxGetNumberOfElements(prhs[2]);

nym = (int)mxGetPr(prhs[24])[0];

ny = (int)mxGetPr(prhs[25])[0];

nv = (int)mxGetPr(prhs[26])[0];

size_lastx = mxGetNumberOfElements(prhs[21]);

size_lastu = mxGetNumberOfElements(prhs[22]);

rows_Cm = mxGetM(prhs[8]);

cols_Cm = mxGetN(prhs[8]);

rows_L = mxGetM(prhs[23]);

cols_L = mxGetN(prhs[23]);

size_A = mxGetM(prhs[4]);

rows_A = mxGetM(prhs[4]);

cols_A = mxGetN(prhs[4]);

degrees = (int)mxGetPr(prhs[19])[0];

///

/*********** ALLOCATE DYNAMIC MEMORY FOR VARIABLES ***********/

y_tmp = mxCreateDoubleMatrix(nym,1,mxREAL);

r_tmp = mxCreateDoubleMatrix(ny,1,mxREAL);

v_tmp = mxCreateDoubleMatrix(nv,1,mxREAL);

xk1_tmp = mxCreateDoubleMatrix(size_lastx,1,mxREAL);

xk2_tmp = mxCreateDoubleMatrix(size_lastx,1,mxREAL);

uk1_tmp = mxCreateDoubleMatrix(size_lastu,1,mxREAL);

yest_tmp = mxCreateDoubleMatrix(rows_Cm,1,mxREAL);

accum_tmp = mxCreateDoubleMatrix(size_A,1,mxREAL);

xk_tmp = mxCreateDoubleMatrix(size_lastx,1,mxREAL);

zopt_tmp = mxCreateDoubleMatrix(degrees,1,mxREAL);

uk_tmp = mxCreateDoubleMatrix(size_lastu,1,mxREAL);

///

/************ ALLOCATE MEMORY FOR RETURN ARGUMENT *************/

plhs[0] = mxCreateDoubleMatrix(1,1, mxREAL);

plhs[1] = mxCreateDoubleMatrix(size_lastx,1, mxREAL);

///

/******************* ASSIGN POINTERS TO EACH OUTPUT

66

*********************/

u_out = mxGetPr(plhs[0]);

xk_out = mxGetPr(plhs[1]);

///

/********** ASSIGN POINTERS TO EACH ALLOCATED MEMORY **********/

y = mxGetPr(y_tmp);

r = mxGetPr(r_tmp);

v = mxGetPr(v_tmp);

xk1 = mxGetPr(xk1_tmp);

xk2 = mxGetPr(xk2_tmp);

uk1 = mxGetPr(uk1_tmp);

yest = mxGetPr(yest_tmp);

accum = mxGetPr(accum_tmp);

xk = mxGetPr(xk_tmp);

zopt = mxGetPr(zopt_tmp);

uk = mxGetPr(uk_tmp);

///

/*************** CHECK IF SAMPLE TIME IS UP ******************/

t = mxGetPr(prhs[0])[0];

Ts = mxGetPr(prhs[18])[0];

delay = mxGetPr(prhs[17])[0];

/******** Rounding of tr ***********/

tr=((t-delay)/(Ts));

tr_int = tr; // Storing integer part of tr in tr_int

tr_dec = tr - tr_int; // Storing decimal part of tr in tr_dec

if (tr_dec >= 0.5)

tr_dec = 1;

else

tr_dec = 0;

tr_round = tr_int + tr_dec;

/***********************************/

/*Check if t is integer multiple of Ts, and if one step has elapsed */

if (((tr_round - (t-delay)/(Ts)) < 0.00000001) &&

((tr_round - (t-delay)/(Ts)) > -0.00000001)) {

if (tr_round > mxGetPr(prhs[20])[0]) {

if (size_yrd < nym){

mexWarnMsgTxt("Wrong number of measured outputs");

}

67

/* Assigning values to y, r and v */

if (nym > 0){

for (i=0; i < nym; i++){

y[i]= mxGetPr(prhs[2])[i];

}

}

if (ny > 0){

for (i=nym; i <= nym+ny; i++){

r[i-nym]= mxGetPr(prhs[2])[i];

}

}

if (nv > 0){

for (i=nym+ny; i <= nym+ny+nv; i++){

v[i-nym-ny]= mxGetPr(prhs[2])[i];

}

}

/* Storing the last states in xk1*/

for (i=0; i < size_lastx; i++){

xk1[i]= mxGetPr(prhs[21])[i];

}

/* Storing the last control moves in uk1*/

for (i=0; i < size_lastu; i++){

uk1[i]= mxGetPr(prhs[22])[i];

}

/*Measurement update. (yest=Cm*xk1+Dvm*v)*/

for (i=0; i < rows_Cm; i++) {

accum[0] = 0.0;

for (j=0; j < cols_Cm; j++) {

accum[0] += mxGetPr(prhs[8])[i+j*rows_Cm] * xk1[j];

}

for (k=0; k < nv; k++) {

68

accum[0] += mxGetPr(prhs[10])[k] * v[k];

}

yest[i] = accum[0];

}

/*xk2=xk1+L(y-yest)*/

for (i=0; i < rows_L; i++) {

accum[0] = 0.0;

accum[0] += xk1[i];

for (j=0; j < cols_L; j++) {

accum[0] += mxGetPr(prhs[23])[(i+j*(rows_L))]*y[j];//nym

accum[0] += -mxGetPr(prhs[23])[(i+j*(rows_L))]*yest[j];

}

xk2[i] = accum[0];

}

//

/******** CALCULATION OF CONTROL LAW. CALL TO MPC2_6 **********/

prhs_MPC2[0] = prhs[28];//MuKduINV;

prhs_MPC2[1] = prhs[29];//KduINV;[i]

prhs_MPC2[2] = prhs[30];//Kx;

prhs_MPC2[3] = prhs[31];//Ku1;

prhs_MPC2[4] = prhs[32];//Kut;

prhs_MPC2[5] = prhs[33];//Kr;

prhs_MPC2[6] = prhs[34];//zmin;

prhs_MPC2[7] = prhs[35];//rhsc0;

prhs_MPC2[8] = prhs[36];//Mlim;

prhs_MPC2[9] = prhs[37];//Mx;

prhs_MPC2[10] = prhs[38];//Mu1;

prhs_MPC2[11] = prhs[39];//Mvv;

prhs_MPC2[12] = prhs[40];//rhsa0;

prhs_MPC2[13] = prhs[41];//TAB;

prhs_MPC2[14] = xk2_tmp;

prhs_MPC2[15] = uk1_tmp;

prhs_MPC2[16] = prhs[42];//utarget;

prhs_MPC2[17] = r_tmp;

prhs_MPC2[18] = prhs[43];//vKv;

prhs_MPC2[19] = prhs[19];//degrees;

prhs_MPC2[20] = prhs[44];//isunconstr;

69

prhs_MPC2[21] = prhs[45];//TYPE;*/

/* Function call of MPC2 */

MPC2(3, plhs_MPC2, 22, prhs_MPC2);

for (i=0; i < degrees; i++){

zopt[i] = mxGetPr(plhs_MPC2[0])[i];

}

//

for (i=0; i < size_lastu; i++) {

uk[i] = uk1[i] + zopt[i]; //The first delta move

//have one degree of freedom

}

/*Time (or state) update. Kalman*/

/* xk = A*xk2+Bu*uk+Bv*vk; */

for (i=0; i < size_lastx; i++) {

accum[0] = 0.0;

for (j=0; j < cols_A; j++) {

accum[0] += mxGetPr(prhs[4])[i+j*rows_A]*xk2[j];

}

accum[0] += mxGetPr(prhs[11])[i]*uk[0];

for (k=0; k < nv; k++) {

accum[0] += mxGetPr(prhs[12])[k]*v[k];

}

xk[i] = accum[0];

}

///

/************** ASSIGN POINTERS TO EACH OUTPUT ****************/

for (i=0; i < size_lastu; i++) {

u_out[i] = uk[i];

}

70

for (i=0; i < size_lastx; i++) {

xk_out[i] = xk[i];

}

}

else {

for (i=0; i < size_lastu; i++) {

u_out[i] = uk1[i];

xk_out[i] = uk1[i];

}

}

}

}

/**/

/********************** End Of File *****************************/

/**/

71

Appendix B

C-function (MPC2)

/**

Module: MPC2

Notices: Written 2001 Thomas Haugan

**/

///

// This function returns the value zopt //

///

/* Includes API-functions */ #include "mex.h" #include "matrix.h"

#include <stdlib.h>

/* Declaring danzgmp as external algorithm */ extern void

dantzgmp_1(int nlhs,mxArray *plhs[],int nrhs,const mxArray

*prhs[]);

///

//* Compute the optimal input sequence by solving a QP problem *//

///

void MPC2(int nlhs,mxArray *plhs_MPC2[],int nrhs,const mxArray

*prhs_MPC2[]) {

///

//***************** CONSTRUCTING TEMPORARY MXARRAYS ******************//

mxArray *zopt_tmp,*accum_tmp,*accum2_tmp,*rhsc_tmp,*rhsa_tmp,*basisi_tmp;

mxArray *ili_tmp,*basis_tmp,*ib_tmp,*il_tmp,*iter_tmp,*epsslack_tmp;

mxArray *feasible_tmp,*ibi_tmp*zopt1_tmp;

///

//********************** LOCALS ***********************//

72

real_T *zopt,*accum,*accum2,*rhsc,*rhsa,*basisi,*ibi,*ili,*basis,*ib;

real_T *epsslack,*zopt1,*feasible,*il,*iter;

int size_Kx,rows_Kx,cols_Ku1,rows_Kut,rows_utarget,rows_Kr,cols_Kr;

int cols_KduINV,rows_rhsc0,cols_Mx,rows_Mu1,rows_rhsa0,rows_xk,nc,size_ibi;

int cols_Kut,rows_KduINV,rows_MuKduINV,cols_MuKduINV,cols_Kx,cols_vKv;

int_T i,j,k,buflen,status;

///

// Additional parameters. Passing in-parameters to dantzgmp and

// get result

mxArray *lhs_d[4]; const mxArray *rhs_d[4];

///

/******** ACCESS PARAMETERS USED IN MEMORY ALLOCATION *********/

size_Kx = mxGetNumberOfElements(prhs_MPC2[2]);

rows_Kx = mxGetM(prhs_MPC2[2]);

cols_Kx = mxGetN(prhs_MPC2[2]);

cols_Ku1 = mxGetN(prhs_MPC2[3]);

rows_Kut = mxGetM(prhs_MPC2[4]);

cols_Kut = mxGetN(prhs_MPC2[4]);

rows_utarget = mxGetM(prhs_MPC2[16]);

cols_Kr = mxGetN(prhs_MPC2[5]);

rows_Kr = mxGetM(prhs_MPC2[5]);

cols_vKv = mxGetN(prhs_MPC2[18]);

cols_KduINV = mxGetN(prhs_MPC2[1]);

rows_rhsc0 = mxGetM(prhs_MPC2[7]);

cols_Mx = mxGetN(prhs_MPC2[9]);

rows_Mu1 = mxGetM(prhs_MPC2[10]);

rows_rhsa0 = mxGetM(prhs_MPC2[12]);

rows_xk = mxGetM(prhs_MPC2[14]);

rows_KduINV = mxGetM(prhs_MPC2[1]);

rows_MuKduINV = mxGetM(prhs_MPC2[0]);

cols_MuKduINV = mxGetN(prhs_MPC2[0]);

///

/**************** ALLOCATE DYNAMIC MEMORY FOR VARIABLES

*****************/

zopt_tmp = mxCreateDoubleMatrix(rows_rhsa0,1,mxREAL);

zopt1_tmp = mxCreateDoubleMatrix(rows_rhsa0,1,mxREAL);

accum_tmp = mxCreateDoubleMatrix(1,1,mxREAL);

accum2_tmp = mxCreateDoubleMatrix(1,1,mxREAL);

rhsc_tmp = mxCreateDoubleMatrix(rows_rhsc0,1,mxREAL);

rhsa_tmp = mxCreateDoubleMatrix(rows_xk,1,mxREAL);

73

basisi_tmp = mxCreateDoubleMatrix(rows_rhsa0+rows_rhsc0,1,mxREAL);

epsslack_tmp = mxCreateDoubleMatrix(1,1,mxREAL);

feasible_tmp = mxCreateDoubleMatrix(1,1,mxREAL);

///

/********** ASSIGN POINTERS TO EACH ALLOCATED MEMORY **********/

zopt = mxGetPr(zopt_tmp);

zopt1 = mxGetPr(zopt1_tmp);

accum = mxGetPr(accum_tmp);

accum2 = mxGetPr(accum2_tmp);

rhsc = mxGetPr(rhsc_tmp);

rhsa = mxGetPr(rhsa_tmp);

basisi = mxGetPr(basisi_tmp);

epsslack = mxGetPr(epsslack_tmp);

feasible = mxGetPr(feasible_tmp);

///

if (mxGetPr(prhs_MPC2[20])[0]==1) {

// Unconstrained MPC :

/* Matrix multiplication and adding to accum */

/* zopt = -KduINV*(Kx’*xk+Ku1’*uk1+Kut’*utarget+Kr’*r+vKv’)*/

for (i=0; i < cols_Ku1; i++) {

accum[0] = 0.0;

if (i == 0) {

for (j=0; j < rows_Kx; j++) {

accum[0] += mxGetPr(prhs_MPC2[2])[j+cols_Kx]

*mxGetPr(prhs_MPC2[14])[j]; //Kx’*xk

}

}

else {

for (j=0; j < rows_Kx; j++) {

accum[0] += mxGetPr(prhs_MPC2[2])[j]

*mxGetPr(prhs_MPC2[14])[j]; //Kx’*xk

}

}

for (j=0; j < cols_Ku1; j++) {

accum[0] += mxGetPr(prhs_MPC2[3])[j]

*mxGetPr(prhs_MPC2[15])[0]; //Ku1*uk1

}

for (j=0; j < cols_Kut; j++) {

74

accum[0] += mxGetPr(prhs_MPC2[4])[i+j*rows_Kut]

*mxGetPr(prhs_MPC2[16])[j];//Kut*utarget

}

for (j=0; j < rows_Kr; j++) {

for (k=0; k < cols_Kr; k++) {

accum[0] += mxGetPr(prhs_MPC2[5])[j+k*rows_Kr]

*mxGetPr(prhs_MPC2[17])[k];//Kr*r

}

}

accum[0] += mxGetPr(prhs_MPC2[18])[i];//vKv

for (j=0; j < cols_Ku1; j++) {

accum[0] = -mxGetPr(prhs_MPC2[1])[j]*accum[0];//-(KduINV*accum)

}

zopt[i] = accum[0];

}

epsslack[0] = 0;

feasible[0] = 1;

}

else {

// Constrained MPC:

/* rhsc = rhsc0+Mlim+Mx*xk+Mu1*uk1+Mvv; */

for (i = 0; i < rows_rhsc0; i++) {

accum[0] = 0.0;

accum[0] += mxGetPr(prhs_MPC2[7])[i]

+mxGetPr(prhs_MPC2[8])[i]; //*rhsc0+Mlim;

for (j = 0; j < cols_Mx; j++) {

accum[0] += mxGetPr(prhs_MPC2[9])[i+j*rows_rhsc0]

*mxGetPr(prhs_MPC2[14])[j];//Mx*xk;

}

accum[0] += mxGetPr(prhs_MPC2[10])[i]

*mxGetPr(prhs_MPC2[15])[0];// Mu1*uk1;

accum[0] += mxGetPr(prhs_MPC2[11])[i];// Mvv[i];

rhsc[i] = accum[0];

75

}

/* rhsa = rhsa0-[xk’*Kx+r’*Kr+uk1’*Ku1+vKv+utarget’*Kut,0]’;*/

for (i = 0; i < rows_rhsa0-1; i++) {

accum[0] = 0.0;

for (j = 0; j < rows_xk; j++) {

accum[0] += mxGetPr(prhs_MPC2[14])[j]

*mxGetPr(prhs_MPC2[2])[j+i*rows_Kx];//xk[i]*Kx[i];

}

for (j=0; j < rows_Kr; j=j+2) {

for (k=0; k < cols_Kr; k++) {

accum[0] += mxGetPr(prhs_MPC2[17])[k]

*mxGetPr(prhs_MPC2[5])[j+k+i*rows_Kr];//r*Kr

}

}

accum[0] += mxGetPr(prhs_MPC2[3])[i]

*mxGetPr(prhs_MPC2[15])[0];//uk1[i]*Ku1[i];

for (j=0; j < rows_utarget; j++) {

accum[0] += mxGetPr(prhs_MPC2[16])[j]

*mxGetPr(prhs_MPC2[4])[j+i*rows_Kut];//utarget*Kut;

}

accum[0] += mxGetPr(prhs_MPC2[18])[i];//vKv;

accum2[0] = mxGetPr(prhs_MPC2[12])[i]-accum[0];//rhsa0-(accum);

rhsa[i] = accum2[0];

}

rhsa[rows_rhsa0] = mxGetPr(prhs_MPC2[12])[rows_rhsa0];//rhsa0;

/* basisi = [KduINV*rhsa;rhsc-MuKduINV*rhsa]; */

for (i = 0; i < rows_KduINV; i++) {

accum[0] = 0.0;

for (j = 0; j < cols_KduINV; j++) {

accum[0] += mxGetPr(prhs_MPC2[1])[i+j*rows_KduINV]

76

*rhsa[j];//KduINV*rhsa;

}

basisi[i] = accum[0];

}

for (i = rows_rhsa0; i < rows_rhsc0+rows_rhsa0; i++) {

accum2[0] = 0.0;

accum2[0] += rhsc[i-rows_rhsa0];

for (j = 0; j < cols_MuKduINV; j++) {

accum2[0] -= mxGetPr(prhs_MPC2[0])[i-rows_rhsa0+j*rows_MuKduINV]

*rhsa[j];//MuKduINV*rhsa;

}

basisi[i] = accum2[0];

}

nc = rows_rhsc0;

/* size_ibi = degrees + 1+ nc */

size_ibi = mxGetPr(prhs_MPC2[19])[0] + 1 + nc;

/* Allocates memory, initialising each element to zero */

ibi_tmp = mxCreateDoubleMatrix(size_ibi,1,mxREAL);

ili_tmp = mxCreateDoubleMatrix(size_ibi,1,mxREAL);

ibi = mxGetPr(ibi_tmp);

ili = mxGetPr(ili_tmp);

for (i = 0; i < size_ibi; i++) {

ibi[i] = -(1+i);

}

for (i = 0; i < size_ibi; i++) {

ili[i] = -ibi[i];

}

///

// OPTIMISATION WITH RESPECT TO COST-FUNCTION. CALL TO DANTZGMP, A

// QP-SOLVER

rhs_d[0] = prhs_MPC2[13];//TAB;

rhs_d[1] = basisi_tmp;

rhs_d[2] = ibi_tmp;

77

rhs_d[3] = ili_tmp;

dantzgmp_1(4, lhs_d, 4, rhs_d);

basis_tmp = lhs_d[0];

ib_tmp = lhs_d[1];

il_tmp = lhs_d[2];

iter_tmp = lhs_d[3];

///

/* Assign pointers to allocated memory */

basis = mxGetPr(basis_tmp);

ib = mxGetPr(ib_tmp);

il = mxGetPr(il_tmp);

iter = mxGetPr(iter_tmp);

if (*iter >= 0) {

feasible[0] = 1;

for (i=0;i<mxGetPr(prhs_MPC2[19])[0]+1;i++) { // degrees + 1

if (il[i] <= 0) {

zopt1[i] = mxGetPr(prhs_MPC2[6])[i];//zmin[i];

}

else {

zopt1[i] = basis[i]+mxGetPr(prhs_MPC2[6])[i];//basis+zmin;

}

}

}

else {

mexWarnMsgTxt("Warning: Constraints are overly stringent");

}

for (i=mxGetPr(prhs_MPC2[19])[0]+1;i<mxGetPr(prhs_MPC2[19])[0]+2;i++) {

epsslack[0] = zopt1[i];//degrees+1

}

for (i=0;i<mxGetPr(prhs_MPC2[19])[0];i++) {

zopt[i] = zopt1[i];

}

}

///

/*************** ASSIGN POINTERS TO EACH OUTPUT ***************/

plhs_MPC2[0]=zopt_tmp;

78

plhs_MPC2[1]=epsslack_tmp;

plhs_MPC2[2]=feasible_tmp;

}

///

/*************** DESTROY ALLOCATED MEMORY ******************/

//mxDestroyArray(accum_tmp);

/**/

/********************** End Of File *****************************/

/**/

79

Appendix C

DANTZIG-routine

// Gateway to DANTZGMP c-mex routine.

// N. L. Ricker, 12/98

// MATLAB calling format:

// [bas,ib,il,iter,tab]=dantzgmp(tabi,basi,ibi,ili)

// Inputs:

// tabi : initial tableau

// basi : initial basis

// ibi : initial setting of ib

// ili : initial setting of il

// Outputs:

// bas : final basis vector

// ib : index vector for the variables -- see examples

// il : index vector for the lagrange multipliers -- see examples

// iter : iteration counter

// tab : final tableau

#include "math.h"

#include "mex.h" #include "dantzgmp.h"

void dantzgmp_1(int nlhs,mxArray *plhs[],int nrhs,const mxArray

*prhs[]) {

double *tabi, *basi, *ibi, *ili;

int M, N, rows, cols,iret;

int nuc=0; int i, j;

int MN = 0;

80

long len;

mxArray *ptrs[5];

double *bas, *ib, *il, *iter, *tab;

integer *ibint, *ilint;

integer buflen;

// Verify correct number of input and output arguments.

if (nrhs != 4)

mexErrMsgTxt("You must supply 4 input variables.\n");

tabi = mxGetPr(prhs[0]);

basi = mxGetPr(prhs[1]);

ibi = mxGetPr(prhs[2]);

ili = mxGetPr(prhs[3]);

if (nlhs < 3)

mexErrMsgTxt("You must supply at least 3 output variables.\n");

// Error checking on inputs

// Checking TABI

M = mxGetM(prhs[0]);

N = mxGetN(prhs[0]);

if (M <= 0 || N <= 0)

mexErrMsgTxt("TABI is empty.\n");

// Checking BASI

rows = mxGetM(prhs[1]);

cols = mxGetN(prhs[1]);

len = max(rows,cols);

if (min(rows,cols) != 1 || len != M)

mexErrMsgTxt("BASI must be a vector, length = number of rows in TABI.\n");

// Checking IBI

rows = mxGetM(prhs[2]);

cols = mxGetN(prhs[2]);

len = max(rows,cols);

if (min(rows,cols) != 1 || len != M)

mexErrMsgTxt("IBI must be a vector, length = number of rows in TABI.\n");

// Checking ILI

rows = mxGetM(prhs[3]);

cols = mxGetN(prhs[3]);

len = max(rows,cols);

if (min(rows,cols) != 1 || len != M)

mexErrMsgTxt("ILI must be a vector, length = number of rows in TABI.\n");

81

// Allocate space for output variables and define corresponding C pointers

ptrs[0] = mxCreateDoubleMatrix(M, 1, mxREAL);

bas = mxGetPr(ptrs[0]);

ptrs[1] = mxCreateDoubleMatrix(M, 1, mxREAL);

ib = mxGetPr(ptrs[1]);

ptrs[2] = mxCreateDoubleMatrix(M, 1, mxREAL);

il = mxGetPr(ptrs[2]);

ptrs[3] = mxCreateDoubleMatrix(1, 1, mxREAL);

iter = mxGetPr(ptrs[3]);

ptrs[4] = mxCreateDoubleMatrix(M, N, mxREAL);

tab = mxGetPr(ptrs[4]);

// We have to convert ib and il from double to integer and vice-versa.

// Allocate arrays for storing the integer versions.

buflen = M * sizeof(*ibint);

ibint = (integer *) mxMalloc(buflen);

// Pointer to integer version of ib

ilint = (integer *) mxMalloc(buflen);

// Pointer to integer version of il

// Initialization

for (i=0; i<M; i++) {

bas[i] = basi[i];

ibint[i] = (integer) ibi[i];

ilint[i] = (integer) ili[i];

}

for (j=0; j<N; j++) {

for (i=0; i<M; i++) {

tab[MN] = tabi[MN];

MN++;

}

}

// Call DANTZG for the calculations

iret = dantzg(tab, &N, &N, &nuc, bas, ibint, ilint);

// Store number of iterations.

*iter = (double) iret;

// Return results to MATLAB. First convert integer versions

82

// of ib and il back to real, then set pointers to outputs.

for (i=0; i<M; i++) {

ib[i] = (double) ibint[i];

il[i] = (double) ilint[i];

}

for (i=0; i<nlhs; i++) {

plhs[i] = ptrs[i];

}

}

/* Subroutine */ int dantzg(doublereal *a, int *ndim, int *n, int

*nuc, doublereal *bv, integer *ib, integer *il) {

/* System generated locals */

integer a_dim1, a_offset, i__1;

/* Local variables */

integer ichk, iter;

doublereal rmin, test;

integer iout, i, ichki, ic, ir, nt, istand, irtest;

extern /* Subroutine */ int trsimp_(doublereal *, int *, integer *, int *,

doublereal *, integer *, integer *);

integer iad;

doublereal val, rat;

int iret=-1;

/* *** */

/* VERSION MODIFIED 1/88 BY NL RICKER */ /* Modified 12/98 by NL

Ricker for use as MATLAB MEX file */

/* *** */

/* DANTZIG QUADRATIC PROGRAMMING ALGORITHM. */

/* N.L. RICKER 6/83 */

/* ASSUMES THAT THE INPUT VARIABLES REPRESENT A FEASIBLE INITIAL

/ / BASIS SET. */

/* N NUMBER OF CONSTRAINED VARIABLES (INCLUDING SLACK

VARIABLES).*/

83

/* NUC NUMBER OF UNCONSTRAINED VARIABLES, IF ANY */

/* BV VECTOR OF VALUES OF THE BASIS VARIABLES. THE LAST NUC */ /*

ELEMENTS WILL ALWAYS BE KEPT IN THE BASIS AND WILL NOT */ /* BE

CHECKED FOR FEASIBILITY. */

/* IB INDEX VECTOR, N ELEMENTS CORRESPONDING TO THE N VARIABLES.

/ / IF IB(I) IS POSITIVE, THE ITH */ /* VARIABLE IS BASIC AND

BV(IB(I)) IS ITS CURRENT VALUE. */ /* IF IB(I) IS NEGATIVE, THE

ITH VARIABLE IS NON-BASIC */ /* AND -IB(I) IS ITS COLUMN NUMBER IN

THE TABLEAU. */

/* IL VECTOR DEFINED AS FOR IB BUT FOR THE N LAGRANGE

MULTIPLIERS.*/

/* A THE TABLEAU -- SEE TRSIMP DESCRIPTION. */

/* IRET IF SUCCESSFUL, CONTAINS NUMBER OF ITERATIONS REQUIRED. */

/* OTHER POSSIBLE VALUES ARE: */ /* - I NON-FEASIBLE BV(I) */ /*

-2N NO WAY TO ADD A VARIABLE TO BASIS */ /* -3N NO WAY TO DELETE A

VARIABLE FROM BASIS */ /* NOTE: THE LAST TWO SHOULD NOT OCCUR AND

INDICATE BAD INPUT*/ /* OR A BUG IN THE PROGRAM. */

/* CHECK FEASIBILITY OF THE INITIAL BASIS. */

/* Parameter adjustments */ --il; --ib; --bv; a_dim1 = *ndim;

a_offset = a_dim1 + 1; a -= a_offset;

/* Function Body */ iter = 1; nt = *n + *nuc; i__1 = *n; for (i =

1; i <= i__1; ++i) { if (ib[i] < 0 || bv[ib[i]] >= 0.f) { goto

L50; } iret = -i; goto L900; L50: ; } istand = 0; L100:

/* SEE IF WE ARE AT THE SOLUTION. */

if (istand != 0) { goto L120; } val = 0.f; iret = iter;

i__1 = *n; for (i = 1; i <= i__1; ++i) { if (il[i] < 0) { goto

L110; }

84

/* PICK OUT LARGEST NEGATIVE LAGRANGE MULTIPLIER. */

test = bv[il[i]]; if (test >= val) { goto L110; } val = test; iad

= i; ichk = il[i]; ichki = i + *n; L110: ; }

/* IF ALL LAGRANGE MULTIPLIERS WERE NON-NEGATIVE, ALL DONE. */ /*

ELSE, SKIP TO MODIFICATION OF BASIS */

if (val >= 0.f) { iret=iter; goto L900; } ic = -ib[iad]; goto

L130;

/* PREVIOUS BASIS WAS NON-STANDARD. MUST MOVE LAGRANGE */ /*

MULTIPLIER ISTAND INTO BASIS. */

L120: iad = istand; ic = -il[istand - *n];

/* CHECK TO SEE WHAT VARIABLE SHOULD BE REMOVED FROM BASIS. */

L130: ir = 0;

/* FIND SMALLEST POSITIVE RATIO OF ELIGIBLE BASIS VARIABLE TO */

/* POTENTIAL PIVOT ELEMENT. FIRST TYPE OF ELIGIBLE BASIS VARIABLE

/ / ARE THE REGULAR N VARIABLES AND SLACK VARIABLES IN THE

BASIS. */

i__1 = *n; for (i = 1; i <= i__1; ++i) { irtest = ib[i];

/* NO GOOD IF THIS VARIABLE ISN’T IN BASIS OR RESULTING PIVOT

WOULD */ /* BE ZERO. */

if (irtest < 0 || a[irtest + ic * a_dim1] == 0.f) { goto L150; }

rat = bv[irtest] / a[irtest + ic * a_dim1];

/* THE FOLLOWING IF STATEMENT WAS MODIFIED 7/88 BY NL RICKER */ /*

TO CORRECT A BUG IN CASES WHERE RAT=0. */

if (rat < 0.f || rat == 0.f && a[irtest + ic * a_dim1] < 0.f) {

goto L150; } if (ir == 0) { goto L140; } if (rat > rmin) { goto

L150; } L140: rmin = rat; ir = irtest; iout = i; L150: ; }

/* SECOND POSSIBLITY IS THE LAGRANGE MULTIPLIER OF THE VARIABLE

ADDED*/ /* TO THE MOST RECENT STANDARD BASIS. */

85

if (a[ichk + ic * a_dim1] == 0.f) { goto L170; } rat = bv[ichk] /

a[ichk + ic * a_dim1]; if (rat < 0.f) { goto L170; } if (ir == 0)

{ goto L160; } if (rat > rmin) { goto L170; } L160: ir = ichk;

iout = ichki;

L170: if (ir != 0) { goto L200; } iret = *n * -3; goto L900;

L200:

/* SET INDICES AND POINTERS */

if (iout > *n) { goto L220; } ib[iout] = -ic; goto L230; L220:

il[iout - *n] = -ic; L230: if (iad > *n) { goto L240; } ib[iad] =

ir; goto L250; L240: il[iad - *n] = ir; L250:

/* TRANSFORM THE TABLEAU */

trsimp_(&a[a_offset], ndim, &nt, n, &bv[1], &ir, &ic); ++iter;

/* WILL NEXT TABLEAU BE STANDARD? */

istand = 0; i__1 = *n; for (i = 1; i <= i__1; ++i) { /* L260: */

if (ib[i] > 0 && il[i] > 0) { goto L270; } } goto L280; L270:

istand = iout + *n; L280: goto L100;

L900: return iret; } /* dantzg_ */

/* Subroutine */ int trsimp_(doublereal *a, int *ndim, integer *m,

int *n, doublereal *bv, integer *ir, integer *ic) { /* System

generated locals */ integer a_dim1, a_offset, i__1, i__2;

/* Local variables */ integer i, j; doublereal ap;

/* TRANSFORM SIMPLEX TABLEAU. SWITCH ONE BASIS VARIABLE FOR ONE */

/* NON-BASIC VARIABLE. */

/* N.L. RICKER 6/83 */

/* A SIMPLEX TABLEAU. ACTUALLY DIMENSIONED FOR NDIM ROWS IN */ /*

THE CALLING PROGRAM. IN THIS PROCEDURE, ONLY THE A(M,N) */ /*

86

SPACE IS USED. */

/* NDIM ACTUAL ROW DIMENSION OF A IN THE CALLING PROGRAM */

/* M NUMBER OF ROWS IN THE TABLEAU */

/* N NUMBER OF COLUMNS IN THE TABLEAU */

/* BV VECTOR OF M BASIS VARIABLE VALUES */

/* IR ROW IN TABLEAU CORRESPONDING TO THE BASIC VARIABLE THAT */

/* IS TO BECOME NON-BASIC */

/* IC COLUMN IN TABLEAU CORRESPONDING TO THE NON-BASIC VARIABLE */

/* THAT IS TO BECOME BASIC. */

/* FIRST CALCULATE NEW VALUES FOR THE NON-PIVOT ELEMENTS. */

/* Parameter adjustments */ --bv; a_dim1 = *ndim; a_offset =

a_dim1 + 1; a -= a_offset;

/* Function Body */ i__1 = *m; for (i = 1; i <= i__1; ++i) { if (i

== *ir) { goto L110; } ap = a[i + *ic * a_dim1] / a[*ir + *ic *

a_dim1]; bv[i] -= bv[*ir] * ap; i__2 = *n; for (j = 1; j <= i__2;

++j) { if (j == *ic) { goto L100; } a[i + j * a_dim1] -= a[*ir + j

* a_dim1] * ap; L100: ; } L110: ; }

/* NOW TRANSFORM THE PIVOT ROW AND PIVOT COLUMN. */

ap = a[*ir + *ic * a_dim1]; i__1 = *m; for (i = 1; i <= i__1; ++i)

{ a[i + *ic * a_dim1] = -a[i + *ic * a_dim1] / ap; /* L120: */ }

bv[*ir] /= ap; i__1 = *n; for (j = 1; j <= i__1; ++j) { a[*ir + j

* a_dim1] /= ap; /* L130: */ } a[*ir + *ic * a_dim1] = 1.f / ap;

return 0; } /* trsimp_ */

87

Appendix D

S-function written in C

/**

Module: MPC_controller Notices: Written 2001 Thomas Haugan

**/

//

//* This S-function is compiled as a wrapper s-function. Calls MPC2. *//

//* Uses state space representation of the system, and a QP solver to*//

//* solve the optimisation problem. Parameters needed are taken from *//

//* init.m which is run automatically before simulation *//

//

#define S_FUNCTION_NAME MPC_S_controller_3 // Name of the

file

/* Level 2 is made for Simulink 2.2, takes advantage of new

features */ #define S_FUNCTION_LEVEL 2

/* Definition of Simstruct and its associated macros. Includes

mex.h and matrix.h */ #include "simstruc.h" #include "dantzgmp.h"

//#include <stdlib.h>

void MPC2(real_T *zopt,real_T *zopt1,real_T *accum,real_T

*accum2,real_T *rhsc,real_T *rhsa, real_T *epsslack,real_T

*feasible,real_T *bas,real_T *ib,real_T *il,real_T *iter,real_T

*tab, int nrhs,const mxArray *prhs_MPC2[21]);

void dantzgmp_1(real_T *bas,real_T *ib,real_T *il, real_T

*iter,real_T *tab, int nrhs,const mxArray *prhs[]);

88

//

/* Number of expected parameters */

#define NPARAMS 34

/* Defining the parameters needed in code execution */

#define PAR_A(S) ssGetSFcnParam(S,0)

#define PAR_B(S) ssGetSFcnParam(S,1)

#define PAR_C(S) ssGetSFcnParam(S,2)

#define PAR_D(S) ssGetSFcnParam(S,3)

#define PAR_Cm(S) ssGetSFcnParam(S,4)

#define PAR_Dv(S) ssGetSFcnParam(S,5)

#define PAR_Dvm(S) ssGetSFcnParam(S,6)

#define PAR_Bu(S) ssGetSFcnParam(S,7)

#define PAR_Bv(S) ssGetSFcnParam(S,8)

#define PAR_myindex(S) ssGetSFcnParam(S,9)

#define PAR_mdindex(S) ssGetSFcnParam(S,10)

#define PAR_mvindex(S) ssGetSFcnParam(S,11)

#define PAR_nu(S) ssGetSFcnParam(S,12)

#define PAR_delay(S) ssGetSFcnParam(S,13)

#define PAR_Ts(S) ssGetSFcnParam(S,14)

#define PAR_degrees(S) ssGetSFcnParam(S,15)

#define PAR_L(S) ssGetSFcnParam(S,16)

/* Parameters which are given to MPC2 */

#define PAR_MuKduINV(S) ssGetSFcnParam(S,17)

#define PAR_KduINV(S) ssGetSFcnParam(S,18)

#define PAR_Kx(S) ssGetSFcnParam(S,19)

#define PAR_Ku1(S) ssGetSFcnParam(S,20)

#define PAR_Kut(S) ssGetSFcnParam(S,21)

#define PAR_Kr(S) ssGetSFcnParam(S,22)

#define PAR_zmin(S) ssGetSFcnParam(S,23)

#define PAR_rhsc0(S) ssGetSFcnParam(S,24)

#define PAR_Mlim(S) ssGetSFcnParam(S,25)

#define PAR_Mx(S) ssGetSFcnParam(S,26)

#define PAR_Mu1(S) ssGetSFcnParam(S,27)

#define PAR_Mvv(S) ssGetSFcnParam(S,28)

#define PAR_rhsa0(S) ssGetSFcnParam(S,29)

#define PAR_TAB(S) ssGetSFcnParam(S,30)

#define PAR_utarget(S) ssGetSFcnParam(S,31)

#define PAR_vKv(S) ssGetSFcnParam(S,32)

#define PAR_isunconstr(S) ssGetSFcnParam(S,33)

89

//

/* ADDITIONAL PARAMETERS, ARRAY OF POINTERS IN FUNCTION CALL OF

MPC2 */

const mxArray *prhs_MPC2[21];

//

/* Function: mdlInitializeSizes

===

* Abstract:

* Setup sizes of the various vectors. The sizes information is used

* by Simulink to determine the S-function block’s characteristics

* (number of inputs, outputs, states etc.)

*/

static void mdlInitializeSizes (SimStruct *S) /*Initialise the

sizes array*/ {

ssSetNumContStates(S, 0); /* Number of continous states */

ssSetNumDiscStates(S, 0); /* Number of discrete states */

/* The input port should have width "dynamically sized" and direct feedthrough */

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S,0,DYNAMICALLY_SIZED);

ssSetInputPortDirectFeedThrough(S,0,1);

/* The Simulink-Block should have ONE output port for the control signal u */

if (!ssSetNumOutputPorts(S,1)) return;

/* The output port (u) should have width 1 */

ssSetOutputPortWidth(S, 0, 1);

/* Two pointers, one to lastx, second to lastu. Values saved for next run */

ssSetNumPWork(S,16);

ssSetNumSampleTimes(S, 1); /* Number of sample times */

ssSetNumSFcnParams(S, NPARAMS); /* Number of extra input parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))

{

return; /* Parameter mismatch will be reported by Simulink */

90

}

}

//

/* Function: mdlInitializeSampleTimes

===

* Abstract:

* S-function is continuous, fixed in minor time steps.

*/

static void mdlInitializeSampleTimes(SimStruct *S) /*Initialise

sample times array*/ {

real_T *Ts = mxGetPr(PAR_Ts(S));

if (Ts[0] > 0) {

ssSetSampleTime(S, 0, Ts[0]); // If Ts is given a value,

// then use this, otherwise inherited

}

else {

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

}

ssSetOffsetTime(S, 0, 0.0);

}

///

/* Function: mdlInitializeConditions

==

* Abstract:

* The states are stored in the lastx vector, initialize it to zero

* The lastt stores t at last sample time, used to check if sample time is up

* The lastu stores the last computed control move, used in measurement update

*/

#define MDL_INITIALIZE_CONDITIONS /* Change to #undef to remove

function */ #if defined(MDL_INITIALIZE_CONDITIONS)

static void mdlInitializeConditions(SimStruct *S)

{

int_T nStates = mxGetN(PAR_A(S));

int_T rows_rhsc0 = mxGetM(PAR_rhsc0(S));

int_T rows_rhsa0 = mxGetM(PAR_rhsa0(S));

int_T rows_xk = mxGetM(PAR_A(S));

int_T M = mxGetM(PAR_TAB(S));

91

int_T N = mxGetN(PAR_TAB(S));

//printf("\nsize_ibi er = %i ", size_ibi);

//

/*************** ALLOCATE DYNAMIC MEMORY FOR VARIABLES **************/

/* Abstract:

* mxCalloc initializes each element in the allocated memory to zero.

*/

ssGetPWork(S)[0] = calloc(nStates,sizeof(real_T));

ssGetPWork(S)[1] = calloc(1,sizeof(real_T));

ssGetPWork(S)[2] = calloc(rows_rhsa0,sizeof(real_T));

ssGetPWork(S)[3] = calloc(rows_rhsa0,sizeof(real_T));

ssGetPWork(S)[4] = calloc(1,sizeof(real_T));

ssGetPWork(S)[5] = calloc(1,sizeof(real_T));

ssGetPWork(S)[6] = calloc(rows_rhsc0,sizeof(real_T));

ssGetPWork(S)[7] = calloc(rows_xk,sizeof(real_T));

ssGetPWork(S)[8] = calloc(rows_rhsa0+rows_rhsc0,sizeof(real_T));

ssGetPWork(S)[9] = calloc(1,sizeof(real_T));

ssGetPWork(S)[10] = calloc(1,sizeof(real_T));

ssGetPWork(S)[11] = calloc(M,sizeof(real_T));

ssGetPWork(S)[12] = calloc(M,sizeof(real_T));

ssGetPWork(S)[13] = calloc(M,sizeof(real_T));

ssGetPWork(S)[14] = calloc(1,sizeof(real_T));

ssGetPWork(S)[15] = calloc(M*N,sizeof(real_T));

}

#endif /* MDL_INITIALIZE_CONDITIONS */

///

/* Function: mdlOutputs

===

* Abstract:

* This part is executed when flag value past from Simulink is 3.

* The calculation of the control move, and call to MPC2, which again

* calls QP-solver Dantzgmp is done in this section.

*/

static void mdlOutputs(SimStruct *S, int_T tid) {

/**** Parameters taken from workspace, pointers: ****/

real_T *A = mxGetPr(PAR_A(S));

92

real_T *B = mxGetPr(PAR_B(S));

real_T *C = mxGetPr(PAR_C(S));

real_T *D = mxGetPr(PAR_D(S));

real_T *Cm = mxGetPr(PAR_Cm(S));

real_T *Dv = mxGetPr(PAR_Dv(S));

real_T *Dvm = mxGetPr(PAR_Dvm(S));

real_T *Bu = mxGetPr(PAR_Bu(S));

real_T *Bv = mxGetPr(PAR_Bv(S));

real_T *myindex = mxGetPr(PAR_myindex(S));

real_T *mdindex = mxGetPr(PAR_mdindex(S));

real_T *mvindex = mxGetPr(PAR_mvindex(S));

int *nu = (int *)mxGetPr(PAR_nu(S));

real_T *delay = mxGetPr(PAR_delay(S));

real_T *Ts = mxGetPr(PAR_Ts(S));

int_T degrees = (int)(mxGetPr(PAR_degrees(S))[0]);

real_T *L = mxGetPr(PAR_L(S));

/************************* Locals ****************************/

int_T nStates = mxGetN(PAR_A(S));

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *u_out = ssGetOutputPortRealSignal(S,0);

//

//***************** CONSTRUCTING TEMPORARY MXARRAYS *****************//

mxArray *y_tmp,*r_tmp,*v_tmp,*xk1_tmp,*xk2_tmp,*uk1_tmp;

mxArray *yest_tmp,*xk_tmp,*uk_tmp,*basisi_tmp;

real_T *zopt1,*accum,*accum2,*rhsc,*rhsa,*basisi,*epsslack,*feasible;

real_T *bas, *ib, *il, *iter, *tab;

//

//********************** LOCALS **********************//

real_T *y,*r,*v,*xk1,*xk2,*uk1,*yest,*xk,*zopt,*uk,*lastx,*lastu;

int size_lastx,nym,ny,nv,rows_Cm,rows_L,rows_A;

int_T i, j, k;

int cols_A,cols_L,cols_Cm;

int_T size_yrd,size_lastu;

//

/*********** ACCESS PARAMETERS USED IN MEMORY ALLOCATION *************/

size_yrd = ssGetInputPortWidth(S,0);

size_lastu = ssGetOutputPortWidth(S,0);

nym = mxGetN(PAR_myindex(S)); // # cols in myindex

93

ny = mxGetM(PAR_D(S)); // # rows in D

nv = mxGetN(PAR_mdindex(S)); // # cols in mdindex

size_lastx = nStates;

rows_Cm = mxGetM(PAR_Cm(S));

cols_Cm = mxGetN(PAR_Cm(S));

rows_L = mxGetM(PAR_L(S));

cols_L = mxGetN(PAR_L(S));

rows_A = mxGetM(PAR_A(S));

cols_A = mxGetN(PAR_A(S));

//

/********** ALLOCATE DYNAMIC MEMORY FOR VARIABLES ************/

y_tmp = mxCreateDoubleMatrix(nym,1,mxREAL);

r_tmp = mxCreateDoubleMatrix(ny,1,mxREAL);

v_tmp = mxCreateDoubleMatrix(nv,1,mxREAL);

xk1_tmp = mxCreateDoubleMatrix(size_lastx,1,mxREAL);

xk2_tmp = mxCreateDoubleMatrix(size_lastx,1,mxREAL);

uk1_tmp = mxCreateDoubleMatrix(size_lastu,1,mxREAL);

yest_tmp = mxCreateDoubleMatrix(rows_Cm,1,mxREAL);

xk_tmp = mxCreateDoubleMatrix(size_lastx,1,mxREAL);

uk_tmp = mxCreateDoubleMatrix(size_lastu,1,mxREAL);

//

/********** ASSIGN POINTERS TO EACH ALLOCATED MEMORY **********/

lastx = ssGetPWork(S)[0];

lastu = ssGetPWork(S)[1];

y = mxGetPr(y_tmp);

r = mxGetPr(r_tmp);

v = mxGetPr(v_tmp);

xk1 = mxGetPr(xk1_tmp);

xk2 = mxGetPr(xk2_tmp);

uk1 = mxGetPr(uk1_tmp);

yest = mxGetPr(yest_tmp);

xk = mxGetPr(xk_tmp);

uk = mxGetPr(uk_tmp);

///

zopt = ssGetPWork(S)[2];

zopt1 = ssGetPWork(S)[3];

accum = ssGetPWork(S)[4];

accum2 = ssGetPWork(S)[5];

rhsc = ssGetPWork(S)[6];

rhsa = ssGetPWork(S)[7];

94

basisi = ssGetPWork(S)[8];

epsslack = ssGetPWork(S)[9];

feasible = ssGetPWork(S)[10];

// for dantzgmp

bas = ssGetPWork(S)[11];

ib = ssGetPWork(S)[12];

il = ssGetPWork(S)[13];

iter = ssGetPWork(S)[14];

tab = ssGetPWork(S)[15];

//

if (size_yrd < nym){

// mexWarnMsgTxt("Wrong number of measured outputs");

}

/* Assigning values to y, r and v */

if (nym > 0){

for (i=0; i < nym; i++){

y[i]= *uPtrs[i];

}

}

if (ny > 0){

for (i=nym; i <= nym+ny; i++){

r[i-nym]= *uPtrs[i];

}

}

if (nv > 0){

for (i=nym+ny; i <= nym+ny+nv; i++){

v[i-nym-ny]= *uPtrs[i];

}

}

/* Storing the last states in xk1*/

for (i=0; i < size_lastx; i++){

xk1[i]= lastx[i];//lastx[i];

}

/* Storing the last control moves in uk1*/

for (i=0; i < size_lastu; i++){

95

uk1[i]= lastu[i];//ssGetPWork(S)[1];//lastu[i];

}

/*Measurement update. (yest=Cm*xk1+Dvm*v)*/

for (i=0; i < rows_Cm; i++) {

accum[0] = 0.0;

for (j=0; j < cols_Cm; j++) {

accum[0] += Cm[i+j*rows_Cm] * xk1[j];

}

if (nv > 0) {

for (k=0; k < nv; k++) {

accum[0] += Dvm[k] * v[k];

}

}

yest[i] = accum[0];

}

/*xk2=xk1+L(y-yest)*/

for (i=0; i < rows_L; i++) {

accum[0] = 0.0;

accum[0] += xk1[i];

for (j=0; j < cols_L; j++) {

accum[0] += L[(i+j*(rows_L))]*y[j];//nym

accum[0] += -L[(i+j*(rows_L))]*yest[j];

}

xk2[i] = accum[0];

}

//

/******** CALCULATION OF CONTROL LAW. CALL TO MPC2 ********/

prhs_MPC2[0] = PAR_MuKduINV(S);

prhs_MPC2[1] = PAR_KduINV(S);

prhs_MPC2[2] = PAR_Kx(S);

prhs_MPC2[3] = PAR_Ku1(S);

prhs_MPC2[4] = PAR_Kut(S);

prhs_MPC2[5] = PAR_Kr(S);

prhs_MPC2[6] = PAR_zmin(S);

prhs_MPC2[7] = PAR_rhsc0(S);

prhs_MPC2[8] = PAR_Mlim(S);

prhs_MPC2[9] = PAR_Mx(S);

96

prhs_MPC2[10] = PAR_Mu1(S);

prhs_MPC2[11] = PAR_Mvv(S);

prhs_MPC2[12] = PAR_rhsa0(S);

prhs_MPC2[13] = PAR_TAB(S);

prhs_MPC2[14] = xk2_tmp;

prhs_MPC2[15] = uk1_tmp;

prhs_MPC2[16] = PAR_utarget(S);

prhs_MPC2[17] = r_tmp;

prhs_MPC2[18] = PAR_vKv(S);

prhs_MPC2[19] = PAR_degrees(S);

prhs_MPC2[20] = PAR_isunconstr(S);

/* Function call of MPC2 */

MPC2(zopt,zopt1,accum,accum2,rhsc,rhsa,

epsslack,feasible,bas,ib,il,iter,tab, 21, prhs_MPC2);

//

for (i=0; i < size_lastu; i++) {

uk[i] = uk1[i] + zopt[i];

}

/*Time (or state) update. Kalman*/

/* xk = A*xk2+Bu*uk+Bv*vk; */

for (i=0; i < size_lastx; i++) {

accum[0] = 0.0;

for (j=0; j < cols_A; j++) {

accum[0] += A[i+j*rows_A]*xk2[j];

}

accum[0] += Bu[i]*uk[0];

for (k=0; k < nv; k++) {

accum[0] += Bv[k]*v[k];

}

xk[i] = accum[0];

/* Store states in RWork vector */

97

lastx[i] = xk[i];

}

//

/************** ASSIGN POINTERS TO EACH OUTPUT ***************/

for (i=0; i < size_lastu; i++) {

u_out[i] = uk[i];

/* Store control move in RWork vector */

lastu[i] = uk[i];

}

//

/*************** DESTROY ALLOCATED MEMORY ******************/

mxDestroyArray(y_tmp);

mxDestroyArray(r_tmp);

mxDestroyArray(v_tmp);

mxDestroyArray(xk1_tmp);

mxDestroyArray(xk2_tmp);

mxDestroyArray(uk1_tmp);

mxDestroyArray(yest_tmp);

mxDestroyArray(xk_tmp);

mxDestroyArray(uk_tmp);

}

//

/* Function: mdlUpdate

==

* Abstract:

* This function is called once for every major integration time step.

* Discrete states are typically updated here, but this function is useful

* for performing any tasks that should only take place once per integration

* step.

*/

static void mdlUpdate(SimStruct *S) { }

//

//////* Calculation of derivatives *//////

//

static void mdlDerivatives(double *dx, const double *x, const

double *u, SimStruct *S, int tid) { }

///

98

//////* Performs tasks at end of simulation *//////

///

static void mdlTerminate(SimStruct *S) {

int i;

for (i = 0; i<ssGetNumPWork(S); i++) {

if (ssGetPWorkValue(S,i) != NULL) {

free(ssGetPWorkValue(S,i));

}

}

}

///

#ifdef MATLAB_MEX_FILE // Is this file being compiled as a

// MEX-file?

#include "simulink.c" // MEX-file interface mechanism

#else

#include "cg_sfun.h" // Code generation registration function

#endif

/***

Module: MPC2 Notices: Written 2001 Thomas Haugan

***/

//

// This function returns the value zopt. Compute the optimal input //

// sequence by solving a QP problem //

//

void MPC2(real_T *zopt,real_T *zopt1,real_T *accum,real_T

*accum2,real_T *rhsc,real_T *rhsa, real_T *epsslack,real_T

*feasible,real_T *bas,real_T *ib,real_T *il,real_T *iter,real_T

*tab, int nrhs,const mxArray *prhs_MPC2[]) {

///

//*************** CONSTRUCTING TEMPORARY MXARRAYS ******************//

mxArray *ibi_tmp,*basisi_tmp,*ili_tmp,*basis_tmp,

*ib_tmp,*il_tmp,*iter_tmp;

///

99

//********************** LOCALS ************************//

real_T *ibi,*ili,*basis,*basisi;

int size_Kx,rows_Kx,cols_Ku1,rows_Kut,rows_utarget,rows_Kr;

int cols_Kr,cols_vKv,cols_KduINV,rows_rhsc0,cols_Mx,rows_Mu1;

int rows_rhsa0,rows_xk,nc,size_ibi,cols_Kut,rows_KduINV;

int rows_MuKduINV,cols_MuKduINV,cols_Kx,row_basisi,col_basisi;

int_T i,j,k;

//

/* Additional parameters. */

const mxArray *rhs_d[4];

//

/********* ACCESS PARAMETERS USED IN MEMORY ALLOCATION *********/

size_Kx = mxGetNumberOfElements(prhs_MPC2[2]);

rows_Kx = mxGetM(prhs_MPC2[2]);

cols_Kx = mxGetN(prhs_MPC2[2]);

cols_Ku1 = mxGetN(prhs_MPC2[3]);

rows_Kut = mxGetM(prhs_MPC2[4]);

cols_Kut = mxGetN(prhs_MPC2[4]);

rows_utarget = mxGetM(prhs_MPC2[16]);

cols_Kr = mxGetN(prhs_MPC2[5]);

rows_Kr = mxGetM(prhs_MPC2[5]);

cols_vKv = mxGetN(prhs_MPC2[18]);

cols_KduINV = mxGetN(prhs_MPC2[1]);

rows_rhsc0 = mxGetM(prhs_MPC2[7]);

cols_Mx = mxGetN(prhs_MPC2[9]);

rows_Mu1 = mxGetM(prhs_MPC2[10]);

rows_rhsa0 = mxGetM(prhs_MPC2[12]);

rows_xk = mxGetM(prhs_MPC2[14]);

rows_KduINV = mxGetM(prhs_MPC2[1]);

rows_MuKduINV = mxGetM(prhs_MPC2[0]);

cols_MuKduINV = mxGetN(prhs_MPC2[0]);

basisi_tmp = mxCreateDoubleMatrix(rows_rhsa0+rows_rhsc0,1,mxREAL);

basisi=mxGetPr(basisi_tmp);

//

if (mxGetPr(prhs_MPC2[20])[0]==1) {

// Unconstrained MPC :

/* Matrix multiplication and adding to accum */

/* zopt = -KduINV*(Kx’*xk+Ku1’*uk1+Kut’*utarget+Kr’*r+vKv’)*/

100

for (i=0; i < cols_Ku1; i++) {

accum[0] = 0.0;

if (i == 0) {

for (j=0; j < rows_Kx; j++) {

accum[0] += mxGetPr(prhs_MPC2[2])[j+cols_Kx]

*mxGetPr(prhs_MPC2[14])[j]; //Kx’*xk

}

}

else {

for (j=0; j < rows_Kx; j++) {

accum[0] += mxGetPr(prhs_MPC2[2])[j]

*mxGetPr(prhs_MPC2[14])[j]; //Kx’*xk

}

}

for (j=0; j < cols_Ku1; j++) {

accum[0] += mxGetPr(prhs_MPC2[3])[j]

*mxGetPr(prhs_MPC2[15])[0]; //Ku1*uk1

}

for (j=0; j < cols_Kut; j++) {

accum[0] += mxGetPr(prhs_MPC2[4])[i+j*rows_Kut]

*mxGetPr(prhs_MPC2[16])[j];//Kut*utarget

}

for (j=0; j < rows_Kr; j++) {

for (k=0; k < cols_Kr; k++) {

accum[0] += mxGetPr(prhs_MPC2[5])[j+k*rows_Kr]

*mxGetPr(prhs_MPC2[17])[k];//Kr*r

}

}

accum[0] += mxGetPr(prhs_MPC2[18])[i];//vKv

for (j=0; j < cols_Ku1; j++) {

accum[0] = -mxGetPr(prhs_MPC2[1])[j]

accum[0];//-(KduINV[i](accum[0])

}

zopt[i] = accum[0];

}

epsslack[0] = 0;

101

feasible[0] = 1;

}

else {

// Constrained MPC:

/* rhsc = rhsc0+Mlim+Mx*xk+Mu1*uk1+Mvv; */

for (i = 0; i < rows_rhsc0; i++) {

accum[0] = 0.0;

accum[0] += mxGetPr(prhs_MPC2[7])[i]

+ mxGetPr(prhs_MPC2[8])[i]; //*rhsc0 + Mlim;

for (j = 0; j < cols_Mx; j++) {

accum[0] += mxGetPr(prhs_MPC2[9])[i+j*rows_rhsc0]

*mxGetPr(prhs_MPC2[14])[j];//Mx*xk;

}

accum[0] += mxGetPr(prhs_MPC2[10])[i]

*mxGetPr(prhs_MPC2[15])[0];// Mu1*uk1;

accum[0] += mxGetPr(prhs_MPC2[11])[i];// Mvv[i];

rhsc[i] = accum[0];

}

/* rhsa = rhsa0-[xk’*Kx+r’*Kr+uk1’*Ku1+vKv+utarget’*Kut,0]’;*/

for (i = 0; i < rows_rhsa0-1; i++) {

accum[0] = 0.0;

for (j = 0; j < rows_xk; j++) {

accum[0] += mxGetPr(prhs_MPC2[14])[j]

*mxGetPr(prhs_MPC2[2])[j+i*rows_Kx];//xk[i]*Kx[i];

}

for (j=0; j < rows_Kr; j=j+2) {

for (k=0; k < cols_Kr; k++) {

accum[0] += mxGetPr(prhs_MPC2[17])[k]

*mxGetPr(prhs_MPC2[5])[j+k+i*rows_Kr];//r*Kr

}

}

accum[0] += mxGetPr(prhs_MPC2[3])[i]

102

*mxGetPr(prhs_MPC2[15])[0];// uk1[i]*Ku1[i];

for (j=0; j < rows_utarget; j++) {

accum[0] += mxGetPr(prhs_MPC2[16])[j]

*mxGetPr(prhs_MPC2[4])[j+i*rows_Kut];//utarget*Kut;

}

accum[0] += mxGetPr(prhs_MPC2[18])[i];//vKv[i];

accum2[0] = mxGetPr(prhs_MPC2[12])[i] - accum[0];//rhsa0-(accum);

rhsa[i] = accum2[0];

}

rhsa[rows_rhsa0] = mxGetPr(prhs_MPC2[12])[rows_rhsa0];//rhsa0;

/* basisi = [KduINV*rhsa;rhsc-MuKduINV*rhsa]; */

for (i = 0; i < rows_KduINV; i++) {

accum[0] = 0.0;

for (j = 0; j < cols_KduINV; j++) {

accum[0] += mxGetPr(prhs_MPC2[1])[i+j

*rows_KduINV]*rhsa[j];//KduINV*rhsa[j];

}

basisi[i] = accum[0];

}

for (i = rows_rhsa0; i < rows_rhsc0+rows_rhsa0; i++) {

accum2[0] = 0.0;

accum2[0] += rhsc[i-rows_rhsa0];

for (j = 0; j < cols_MuKduINV; j++) {

accum2[0] -= mxGetPr(prhs_MPC2[0])[i-rows_rhsa0+j*rows_MuKduINV]

*rhsa[j];//MuKduINV[i]*rhsa[i];

}

basisi[i] = accum2[0];

}

nc = rows_rhsc0;

/* size_ibi = degrees + 1+ nc */

103

size_ibi = mxGetPr(prhs_MPC2[19])[0] + 1 + nc;

/* Allocates memory, initialising each element to zero */

ibi_tmp = mxCreateDoubleMatrix(size_ibi,1,mxREAL);

ili_tmp = mxCreateDoubleMatrix(size_ibi,1,mxREAL);

ibi = mxGetPr(ibi_tmp);

ili = mxGetPr(ili_tmp);

for (i = 0; i < size_ibi; i++) {

ibi[i] = -(1+i);

}

for (i = 0; i < size_ibi; i++) {

ili[i] = -ibi[i];

}

///

/* OPTIMISATION WITH RESPECT TO COST-FUNCTION. CALL TO DANTZGMP, A

QP-SOLVER */

rhs_d[0] = prhs_MPC2[13];//TAB;

rhs_d[1] = basisi_tmp;

rhs_d[2] = ibi_tmp;

rhs_d[3] = ili_tmp;

dantzgmp_1(bas,ib,il,iter,tab, 4, rhs_d);

///

if (iter[0] >= 0) {

feasible[0] = 1;

for (i=0;i<mxGetPr(prhs_MPC2[19])[0]+1;i++) { //degrees + 1

if (il[i] <= 0) {

zopt1[i] = mxGetPr(prhs_MPC2[6])[i];//zmin[i];

}

else {

zopt1[i] =bas[i]

+mxGetPr(prhs_MPC2[6])[i];//basis+zmin;

}

}

104

}

else {

mexWarnMsgTxt("Warning: Constraints are overly stringent");

}

for (i=mxGetPr(prhs_MPC2[19])[0]+1;i<mxGetPr(prhs_MPC2[19])[0]+2;i++) {

epsslack[0] = zopt1[i];//degrees+1

}

for (i=0;i<mxGetPr(prhs_MPC2[19])[0];i++) {

zopt[i] = zopt1[i];

}

}

//

/***************** DESTROY ALLOCATED MEMORY *******************/

mxDestroyArray(ibi_tmp);

mxDestroyArray(ili_tmp);

}

/**/

// Module: dantzgmp

// Notices: N. L. Ricker, 12/98

// Modified 5/01 Thomas Haugan for use with xPC Target. MATLAB R12

/**/

// Gateway to DANTZGMP c-mex routine.

// N. L. Ricker, 12/98

// MATLAB calling format:

// [bas,ib,il,iter,tab]=dantzgmp(tabi,basi,ibi,ili)

// Inputs:

// tabi : initial tableau

// basi : initial basis

// ibi : initial setting of ib

105

// ili : initial setting of il

// Outputs:

// bas : final basis vector

// ib : index vector for the variables -- see examples

// il : index vector for the lagrange multipliers -- see examples

// iter : iteration counter

// tab : final tableau

//#include "dantzgmp.h"

void dantzgmp_1(real_T *bas,real_T *ib,real_T *il,real_T

*iter,real_T *tab,int nrhs,const mxArray *prhs[]) {

double *tabi, *basi, *ibi, *ili; int M, N, rows, cols, iret;

int nuc=0;

int i, j;

int MN = 0;

long len;

mxArray *ptrs[5];

integer *ibint, *ilint, buflen;

// Verify correct number of input and output arguments.

// if (nrhs != 4);

// mexErrMsgTxt("You must supply 4 input variables.\n");

tabi = mxGetPr(prhs[0]);

basi = mxGetPr(prhs[1]);

ibi = mxGetPr(prhs[2]);

ili = mxGetPr(prhs[3]);

//if (nlhs < 3);

// mexErrMsgTxt("You must supply at least 3 output variables.\n");

// Error checking on inputs

// Checking TABI

M = mxGetM(prhs[0]);

N = mxGetN(prhs[0]);

if (M <= 0 || N <= 0) ;

//mexErrMsgTxt("TABI is empty.\n");

// Checking BASI

rows = mxGetM(prhs[1]);

106

cols = mxGetN(prhs[1]);

len = max(rows,cols);

if (min(rows,cols) != 1 || len != M) ;

//mexErrMsgTxt("BASI must be a vector, length = number of rows in TABI.\n");

// Checking IBI

rows = mxGetM(prhs[2]);

cols = mxGetN(prhs[2]);

len = max(rows,cols);

if (min(rows,cols) != 1 || len != M) ;

//mexErrMsgTxt("IBI must be a vector, length = number of rows in TABI.\n");

// Checking ILI

rows = mxGetM(prhs[3]);

cols = mxGetN(prhs[3]);

len = max(rows,cols);

if (min(rows,cols) != 1 || len != M) ;

//mexErrMsgTxt("ILI must be a vector, length = number of rows in TABI.\n");

// Allocate space for output variables and define corresponding C pointers

//** Changed 31/5-01 by Thomas Haugan. **//

//** Allocated work-vectors in S-function initialization. The work- **//

//** vectors are deallocated at termination of the simulation **//

// We have to convert ib and il from double to integer and vice-versa.

// Allocate arrays for storing the integer versions.

buflen = M * sizeof(*ibint);

ibint = (integer *) mxMalloc(buflen);

// Pointer to integer version of ib

ilint = (integer *)mxMalloc(buflen); // Pointer to integer version of il

// Initialization

for (i=0; i<M; i++) {

bas[i] = basi[i];

ibint[i] = (integer) ibi[i];

ilint[i] = (integer) ili[i];

}

for (j=0; j<N; j++) {

for (i=0; i<M; i++) {

tab[MN] = tabi[MN];

107

MN++;

}

}

// Call DANTZG for the calculations

iret = dantzg(tab, &N, &N, &nuc, bas, ibint, ilint);

// Store number of iterations.

*iter = (double) iret;

// Return results to MATLAB. First convert integer versions

// of ib and il back to real, then set pointers to outputs.

for (i=0; i<M; i++) { ib[i] = (double) ibint[i]; il[i] = (double)

ilint[i]; }

//

/************ DESTROY LOCALLY ALLOCATED MEMORY *************/

mxFree(ibint);

mxFree(ilint);

//

}

/* Subroutine */

int dantzg(doublereal *a, int *ndim, int *n, int

*nuc, doublereal *bv, integer *ib, integer *il) {

/* System generated locals */

integer a_dim1, a_offset, i__1;

/* Local variables */

integer ichk, iter;

doublereal rmin, test;

integer iout, i, ichki, ic, ir, nt, istand, irtest;

extern /* Subroutine */ int trsimp_(doublereal *, int *, integer *, int *,

doublereal *, integer *, integer *);

integer iad; doublereal val, rat;

int iret=-1;

/* ** */

// VERSION MODIFIED 1/88 BY NL RICKER

108

// Modified 12/98 by NL Ricker for use as MATLAB MEX file

/* ** */

/* DANTZIG QUADRATIC PROGRAMMING ALGORITHM. */

/* N.L. RICKER 6/83 */

/* ASSUMES THAT THE INPUT VARIABLES REPRESENT A FEASIBLE INITIAL

/ / BASIS SET. */

/* N NUMBER OF CONSTRAINED VARIABLES (INCLUDING SLACK

VARIABLES).*/

/* NUC NUMBER OF UNCONSTRAINED VARIABLES, IF ANY */

/* BV VECTOR OF VALUES OF THE BASIS VARIABLES. THE LAST NUC */ /*

ELEMENTS WILL ALWAYS BE KEPT IN THE BASIS AND WILL NOT */ /* BE

CHECKED FOR FEASIBILITY. */

/* IB INDEX VECTOR, N ELEMENTS CORRESPONDING TO THE N VARIABLES.

/ / IF IB(I) IS POSITIVE, THE ITH */ /* VARIABLE IS BASIC AND

BV(IB(I)) IS ITS CURRENT VALUE. */ /* IF IB(I) IS NEGATIVE, THE

ITH VARIABLE IS NON-BASIC */ /* AND -IB(I) IS ITS COLUMN NUMBER IN

THE TABLEAU. */

/* IL VECTOR DEFINED AS FOR IB BUT FOR THE N LAGRANGE

MULTIPLIERS.*/

/* A THE TABLEAU -- SEE TRSIMP DESCRIPTION. */

/* IRET IF SUCCESSFUL, CONTAINS NUMBER OF ITERATIONS REQUIRED. */

/* OTHER POSSIBLE VALUES ARE: */ /* - I NON-FEASIBLE BV(I) */ /*

-2N NO WAY TO ADD A VARIABLE TO BASIS */ /* -3N NO WAY TO DELETE A

VARIABLE FROM BASIS */ /* NOTE: THE LAST TWO SHOULD NOT OCCUR AND

INDICATE BAD INPUT*/ /* OR A BUG IN THE PROGRAM. */

/* CHECK FEASIBILITY OF THE INITIAL BASIS. */

/* Parameter adjustments */ --il; --ib; --bv; a_dim1 = *ndim;

109

a_offset = a_dim1 + 1; a -= a_offset;

/* Function Body */ iter = 1; nt = *n + *nuc; i__1 = *n; for (i =

1; i <= i__1; ++i) { if (ib[i] < 0 || bv[ib[i]] >= 0.f) { goto

L50; } iret = -i; goto L900; L50: ; } istand = 0; L100:

/* SEE IF WE ARE AT THE SOLUTION. */

if (istand != 0) { goto L120; } val = 0.f; iret = iter;

i__1 = *n; for (i = 1; i <= i__1; ++i) { if (il[i] < 0) { goto

L110; }

/* PICK OUT LARGEST NEGATIVE LAGRANGE MULTIPLIER. */

test = bv[il[i]]; if (test >= val) { goto L110; } val = test; iad

= i; ichk = il[i]; ichki = i + *n; L110: ; }

/* IF ALL LAGRANGE MULTIPLIERS WERE NON-NEGATIVE, ALL DONE. */ /*

ELSE, SKIP TO MODIFICATION OF BASIS */

if (val >= 0.f) { iret=iter; goto L900; } ic = -ib[iad]; goto

L130;

/* PREVIOUS BASIS WAS NON-STANDARD. MUST MOVE LAGRANGE */ /*

MULTIPLIER ISTAND INTO BASIS. */

L120: iad = istand; ic = -il[istand - *n];

/* CHECK TO SEE WHAT VARIABLE SHOULD BE REMOVED FROM BASIS. */

L130: ir = 0;

/* FIND SMALLEST POSITIVE RATIO OF ELIGIBLE BASIS VARIABLE TO */

/* POTENTIAL PIVOT ELEMENT. FIRST TYPE OF ELIGIBLE BASIS VARIABLE

/ / ARE THE REGULAR N VARIABLES AND SLACK VARIABLES IN THE

BASIS. */

i__1 = *n; for (i = 1; i <= i__1; ++i) { irtest = ib[i];

/* NO GOOD IF THIS VARIABLE ISN’T IN BASIS OR RESULTING PIVOT

WOULD */ /* BE ZERO. */

110

if (irtest < 0 || a[irtest + ic * a_dim1] == 0.f) { goto L150; }

rat = bv[irtest] / a[irtest + ic * a_dim1];

/* THE FOLLOWING IF STATEMENT WAS MODIFIED 7/88 BY NL RICKER */ /*

TO CORRECT A BUG IN CASES WHERE RAT=0. */

if (rat < 0.f || rat == 0.f && a[irtest + ic * a_dim1] < 0.f) {

goto L150; } if (ir == 0) { goto L140; } if (rat > rmin) { goto

L150; } L140: rmin = rat; ir = irtest; iout = i; L150: ; }

/* SECOND POSSIBLITY IS THE LAGRANGE MULTIPLIER OF THE VARIABLE

ADDED*/ /* TO THE MOST RECENT STANDARD BASIS. */

if (a[ichk + ic * a_dim1] == 0.f) { goto L170; } rat = bv[ichk] /

a[ichk + ic * a_dim1]; if (rat < 0.f) { goto L170; } if (ir == 0)

{ goto L160; } if (rat > rmin) { goto L170; } L160: ir = ichk;

iout = ichki;

L170: if (ir != 0) { goto L200; } iret = *n * -3; goto L900;

L200:

/* SET INDICES AND POINTERS */

if (iout > *n) { goto L220; } ib[iout] = -ic; goto L230; L220:

il[iout - *n] = -ic; L230: if (iad > *n) { goto L240; } ib[iad] =

ir; goto L250; L240: il[iad - *n] = ir; L250:

/* TRANSFORM THE TABLEAU */

trsimp_(&a[a_offset], ndim, &nt, n, &bv[1], &ir, &ic); ++iter;

/* WILL NEXT TABLEAU BE STANDARD? */

istand = 0; i__1 = *n; for (i = 1; i <= i__1; ++i) { /* L260: */

if (ib[i] > 0 && il[i] > 0) { goto L270; } } goto L280; L270:

istand = iout + *n; L280: goto L100;

L900: return iret; } /* dantzg_ */

/* Subroutine */ int trsimp_(doublereal *a, int *ndim, integer *m,

111

int *n, doublereal *bv, integer *ir, integer *ic) { /* System

generated locals */ integer a_dim1, a_offset, i__1, i__2;

/* Local variables */ integer i, j; doublereal ap;

/* TRANSFORM SIMPLEX TABLEAU. SWITCH ONE BASIS VARIABLE FOR ONE */

/* NON-BASIC VARIABLE. */

/* N.L. RICKER 6/83 */

/* A SIMPLEX TABLEAU. ACTUALLY DIMENSIONED FOR NDIM ROWS IN */ /*

THE CALLING PROGRAM. IN THIS PROCEDURE, ONLY THE A(M,N) */ /*

SPACE IS USED. */

/* NDIM ACTUAL ROW DIMENSION OF A IN THE CALLING PROGRAM */

/* M NUMBER OF ROWS IN THE TABLEAU */

/* N NUMBER OF COLUMNS IN THE TABLEAU */

/* BV VECTOR OF M BASIS VARIABLE VALUES */

/* IR ROW IN TABLEAU CORRESPONDING TO THE BASIC VARIABLE THAT */

/* IS TO BECOME NON-BASIC */

/* IC COLUMN IN TABLEAU CORRESPONDING TO THE NON-BASIC VARIABLE */

/* THAT IS TO BECOME BASIC. */

/* FIRST CALCULATE NEW VALUES FOR THE NON-PIVOT ELEMENTS. */

/* Parameter adjustments */ --bv; a_dim1 = *ndim; a_offset =

a_dim1 + 1; a -= a_offset;

/* Function Body */ i__1 = *m; for (i = 1; i <= i__1; ++i) { if (i

== *ir) { goto L110; } ap = a[i + *ic * a_dim1] / a[*ir + *ic *

a_dim1]; bv[i] -= bv[*ir] * ap; i__2 = *n; for (j = 1; j <= i__2;

++j) { if (j == *ic) { goto L100; } a[i + j * a_dim1] -= a[*ir + j

* a_dim1] * ap; L100: ; } L110: ; }

112

/* NOW TRANSFORM THE PIVOT ROW AND PIVOT COLUMN. */

ap = a[*ir + *ic * a_dim1]; i__1 = *m; for (i = 1; i <= i__1; ++i)

{ a[i + *ic * a_dim1] = -a[i + *ic * a_dim1] / ap; /* L120: */ }

bv[*ir] /= ap; i__1 = *n; for (j = 1; j <= i__1; ++j) { a[*ir + j

* a_dim1] /= ap; /* L130: */ } a[*ir + *ic * a_dim1] = 1.f / ap;

return 0; } /* trsimp_ */

113

Appendix E

Photos of “Ball & Plate” system

Figure E.1: Photo of “Ball & Plate” system.

Figure E.2: Photo of “Ball & Plate” system.

114

Figure E.3: Photo of “Ball & Plate” system.

Figure E.4: Photo of ball tracking a circle reference.

115

