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ABSTRACT

One popular control strategy of model predictive control is General Predictive Control (GPC).
Background and theory was studied for the GPC algorithm. The GPC algorithm was tested in
both an experimental SISO case and a simulated MIMO case.

The experimental case was carried out on a shell-and-tube heat exchanger while the simulated
case consisted two coupled distillations columns and was carried out in HYSYS.Plant.

ARX-model were used to describe the processes and they were developed from PRBS-data. The
models were updated by an adapter. The adapter was based on recursive least square method.

The SISO GPC showed excellent control with relatively fast rise-time, almost no overshoot and
smooth actions on the control valve. The GPC controller was compared to a PID controller and
the GPC had much better performance than the PID.

The MIMO GPC showed poorer control and this could be caused by implementation error. The
GPC was compared to a built-in MPC controller in HYSYS.Plant. The built-in MPC showed
good control , much better than the MIMO GPC.

I declare that the work was carried out independent and in accordance to NTNUs regulations.

Date and Signature: ..........cccoeeieiieiinieneeeee s




Acknowledgement

I would like to thank prof. David E. Clough for all help with organizing my stay here in
Boulder CO and supervision during the work with the thesis. In the lab Scott Whitehead and
Dennis Burcham have been a great help. Bradley Dunkin has been a good help with Labview
questions.

Elvira Marie




Abstract

In recent years, model predictive control (MPC) has become more popular in industry. One
control strategy of MPC is General Predictive Control (GPC). GPC computes control signals
based on predicted outputs that are calculated from a model of the process. Background and
theory for the GPC controller was studied and then a GPC controller was implemented and
used in a single-input single-output (SISO) experimental case and in a multi-input multi-
output (MIMO) simulation case.

The SISO experimental case was carried out using a heat exchanger interfaced to a computer.
The main goal was to control the temperature in the cold outlet stream by the hot water flow
rate. An ARX-model for the process was developed from pseudo-random-binary-signal
(PRBS) test. The model was updated by an adapter based on the recursive least squares
(RLS) method while running tests. The control structure was cascade where the GPC
controller was the master controller that measured the temperature and calculated a set point
for the slave controller. The slave controller controls directly the hot water flow rate.

The GPC controller was tested with several different cost and control horizons, weighting
parameters and forgetting factors. The most important parameter to the performance was cost
horizon. If the cost horizon was too long, the prediction of the output became poor because
of uncertainty in the system. If the cost horizon is too short, the prediction did not include the
dynamics of the process. A longer control horizon gave more active control but it might
cause more fluctuations in the manipulated variable compared to a shorter control horizon.
The weighting of the control signal needed to be quite conservative or else it produced
oscillations in the process. If the weighting value was too conservative, the rise-time to the
system became longer than necessary. The forgetting factor had no influence on the control
performance and the control horizon had minor influence on the performance.

The GPC controller was then compared with a PID controller for the same process in a
cascade. The PID controller was not as effective in smoothing out oscillations as the GPC
controller. In a step test, the rise-time was shorter for the PID controller. However, the set
point to the slave controller changed between fully open and fully closed valve which makes
the output oscillate and caused unnecessary wear and tear on the valve. The control signal
changes smoothly when using the GPC controller, and there were minimal oscillations.

The MIMO simulation case was arranged in HYSYS.Plant. The process included two
distillation columns coupled through recycle streams, which separated natural gas liquid
(NGL) into ethane and propane and a bottom stream that went on to further separation. The
simulated process has local PID controllers and a multivariable GPC controller connected to
the second column.

An ARX-model based on data from PRBS-tests is used in GPC. The GPC included also an
adaptive part, which updated the model. The adapter is based on the RLS method. Tests were
carried out by decreasing the ethane molar flow rate in the feed stream. Performance of the
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GPC controller was evaluated for several different cost horizons, control horizons and
control signal weighting matrices. The performance is particularly sensitive to cost horizon
and control signal weighting.

The GPC controller was compared with the MPC controller that is built into HYSYS.Plant.
The built-in MPC used a first order plus dead time (FOPDT) model to predict outputs. The
controller was tested on the exactly same process with the same changes in ethane molar flow
rate in the feed stream. Built-in MPC showed smooth control for several parameters.

The built-in MPC was preferred to the GPC because it showed good performance and was
very simple to use. The built-in MPC was not as sensitive to parameter choices as the GPC
controller. However, the GPC controller would probably be better if the process had more
complex dynamics, which would be poorly approximated by FOPDT.

In both the SISO experimental case and the MIMO simulation case the cost horizon and
control signal weight was found to be important to the performance of the GPC controller.
The control horizon was of lesser importance, and the forgetting factor in the RLS made no
difference in the GPC performance.
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Introduction

1. INTRODUCTION

Model predictive control (MPC) was introduced in the late seventies and has developed
significant since then. The term MPC does not entitle a specific control strategy but including
a range of control methods. Commons for the control methods are that a process model is
used to predict output in future time to obtain control signals by minimizing an objective
function. The different control methods only differ in the model used to represent the process
and the noises and the cost function to be minimized.

One of the MPC control strategies is the Generalized Predictive Control (GPC) and was
developed by Clarke, Mohtadi and Tuffs. Their main work on the method was presented in
1987. The method has been implemented in many industrial applications, showing good
performance and a certain degree of robustness for a wide range of plants.

This thesis has studied GPC in both a SISO experimental case and a MIMO simulation case.
They were treated separately in this thesis. The experimental part included most of the theory
the thesis was based on, but the simulation part treats supplemental parts of the theory when
extending the algorithm from a single variable case to a multivariable case.

The thesis was carried out at University of Colorado at Boulder in fall 2000 and spring 2001.




Theory Experimental Case

2. THEORY EXPERIMENTAL CASE

2.1 Pseudo-random-binary-signal tests

To develop a model for a process, pseudo-random-binary-signal (PRBS) can be used for
developing data. The PRBS binary inputs, either u; or u,, are selected randomly in chosen
time interval At. The responses are observed and recorded. A typical PRBS input sequence
can be as depicted in figure 2.1, from [9].

Figure 2.1 Hlustration of a typical PRBS input

It is important to avoid missing dynamics information from the system, so the sampling
interval has to be chosen properly. The sampling interval has to be long enough so the system
has a chance to show responses, and not too short so missing dynamics is avoided. To detect
deadtime and responstime, a steptest can be executed.

The difference between the binary input signals needs to be big enough to produce a
significant difference in the output. The binary inputs should also be selected in the operating
range and the inputs should not reach saturation.

2.2 Model development

All MPC methods need a model for the process to predict the output. It is important that the
model gives a good description of the process to avoid poor prediction. An autoregressive
model with input, also named ARX can be used. This model can be identified from PRBS-
test data as described by Clough [6].

An ARX-model is on the form




Theory Experimental Case

A(a7)y(t) = B(gu(t-d) + e(t) (2.1)

where A and B are the model parameters and they are functions of the backward shift operator
qt. y(t) is the output, u(t) is the input, d is the delay in the model and e(t) is the noise. The A
and B have the form:

-1

A(g™) +a,q° + ... +a,.q" (2.2)
B(q™)

where na and nb are the order of A and B respectively.

1+ aq

bo + bigq™ + bq” + ... + bq™" (2.3)

Aikake’s Final Prediction Error (FPE) can be used as indicator to select the best model
between the different model structures. FPE penalizes over-parameterization of the model
and prefer less complex models. Fitting PRBS-data to an ARX-model can be done by for
instance Matlab with the function arx.

2.3 The General Predictive Controller

One popular predictive control algorithm is the Generalized Predictive Control (GPC). The
GPC method was proposed by Clarke et al. [3]. The basic idea of GPC is to calculate a
sequence of future control signals in such way that it minimize a multistage cost function
defined over a prediction horizon.

The theoretical deduce of the GPC controller is derive from Camacho and Bordons [1] and
Clarke et. al. [3]. Most single-output single-input (SISO) plants can be described by a
Controlled AutoRegressive and Integrated Moving Average (CARIMA) model when
considering operation around a particular set-point and after linearization. The CARIMA
model is given by

A@HY(D) = g Bau(t - 1) + c(q) LT (2.4)
with A=1-g* and C(q?) is the noise polynomial and has the same form as A(q!) given in
equation (2.2), and g! is the backward shift operator. y(t) is the output, u(t) is the input, d is
the dead-time and e(t) displays the noise. The noise is assumed as zero mean white noise. For
simplicity, the C polynomial is chosen to be 1.

To derive a j-step predictor of y(t+]j), consider the Diophantine equation

1 = E(a)A@)A +q’Fi(g™) (2.5)

where E; and F; are polynomials uniquely defined given A(g?) and the prediction interval j.
The degrees of E; and F; polynomials is j - 1 and na respectively.
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Theory Experimental Case

If equation (2.4) is multiplied with E; Agl we get

Ej(q ALY (t+]) = Ej(q )B(q Au(t+j—d-1)+E;(q et +]) (2.6)
Considering Diophantine equation in (2.5), equation (2.6) can be written as

(L-a7F(@ ™)yt +]) = Ej(a B AUt +j-d-1)+Ej(q e(t+]) 2.7)
which can be rewritten as

y(t+d) = Fi(a () +E(q)B(@ )Au(t+j-d—1)+E(q e(t+]) (2.8)

As the degree of polynomial Ej(q'l) is j-1 the noise terms in equation (2.8) are all in the
future. The optimal prediction of y(t+j) is therefore,

y(t +j[t) = G(a)Au(t+j-d-1)+F(q)y(t) (2.9)
where G;(q™) = E;B.
In GPC a whole set of predictions is considered, for which j runs from a minimum up to a
large value, termed as the minimum and maximum prediction horizons. A system with a dead

time d will the prediction process y(t + j|t) for j<d only depends on the available data,
but for j > d assumptions need to be made about future control actions.

2.3.1  Recursion of the Diophantine equation

To solve the prediction in equation (2.9), the polynomials E; and Fjare needed in addition to
the model parameters A and B. The polynomials E; and F; can be obtained recursively from
the Diophantine equation, given in equation (2.5).

Suppose for clarity of notation E = E;, R = Ej44, F=Fj, S=Fj4; and A defined as AA . The
Diophantine equation in (2.10) corresponds to the predlctlon for y(t + j|t) and equation
(2.11) corresponds to the prediction for y(t + j — 1|t).

1 = EA+q'F (2.10)

1

RA + qU*Ys (2.11)
Subtracting equation (2.10) from equation (2.11) gives
0 = A(R-E)+q'(qg’s - F) (2.12)

The polynomial R - E is of degree j and may be split into to parts
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R-E = R+rq’ (2.13)

where R is a polynomial of degree smaller and equal to j-1 and g is a scalar.
The equation (2.12) then becomes

AR + q7(q'S - F + Ar;) = 0 (2.14)

Since A is monic, that is all coefficients are unequal to zero and first coefficient equals 1, R
needs to be equal to zero. This indicatesthat S = q(F — Ar;). As A as ha unit leading
element, we have

rp = f (2.15)

si = fioi—ai.ar (2.16)
for i = 0 to the degree of S(q!) and

R(a™") = E(g) +q’n (2.17)

Gj.. = B(q)R(Q) (2.18)

Given the plant polynomials A(q™) and B(g™) and one solution of E;(q*) and Fj(q™), then
equation (2.15) and equation (2.16) can be used to obtain Fj+1(q'1). Vector Ej+1(q'1) can be
obtained by equation (2.17).

To initialize the iterations, the Diophantine equation can easily be solved for j = 1, that is
1 = E,A + q'F,.Since the leading element of A is 1, then is E;=1and F; =q(1-A).

2.3.2  The Predictive Control Law

The GPC algorithm consists of applying a control sequence that minimizes a multistage cost
function of the form

Ny Ny

INLN N = S SO+ -w(t+DI*+ § AGBu(t+j-1))° (2.19)

=Ny i=1

where y(t + j|t) isan optimum j-step ahead prediction of the system output on data up to
time t, N; and N, are the minimum and maximum costing horizons, N, is the control horizon,
Aj) and A(j) are weighting sequences and w(t + j) is the future reference trajectory. The cost
horizon N can be expressed as

N = N,- N, +1. (2.20)
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Theory Experimental Case

and represents how far into the future the predictions are made when calculation the
controller output. The control horizon NU represents the number of controller moves into the
future that will be made to achieve the final set point.

The set of j ahead optimal predictions is given by equation (2.9) and can be expressed as

(t+d+1]t) = Gy.Au(t) + Fe.oy(t) (2.21)
(t+d+2]t) = Gy.,Au(t + 1) + Fy,,y(t)

9(t +d+ NJt) = Gg.nAu(t+N=-1)+ Fy.y(t)

which can be written in matrix form as

y = Gu+ F(q)y(t) + G'(q)Au(t - 1) (2:22)
where

y(t+d+ 1]t Au(t)
y = y(t+d+ 2]t) U = Au(t + 1)

y(t +d+ NJt) Au(t + N - 1)

% 0 .. 0 Fa.:(q7)

G = g1 o ... O F(q') = Fa.2(07)

Ov-1 On-2 -« Qo _Fd+N(q‘1)_

(Gd+1(q_l) - 0o)q

G(qY) = (Go+2(a7) = go — 9:07)0°

_(Gd+N(q_l) ~ 0o - 00 - ... - gN—lq_(N_l))qN_

The last two terms in equation (2.22) depend only on the past outputs and past inputs and
corresponds to the free response, f, leading to

y = Gu+f (2.23)

where the vectors y, u and f have dimension N x 1.
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Theory Experimental Case

If equation (2.23) is inserted in the cost function in equation (2.19), the cost function can be
written as

J = (Gu+f-w)(Gu+f-w)+Au'u (2.24)
wherew = [w(t+d+1) w(t+d+2) ... w(t+d+N)] ", A() is assumed

constant and &(j) is assumed as one.
Multiplying out equation (2.24) gives:

] = %uTHu fbTu+f, (2.25)
where
H = 2(G'G + Al) (2.26)

b" = 2(f - w)'G
fo = (f—w)'(f - w)

By making the gradient of J with respect to u equal to zero, the minimum of J can be found,
assuming there are no constraints on the control signal. This gives

u = -H'b = (G'G + Al)"G"(w - f) (2.27)

It is only the first element of vector u that is actually sent to the process, so the control law
is given by

u(t) = u(t-1)+ g (w-f) (2.28)
where g is the first row of (G'G + A1)"G'. This control law can be implemented in
Matlab.

2.3.3  Cost function with constrains on control signal
If there are constraints on the control signals, the control law given in equation (2.28) needs

to be written as a function of u instead of Au. The process output can be written as in equation
. The vector of future control increments is given by

uk)-u(k-1) _11 (1) g - 0 u(k) uk-1)
u(k + 1) —u(k) =lg_11  olluk=1j_| 0 (2.29)
u(k+N)—.l.J.(k+N—1) 0 0 0 1 u(k.:l: N) 0

which can be written as

14
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u = DU -1, (2.30)
The equations for the future control signal is substituted in the equation of future predictions,
equation , and we get

y = G(DU-f))+f = GU+f, (2.31)

where G’ is a lower triangular matrix and f, can be expressed as

(f2)i = (f)i + giu(k = 1) (2.32)
The cost function can now be expressed as a function of the future control actions U,

J(U) = (GU+f,—w) (G'U +f,—w) + A\(DU—f,) (DU -1,) (2.33)
= U'(GTG' +AD'D)U + 2[(f, - w) G'= A, D] U + (f, —w) (f,—w) + Af, 'f,

Written J(U) in a quadratic form,

J(U) = %UTH'U +bU + f (2.34)
where
H = 2(G'G + AD'D) (2.35)

b = 2[(f, - w)'G' - Af,D]
fo= (f-w)'(f—w) + M,'f,

The cost function is now a function of future control actions and constrains can easily be
added on the control signals. The control signal can be found by minimizing the cost function
in equation (2.34) with the constrains added to the minimizing problem. The minimizing
problem can be solved in for instance Matlab with the function fmincon or solved as a QP-
problem with function quadprog.

2.4 Cascade control

Cascade control can be useful when disturbances are associated with the manipulated
variable or the final control element exhibit nonlinear behavior. Nonlinear behavior can for
instance be significant hysteresis in a valve. The output signal of the master controller serves
as the set point for the slave controller. The secondary loop is a faster loop that is located
inside the primary control loop.

Dependent on the control problem, the slave controller can be a Pl controller in velocity
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Theory Experimental Case

mode. The theoretical deduce of Pl controller in velocity mode is derived from Seborg et al.
[12]. The velocity form of the PI controller does not compute summations which is needed
in position mode and therefore windup is avoided. The velocity mode does not require
specification of the bias term.

The design equation for a Pl controller in velocity mode can be found from the general
position mode for a Pl controller, given in equation (2.36),

il 1 H
u(t) = =K k(1) + —J’e(t')dtD +b (2.36)
O T O

0
where u is the control signal, K is the gain, e represent the error between the measurement
and the set point, T is the integral time and b is the bias.
The velocity mode is found by taking the time derivative of equation (2.36).

du(t) - Ly de(t) , eo (2.37)

dt —el dt n
With approximations for the derivative, this becomes

Au _ K e , e (2.38)
At “tOat
In the discrete case this can be expressed as
At
u = Uu,_; * ch[l + T—J e, — en_% (2.39)

Equation (2.39) can be implemented directly in virtual instrument, for instance Labview.

2.5 The Recursive Least Squares method

The deduce of the recursive least square method is based on a handout from Clough [5]. An
adapter tasks is to adjust the controller parameters automatically to compensate for changing
process condition. This can be very useful when the process conditions changes in time. A
illustration of single-input single-output process is displayed in figure 2.2.

Output
Input
—> Process —
u(k) y(k)

Figure 2.2 llustration of a single-input single-output process.

The adaptive controller use recursive least squares (RLS) method to calculate the A and B
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polynomial in the model. The A and the B polynomial is as given in equation (2.2) and
equation (2.3). The degree of the A polynomial is na and the degree of the B polynomial is
nb. Define the parameter column vector as

B= [a, ... 8 Do o Duo] | (2.40)

The output vector is defined as

y(1 + na + d)
y = (2.41)
y(N + na + d)
where N is the cost horizon and d is the dead-time. The matrix¢ is defined as
-y(na +d) . =y(1+d) u(nb) ..ou(l)
¢ = S (2.42)

The error vector is defined as

e(l + na + d)
e = _ (2.43)

e(N + na +d)

The evaluation of the model for the data set can be represented by

e = y-oB (2.44)
The loss function can be written as the sum of the squares of the residuals

V = ele (2.45)

To minimize the loss function can be done by setting

v
0B

The result from minimizing the loss function is

= Ofori=1tona+nb (2.46)

B = [¢70]7 0"y (2.47)

The derivation of the minimization is given in [5]. The RLS algorithm can be described as in
figure 2.3. The same algorithm can be used in Matlab implementation.
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Obtain measurement

y(N+1)

Update vector of

Obtain past past data

output
u(N-d) W(N + 1)

YES Do | have NO
enough data?

Compute model prediction
YN +1) = @'(N+ 1)B(N)

Update gain vector
P(N)W(N + 1)
[ya + W'(N + 1)P(N)Y(N + 1])]

K(N) =

Update parameter estimates

BN+ 1) = B(N) + K(N)[y(N + 1) — §(N + 1)]

Compute covariance matrix for next iteration

P(N + 1) =$u—mmw%N+nwm)

Figure 2.3 The RLS Parameter Estimation Algorithm
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In figure 2.3 Y is a vector that contains the past values of measurement and control signals
with the size (m+n) x 1 and has the form

-y(N)

WN + 1) = ‘V(L’:'(& rlad;’ 1) (2.48)

[U(N=d -=nb + 1)

The scalar y is the prediction of the measurement based on the model. K is the gain vector
and y is the forgetting factor. The forgetting factor weight out or "forget™ gradually the past
values. The forgetting factor has a value between 0 and 1, and the closer yis to 1, the slower
the algorithm "forgets" the past values. In other words, it becomes more conservative. 3 is a
parameter vector as described in equation (2.40). P is the covariance matrix and is defined by

P(N) = [¢"(N)O(N)] a (2.49)
where
a = var{e(k)} (2.50)

The parameter a indicates the error the model has not manage to include compare to the
process. A value of a can be found in the result from fitting ARX-model based on PRBS-
data. Matrix | is the identity matrix which has the same dimension as K. The question "Do |
have enough data?" is a question if  is filled up with data from the process or not.

To initialize the algorithm, values for 3, P and a is needed. The initialization can done by
setting

B(0) = 0 (2.51)
P(0) = cl

where ¢ is a large number. The vector 3 can also be initialized by using the A and B
parameters in the ARX-model.

To update the model parameters, RLS needs changing inputs to the algorithm. This is usually
not a problem in real world but with small, separated systems with no turbulent flow or
simulations with no disturbances, this needs to be considered. With too little noise in the
system the matrixes in the RLS can become singular and weird values for the A and the B
parameters can occur which again gives poorly prediction of the outputs.

19
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2.6 PID Controller in discrete time

The theoretical deduce of PID digital controller is derive from Seborg et al. [12].
Design equation for digital PID controller is based on the ideal, continuous (analog) PID
controller, which is described as

t

u(t) = K, {e(t) ¥ %Ie(t')dt' ¥ TDg—ea(tl):| + b (2.52)

where u(t) is the control signal, K. is the gain, e(t) represent the error between the
measurement and the set point, T, is the integral time, Tp is the derivative time and b is the
bias. To convert this expression to its digital equivalent, the following finite difference
approximations are used

J’e(t')dt' = z e At (2.53)
0 k=1

de _ € — €

dt At

When the approximations in equation (2.53) are introduced in the ideal analog PID, the
position form of the digital PID controller can be written as

_ At o, _
u(t) = iK{en + T Z e, + At(en en_l)} (2.54)
k =1

The position form of the PID controller can now be implemented as the control low because
it yields the valve of the controller output directly. The controller can be implemented in for
instance Labview.
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3. EXPERIMENTAL PHASE - SINGLEVARIABLE

The experimental part of this paper tested the general predictive control (GPC) algorithm
with a recursively least square (RLS) adapter on a single-input single-output (SISO) process.

3.1 Process description of heat exchanger and additional equipment

The heat exchanger was an already existing unit interfaced to a converter and a computer in
the Chemical Engineering Laboratory at University of Colorado. The heat exchanger is
illustrated in figure 3.1.

The heat exchanger was a shell-and tube type. The cold water flowed inside the tubes and the
hot water flowed outside the tubes. It had four termocouples that were placed at each inlets
and outlets. The heat exchanger had also a valve on each inlet stream that was controlled by
air pressure. The valve on the hot water inlet had also a valve positioner. In addition there
were safety valves on each stream.

The computer used Labview software from National Instruments Corp., a graphical
programming language to create block diagram structures. Program modules in Labview are
called virtual instruments (V1s).

The heat exchanger was connected to a computer by analog-to-digital converter and digital-
to-analog converter. The interface between the heat exchanger and the computer is present
in figure 3.2.

The termocouples gave signals in mV and needed to be converted to °C. The voltage signals
were sent to the computer and displayed in Labview’s virtual instrument (V1).

The flow was measured in differential pressure (AP). The differential pressure was converted
to current in the pressure-to-current (P/1) converter. This signal was again converted to
voltage in the current-to-voltage (I/V) converter before it reached the computer. The flow
signals from the computer followed the opposite direction and were converted to pressure,
which made the valves move. This is displayed in figure 3.3 including the range at each
conversion.
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Figure 3.1 Diagram of the heat exchanger
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Figure 3.2 Diagram of the interface between the computer and the heat exchanger
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Figure 3.3 Signal processing between the computer and the hot water valve at the heat exchanger

3.2 Calibration

The temperature- and flow measurements needed to be calibrated before running tests.
First the process was implemented in Labview and the signals were connected to the right
channel in the D-to-A converter. The Labview diagram was based on an existing program
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that is used in a lab course at University of Colorado. Prof. D.E. Clough at University of
Colorado made this program. The Labview diagram is displayed in appendix A.

The flow rate was measured by collecting the flow in a bucket over a certain time interval,
while the voltage displayed in Labview’s VI was noted. The collected water were weighted,
and with the assumption that 1 kg equals 1 liter; the flow rate was expressed in I/min. This
were done to both the hot water and the cold water flow.

When the flow was measured, the current was measured in the current-to-voltage (I-to-V)
converter with a multimeter. The zero and the span in the I-to-V converter were adjusted to
zero flow and difference between zero and maximum flow respectively. This were done both
with the hot water and the cold water flow.

The flow measurements were plotted against the voltage in an Excel worksheet and the
relation between the flow and the voltage were found. The theory background for flow and
voltage relation is displayed in appendix B. When the voltage dropped below a certain
threshold value it became necessary to set the flow equal to zero to avoid numerical
problems, due to the square root in the relation between flow and voltage. Zero flow was
observed for the hot water when the voltage drops below the threshold value. The cold water
flow was about 2 I/min when the voltage dropped below the threshold value. The cold water
valve never managed to close the valve totally. The relation between flow rate and volt was
implemented in Labview.

During the calibration tests, hysteresis was discovered on both the hot water valve and the
cold water valve. The hysteresis was less on the hot water valve than the cold water valve.
This was expected due to the valve positioner placed on the hot water valve. The relationship
between the flow and the square root of the voltage became poorly at high voltage, so this
area was avoided in the further tests.

For the termocouples there existed already a relation between temperature in °C and voltage
in mV from earlier experiments on the heat exchanger. The termocouples were checked
against standard thermometers in ice and boiling water respectively. The temperatures from
the termocouples were plotted against the temperatures from the standard thermometers and
relations were found. The relation between mV and °C was implemented in Labview.

3.3 Model development

The GPC algorithm needed a mathematical model that describes the process, as explained in
chapter 2.3. PRBS-tests was chosen to generate process data and used to develop an ARX-
model.

A VI in Labview was made to generate the PRBS-tests, based on the Labview program made
for calibration. The diagram of the V1 is displayed in appendix C. PRBS-test was carried out
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with binary inputs from four different ranges. Both low and high values for both hot and cold
water were used as binary input. The binary input-values for the hot water valve settings were
found by try and fail. Input to PRBS was a gauge-value from Labview’s VI and was in the
range 0 to 5. To find a suitable sampling interval, a step test was executed to find the dead
time to the system. The dead time was 3-6 seconds, depending on the flow rate. The sampling
interval in the PRBS-test was chosen to be 3 seconds. Each PRBS-tests ran for about 10
minutes. The test data was recorded in a text file and used for model development.

Four models were developed, one for each range the PRBS-test were done. ARX-models
were developed by Matlab using data from the PRBS-tests. The Matlab algorithm used for
developing models is displayed in appendix F.1. An example for how the PRBS-test where
carried out, is shown in appendix D.

3.4 Implementation of the GPC Controller

A VI in Labview was implemented to serve GPC. The VI was based on the VI from PRBS-
tests, and the diagram is displayed in appendix E.

The implementation of the GPC controller could be divided into two parts. The Labview part
got the signals from the heat exchanger in a certain time interval and sent signals to the hot
water valve to control the cold water outlet temperature. The Matlab part received
information about the past outputs and inputs from Labview. Based on the information from
Labview, the GPC algorithm calculated the future control actions. The first control action
was received in Labview, which sent the signal to the hot water valve.

First, the control law given in equation (2.28) was implemented in Matlab. In the control law
the control signal was not limited in the algorithm. The control signal became limited when
it was sent to the heat exchanger. Test with the GPC without limited control signal showed
poorly control. The control gave offset and oscillations with periods about 30 seconds. This
may be caused from the unlimited control signal sent to the process.

Therefore a new cost function with constrains, as presented in chapter 2.3.3, was
implemented in Matlab. The GPC algorithm implemented in Matlab is presented in appendix
F.2, with additional functions in appendix F.3 and appendix F.4.

Tests showed oscillations in the system even though the control signals were limited. The
oscillations had two periods, one faster with periods about 12 seconds and the other slower
with periods about 120 seconds. The amplitudes were approximately 0.7°C and 2°C
respectively. This pattern did not occur when the GPC with constraints was connected to the
model instead of the process. When the GPC "controlled"” the model, the control was perfect.
From that observation, the equipment was the cause to the oscillations. The oscillations
occurred probably because of the hysteresis in the hot water valve.

25



Experimental Phase - Singlevariable

To reduce hysteresis, a cascade was implemented with a flow controller as slave and the GPC
as the master controller. The cascade was set up as illustrated in figure 3.4.

DPT
Hot water__| T ] A
inlet _>< PN L]
—1 |
Hot water :Z:I:I:Z:Z:IZ |‘
outlet ' Cold water
outlet
Cold water
inlet

Figure 3.4 llustration of the heat exchanger with cascade control

For the slave controller, a PI controller in velocity mode was used as described in chapter
2.4. The slave controller was implemented in Labview, by using equation (2.39). Step tests
in different operating areas were performed in manual mode to find values for the parameters
K. and 1,. The tuning parameters were found by Skogestad’s tuningsrules [13]. Mean values
of the tuning parameters are found by average the different parameters from the different step
tests. The sampling time to the slave controller was set to 0.25 seconds. With a gain K, = 0.06
and t; = 1.0, the slave controller worked properly.

When the slave controller was implemented in Labview, the process from the GPC point of
view changed. GPC algorithm gave now a set point to the slave controller instead of a gauge-
value to the hot water valve. In other words, the process now contained a slave controller,
and a new PRBS-test was performed to obtain a new model for the GPC. Only one PRBS-
test was performed in the middle flow area, because the model developed from the PRBS-
test supposed later to be updated by an adapter. More detailed description of the PRBS-test
is present in appendix D.

One problem with the Labview program implemented for the cascade control was the timing.
The GPC controller and the slave controller did not operate independent in time. So when
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the Labview program ran, it let the GPC algorithm work first and find the optimal control
signal. This signal was sent as a set point to the slave controller. After GPC finished its
calculations, then the slave controller started to correct the valve opening due to set point. So
the slave controller actually waited for the GPC controller to finish its job.

3.5 Implementation of the adaptive controller

The adaptive controller job was to update the model, which the GPC controller used for
prediction. The model might be changed with different flows and temperatures. The adaptive
part was based on recursive least squares and implemented as a function in Matlab. The
Matlab algorithm is shown in appendix F.4.

To check that the adapter worked properly, the adapter was tested before connected to the
GPC. Tests were done by sending PRBS-signals with different average set points to the
adapter. The model parameters were observed and model changes could be detected.

When the adapter was connected to GPC, it received the values for the predicted inputs and
the past outputs through the GPC algorithm. The adapter was actually not directly linked to
Labview but only to the GPC algorithm. With recursive least squares method, the adapter
calculate the coefficients to the A and B polynomial in the model and gave the new values
for A and B back to the GPC. The data flow is displayed in figure .

Process included
slave controller Temp. cold

water outlet

Hot water
flow

Control Set- Cost
horizon point | horizon

GPC

RLS

Figure 3.5 The interface between the process, GPC and RLS including the data flow

27



Experimental Phase - Singlevariable

3.6 Implementation of the PID controller

The GPC controller was replaced with a PID controller for comparison. A PID controller in
position mode was chosen. The Labview program for the PID controller was based on an
existing program from Prof. D.E. Clough at University of Colorado at Boulder. The Labview
diagram is displayed in appendix H.

A step test was carried out to collect data from the process. The sampling time were set to
1.5 second, which was the fastest sampling time possible due to the CPU time. The step test
data were treated in control software called Control Station to obtain values for the process
gain (K;), integral time (t;) and derivative time (tp). The parameters were tested and
adjusted. Skogestad’s tuning rules [13] was also applied on the same step test data to develop
tuning parameters for the PID controller. The tuning parameters developed by Control
Station and the parameters developed with Skogestad’s tuning rules were very similar. This
was expected when both methods are based on Internal Model Control (IMC).

Since the sampling time was shorter when using the PID controller compare when using the
GPC, the conditions for the slave controller changes. The slave controller was implemented
in the same way as when the GPC was the master controller. Because of the implementation
where the master controller and slave controller were in the same loop, the number of times
the for-loop for the slave controller was executed was decided of computation time of master
controller and sampling time. The sampling time was shorter for the PID controller, but the
computation time was significantly shorter compared to the GPC controller. The number of
times the for-loop for the slave controller was executed was increased from 5 to 11.

3.7 Testing the controllers

When testing both GPC controller and PID controller, the test were all tried to be as equal as
possible. The same changes in set point and disturbances were therefore done in all tests.
First, during start up, the set point for the cold water outlet temperature was set to 28 °C.
When the output settled down as much as it seemed possible, the set point was increased to
33 °C. After the output settled down after the set point change, the set point was decreased
to 27 °C. During this set point changes the cold water flow was around 5 I/min. While the set
point was 27 °C, the cold water flow, considered as a disturbance, was increased to 15 I/min.
Then the cold water flow was decreased to 6 I/min before the test finished.
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4. RESULTS FROM EXPERIMENTAL PHASE

4.1 Results using GPC controller

To test the GPC controller several tests were carried out with changing parameters in the
GPC algorithm. In the GPC algorithm the parameters cost horizon (N), control horizon (NU)
and the control-weighting A needed to be decided. In addition the forgetting factor in the
adapter needed to be set. The sampling interval was 4 seconds, because this was the fastest
time the computer could work through the virtual instrument and the functions in Matlab.

The parameters in the GPC algorithm were initially chosen based on suggestions from Clarke
et al. [3] and Clarke et al. [5] and then other parameters where tried out, based on the
performance in the earlier test that where carried out.

The minimum costing horizon value was based on that N; could be chosen as the dead time
in the process or more to minimize computations, from Clarke et al. [3]. Since the dead time
was observed to be longer than one sampling interval at lower flows, N, was chosen to be 2
in all tests.

The maximum costing horizon value should be chosen so it encompassed the response,
which was significantly affected by the current control. N, should be at least greater than the
degree of B(q!), or more typically N, is set to approximate the rise-time of the plant, from
Clarke et al. [3]. The degree of the B polynomial was seven, from the ARX-model
developed. The rise time for the process was about 30 seconds, which is about 8 samples with
a sampling interval of 4 seconds. Several values for N, was tested among the
recommendations.

The control horizon NU equals one is generally satisfactory for a process plant, while a
"difficult” plant requires that the control horizon is about the same as number of unstable or
underdamped poles, from Clarke et al. [5]. Several cost horizons values were tested from the
recommendations.

The control weighting factor, A, can be selected as zero or A can be selected as a small
number because it helps numerical robustness, from Clarke et al. [5]. The weighting factor
was changed between four different values to detect how it affected the performance of the
controller. The forgetting factor in the RLS adapter was changed between two values.
Typical choices of forgetting factor are in the range between 0.98 and 0.995, from Ljung et
al. [9].

Several tests were executed and the parameters were changed in the tests to find the optimal
parameters values. The goal was to control the process recently well and to avoid the RLS to
fell asleep. The test parameters and a short observation note are shown in table 4.1.
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Table 41  Tests of the GPC including the RLS, with various values for N2, A, NU and forgetting factor
Min. Max.
Case cost cost ho?igsotn li)??zt(r)?: \C/:v(()eri]gt;ml Forgetting Observation
horizon, | horizon, ’ ’ ' | factor, ff
N, N, N NU A
1 2 5 4 4 0.3 0.98 Not controlling the process
2 2 6 5 2 0.3 0.98 Controls the process well
3 2 6 5 5 0.3 0.98 Controls the process well
4 2 7 6 5 0.1 0.98 Oscillates
5 2 7 6 5 0.3 0.98 Controls the process well
6 2 7 6 5 0.3 0.9 Controls the process well
7 2 7 6 5 0.5 0.98 Controls the process well
8 2 7 6 6 0.3 0.98 Controls the process well
9 2 7 6 6 0.3 0.9 Controls the process well
10 2 8 7 7 0.3 0.98 Oscillates at low hot water flow rate
11 2 10 9 5 0.3 0.98 Oscillates at low hot water flow rate
12 2 10 9 5 0.5 0.98 Oscillates at low hot water flow rate
13 2 10 9 5 0.8 0.98 Oscillates at low hot water flow rate
14 2 10 9 8 0.3 0.98 Oscillates at low hot water flow rate

From the experiments, the cost horizon was the most important parameters to the controller
performance. If the cost horizon was too short, it seemed like the controller did not react to
set point changes. This happened in case 1 table 4.1. If the cost horizon was too long, the
output from the controller started to oscillate, particularly at low flows. This pattern was
observed in cases 10-14 in table 4.1. A significant difference was detected between a cost
horizon = 4 and a cost horizon = 5, and a graph comparison between case 1 and 3 of a set
point change is displayed in appendix G.2.

The control horizon had not the same power to decide if the GPC managed to control the
process or not. Changing the control horizon did not affect the control performance
significantly. A comparison between case 2 and 3 from table 4.1 with a control horizon 2 and
5 respectively is displayed in appendix G.1. From the graph it seemed like the rise-time was
a little shorter for the case with longer control horizon, but the response settled down faster
for the case with shorter control horizon. The overshoot was also less for the case with shorter
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control horizon. Therefore a shorter control horizon would be preferable.

The control weight, A, was assumed constant for j - ahead prediction to simplify the
algorithm. If the A was too small, it produced oscillations because it cost too little to change
the control signal. The oscillations were unacceptable large with amplitude of about 2 °C
with a period of about 40 seconds for a control weight equal 0.1 in case 4 in table 4.1. When
A increased, the oscillations decreased or disappeared but the responses became slower. A
set point response with parameters from case 4 and 5 in table 4.1, with control weight of 0.1
and 0.3 respectively is displayed in appendix G.4.

The forgetting factor affected the RLS and not the GPC directly but through the A and B
polynomials, which GPC got from RLS. There was not detected any significant difference in
the GPC controller performance with different forgetting factors. A step response with
parameters chosen as in case 5 and 6 from table 4.1 are compared in appendix G.3. The graph
displays that there was only a random difference between the outputs in these to cases.

Between all the cases tested for the GPC controller, case 2 in table 4.1 with cost horizon
equals 5, control horizon equals 2, control weighting factor equals 0.3 and forgetting factor
equals 0.98, gave the best performance. In that case there were no oscillations, very little
overshoot by set point changes and the output value was corrected quickly when disturbances
were introduced.

4.2 Compare GPC and PID controller

A PID controller was implemented to benchmark the GPC. The same tests with increasing
and decreasing set point, increasing and decreasing cold water flow rate, were carried out for
the PID controller.

The PID controller made the process oscillate with tuning parameters found by Control
Station. The period of the oscillations were about 40 seconds, and the amplitude is somewhat
between 1.5 to 2 °C. The sampling time was increased from 1.5 to 4 seconds and the number
of times the for-loop for the slave controllers executed was increased from 5 to 11 times. The
system still oscillated, but now with a slower period. The amplitudes were about the same as
for a sampling interval of 1.5 seconds. In appendix 1.1 a set point change with the two
different sampling intervals is displayed.

The oscillations that occurred using the PID controller with tuning parameters found by
Control Station were tried tuned down by changing the tuning parameters. To avoid
oscillations the integral time was increased and the gain was reduced. The process gain was
reduced from 2 to 0.5 and the integral time was increased from 60 seconds to 150 seconds.
From earlier test the influence of the derivative time equals to 2 seconds was already so small
that it remained unchanged. With increased integral time and reduced gain, the oscillations
seemed to settle down to an acceptable level, but it took a long time, about 500 seconds from
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start up. The GPC controller used not more then 1 minute to place the output at set point
during startup. The time was of course dependent of the start conditions. A startup response
with the two different sets of tuning parameters for the PID controller is displayed in
appendix 1.2.

The PID showed poorer control than GPC, mainly because of the oscillations. A comparison
of the PID and GPC with both input and output is displayed in appendix 1.3. The selected
GPC controller was the same as in case 4 in table 4.1. The output temperature in the cold
water outlet oscillated by using PID controller. By using the GPC controller, the temperature
raised smoothly by set point changes. The rise-time was about 45 seconds shorter by using
PID controller compare to GPC. The output from the PID controller was already increasing
because of the oscillations when the set point increased. When the output from the GPC
controller reached the new set point value, there was no overshoot so the control was very
smooth. The hot water flow increased smoothly and had almost no overshoot. When using
the PID to control the hot water flow, it oscillated between minimum and maximum flow
almost all the time. This is of course not preferable, because it causes oscillations in the
output and it caused unnecessary wear and tear on the valve.
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5. DISCUSSION EXPERIMENTAL PHASE

5.1 Equipment

During the calibration, the relation between flow rate and voltage became poorly at higher
flow rates. This area was then avoided for further tests. This result usage of only 1/4 of the
maximum valve opening of both the hot water valve and the cold water valve. All the flows
used in the test were actually low flows compare to the maximum flow that was possible with
the present equipment. The poor relation between flow rate and voltage could be caused by
the transformation of the signal between the D-to-A converter and the valve, as illustrated in
figure 3.3. Since the capacity to the hot water valve was not used, the valve got easier
saturated at bigger disturbances and set point changes when the constraints were included.

Hysteresis in the valves was a problem before cascade control was implemented. The slave
controller seemed to handle this due to the hot water valve. Nothing were done to try to
reduce was consider as a disturbance and not a manipulated variable, which was the case for
the hot water.

The hot water inlet temperature changed during tests. If the temperature dropped so much
that the valve got saturated during set point changes and disturbances, the test was ended.
Most of the time the inlet temperature was stable, but it was a disturbance in the process.

The valves were changed by air pressure. The air pressure in the pipes might have been
changed during tests. The pressure was not measured so how much it could have changed is
unknown. Changes in air pressure was considered as a disturbance to the process, but from
performance it seemed stable.

5.2 Implementation

The PRBS-test for the cascade case was executed with a sampling interval of 3 seconds. The
ARX-model was based on data from the PRBS-test and used in the initial phase to RLS. The
GPC performed with a sampling interval of 4 seconds. The sampling interval needed to be
increased from 3 seconds to 4 seconds due to computation time for GPC and RLS. The
computer could not compute one loop faster than 4 seconds. The PRBS-data would have
changed if the sampling interval was 4 seconds instead of 3 seconds and the ARX-model
might have been changed in values and degrees. The degrees of the model parameters A and
B used in RLS were based on the optimal model from ARX. The PRBS-test should be carried
out with the same sampling interval as GPC performs, so the PRBS capture the same
dynamics and transferred info about the dynamics in the ARX model that was used in GPC.
Since a sampling time of 3 seconds could not be executed and a PRBS-test with 4 seconds
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sampling interval was not carried out, it is difficult to tell how much the influence of
increasing the sampling time had on the control performance.

In the Matlab program that produced the ARX-model was limited with regard to the degrees
of A, B and d. The degrees could only be a value from 1 to 5, to limit computations. With
higher degrees of the model parameters, it got more complex. Aikake’s FPE weighted
between how correct model was and how complex the model was, so the gain of increasing
the model degree could be lost because of higher complexity. A test with maximum degree
of 10 instead of 5 for A, B and d gave a more complex optimal model. The degree of A and
B increased but d remained the same. Since the system had a dead time about one sampling
interval, this will not be limited of a maximum value of 5, and it was expected that d was
equal in both cases. The FPE decreases 1.6% for the optimal model when the maximum
degrees of A and B were increased from 5 to 10. The limitation of degrees of A and B should
therefore not be significant for the control performance. A more complex model would may
be needed a longer sampling interval because of bigger computations in Matlab. A simpler
model was preferred, since this decreased the computation time.

Sampling time was an important parameter, so it must be chosen properly to avoid missing
process dynamics. The GPC used a relatively long time to compute one loop, mainly because
of the dynamic data exchange (DDE) to Matlab. This limited the choice of sampling time,
because the sampling time needed to be a little bit longer than the compute time. The
sampling time for the GPC was selected to be 4 seconds. Compare to the response-time, a
sampling time of 4 seconds should be adequate. It is difficult to tell if there was any
difference at a smaller sampling time, because it could not be tested with existing equipment.
A shorter sampling interval could probably be selected if a faster computer had carried out
the computations. Since it was particularly DDE that took time, the GPC controller could be
implemented in Labview instead of Matlab, but the saved computation time by avoiding
DDE could be lost since a Matlab is much better tool for matrix calculations than Labview.

The problem with the timing in the cascade control where the slave controller actually waited
for the GPC to finish was not adequate. If a disturbance entered the process while the GPC
was running, the slave controller could not correct the disturbance before the GPC sent the
newly calculated control signal into the process. This was an implementation problem that
can be improved. If the slave controller and master controller were implemented in two
independent loops, the controllers could also run independently. Labview can deal with two
running loops at the same time, but this was not tried to implement.

The future set point was implemented in such way that when it changed in Labview, Matlab
observed this change in the next loop, actually next time when Labview poked values to
Matlab. This made reference trajectory change immediately. Instead, the implementation
could be done so the system could react before the change had effectively been made. By
changing the reference trajectory gradually, effects of delay in the process response could be
avoided. The effect with a gradually change in the reference trajectory would let the process
made the response faster, but this was not critical for the heat exchanger, not even in the
initial phase. However, this could be an improvement of the controller, but how big the
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earnings will be was not certain.

The slave controller was a Pl controller in velocity mode. Velocity mode was chosen because
windup was avoided and bias term did not require specification. The slave controller was
faster than the master controller, as it supposed to be, and a sampling interval of 0.25 second
was therefor selected. The sampling interval was actually just a number used in calculation
in the controller. The slave controller was implemented in a for-loop that executed a selected
number of times. The for-loop executes as fast as it can, that is, the sampling interval in not
the execution interval for the slave controller. The slave controller executed actually faster
than 0.25 seconds. This could be improved if the slave controller and the GPC controller
were implemented in two independent loops.

5.3 Observations

Clarke et al. [3] suggest that maximum cost horizon should be at least greater than the degree
of the B polynomial, named as nb. The degree of B(q?) used in GPC in the tests was 6. The
smallest cost horizon the GPC actually managed to control the process with was five.The
maximum cost horizon was here smaller than the degree of the B polynomial. If the
maximum cost horizon was increases to 7, thus greater than nb, the GPC also managed to
control the process. From the test, it seemed like suggestions from Clarke et al. about the
maximum cost horizon could be used as guidelines and not as absolute values for the control.
The test shows that the cost horizon did not needed to be greater than nb, but at least equal
to nb to control the process.

The significant difference in GPC performance between a cost horizon of 5 compare to a cost
horizon of 4 was striking. It seemed like there existed a threshold value equals to 5 where
GPC manage to control the heat exchanger. At a shorter cost horizon the GPC did not manage
to control the process, it seemed like the GPC did not react to neither set point changes nor
disturbances. The reason for this behavior could be that the cost horizon was so short that the
algorithm was not capable to include the dynamics in the process. This threshold value was
likely to change with the degree of the B polynomial. A more complex model could for
instance be tested to see if threshold value changed with a B polynomial of higher degree.
The threshold value would probably increased with an increasing degree of the B
polynomial.

Clarke et al. [3] suggest also that the minimum cost horizon N, could be set equal to the dead
time if the dead time to the process is known. In all tests the minimum cost horizon was
chosen to be equal to two. From a step test that was executed, the dead time was between 3
and 6 seconds, dependent on the hot water flow rate. Even though the dead time varies with
the flow rate, it was about one sampling interval. Since the dead time was about one sampling
interval, the GPC algorithm did not loose any information by set N, equals to two. Choosing
the minimum cost horizon bigger than 1 if the dead time was variable or unknown was a risk
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to loose information. When choosing N, equals or bigger than dead time reduce computation
in the algorithm. But there is no point setting N, less than the dead time because the output
is only affected by the past outputs and inputs.

The control horizon showed better control if it had a smaller value like 2 instead of a larger
value like 5. This as can be seen in the comparison graph in appendix G.1. From Clarke et
al. [3] the control becomes smooth and sluggish if the control horizon is chosen as small
values. Larger values of the control horizon provide more active controls. From the
comparison graph you can see that the rise-time was shorter for the case with longer control
horizon. It was more active and wanted to change the set point fast. In the case where the
control horizon is shorter, the rise time is longer but when the manipulated variable reach se
point, the value laid closer to the set point, the control was smoother. This observation agreed
with the literature.

Clarke et al. [3] describes that a large class of plant models can be stabilized by GPC with
default values of 1 and 10 for N; and N, and A can be set to zero. These parameters values
were not tested, but from the tests this values will probably give large oscillations. From the
tests the oscillations increased when value of A parameters was decreased. The lowest A
value tested was 0.1 and this value gave oscillations particular at low flow rate when the cost
and control horizon indicated good control from other tests with a larger A value. The largest
maximum cost horizon tested was 10, that equals a maximum cost horizon of 9. This gave
oscillations at particular low flow rate. The default values suggested by Clarke et al. [3] gave
not sufficient control of the heat exchanger.

Stability was affected by the cost horizon. If the cost horizon was too long, the output from
the heat exchanger started to oscillate at particularly low flows. When the hot water flow was
around 5 I/min the set point to the slave controller oscillated between 0-10 I/min. The set
point to the slave controller changes between 10-13 I/min when the hot water flow is around
11 I/min. Both these observations were done when cost horizon was seven or bigger. The
oscillations in the input produced oscillations in the outputs, especially at low flows. The
oscillations occurred because of the prediction from the GPC controller was poorer. The
predictions was based on the ARX-model that updated by RLS. The ARX-model had
constant values for the degrees of the A and B polynomials from fitting the ARX-model to
PRBS-data. The PRBS-test was executed with the binary outputs 10 I/min and 14 |/min,
which was actually in the higher hot water flow rate range. The binary inputs in the PRBS-
test should be a compromise between high and low hot water flow rates, but since the inputs
were more in the high flow rate area, it was not surprising that prediction is better in the high
flow rate area. The dynamics in the process changed with different flow rates, for instance
the dead time increased at lower flows. The B polynomial in the model might have too low
degree to detect all the dynamics at low flow. This could be improved by making an adapter
where the model order is changeable.

The PID had problems with controlling the process due to the oscillations that occurred. The
oscillations may be caused from the interactions between the PID and the slave controller.
The PID controller could be tested without the slave controller to find out if it was the
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interactions that caused the oscillations. A problem with testing PID controller without slave
controller was that hysteresis in the hot water valve could gives oscillations, therefore it
would be difficult to detect whether or not there were interactions between the PID and slave
controller. The GPC needs the slave controller to deal with the non-linearity, because the
GPC is a model based controller. The PID is not model-based so the controller may not
actually need a slave controller to deal with the non-linear part.

A lower control weight value could be considered instead of a higher value that gave better
control if there were little noise in the system. It seemed like the process itself produced
enough noise to keep the RLS active, because of the resolution to the temperature
measurements were low enough to avoid the RLS to fall asleep.
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6. THEORY MULTIVARIABLE CASE

In many cases a change in one manipulated variable affects more than one of the controlled
variables. These interactions between process variables may result poor control
performance. If the interactions are not negligible, the control structure needs to be changed
from a set of independent loops to controllers with multi-inputs multi-outputs. One of the
advantages of GPC algorithm is that the method in multivariable case is similar to the single
variable case.

6.1 ARX-model in multivariable case

The derivation is extracted from Camacho and Bordons [1].

The CARIMA model in equation (2.4) remains the same for the multivariable case, but it is
now a matrix equation. In the multivariable case with ny outputs and nu inputs, A(g!) and
C(qg*) are ny x ny monic polynomial matrices and B(q?) is nu x nu polynomial matrix. They
are defined as

A(AT) = lywny + AGT + A7+ L+ ALQT (6.1)
B(q') = Bo + Big™" + B,q° + ... + B,q "
C(q_l) = Inyxny + Clq_l + Czq—z + o+ Cncq—nc

The variables y(t), u(t) and e(t) are now ny x 1 output vector, a nu X 1 input vector and a ny
x 1 noise vector respectively in the CARIMA model.

To describe the system an auto regressive model with input, ARX, can be used. The ARX-
model is based on PRBS data given from simulation. To develop values for A and B the
PRBS data are fitted to an ARX-model. The fitting is done by Matlab, and the algorithm is
displayed in appendix J.1.

6.2 Diophantine equation in multivariable case

In the GPC algorithm the Diophantine equation needs to be solved. The Diophantine
equation for the multivariable case can be written as

Ly ey = E(GDAQ™) + q7Fi(a™) (6.2)

where ny is number of outputs, A(q™") = A(q)A where A equals 1-q7, E; and F; are
unique polynomial matrices of order j-1 and n, respectively. The polynomial matrices E and
F can be written as
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j-1

E(q7) Eio+ Ej0" +E,q" + .. +E;_.q

Fi(a™)
Solving Diophantine equation can be done by recursion, the same method as in the single

variable case, as described in chapter 2.3.1. The only difference is the equations are now
matrix equations.

Fio+ Fiiq  +F 0"+ ...+ F g™

Consider the Diophantine equation corresponding to the prediction of (t + j + 1|1
by = Ei-:(@DA@) + a0 VR (g7 (63)
Subtracting equation (6.2) from equation (6.3) gives
Onyxny = (Ej+1(@ ) =Ej(@ NA@ ) +a7 (@ Fj, ~Fi(a™)) (6.4)

The subtraction between the two different E polynomials in equation (6.4) is of degree j and
can be written as

E.:(q") - E(q") = R(q™") + Rq’ (6.5)

where R(q™Y) = R(g™)A and R(@Y) is a ny x ny polynomial matrix of degree smaller or
equal toj-1and R; is an ny x ny real matrix. By substituting equation (6.5) into equation (6.4),
it gives

Opynny = R A@ ) + g RAM ) +a7(q Fj,y ~F(a™) (6.6)

Since A(q‘l) Is monic, that is all coefficient are non-zero and the first coefficient are equal
to one, R(q™") needs to be equal to Ony x ny, according to equation (6.6). This means E
matrix can be computed recursively by

Ei..(07) = Ej(q7) + R’ (6.7)

From equation (6.6) and the relation in equation (6.7), following expressions for F matrix
can be obtained
Fieni = Fjic1— Rin +1 fori =0 to the degree of F;,,

Initial conditions for the recursion equation can easily be seen from equation (6.2) and are
given by
Er = loyuny |

Fi = q(l - A)
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This recursion method can be implemented and solved in for instance Matlab.

6.3 GPC in multivariable case

After solving the Diophantine equation, the matrix G can be calculated from
Ei(a)B(a7) = Gi(a7) + a’G(a”) (6.8)
with the degree of G; is less than j. The prediction equation can now be written as
Y(t+ilt) = G(q AUt +]-1)+Gjp(a )Au(t-1)+ F(q (1) (6.9)

The last two terms on the right hand of equation (6.9) only depends on past values of the
process outputs and inputs and correspond to the free response of the process.

Equation (6.9) can be rewritten as
yt+jl) = Ga)Au(t+j-1)+f (6.10)
where f; is the free response and is equal to Gjp(q'l)Au(t -1) + Fj(q‘l)y(t). Matrix G;

is of dimension ny x nu and f; is of dimension ny x 1. Now, consider a set of N j-ahea
predictions:

+1]t) = G,Au(t) +f, (6.11)
+2|t) = GAu(t + 1) + f,
+ NJt) = GyAu(t+N-1) +

Due to the recursive properties of the E; polynomial matrix, expressions in equation (6.11)
can be rewritten as

_g/(t+1|t)_ GO 0 0 0 [ Au(t) ] fl
y(t+2|t) Gy Gy . 0 ... 0 Aut+1) f,
Lo — e e e e | (612)
Ja+ilY| |Gy Gy - Go.. O||Bu(t+j-1)| |f
YE+NID] Gy g Gy g coove o oo G| LAUEHN=D)] |5

The matrix equation in (6.12) can be written in a more condense form as
y = Gu+f (6.13)

where the G is a matrix which contains several smaller matrices G; with j = 0...N-1. Matrix
G has the dimension N-ny x NU-nu and y, u and f have dimensions N-ny x 1, NUny x 1 and
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N-ny x 1 respectively.

The cost function in the multivariable case is quite similar to the cost function in the single
variable case given in equation (2.19) and can be written as

INL NN = 5[5t —w(t+])|°R + S llau(t+j- 1)l1% (6.14)
i=N; i=1
where R and Q are positive definite weighting matrices, N, is the minimum cost horizon, N,
is the maximum cost horizon and NU is the control horizon. If equation (6.13) is introduced
in the cost function given in equation (6.14), the cost function can be written as a quadratic
objective function

) = %UTHU ¥ bu + f, (6.15)

as deduced in chapter 2.3.2. The coefficients in the quadratic function are
H 2G'RG + Q

b = 2(f - w)'RG
fo (f — w)'R(f - w)

Matrix G is the matrix calculated from equation (6.8), f is the free response and w is the future
set point. The matrix H has dimension (NU-nu x NUnu), b has dimension (1 x NU-nu) and f;
is a scalar. The weighting matrices R and Q have dimension (N-ny x N-ny) and (NU-nu x
NU-nu) respectively.

6.4 Including constraints in the GPC algorithm

When signals in the process are limited, we have a process subject to constraints. When
constrains actions like limits on the control signal or limits on the output signals, this should
be included in the GPC algorithm. Constraints are relatively easily to incorporate in the GPC
algorithm.

Constrains on the input variables are usually due to physically constraints, for instance a
valve opening is limited that puts a limit on the flow. A calculated control signal from GPC
which is out of range, becomes limited by either the control program or by the actuator.
Anyway, the reason for incorporate input constrains in the GPC algorithm is to make sure
that the optimum will be obtained and this may not happen when constraints are violated in
the GPC algorithm.

Constrains on the outputs are mainly incorporated because of safety reasons or product
specifications. Constraints on the outputs give the possibilities to have set point ranges
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instead of a single set point values. This can be attractive in from an optimization point of
view. Composition product specifications are typically given in minimum or maximum
values. When a mole fraction specification is given as minimum 0.95, a set point value of
0.95 means that 0.94 and 0.96 is equally poor, which in many cases does not make sense. By
introducing set point range this is avoided and the optimization gets more freedom to change
the manipulated variables, and a better combination of control variables due to the cost may
be obtained.

For a nu-input ny-output process with constrains acting over a cost horizon N and control
horizon NU, constraints on control signals and output variables can be expressed respectively
as

Iumin ax (616)
Iymin

IN IN
G)C

where equation (6.13) is inserted for the variable y and I is a (N-ny x nu) matrix formed by N
identity matrices with dimension (ny x nu). Subscript min and max indicates the limited
region for input and output variables.

The constraints can be expressed in a single matrix equation as
Ru<c (6.17)

where

I(N Ony) x (NU Onu)

R = _I(N Ony) x (NU Onu)
G
-G

where | is the identity matrix and G is the matrix in equation (6.13). The ¢ matrix in the
constraints equation is

[Unax
_Iumin

Iymax - f
- Iymin + f

The QP-problem has the standard form
min 0.5uTHu + bu + f, (6.18)

subjectto Ru < ¢
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The optimization of control actions calculated by GPC can then be solved as a quadratic
problem (QP) since the cost function is a quadratic function as shown in equation (6.15) and
its constraints are linear inequality or equality as shown in equation (6.17).

When the optimization problem is formulated like in equation (6.18), it can easily be solved
in for instance Matlab with the quadprog-function.

6.5 Recursive least squares parameters estimation in multivariable case

The recursive least squares (RLS) parameters estimation method is used to update the model
parameters A and B, which are on the form given in equation (6.1). The RLS algorithm is
similar to the algorithm in the single variable case described in chapter 2.5. Again the
difference between the single variable and the multivariable case is dimension on the
equations. In the multivariable case the parameter vector in equation (2.40) becomes a
parameter matrix on the form

B = [A A .. A B, .. Byl (6.19)

where na is the degree of the A polynomial and nb is the degree of the B polynomial.
Parameter matrix 3 has dimension (na:ny+nb-nu X ny). The matrices A, to A, indicates each
a matrix of the form

all’J - alny’J

A = (6.20)
anylvj anyny,j

The B matrices have the same form as the A matrices.
The output matrix is defined as

yi(1 +na+d) .. yy(na+d+1)
y = (6.21)

yi(N+na+d) ... yoo(N+ na+d)

where N is the cost horizon and d is the dead time in the system. Output matrix y has
dimension N x ny. The error matrix has the same structure as the output matrix. The matrix
@is defined as

ylyl(na+d) ylyl(na+d—1) y1’1(1+d) ynyyl(na+d) yny'1(1+d) ulyl(nb) U1,1(1) unu'l(nb) unu'l(l)
¢ =
yy n(na+d) y; y(na+d-1) ...y, \(1+d) ... yny'N(na+d) yny'N(l+d) up (nb) oug (1) eougy n(nb) Lug, (1)
and has the dimension N x nany+nbnu. The evaluation for the model is now a matrix
equation on the same form as equation (2.44).
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The RLS algorithm can be described as in figure 2.3. The vector g containing past data has
now the form

_Y1(N)
_yny(N)
-y,(N .—”na +1)

—yny(N -na+1)
uy(N-d)

unu(.l\.l'— d)

u(N=d-nb+1)

Uy (N=d—-nb+1)

The covariance matrix P has the dimension na-ny+nb-nu x na-ny+nb-nu, but the parameter a,
representing the variance in the error, is still a scalar. a now represent the average error of
the error in each variable.

The adapter can be implemented as a function and solved in for instance Matlab.
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7. EXPERIMENTAL SIMULATION PHASE

7.1 Description of simulation process

The simulation case was based on information from Bill R. Minton in Black & Veatch
Pritchard, Inc [7], who gave the problem to a senior design project at University of Colorado
at Boulder. Parts of simulation result from the senior design project by Halevi et al. [7] was
also used as a starting point in the simulations, like selecting stage for side draws and feed
streams, operating pressure and flow rate in recycle streams. Control strategy and control
was the main focus in the simulation. The simulations took place in HYSYS.Plant.

The main task to the process was separation of natural gas liquid (NGL) into ethane, propane,
iso-butane, n-butane and gasoline. The whole separation process contained 5 distillation
towers, T-1to T-5, where the first distillation column had neither condenser nor reboiler, and
auxiliary equipment like pumps, heat exchangers, coolers, heaters and compressors.

The two first columns, T-1 and T-2, were coupled through two recycle streams. The recycle
streams were side draws from column T-2, one vapor stream and one liquid stream. The
liquid stream returned to the top of column T-1 and served as reflux, the vapor stream
returned in the bottom of T-1 and served as boil up. Product streams from T-1 were feed
streams at different stages in T-2. The T-2 column was a dual distributor where ethane was
a product stream from condenser and propane was a product from side draw. The bottom
stream from reboiler in T-2 went to further separation.

Itis only the two coupled columns that were studied here. The simulation was also simplified
by omitting preheating of the feed, cooling and pressure rising of the product streams. When
the process was simplified by disregarding pressure and temperature specifications in the
product streams, only three auxiliary components were needed; one pump, one cooler and
One compressor.

The process was simulated in steady state and dynamic mode where control performance was
studied. The coupled columns were interesting from a control point of view, because if poor
control was implemented, disturbances were sent back to the process by the recycle streams.
The product specifications could therefore be hard to maintain with too big disturbances in
the process. The second column T-2 was also very important because it produced two
products and a bottom product that went on to further separation.

The main goals of the coupled distillation column were to maintain specification on product
streams ethane and propane. The product specifications are shown in table 7.1.
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Table 7.1  Product spesifications in the simulation

Component Ethane Propane
Pressure [psig] 1000 300
Temperature [F] max. 100 max. 100

Composition C2: min 96.0 mol% | C3: min 95.0 LV%
" C3: max 2.0 mol% C4+: max 2.5 LV%
" C4: max 0.25 mol%

Only the key composition specifications were considered for the products, i.e. ethane in
ethane product and propane in propane product. Pressure and temperature specifications
were not considered for the product streams since the process was simplified as mentioned
above. The composition specifications on the bottom stream from T-2 were also considered,
since the bottom stream went to further separation where other specifications needed to be
maintained. All the propane in bottom stream from T-2 was assumed to consign in the iso-
butane product, since this was the lightest product produced from the bottom stream in T-2.
Since the iso-butane product should not contain more than 0.5 LVV% propane, this value was
used as a specification value for the bottom stream from T-2 column.

Both distillation towers were trayed towers, simulated as sieve-plate dispersers. Number of
stages was given in the process description but column diameter needed to be calculated.
Calculations were based on methods described in Levland [10] and Perry and Chilton [11].

The calculated tray diameter in column T-1 would HYSYS.Plant not accept, it gave an error
message that tray section dry hole pressure drop is too large. HYSYS.Plant suggested a
bigger diameter, and the suggested diameter for T-1 was used in simulations. The diameter
for column T-2 was increased in simulations because the tray section dry hole pressure drop
became too large when the reboil ratio was bigger than 0.96 for a shorter period. Key sizing
parameters for the columns are given in table 7.2.

Table 7.2 Key sizing parameters for the simulated distillation columns

Columns T-1 T-2

# of trays 20 60

Tray diameter [m] 2.1 9.2

Tray diameter used in simulation [m] 5.9 10.5
Average pressure in column [kPa] 2066 2055
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The composition profiles for ethane and propane in steady state were studied to check which
trays the side draws should be placed, particularly the propane side draw. In steady state there
was a problem to maintain the composition specifications for the propane stream. In the
steady state simulations, propane side draw was placed at stage 27, after suggestions from
[7]. From the composition profile, displayed in appendix K, a propane side draw from stage
20 was more preferable. In dynamic simulation the propane side draw was therefore placed
at stage 20. When the propane side draw was moved to stage 20, the composition profile
remains almost unchanged.

Column T-1 had a feed stream entering at stage 10 and the vapor and liquid recycle streams
from column T-2 acted as boil up and reflux streams in column respectively. Column T-2
had two feed streams and both streams were from column T-1. The overhead from T-1
entered column T-2 at stage 14, bottom stream from T-1 entered at stage 44. Column T-2 had
three side draws, i.e. propane product stream, liquid recycle stream and vapor recycle stream.
These side draws were placed at stage 20, 14 and 45 respectively. The bottom stream from
column T-2 was outlet from reboiler and ethane product stream was overhead from
condenser.

The liguid recycle stream from T-1 got cooled about 57 °C and then it went through a pump
with pressure rise of approximately 82 kPa. The vapor recycle stream went through a
compressor with a pressure rise of 18 kPa. It was not considered what kind of energy sources
that were used in the different energy streams.

The economy for the process was not considered. There were only three energy streams in
the process in the addition to the reboiler and condenser duty in column T-2. Since pressure
and temperature specifications for the product stream were not considered, several energy
streams were actually missing compare to a real process.

The process flow diagram of the simulated process is displayed in figure 7.1.
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Figure 7.1 Process flow diagram of the simulated process including control structure.
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7.2 Control structure

The main task for the controllers was to maintain specifications for the product streams
ethane and propane, and the bottom stream from the column which went on to further
separation. An another important case was to try to keep the recycle streams constant to avoid
disturbances were sent back to the process. The pressures in the columns were also important
to keep constant, since they had influence on almost all the streams in the simulated process.

The feed stream entering the process has a flow controller to avoid flow rate disturbances
further down in the process. Preheating and pressure adjustments of the feed were not
included in the simulation and therefore no control actions were considered on the pressure
and the temperature in the feed stream.

The first distillation column that contains neither reboiler nor condenser had only one
controller. The pressure in the column was controlled by the flow rate of the overhead stream
from the column.

The vapor recycle stream, which was a side draw from T-2 and went back to the bottom of
column T-1, was pressure controlled. A compressor was needed to increase the pressure in
the vapor recycle stream, due to pressure drop downstream in the process. Compressor duty
was used as manipulated variable to control the pressure in the stream.

The flow rate to the liquid recycle stream, which entered the top stage at column T-1 was
controlled by a flow controller connected to a valve at the side draw. The liquid recycle
stream got cooled before entering the T-1 column. A temperature controller controlled the
the cooler duty which was the manipulated variable.

The second column, T-2, had much more advanced control structure than T-1 column
because it contained both reboiler and condenser, but it had also several side draws. The
liquid percent level in reboiler was controlled via a valve attached on the outlet stream from
the reboiler. A level controller attached to a valve on the reflux stream controlled the liquid
percent level in the condenser.

The pressure in column T-2 was tried to controlled by the product stream from the condenser,
that is, the ethane stream. This produced large fluctuations in ethane flow rate and also in the
composition. The composition specifications on the ethane stream could not be maintain
with this large fluctuations, so the pressure in the column was therefore controlled by
manipulating the condenser duty instead.

The condenser had partial reflux but the bottom stream from the condenser was only used in
emergencies at very high liquid levels in the condenser. There was a flow controller on the
bottom stream from the condenser, which was connected to a valve through a selector. The
selector worked as a sort of alarm that opened the valve when the liquid percent level was
higher than 90%.
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Compositions to the product streams and bottom stream from the column, were sensitive to
the temperature profile in the column. To control the outlet compositions, the temperature
profile in the column where tried to be maintained via the reboiler duty. This seemed to be
difficult because the temperature profile between the reboiler and the last stage where a side
draw stream was removed from the column was quite flat. When the temperature transmitter
was placed at higher stage in the column, the side draws leaving the column and feed stream
entering the column affected the temperature too much. Also the distance between the
reboiler and the stage where temperature transmitter was placed increased and the effect
between the control signal and manipulated variable decreased.

Instead, the boil up ratio was chosen to control the temperature profile. This worked much
better due to maintain the composition specifications. The reboil ratio was the controlled
variable that was calculated in a spreadsheet in HYSYS.Plant. Reboiler duty was the
manipulated variable in the reboil ratio controller.

The product streams, ethane and propane, have each a flow controller which was connected
to a valve on the streams. Set points to these two flow controllers and the reboil ratio
controller needed to change due to the feed composition and interactions between the
controllers.

All the controllers were Pl controllers. After a control structure was established, the
controllers needed to be tuned. Each controller was set in manual mode and step test on the
output variable for the controller was performed. The responses were registered and the
response data analyzed with Skogestad’s tuning rules [13]. Since all the PI controllers were
treated as SISO controllers, no interactions were considered between the controllers.

The tuning parameters calculated from Skogestad’s tuning rules were implemented in the Pl
controllers and thereafter the performance for each controller where tested by step tests.
Some PI controllers had too aggressive parameters, so these parameters were adjusted.
Particularly gain parameters in flow controllers calculated from Skogestad’s tuning rules
seemed to be too aggressive.

To deal with interactions between controllers, the reboil ratio controller and flow controller
on ethane and propane streams were put into a cascade where the master controller was a
multivariable GPC. The GPC algorithm gave set points to the slave controllers based on the
past outputs, past inputs and model for the process.

The GPC algorithm considered three inputs and three outputs, also a multivariable case. The
inputs in the GPC were ethane flow rate, propane flow rate and reboil ratio. The outputs were
mole fraction ethane in ethane stream, liquid volume fraction propane in propane stream and
liquid volume fraction propane in bottom stream from the T-2 column.

The PI controllers in the simulation could be divided into two groups; local controllers and
secondary controllers in cascade. The local controllers were not involved in the cascade, and
they were also unknown to the GPC algorithm. Their purpose was to keep process variables
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at their set point and smooth out disturbances produced by the cascade. The slave controllers
got set point values from the GPC algorithm, and were in that manner much more active
controllers, since the set point values for these controller changed during the simulation.

7.3 Implementation

A multivariable GPC controller and a built-in MPC controller in HYSYS.Plant were tested
in the simulations.

The first task was to establish the process in HYSYS.Plant. The process was first simulated
in steady state to obtain steady state values, something that was very useful when switching
to dynamic mode. The control structure as described in chapter 7.2 was implemented and the
simulation took then place in dynamic mode.

The pressure and temperature for the products including the bottom stream from column T-
2 were not satisfied the specifications quoted in [7]. Pressure- and temperature adjustments
after the streams had left the column were not important for the MPC algorithms and
therefore not included in the simulations.

In dynamic mode the reboil ratio signal had numerical problems because the value shifted
randomly between two values. The difference between the values was relatively large, so the
signal was too noisy to use in control. The reboil ratio value was therefore smoothed by a
transfer function block in HYSYS.Plant with gain 1 and time constant 1 minutes to avoid
noisy signals in the control.

7.3.1  Implementation of the GPC controller

The GPC algorithm including the RLS adapter was implemented in Matlab, based on the
theory described in chapter 6. The Matlab algorithm including the recursion of the
Diophantine equation, RLS parameter estimation and initializing the algorithm is given in
appendix J.

Calculation of the GPC algorithm was executed by Matlab. The simulation of the process
took place in HYSYS.Plant, and a link between Matlab and HYSYS.Plant was therefore
needed to be established to exchange information. This could be done through Visual Basic
for Applications (VBA). VBA acted as a server where HYSYS.Plant and Matlab were
clients. VBA was programmed to get necessary information from HYSYS.Plant and sent the
information to Matlab, then asked Matlab to execute the GPC algorithm. VBA got then the
control signals calculated from the GPC algorithm and sent the data to HYSYS.Plant. VBA
then commanded HYSY S.Plant to run the simulation for a certain time. The control interval
for the GPC was chosen to be 2 minutes, so the HYSYS.Plant simulation ran for two minutes
before a new loop was started. The VBA algorithm is displayed in appendix L.
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The GPC algorithm needed a starting model for the calculation of the predicted outputs. To
develop a starting model, a PRBS-test had been performed, as described in chapter 2.1. The
PRBS-test was accomplished with three binary output signals. The binary inputs selected
low and high values independently. The binary signals were chosen in the operating range
from the steady state values and responses in ethane in ethane stream, propane in propane
stream and propane in T-2 bottom stream. The data were analyzed in Matlab and an ARX-
model is fitted to the data. Matlab had numerical problems when using the arx function when
searching for the model parameters. Matrices were close to singular and results may then be
inaccurate. Therefore the PRBS-data were normalized to avoid this problem. The model
parameters then became normalized, so all data in GPC algorithm needed also to be
normalized.

To make the GPC controller to work in a cascade, the values from Matlab could not be put
directly to the set point in the slave controllers. This would not work for some reason from
VBA. Therefore the new control signals calculated from GPC were placed as molar flow in
material streams in HYSYS.Plant. The control signals were then treated in a spreadsheet in
HYSYS.Plant to make the reboil ratio unit less, before cells in spreadsheet were set as a
remote set point source to the slave controllers. When the calculated signals finally were put
to the set points in slave controllers, the values were changed, probably due to units. The
control signals were therefore scaled in Matlab before they were sent to HYSYS.Plant. Set
points to the flow controllers on the ethane and propane streams were scaled by a constant
ratio. The set point to the reboil ratio controller had a linear relation and was scaled by a
linear equation.

In the GPC algorithm the free response was calculated. The free response needed set points
to the outputs in its calculations. Since the outputs in GPC had set point ranges instead of
exact set points, a pretended set points were needed in the algorithm. The pretended set
points were the same as the starting values in the simulations.

The GPC algorithm solved a QP-problem with linear constraints, as describes in chapter 6.4.
The constraints on the control signals and manipulated variables were mostly based on
specifications and physical limits. The control signals were ethane molar flow, propane
molar flow and reboil ratio. The molar flows of ethane and propane had a lower physical limit
of 0 kmol/h and the upper limit was set to 3000 kmol/h and 2500 kmol/h respectively. The
lower limit to the reboil ratio was set to 0.5 because vapor flow was needed in the column to
prevent weeping and to maintain pressure and separation capacity. The manipulated
variables were all composition fractions. The upper physical limits to the ethane and propane
purity were 100 mol% and LV% respectively. The lower limit due to specifications for the
ethane purity was 96 mol% and the propane purity needed to be at least 95 LVV%. Propane in
T-2 bottom stream had a physical lower limit of 0 LV% and a specification limit that put the
upper limit to 0.5 LV%.

In case the QP-solving function in Matlab did not converge, that is the problem could be
unbounded, infeasible or the algorithm could not find a feasible starting point. The steady
state values were sent to HYSYS.Plant as fallback values.
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For the GPC algorithm, parameters like cost and control horizons, forgetting factor and
weighting matrices R and Q needed to be decided. The matrix R weighted the difference
between outputs and set points, and was chosen to be equal the identity matrix. Matrix Q
weighted the inputs, i.e. how much it actually cost to use the inputs. Matrix Q was equal to
A times identity matrix where different values for A was tested. Cost and control horizons
were changed in simulations to detect performance changes. The forgetting factor in the
adapter was constant during all tests and equal to 0.9.

The simulation including the GPC algorithm was very time-consuming. The simulation itself
with two distillation columns required lot of resources, but the link between Matlab and
HYSYS.Plant was also time-consuming. The simulation in HYSYS.Plant stopped between
each calculation of the control signal in Matlab, and the start-stop in HYSY S.Plant took time.

7.3.2  Implementation of the built-in MPC

A built-in MPC in HYSYS.Plant was tested to benchmark the GPC controller. The process
was exactly the same as when using the GPC controller. The only difference was that the
slave controllers got its set point values from the built-in MPC instead of the help material
streams. Information about the built-in MPC in HYSY S.Plant was received from Hyprotech
Ltd. [8]. The built-in MPC in HYSYS.Plant was based on dynamic matrix control (DMC)
algorithm. Several parameters needed to be specified in the built-in MPC. First, inputs and
outputs needed to be determined. The inputs and outputs were the same as in the GPC. The
built-in MPC was a master controller with flow controller on the ethane stream and propane
stream and reboil ratio controller as slave controllers. Second, first order plus dead time
(FOPDT) models described correlation between inputs and outputs. Step response data could
also be used instead of FOPDT. Third, parameters needed to be set. These parameters were
control interval, step response length, prediction horizon, control horizon, weighting
matrices called Gamma_U and Gamma_Y and reference trajectory.

FOPDT models were developed by changing one of the set points to the slave controllers.
The response in the controlled variables were observed when the others controllers were
placed in manual. From the response data the process gain, time constant and the delay were
detected for each model. Since the system is 3 x 3 (three inputs and three outputs), nine
different models needed to be determined.

FOPDT models were implemented in the MPC controller. The calculated values for the
process gain was small, overall values was 10-°. The gain was so small that when changing
the set points in the MPC controller, it did not change the manipulated variables at all. It
seemed like a round off problem in the built-in algorithm, where the changes in set points
multiplied by process gain produced so small number that they were actually rounded off.
The controlled variables where first changed from mole fraction and LV fraction to mole%
and LV% to increase the gain, but the problem remained the same. Instead, the responses
from the step response models where normalized to avoid these small process gain values.
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It is preferable to have a constrained built-in MPC but this option could for some reason not
be chosen. So the built-in MPC is unconstrained. If the control signals were outside their
range, they will be constrained when they were sent to the slave controller. The MPC
algorithm will not be aware of the constrains and therefore may use other past values than
were actually implemented in the process. The built-in MPC would try to keep compositions
specifications at their set points instead of a set point range.

The default parameters in the built-in MPC where used as starting points for the parameter
selection. Two different control intervals was chosen and they were selected to be 30 seconds
and 2 minutes. For each of these two cases FOPDT model were established. The FOPDT
models changed slightly in the two cases. The built-in MPC was tested for different control
interval and prediction horizons to detect differences in performance.

The simulation including the built-in MPC was less time-consuming than simulation with
GPC. This is mainly because there existed link to Matlab, and the simulation did not need to
start and stop between every control interval.
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8. SIMULATION RESULTS

Two MPC controllers were tested in the same simulated process. The performances for the
two controllers are described for different parameters.

8.1 Results using GPC including RLS adapter

The maximum feed disturbances in NGL were expected to be £5 % of the ethane flow rate
and =1 % of the methane flow rate from, Halevi et al. [7]. Only a decrease in the ethane
molar flow rate was tested due to lack of time. The feed rate and pressure remains constant.
So when disturbances were put into the process, the GPC controller should change set points
to the slave controllers to ensure that product spesifications are met.

The controllers have been tested by introducing decrease in the ethane flow rate
corresponding to the largest expected variation. Simulations ran for 6 minutes before set
point change was put into the process and then simulations ran for totally 120 minutes. The
GPC controller was tested with parameters suggested from the literature among others. Some
of the responses with decreasing ethane molar flow in the feed stream is displayed in
appendix M. All the tested parameter sets is displayed in table 8.1.

Table 8.1  Test parameters in the GPC algorithm for the simulation case
Case | Mincost | Maxcost | S| Contol | SEL
B 2 NU ght, A [min]
1 1 5 3 3 2
2 1 6 3 4 2
3 1 7 2 4 2
4 1 4 2 3 2
5 1 5 2 3 2
6 1 4 3 3 2
7 4 7 4 3 2
8 1 4 3 2 2
9 1 4 3 2 1
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Common for all the responses were that more significant fluctuation in the set points sent to
the slave controllers occurred when the cost horizon increased. The manipulated variables
could go outside their range because of these fluctuations. When the manipulated variables
were outside their range, it makes it difficult for the QP-algorithm to find a feasible starting
point. When a feasible starting point was not found, the steady state values for the control
signals were sent to the process instead. In a test the parameters were chosen as case 3 in table
8.1. The cost horizon was large and bigger than the degree of the B polynomial that was 4 in
this case. The fluctuations in the set point sent to the slave controllers were big and the QP-
problem could not find a feasible starting point several times during the simulation.

Two test were carried out with equal horizons but with different control signal weighting
values. The parameters sets were equal to the cases 6 and 8 in table 8.1.The test with the
smaller control signal weighting value had more fluctuations in the set points. The
fluctuations were particularly visible in the set point to the reboil ratio.

To check how the control horizon affected the performance, two tests were carried out with
parameters chosen as in case 1 and 5 in table 8.1. The parameters were equal in the two tests
except for the control horizon which were unlike. The changes in set points during simulation
have the same pattern, but the fluctuations is typically bigger for the case with longer control
horizon.

There were also carried out a test where the parameters were selected after suggestions from
Clarke and Mohtadi [2], equal case 7 in table 8.1. The control signal weighting was set to 3
instead of no penalty which they recommended for most cases. With these parameters the
QP-algorithm had troubles to find a feasible starting point after the ethane molar flow rate
was changed. Since the steady state values were used almost the all time, the ethane molar
fraction decreased due to the reduction of the ethane molar flow rate.

There were only a couple of parameters set that actually managed to control the process in
the simulated time. This happened with parameters selected like those in case 6 and 8 in table
8.1. In only these two test the QP-algorithm was able to solve the optimization problem
during the whole simulated time. All others parameters set used the fallback of the steady
state values one or several times.

All the data used in the GPC algorithm were normalized before used in calculations. To
normalize data, a mean value is subtracted from the real value. Start mean values for the
normalizing were chosen as start values from the simulations. If the process drifts from its
starting steady states values, the mean values needs to be updated. The updating has a
weighting factor which indicates how conservative the changing is suppose to be. The mean
values show how the process drifts during the simulation, and an example is shown in
appendix P. In all cases there was drifting in the process but in different degree for the
different inputs and outputs.
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8.2 Results using built-in MPC in HYSYS.Plant

The built-in MPC was tested with the same control interval as the GPC, that is 2 minutes, but
also one test where carried out with 30 seconds control interval to display the importance of
the control interval. The controller was tested with two different cost horizons. The other
parameters were not changed during the tests. The parameters in the built-in MPC were

selected as displayed in table 8.2 and each parameter set were tested in the process.

Table 8.2  Parameters used in the built-in MPC in different tests.
f:ontrol Step Predictio Control Gamma Gamma Reference
Case | interval response . . - - .
. n horizon | horizon U Y trajectory
[minutes] length

1 2 50 25 2 1 1 1

2 2 50 5 2 1 1 1

3 0.5 50 5 2 1 1 1

The built-in MPC showed smooth and acceptable control for all three parameters set. The
manipulated variables and the control signals are displayed in appendix N for all three cases.

The responses to the manipulated variables fluctuates clearly most in case 2 where the
control interval is 2 minutes and the prediction horizon is 5. When the prediction horizon
increases to 25, the responses to the manipulated variables smoothed down The use of
control signal smoothed too, compare to the case where the prediction horizon is only 5. In
the case where the control interval was decreased to 30 seconds, it seemed like the controller
adjust the set point change in feed composition faster and the effect on the manipulated
variables from the set point change decreases.
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9. DISCUSSION MULTIVARIABLE CASE

9.1 The separation process

During the simulation the reboil ratio needed to be limited to maximum 0.95. If the reboil
ratio was higher than 0.95 for a shorter period, the tray section dry hole pressure drop became
too large. Also a reboil ratio larger than 0.95 is not preferable since very little bottom product
will be produced and the liquid velocity in the column could be too low.

When developing the ARX-model from the PRBS-data, the degrees of A and B polynomials
were limited to a value of 1 to 5. If the limitations were not done, the computations would be
too big. The model fitting was also tried with a maximum value 10 for the degree of the
model parameters, but this case seemed to be running in a forever loop. Therefore it is
difficult know how big the effect of the limitations was. Particularly in a multivariable case
the implementations were important to keep the programs as small and with as few
computations as possible. The model fitting program could possibly be implemented more
effectively so a bigger model degree could be selected for the A and the B.

The simulated process was simplified from original process description given from Halevi et
al.[7]. Only two of the total five columns in the separations were simulated. The
simplifications were also preheating of the feed, pressure and temperature adjustments of the
product. The preheating of the feed was replaced by a higher temperature in the inlet feed
and had the same temperature as the output temperature from the preheater. This should have
no effect on the GPC controller performance. If the preheater had been included, local PID
controller would have been needed to control the temperate. The omission of temperature
and pressure adjustments on the products should have very little effect on the GPC controller
since the products left the process and were not used in further simulations.

In the calculation of the tray diameters several assumptions were made. Among the
assumptions were that the system was low or non-foaming and the weir-height was less than
15 percent of the plate spacing. Both of these assumptions were satisfied. The tray diameters
in both columns were big. In column T-1 the tray diameter needed to be increased almost
three times as much as the calculated value. It could be possible to run with a smaller
diameter. The dynamic assistant in HYSYS.Plant suggests diameters that may be far too
large from earlier experience. The diameter in the T-1 column has not been tried to be
reduced. The diameter in T-2 needed to be increased because of tray section dry hole pressure
became too large. This happened when the reboil ratio was very large during the simulations,
like bigger than 0.96. The diameter was increased, but it may have not been necessary to
increase the diameter after limitations of the maximum reboil ratio to 0.95. After the upper
limit of the reboil ratio was reduced to 0.95, there was attempts to reduce the diameter
because of lack of time. If the diameter had been reduced the model of the process would
need to be updated with a new PRBS-test because of a change in the liquid and vapor flow
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rates.

The noisy signal from the reboil ratio needed to be smoothed by a lag function before it could
be used in control. This lead to a difference between the actual value of the reboil ratio and
the smoothed signal when the set point to the reboil ratio changes. The smoothing generated
sluggishness in the control of the reboil ratio since the input to the controller was the
smoothed signal. The control managed to put the manipulated variable at its set point and the
slowness did not appear to affect the performance significantly.

The way the calculated control signal went when transferring the value from Matlab to
HYSYS.Plant was not refined. It was a very cumbersome method to transfer the value by go
trough both a material stream and a spreadsheet in HYSYS.Plant. The control signals also
changed in value on their way and this needed to be adjusted in Matlab. It might be possible
to transfer the control signals with other commands in VBA than used to avoid this
cumbersome path.

The simulation ran for 114 minutes after the change in ethane molar flow rate in the feed
stream was introduced. The changes should have gone through the system throughout that
time. Since the GPC contained a RLS that needed changes in the process to give reasonably
results, the simulation could not be carried trough for a too long time without adding
disturbances or set point changes. The process did not reached steady state during the
simulation to avoid problems for the adapter.

The local PID controllers were not given that much attention after they were tuned. But that
did not mean that they were not important. They needed to keep the manipulated variables
that was not included in the cascade at theirs set point. Particularly set point changes for the
reboil ratio controller affected the local PID controllers. The reboil ratio controller had most
influence on the pressure in column T-2. The pressure again needed to be fairly stable to
avoid disturbances in the recycle streams, i.e. temperature, flow and pressure in the streams.
If the recycle streams changed too much, this affected the performance of the first column,
which again gave feed streams to the T-2 column.

The interactions between the pressure controller and reboil ratio controller in column T-2
showed that they were not independent. Neither were the flow and temperature controllers
on the liquid recycle stream independent. The controllers attached to one distillation column
were very seldom independent of each other. These were still implemented as single-loops
controllers with fairly good result. Multiple-loops are more complex and there exist a balance
of the complexity and the improvement in performance by introducing multivariable control
system. Others multiple-loops than the one in the cascade was not considered since the main
focus were on the GPC controller. The local PID controllers worked well after tuning and it
did not appear necessary to introduce multiple-loops other the one that already exist.
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9.2 The GPC controller

The GPC algorithm optimize the three outputs ethane composition in ethane outlet, propane
composition in propane outlet and propane composition in bottom outlet by changing the
reboil ratio, flow rate ethane outlet and flow rate propane outlet. The optimization was only
based on how to use the manipulated variables to obtain controlled variables within the
constraints. No economy factors were included in the optimizing algorithm. Economy
factors could be included by maximize market value of production subject to minimize
energy usage. So the optimized set of inputs might not be used in a real world because the
same set of inputs might not represent the optimized case from an economy point of view.

The GPC algorithm was tested with the parameters suggested by Clarke and Mohtadi [2].
This gave very poorly control. The fluctuations were large and after a while the QP-
algorithm could not find a feasible starting point. Which parameters that mainly causes the
fluctuations in this case was difficult to tell. First, the control signal weighting matrix was
equal to a zero matrix, and this had not worked in other tests with other cost and control
horizons because it causes too big fluctuations. Second, the minimum cost horizon was equal
to 4 in this case, where the other test the minimum cost horizon is equal to 1. The maximum
cost horizon is set to 7 in this case which may be too long and poorly prediction could occur.
The fluctuation causes were probably both from a too long cost horizon and the lack of
penalty on the control signal.

Default parameters value suggestions from Clarke et al. [3] were also tested. This gave a
poor result too. The composition specifications were not maintained and the QP-algorithm
could not find feasible point most of the simulated time. The control signals fluctuate a lot,
and this could be caused of both a too long maximum cost horizon and too low control signal
weighting matrix.

From Clarke et al. [4] the selection of maximum cost horizon was generally recommended
to be chosen relatively large. This was not the case for the implemented GPC controller here.
When the maximum cost horizon was selected bigger than the degree of the B polynomial,
that is 4 in this case, the controller did not showed particularly good control performance.

There seemed to be an implementation problem in the QP-algorithm where the algorithm
could not find a feasible starting point. The starting point was always the steady state values,
and these points are feasible in the beginning of the simulation. The steady state values were
normalized before they were used in the QP-algorithm and this might have changed the
steady state values into an infeasible region because of drifting in the process and changes of
the cost function due to the RLS.

When the cost horizon was chosen to be too long from the performance point of view, set
points sent from GPC algorithm varied a lot and this of course affected the manipulated
variables. The same pattern was discovered in the experimental phase when the GPC
algorithm just included a single-input single-output case. This underlines the importance of
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choosing the right cost horizon. With a cost horizon too long, the GPC algorithm had to
predict too long in the future where the uncertainty is too big and this gave poorly
predictions.

In the simulation the reference trajectory was identical with the set point. By smoothing
approximation from the current value of the output towards the known reference, the system
can react before the change has effectively been made and with that avoiding the effects of
delay in process response. There were not executed set point changes in the GPC controller.
The GPC controller did actually not had set points for the controlled variables, but set point
ranges, where the only task for the GPC controller is to keep the controlled variables inside
the constraints. For set point changes in the process an active use of reference trajectory
could probably improve the controller.

The surface of the QP-problem could be developed to see whether there were other, more
preferable, starting points in the algorithm. The surface change with time, because of the
adaptive part that update the process model. Anyway, the searching area could be explored
to detect if there were flat areas where the searching algorithm could have trouble or there
are other sets of manipulated variable which were more preferable. Some model parameters
developed during the simulation were used to explore the eigenvalues to the H matrix. In all
test cases the H matrix had only positive eigenvalues, that is the optimization problem was
positive definite at every test. In other words the QP-problem was strictly convex and had
only one global solution.

The forgetting factor in the GPC algorithm was not changed during the test, but had a
constant value of 0.9. From the experimentally part where a SISO GPC controller was tested,
forgetting factor had very little effect on the controller. The same pattern was expected in the
MIMO case and it should not produce a significant difference in the control performance.

Set points values were needed in the free response calculations in the GPC. Since outputs
from the GPC algorithm had set point ranges instead of exact set point values, a pretended
set point values had been chosen. The free response affects the b and f; in the quadratic cost
function displayed in equation (6.15). The scalar fy did not affect the selection of the
manipulated variables, just the function value. The free response was included in the
calculation of the b vector, and b affected the manipulated variables. So the pretended set
points actually affected the optimization of the cost function. The performance of the GPC
algorithm should not be significantly changed by the selection of the pretended set point
variables, as long as the selections were done wisely. The selections of the set points should
be of course in the set point range and not on the limits of set point range.

In some cases the compositions specifications were maintained and the QP-algorithm did not
need any fallback during the whole simulation. In this cases the reboil ratio was decreasing
slowly and this had biggest effect on the propane purity in propane stream that also decreased
slowly. In one of the cases the simulation was carried out for another 80 minutes to discover
what happened. The reboil ratio decreased and the propane purity also decreased until the
specification was not maintained any more. Some time after the specification for the propane
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stream was violated, the QP-algorithm could not find a feasible starting point and the steady
state values were sent to the process instead.

The GPC algorithm was executed every second minute. The sampling interval was chosen
so the slave controller managed to change the set point and the manipulated variables will be
affected. This may have been a too long interval. Two different tests with the same
parameters but with an execution interval of one and two minutes respectively, were carried
out. The algorithm started with the same ARX-model but the RLS updates the model in both
cases. The purity of the product streams, ethane and propane, were lower in the test with
sampling interval 1 minute compare to 2 minutes sampling interval while the bottom product
had a better quality, that is less propane contents. The inputs react earlier to the set point
change in the case with the shortest sampling interval but did not end at the same place
because the updated model differs in the two cases. One disadvantage for the test with the
shortest sampling interval is that the PRBS test is carried out with a sampling interval of 2
minutes instead of 1 minute. The RLS should be able to update the model, but it was difficult
to know when the ARX-model actually fitted the process with a shorter sampling interval.
From the two test with different sampling interval, the performance had the mostly the same
pattern but the end points of the simulation were not equal because of different updating
models. Apart from the disadvantages of the model, the performance did not seem to improve
with shorter sampling interval. The test indicates that a sampling interval of two minutes was
not too long.

9.3 The built-in MPC Controller

For the built-in MPC in HYSYS.Plant, FOPDT models were determined by step responses.
For the step responses it was difficult to get a perfect step input. But the ramp constant was
small compared to the process time constant, so a good approximation to a step should have
been obtained. Since the smallest time constant in the FOPDT models were 2 minutes or
bigger, should this not have affected the model.

When the step responses were carried out, the controller where its set point changed was in
auto mode, while the other controllers in were in manual mode. This were done due to
controllers were not suppose to interact with each other. When executing the set point
changes, the flows in the cascade where constant when these controllers were in manual
mode. The reboil ratio changed during the step response tests when the controller where in
manual mode. Since the reboil ratio was most important to the compositions in products and
bottom stream this affected the step response. This may have affected the first order models
used in the built-in MPC.

The process was approximated to a first order model. True processes are very seldom ideal
first order. This gave an error in the predicted outputs. When the process drifted, new step
response models should be implemented. The built-in MPC did not contain an adaptive part,
so the model could not be updated during simulation. Even though the built-in MPC did not
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have an adapter and the prediction was based on FOPDT models, the controller showed good
prediction.

How the performance of the built-in MPC was affected by the choice of parameters was not
studied in detail. Only the control interval and prediction horizon were tested with more than
one value. The difference in prediction horizon was large between the two tests; still the
performance did not become unacceptable. It seemed from the test that the controller was not
very sensitive of the choice of parameters. There is difference in performance of course, but
non of the test with built-in MPC gave unacceptable control.

9.4 Comparison of the GPC Controller and the built-in MPC Controller

The GPC based its predictions on an ARX-model and the built-in MPC used FOPDT models
to predict the outputs. It was expected that the GPC was able to predict better for processes
that have a more complex dynamics since the ARX-model is able to include more complex
dynamics than a FOPDT model. It is limited how many processes the dynamics can be
simplified with a FOPDT model. Anyway, the built-in MPC showed better performance and
was able to control the process for all parameters set that where tested.

The built-in MPC was very simple to use. It needed only number of inputs times number of
outputs FOPDT models and a control interval. FOPDT models were easy to develop and did
not require any implementation compared to an ARX-model, which needed some
implementation in Matlab to fit PRBS-responses to the model. In the built-in MPC,
parameters like cost and control horizons, weighting matrices and reference trajectory could
be specified but it was not necessary since the controller had default values. This made the
built-in MPC very attractive to use because it was so simple to make it work. The parameters
selections were not that critical that it appeared to be in the GPC controller.

The GPC controller needed much more effort to work. The implementation was time
consuming and quite difficult with a lot for matrix calculations. The parameters needed much
more attention than in the built-in MPC. The parameters selections were critical for the
performance of the controller. To obtain the optimal set of parameters in the GPC algorithm,
several tests was usually needed since there was no standard recipe that appear to work for
this case to obtain these parameters. Suggestions from the literature had not been successful
in all cases, so the parameters must be found by try and fail.

9.5 Comparison using GPC in experimental phase and simulation phase

The cost horizon seemed to be a very important parameter for the performance of the GPC
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controller, both in the SISO experimental phase and the MIMO simulation phase. In both
cases the best performance occurred when the maximum cost horizon had the same value as
the degree of the B polynomial.

One advantage of the GPC algorithm was that when the SISO case was established, it just an
extension in dimension to make the GPC work in a MIMO case. The algorithm was quite
similar and based on the same equations. Also adding constrains to the optimization problem
was quite easy when the cost function was written as a quadratic function.

Both the SISO GPC and the MIMO GPC handled constraints in their algorithms. When
constraints were added to the optimization problem, the solution was not analytical as it was
without constraints. The two algorithms used two different optimization functions in Matlab,
fmincon in the SISO case and quadprog in the MIMO case. The difference in the two
functions were that fmincon found the minimum of a constrained nonlinear multivariable
function where the function returns a scalar, while the quadprog solved a defined QP-
problem with a quadratic function and linear inequalities and linear equalities. The problem
in the SISO case could also be solved as a QP-problem instead of using fmincon. It was
expected that both algorithms finds the minima of the function subject to the constraints, but
the fmincon search method might be more extensive and therefore more time-consuming
since it supposed to search in nonlinear multivariable functions compare to quadratic
functions. The time-consumption in data transfer and calculation is an issue in the
experimental phase since it limits the sampling interval. The reduction of time-consumption
by using quadprog instead of fmincon is little compare to the time-consume of the DDE link
between Labview and Matlab.

The SISO GPC worked well and it was expected that the GPC controller had better
performance than the PID controller. Some of the suggestions from literature could be used
as guidelines for selections of the parameters in the GPC algorithm. An exception was the
control signal weighting which could not be zero to perform good control.

The MIMO GPC did not work as expected compare to the built-in MPC. Since the GPC was
based on ARX model for its predictions while the built-in MPC made its prediction based on
FOPDT model. The ARX model should manage to include the dynamics in the process better
than the FOPDT model, therefore was a poorer performance of the GPC compare to the built-
in MPC a surprise. Mostly of the parameter suggestions from literature resulted in poor
control by the MIMO GPC. The parameters suggested in literature were widely tried in
several different types of processes, among other things unstable and non-minimum phase
plants. So a question is of course why the suggested parameters could not be used in control
coupled distillation columns.

In both the SISO and the MIMO case the GPC was a master controller in a cascade. The
calculated outputs from the SISO GPC controller changed smoothly in set point changes, and
this gave smooth change in the manipulated variable. In the MIMO case the set point change
might suddenly jumped to another value. The same smoothness did not exist in the controller
for the multivariable case. Why the performance characterization changes that much when
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the number of variables was extended was not fully understood. The processes were different
in the two cases, but this should not change the performance characterization so drastically.

The GPC performance in the simulation case was surprising based on several observations
as mentioned above. First, the GPC controller did not showed good control compare to the
built-in MPC, and second, the difference between the performance of the SISO GPC and the
MIMO GPC. This could indicate that the GPC controller did not work as it should be and
there could be something wrong with the implementation. The GPC controller was
implemented in a quite large Matlab-file and this program called two large functions in
addition. This code could contain errors; among other things variables might not be assigned
the right values. There was also a link between Matlab and HYSYS.Plant trough VBA that
could contain errors. The errors were difficult to find and could not be detected in the
bounded time. The algorithms needs throughout debugging to detect possible errors.
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Conclusion

10. CONCLUSION

The Generalized Predictive Control (GPC) algorithm was tested in both an experimental
SISO case and a simulated MIMO case.

The experimental case was carried out on a heat exchanger connected to a computer. The
heat exchanger was a shell-and-tube with one hot water and one cold water flow. The control
was a single-input single output (SISO) where the goal was to control temperature of the cold
water outlet with the hot water flow as manipulated variable. The control structure contained
a master SISO GPC controller and a Pl slave controller. Labview was used to run the
experiment. Matlab was used to calculate the prediction of the control signal from GPC and
the model parameters from RLS. Matlab was connected to Labview through dynamic data
exchange (DDE).

The MIMO case was conducted using a HYSYS.Plant-simulated distillation train. The
simulated process was a part of separation of natural gas liquid (NGL). The process
contained two coupled distillations columns where the first column had neither reboiler nor
condensator. The products were ethane and propane. There was also and bottom stream form
the second column that went on to further separation. The control strategy contained local
PID controllers and a multivariable GPC as a master controller in a cascade. The GPC
controller algorithm was implemented in Matlab, and HY SY S.Plant was linked together with
Matlab via Visual Basic for Applications (VBA).

In both cases pseudo-random-binary-signal (PRBS) tests were carried out and fitted to
autoregressive with input (ARX) models. To update the models an adapter based on the
recursive least squares (RLS) method was used.

The constrained SISO GPC including RLS showed good control with relatively fast rise-
time, almost no overshoot and smooth actions on the control valve for several parameters set.
The SISO GPC was also compared with a PID controller. The PID controller was not
effective in smoothing out oscillations. The oscillations could be tuned down a little but the
the settling time was undesirable long. The oscillations in the PID controller may be caused
from interactions with the slave controller. The PID showed poorer control compare to the
GPC mainly because of the oscillations.

The constrained multivariable GPC tried to control ethane purity in ethane stream, propane
purity in propane stream and limit propane in bottom stream from the second column in the
separation. The control signal were ethane flow rate, propane flow rate and reboil ratio. The
GPC performance was evaluated with various parameters by decreasing ethane molar flow
rate in the feed.

The MIMO GPC showed poorer control than expected and it was sensitive to the selection
of parameters. The GPC controller was compared with the MPC controller which is built into
HYSYS.Plant. The built-in MPC was based on first order plus dead time (FOPDT) model
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and showed very smooth control and manage to maintain the specifications during the whole
simulation.

The built-in MPC needed a limited amount of effort to work. The FOPDT models were easy
to develop and the controller was not that sensitive to the selected parameters compare to the
GPC controller. Therefore the built-in MPC was preferred to the GPC controller.

In both the SISO case and the MIMO case the cost horizons and control signal weight were
important for the GPC performance. The control horizon had minor effect on the
performance. The forgetting factor in the RLS made no difference in the GPC performance.
In both cases the suggestions from the literature could partly be used as guidelines for
parameters selections in the GPC algorithm.
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GLOSSARY

Notation
A Bold, italic and upper case letters denote matrices
A Italic letters denotes vectors or scalars
Symbols
qt backward shift operator
q forward shift operator
A(gY) left polynomial in model
B(q™) right polynomial in model
C(q?) noise polynomial in model
d dead-time
y(t) output variables at instant t
u(t) input variables at instant t
e(t) discrete white noise with zero mean
na model order of A polynomial
nb model order of B polynomial
A 1-qt
E; polynomial in Diophantine equation
Fj polynomial in Diophantine equation
G; E;B
f free response
R Ej+1
S Fi+1
J cost function

69



w future setpoint

0 weighting factor for difference between prediction and
future setpoint

A weighting factor for control signal

J(t +j ) expected value of y(t+j) with available information at

instant t

N, minimum cost horizon

N, maximum cost horizon

' cost horizon

number of pints of prediction horizon
K¢ process gain
T integral time
b bias
B vector/matrix with model coefficient
[0} matrix with past inputs and outputs
\Y loss function
Y vector/matrix of past values of inputs and outputs
a variance of errors
c scalar that contains a large number
I identity matrix, subscript indicates the dimension

A polynomial A multiplied by A

2 T
[Vl q viQu
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LABVIEW DIAGRAM FROM CALIBRATION

A

File Edit Operate Project ‘Windows Help mEHw
=] [&0] (52 hoa B[] [130t Applcation Font =] [8 =] [7gm =] [£D !
Teo: Temp cold water oul]
[Tci: Temp cold water in|
hi: Temp hot water in|
ho: Temp hot water oul]
Temperature Chart
u.. FaraEr AT ey e A, 4 u%u e
o|ac=154.914%c
H -BR12770.5:
vh] mmum:.wh.m_”_._ h-23.968) gh) Hat W ater Flow Yoltage] ]
: ySEL]|
- | =

Figure A.1 Labview diagram of the calibration file
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Figure A.2 SubVI ""Read Tci" in the calibration file which read the temperature from
termocouple at cold water inlet.

All four subVI that read temperature are almost equal. The only difference are the scaling
from voltage to °C.
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B THEORY BASIS FOR CALIBRATION

The flow measurement signals from heat-exchanger are given in voltage, and this has to be
converted to a more practical unit. The flow through a valve is proportional to the square root
of the pressure difference over the valve,

q = kAP (B-1)
where q is the flow, AP is the differential pressure and k is a proportional constant. The output
signals from heat exchanger are in voltage, and the voltage can be expressed as a linear
function of the pressure difference,

V = a+ bAP (B-2)

where V is the voltage a and b are constants. If equation (B-2) is substituted into equation (B-
1), the flow can be expressed as

qg = k./N-a (B-3)

where Kk’ is a constant. With a series of measurement of the flow and the voltage, the relation
between flow and voltage can be found based on equation (B-3).
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C LABVIEW DIAGRAM FOR THE PRBS-TESTS

C

1Rl &
4Ry
|
iy,
B
i =l
| =]

Figur C.1 Labview diagram of PRBS
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D

PRBS-ExAMPLE. MODEL DEVELOPMENT FOR THE
HEAT EXCHANGER

PRBS-test is executed to develop a model which the GPC controller is based on. The binary
input to the PRBS-test is hot water flow rate. Cold water flow rate is considered as
disturbances. Parameters for the PRBS-test is described in table D.1.

Table D.1 PRBS-test parameters. Hot water flow is setpoint to slave controller, cold water flow is

gauge-value
Hot water flow rate 10 - 14 l/min
Cold water flow rate 3.88 (gauge value)
Sampling interval 3 seconds

The PRBS-test can be displayed in figure D.1. Only 150 seconds of the 600 seconds the test

was executed is displayed.

Extracted data from PRBS-test in the heat exchanger

IR T AT
2 LU W
B UV VLU VUYL WY

150
Time in seconds

45

Temp cold water outlet deg C

40 ‘
0 50

100 150
Time in seconds

Figure D.1 Extracted PRBS-data from heat exchanger with control signal in the upper
graph and manipulated variable lower graph
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After PRBS-test is executed, the data is fitted to an ARX-model by Matlab. Results from the
fitting by Matlab are given in table D.1.

Table D.1 Data from Matlab when fitting ARX-model from PRBS-data
A

[1.0000 -0.5186 -0.2520 -0.2040]

[0 0.0679 0.0750 0.0653]
[0 0 0.0170 0.0190 0.0244 0.0012 0.0061]
[0 0 0.0053 0.0054 0.0055 0.0056 0.0055]

Standard deviation of A
B

Standard deviation of B

na 3
nb 5
nk 2

FPE 0.0248

The ARX-model polynomials will then have the form

A(a”)
B(q )

1 - 0517q~" - 0.252q~° - 0.204q°°
0.017q~° + 0.019q° + 0.024q™* + 0.001q~° + 0.006q°

where the degree of A polynomial is 3 and the degree of the B polynomial is 6.
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LABVIEW DIAGRAM - PROCESS INCLUDING GPC

E

Figure E.1 Labview diagram othe GPC.
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F MATLAB ALGORITHMS IN SINGLEVARIABLE CASE

F.1 Matlab code for developing ARX-models

%resent an ARX-nodel from experinental data collected by
%Aut hor: E. M Bergheim  Fall-2000

| oad c:\ MATLABR11\ wor k\ Di pl om pr bsi ncl sl ave. t xt

% eadi ng output and input froma | oaded file,

% he nane is the sanme as the nane to the |oaded file
y=prbsi ncl sl ave(:,2); %elect 2nd col ourm which contains tenp cold water
out | et

u=pr bsi ncl sl ave(:,6); %elect 2nd col ourm whi ch contains the control sig-
nal

z=[y u]; %et the output and input in a vector

%const ants

nam n=1; % ni mrum degree of A pol ynom al
namax=5; %raxi nrum degree of A pol ynon al
nbmi n=1; % ni nrum degree of B pol ynom al
nbrmax=5; %raxi num degree of B pol ynom al
nkm n=1; 9% ni num degree of del ay
nkmax=5; %rexi mum degree of del ay

%Wnitialized nodel

na=l; %nitialize the degree of A polynonia

nb=1l; %nitialize the degree of A polynonia

nk=1l; %nitialize the degree of del ay

nn=[ na nb nk]; %ut the degrees in a vector

t h=arx(z, nn); %level op the arx-nodel
FPEint=th(2,1);%nitialize A kake's Final Prediction Error
%ee help th for structure of the th matrix

%Check all the conbinations of nodel structure that gives the best
describtion of the process
for na=nani n: 1: nanmax
for nb=nbni n: 1: nbmax
for nk=nkm n: 1: nkmax
nn=[ na nb nk];
t h=ar x(z, nn) ; %devel op the arx-nodel
FPE=th(2,1); %O splays the FPE in the th matrix
i f FPEi nt >FPE %hecks the FPE, |ess value for FPE gives better
nodel
FPEi nt =FPE; %update the FPE value if its |less than the past
val ue
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naopt =na; %ave the optinal degree of A

nbopt =nb; %ave the optimal degree of B

nkopt =nk; %ave the optinmal degree of del ay

opt par anet er s=[ naopt nbopt nkopt FPE];

end
end
end

end
%0i spl ays the optimal nodel paraneters na, nb, nk and FPE and t he nodel coeff.
A and B
di splay(' The optinmal nodel paranters')
th=arx(z, [ naopt nbopt nkopt]); %ind the arx-nodel w th the optinal
parant ers
present (th) %li splays the paranters
di spl ay(opt paraneters)
loss_funciton=th(1,1) %Bee help theta for exact structure of th
e=resid(z,th); %onpute the residuals and display correlation graphs
stdev_e=std(e) % inds the standard devation of the error
var_e=var(e) % inds the variance of the error

o%ransformthe arx nodel to a transfer function
[numtf,den_tf]=th2tf(th)

F.2 Matlab code GPC including RLS

function [upast, A B] =cost andcont r ol ( Dat at oMat | ab, upast)

%-unction called by Labview. Needs past input and output fromthe process
% rom Labview, in addition to control horizon, maxi mum cost horizon and

ref.trajectory

%Wnitialize before startup upast=ones(N,1) in the comrmand w ndow

%here N is the cost horizon

%-unction that nminimze the cost function subject to constrains

%n the control signal. The control signal is the setpoint to the slave-
controller

% Aut hor: E. M Bergheim  Fall-2000

global Hb fmark w A B ypast uopt yrls urls beta P K

oSt artval ues for the nodel. Updates by RLS
A=[1 -0.4548 0.0218 -0.5309];
B=[0 0 -0.0235 0.0552 0.0255 0.0414 -0.0058];

%Const ant s
| anda=0. 3; %ontrol -wei ghting sequense
N1=2; %vi ni mum costing horizon
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%at a from Labvi ew

NU=Dat at oMat | ab(3); %ontrol horizon

N2=Dat at oMat | ab(2); %wraxi mum costing hori zon

N=N2- N1+1; % he cost horizon

ypast =Dat at oMat | ab(4: 16)'; %past out put

w=Dat at oMat | ab(1); % eferense trajectory(=setpoint)

%Cal cul ate delta u = u(t)-u(t-1). Used in free response for cost function
with
%lelta u as variable. This free response is used for calculated the free
response
% or cost function with u as variable
for t=1:size(upast)-1
delta_u(t)=upast(t)-upast(t+1);
end
delta u=delta u'; %ranspose the vector to get a columm vector

%Cal cul ate the Diophantine eq recursivly. Calling the function Di ophantine
[E rec, F_rec]=di ophanti ne(A B, N ;

%enerate the GL, &...G\2 polynoninal. Used in the free response calc.
for k=1:N

g(k,:)=(conv(E rec(k,:),B)); %ultiplies each row of E matrix from
Di ophantine with B
end

%Cenerate the G matrix
Gorine=diag(g); %ick out the diagonal of the g matrix
G=zeros(N);
for j=1:N
G:,j)=[zeros(j-1,1); Gorinme(1l:Nj+1)];
end

GG 1:N 1:NJ); ¥set the size of G matrix

% Conpute the GL, &,...G\2 for the free response
gfree=triu(g,1); %ick out the lower triangual matrix of g
mesi ze(gfree, 2);
for p=1:N
gtemp(p,:)=[gfree(p,p:m zeros(1,p)];
end
gdi ff=gtenp(:,1:size(gtenp, 2)-1);
gdi ff=gdiff(:,1:N);

%he free response
f=[gdiff(:,2:size(gdiff,2))*delta_u(l:size(gdiff,?2)-
1) +F _rec*ypast (1:size(F_rec, 2))];
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%veking f and w of the sanme dinention. Labview poke often nore data than
%ecessary, depending on the cost and control horizons.
w=w*ones(size(f,1),1);

%Conpute variables for the cost function for u, not deltau

Di1=di ag(ones(NU, 1));

D2=di ag(-ones(NU-1,1),-1);

D=D1+D2; % is a matrix with elenent 1 on diag and -1 on subdi agonal
Grar k=G D;

f1=[upast(1);zeros(NU-1,1)];

f2=f-Q:,1)*f1(1);

H=2* (Grar k' *Grar k+l anda*D *D); %atrix in the cost function
b=2*((f2-w)'*Grark-1anda*f1l' *D); %/ector in the cost function
fmark=(f2-w)'*(f2-w)+l anda*f1' *f1; % he new free response when the cost
fun is based on u

%V ni m zing the cost function

ustart=7*ones(NU, 1); %Startvalue for the optinmalization

um n=0. 5*ones(NU, 1); %vin value for the output for the optinalization
umax=18*ones(NU, 1) ; %hax calue for the output for the optinalization
[u,fval]=fm ncon(' costfuntotal',ustart,[],[],[1,[],um n,umax);

% mi ncon finds the mninumsval ue fromthe cost function. Cost function is
in the function costfuntotal

uopt=u(l); %ot a necessary statenent when noise is not added. I|f adding
noi se, add here.

upast =[ uopt; wupast(1l:size(upast,1l)-1)]; %pdates the past values for the
control signal

Yupast is only a value Matlab work with and i s not send between Matl ab and
Labvi ew.

%he RLS part

rl sdat a=[ypast (1), uopt]; %all the adapterfunction with the |atest val ues
of in-and out put

[ A B] =adapti nGPC(rl sdata); %al |l es the RLS function adapti nGPC t hat
updates A and B pol ynom al

% unction called by costandcontrol.m

%tored in a own file called costfun

function J=costfun(u)

%35 ves the cost function to fmincon function in costandcontrol
global Hb fmark w A B ypast uopt yrls urls beta P K

J=0.5*u' *H u+b*u+f mark; % he cost function based on u (not delta u)
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F.3 Matlab code for Recursion of the Diophantine Equation

function [E rec, F_rec] = diophantine(A B, N

%ol ves the Diophantine equation recursively, A and B is nodel paraneters,
N2 is the cost horizon

% Aut hor: E. M Berghei mfall-2000

Wnitializing E
E(1)=1;

Wnitializing F

Atilda=[A 0]-[0 A]; %Atilda=A(1l-g"-1)

v=zeros(size(Atilda));

v(1)=1,;

Aprime=v-Atilda; %Aprinme= 1-Atilda

F=Apri ne(2:size(Aprine, 2)); UF=q(1-Atil da)

mesi ze( Apri e, 2) -si ze(F, 2);

F=[F zeros(1,m]; %ize F needs to be equal Atilda= size Aprine

%saving the E & F for each loop, including the initial values
E rec=zeros(N); %nitialize the E that is recorded

E rec(1, 1) =E;

F rec(1,:)=F, %nitilize F that is recorded

%Recursion | oop for Diophantine
for j=2:N

r(j)=r(1);

R=[E r(j)]; Yupdates the new R val ue, which takes the first elenent in
F and add in

for i=1:size(F,2)-1 %pdates the S pol ynom al

S(i)=F(i+1)-Atilda(i+1)*r(j);

end

r=[R zeros(1,Nj)]; % Set Rwhich is E(j+1) so R represent E(j+2) in
next | oop

E rec(j,:)=r;

E=R;

F=[ S zeros(1,size(Atilda,?2)-size(S,2))]; %set S which is F(j+1) so S
represent F(j+2) in next |oop

F rec(j,:)=F
end

F rec=F_rec(:,1:size(F_rec, 2)-1); %Er ase the last colum.In the cal cul a-
tion
% he size of F needs to equal the size of Atilda. This adds a col um.
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%Check that 1=E*Atil da-qg"-1F
¥Sum=conv(E, Atil da);
%=F(1:size(F,2)-1);

%-=[ zeros(1, (size(Sum 2)-size(F, 2))) F];
Y%eq=SumtF

F.4 Matlab code for RLS

function [ A B] =adapti nGPC(r | sdat a)
%Adaptiver based on RLS nethod

% | sdata is data fromthe GPC function
% Aut hor: E. M Bergheim  Fall-2000

global Hb frmark w A B ypast uopt yrls urls beta P K

%, b and fmark is variables in the costfuntion

%v is the setpoint trajectory

%A and B i s nodel paranters

%ypast is the past mesured val ues

%uopt is the optinmal control signal found by the GPC al gorithm
%rls and urls is vectors the past vector is made from

Y%eta is the paraneter estimate in a colum vector, P is the covar

%nd Kis the gain vector

%Save the past data

yrls=[ypast(1);yrls]; %pdate the past nmeasurenent vector
url s=[uopt;urls]; %update the past control signals vector

i =si ze(yrls,1); %ount how many data the rls al gorithm has

%Choose val ues for the degree of polynomials and the deadtine
n=3; %begree of the A polynon na

m=5; 9%begree of the B pol ynom na

d=2; YDeadtinme

%lest if there is enough data to run RLS
if i>=mrd+1
%Const ant s
€c=1000; % or initializing of the P matrix
gama=0.9; % orgetting factor
al fa=0.0224; %ariance to the error, found from PRBS-data

%Wnitializing of the system

beta_init=zeros(ntm1l); %nitialize the beta-vector

| =eye(mtn); % dentity matrix

Pinit=c*l; %nitialize the P matrix
ksi=[yrls(2:n+1);urls(d+2: mtd+1)]; %ector with past data

mat ri x
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%Conput e nodel prediction
if i==mrd+1
ypred=ksi' *beta_init; %f the |oop runs the first tinme, uses the
initlized beta
el se
ypred=ksi' *beta; %f the loop runs 2nd tinme or nore, uses the beta
fromlast run
end

%Jpdat e gai n vector

if i==d+m+l

K=(Pinit*ksi)./(al fa*ganma+ksi' *Pi nit*ksi);
el se

K=(P*ksi )./ (al fa*gama+ksi' *P*ksi);
end

%Jpdat e paraneter estinates
if i==d+m+l
bet a=beta_init+K*(yrls(1l)-ypred);
A=[1;-beta(l:n)]'; %update nodel paraneter A. The first coeff is
al ways 1
B=[ zeros(d, 1); -beta(n+l: mn)]'; %updata B. -beta cones fromdifferent
definition of A and B in RLS and GPC
el se
bet a=bet a+K*(yrl s(1)-ypred);
A=[1;-beta(l:n)]";
B=[ zeros(d, 1); -beta(n+1l: mn)]";
end

%Conpute covariance matrix for next iteration

if i==d+m+l

P=(1/gam) *(I-K*ksi"')*Pinit;
el se

P=(1/gam) * (| -K*ksi"')*P
end

el se %lse if i>mrd+1

% f not enough data, the PRBS nodel is used

A=[1 -0.4548 0.0218 -0.5309]; %A given fromthe PRBS data

B=[0 0 -0.0235 0.0552 0.0255 0.0414 -0.0058]; 9% given fromthe PRBS
dat a
end %end if i>mtd+1
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G GPC TEST INCLUDING RLS FOR SEVERAL SETTINGS

G.1 Comparison of setpoint responses with different control horizons

B B
EoG
-
: 2
B e B
8
b

Time[q

Conmare setpoint responses with different two control horizons

m 20 3W 40 5H 6o 7T 8o 90

0

& 8 & 3! &
[O “Bep] dway

Figure G.1 Compare test of GPC including RLS with cost horizon =6, ff =0.98, A = 0.3
and control horizon = 2 or 6.
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G.2 Comparison of setpoint responses with different cost horizons

N '
§ 8
5 B
g B
o B
P
o}
g 3
8 £ 8
E5E
2 ftot
2
g g
3 .
- £
§ L?\. T Z
3 {
% ; g
: c
) r" —
% '?;_ e y E
£ ¢ -
3 > 5
i g
E r -
3; H
£ 3
-/:/
: 4
3 o ) ] Q S N ] Q-

N
[utwy] mo4 ‘[O "pesb] dwa

Figure G.2 Compare test of GPC including RLS with cost horizon = 4, control horizon
=4, A = 0,3, ff =0.98 and cost horizon =5, control horizon =5, A = 0,3, ff =0.98.
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G.3 Comparison of setpoint responses with different forgetting factors

o &8

Vil

g B

i
: i
g 88¢
(@)]
£ 5k 3
E bt
o3 g
!IU
E 5
“lcf
8 g
S
8 g 8
K 2

(@]
K :
8
T) l:-,::&,} E
= i B 2
3 == =
j
S ﬁg g
o) ; =28
5 =5
é = Sl
5 g
8 (A= ut
i o
Jgf’
FS o
as ! & R & N

5] s
[D pesb] dwal

Figure G.3 Compare test of GPC including RLS with different forgetting factor. Cost
horizon = 6, control horizon =5, A = 0.3 and with ff = 0.9 and 0.98.
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G.4 Comparison of setpoint responses with different control weighting
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Figure G.4 Compare tests of GPC including RLS with cost horizon = 6, control horizon
=5,ff=0.98and A =0.10r A =0.3.
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LABVIEW DIAGRAM - PROCESS INCLUDING PID
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Figure H.1 Labview diagram of PID controller
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Figure H.2 Labview diagram of slavecontroller and PID used as in subVI
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| TESTS OF THE PID CONTROLLER

I.1 Setpoint response with PID controller with different sampling time

i
g 3
= =
5
P
_?é 5
2
g .
8
B
'E_ 8
g °
5 £
! 8
S
g
3 g
5
g
§s o 8 Q Q ~ TN

[0 "bap] dway

Figure 1.1 Test of PID with different sampling time. Sampling time = 1.5 sec. and 4 sec.
Kc=2,1y=60and 1p = 2.
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1.2 Startup response with different tuning parameters for the PID
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Figure 1.2 Comparison of PID with tuning parameters K. =2, 1,=60, 1p =2 and K; =
0.5,1,=150, 1p = 2.
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1.3 Compare performance of GPC and PID controller
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Figure 1.3 Comparison of GPC and PID with setpoint responses and valve actions with
cost horizon =5, control horizon = 2, ff = 0.98, A = 0.3 and sampling time =
4 sec. for the GPC and K, = 2, 1, = 60, Tp = 2 and sampling time = 1. 5 sec.
for PID
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J MATLAB PROGRAM CODES FOR THE
MULTIVARIABLE CASE

J.1 Program Code Fitting ARX-Model Multivariable Case

o%Pr esent an ARX-nodel from sinulation data for a nultivari abl e case

| oad c:\ MATLABR11\ wor k\ Di pl oml Mat | abHysys\ NewTest s\ pr bs3x3new. t xt
% eadi ng output and input froma |oaded file

% he nane is the sane as the name to the |oaded file
ul=pr bs3x3new(:, 8);

ua=normal i z(ul);

u2=pr bs3x3new(:, 9);

ub=nor mal i z(u2);

u3=pr bs3x3new(:, 10);

uc=normal i z(u3);

y1l=prbs3x3new(:, 5);

ya=normal i z(yl);

y2=pr bs3x3new :, 6);

yb=normal i z(y2);

y3=prbs3x3new(:, 7);

yc=normal i z(y3);

z=[ya yb yc ua ub uc]; %et the output and input in a vector
ny=3; % unber of outputs
nu=3; % unber of inputs

%onst ants

nam n=1*ones(ny); % ni mum degree of A pol ynoni al
namax=5*ones(ny); %raxi num degree of A pol ynom al
nbm n=1*ones(ny, nu); % ni nrum degree of B polynom a
nbmax=5*ones(ny, nu); %rexi num degree of B pol ynon a
nkm n=1*ones(ny, nu); % n ni nrum degree of del ay
nkmax=5*ones(ny, nu); %rexi num degree of del ay

%Unitialized node

na=namn; %nitialize the degree of A polynom a

nb=nbmn; %nitialize the degree of A polynom a

nk=nkmn; %nitialize the degree of del ay

nn=[ na nb nk]; %ut the degrees in a vector

t h=ar x(z, nn); %level op the arx-nodel
FPEint=th(2,1);%nitialize A kake's Final Prediction Error
%See "help theta" for structure of the th matrix

naopt =na; %ave the optinmal degree of A
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nbopt =nb; %ave the optinmal degree of B
nkopt =nk; %ave the optinmal degree of del ay
opt par anet er s=[ naopt nbopt nkopt];
opt FPE=FPEI nt ;
optloss_function=th(1,1);
opt _th=th;
%Check all the conbinations of nodel structure that gives the best
%lescri btion of the process
for i=namn(1,1):1: namax(1, 1)
for j=nbmin(1,1):1: nbmax(1,1)
for k= nkmn(1,1):1: nkmax(1, 1)
na=i *ones(ny, ny);
nb=j *ones(ny, nu);
nk=k*ones(ny, nu);
nn=[ na nb nk];
t h=ar x(z, nn); %level op the arx-node
FPE=t h(2,1); %0 splays the FPE in the th matrix
| oss_funciton=th(1,1);
i f FPE<FPEi nt %hecks the FPE, |ess value for FPE gives better

nodel
FPEi nt =FPE; %update the FPE value if its |less than the past
val ue
naopt =na; %ave the optinmal degree of A
nbopt =nb; %ave the optinmal degree of B
nkopt =nk; %ave the optinmal degree of delay
opt par anet er s=[ naopt nbopt nkopt];
opt FPE=FPE;
optloss_function=th(1,1);
opt _t h=t h;
end % f
end 9% or
end 9% or
end 9% or

Yopti mal paraneters

e=resid(z,opt _th); %onpute the residuals and display correlation graphs
stdev_e=std(e) % inds the standard devation of the error

var_e=var(e) % inds the variance of the error

%0i spl ay nodel paraneters and ot her keyparanters
[ Aopt , Bopt ] =t h2ar x(opt _t h)

opt FPE

optl oss_function

opt paraneters
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J.2 Program Code Recursion of Diophantine in Multivariable Case

function [E rec, F_rec]= diophantinenmulti (A B N, ny)

%ol ves the Di ophantine equation, A and B is nodel paraneters, Nis the
cost horizon

%Jses the recursively nethod described by Clarcke et. al. in

% Ceneralized Predictive Control - Part |. The Basic Algorithnt

%Aut omatica. Vol. 23, No.2, pp 137-148, 1987

Renbenber A= | (nyxny) +Al*z(-1) +A2*z(-2)+..... +Ana*z( - na)

%here |, Al, A2 ..... Ana are matrixes all of size (ny)x(ny) (ny=nunber
of outputs)

Wnitializing E
E=eye(ny);

Wnitializing F

Atilda=[A zeros(ny)]-[zeros(ny) Al; %Atilda=A(1-qg"-1)

d=si ze(Atil da);

v=[eye(ny) zeros(d(1),d(2)-ny)];

Aprime=v-Atilda; %Aprinme= 1-Atilda
F=Aprime(:,ny+1:size(Aprine,2)); %=q(1- Atil da)

mesi ze( Apri me, 2) -si ze(F, 2);

F=[F zeros(ny,m]; %5ize F needs to be equal Atilda= size Aprine

%5aving the E & F for each loop, including the initial val ues
E rec=zeros(Nny); %nitialize the E that is recorded

E rec(1:ny, 1: ny) =E;

F rec=zeros(N*ny, si ze(F, 2));

F rec(1l:ny,1l:size(F,2))=F, %nitilize F that is recorded

%Recursion | oop for Diophantine
for j=2:N

r=F(:, 1:ny);

R=[E r]; %updates the new R val ue, which takes the first elenent in F
and add in

S=F(:,ny+l:end)-r*Atilda(:, ny+1l: end);

r=[R zeros(ny, Nny-j*ny)]; % Set R which is E(j+1) so R represent
E(j +2) in next |oop

E rec(j*ny-(ny-1):j*ny,:)=r;

E=R;

%Set S which is F(j+1) so S represent F(j+2) in next |oop

F=[ S zeros(ny, size(Atilda,2)-size(S, 2))];

F rec(j*ny-(ny-1):j*ny,:)=F
end

o&r ase the | ast col umm.
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%n the calculation the size of F needs to equal the size of Atilda. This
adds ny col ums.
F rec=F rec(:,1l:size(F_rec, 2)-ny);

J.3 Program Code for Initializing

global ny nuyrls urls wA B ypast uopt beta P K nu ny ynmean unean ynstore
umstore EthlnEth ProplnProp ProplnBot Reboil Rati o Et haneFl ow PropaneFl ow

YWnitialize data
upast =zer os(50, 1) ;
ypast =zer 0s(50, 1) ;
delta_u=zeros(50, 1);
yrls=[];

urls=[];

ynmean=[ 0. 9705; 0. 9623; 9. Oe- 5] ;
umean=[ 0. 4722; 0. 3611, 0. 934] ;
ynstore=[];

unstore=[];

Et hl nEt h=[1];

Propl nProp=[];

Propl nBot =[] ;
Reboi | Rati o=[];

Et haneFl ow=[];

Pr opaneFl ow=[];

ExitFl ag=[];

Ut artval ues for the nodel. Updates by RLS

A=[ 1.0000 0 0 -1.6900 0. 2388 0. 0595 0.6971
0 1. 0000 0 0.0251 -1.9607 0.0451 -0.0256
0 0 1. 0000 0. 1511 0.0849 -1.6938 -0.1500

-0. 2364 -0. 0571
0. 9633 -0. 0429
-0. 0797 0. 6990];

B=[0 0 0 0. 0179 0. 0055 - 0. 0967 0.0032 -0.0023
0 0 0 0. 0008 0. 0001 0. 0037 0.0004 -0.0005
0 0 0 0. 0009 0. 0009 -0.0235 0. 0049 0. 0002

0.11440 -0.0029 -0. 0018 -0. 0362 0.0011 -0.0004 -0.0148
-0.0005 -0.0005 0. 0001 - 0. 0054 0. 0007 0.0002 0.0010
0. 0353 0. 0003 - 0. 0007 -0. 0132 0. 0040 0. 0000  0.0005];
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J.4 Program Code GPC Including QP- Algorithm

global ny nuyrls urls wA B ypast uopt beta P K ny nu ynean unean ynstore
unstore EthlnEth Propl nProp ProplnBot Reboil Rati o Et haneFl ow PropaneFl ow

%Al gorithmthat mnimze the cost function subject to constrains

%n the control signals and the outputs. Milti-input multi-output case
% he file initialize.mneeds to be executed before npcqgp. mruns for the
first tine

% he file is executed from VBA

%Decl are vari abl es
al fanor m=0. 05; 9% noot hi ng grade nean val ues for inputs and outputs
%Decl are counters
j:

- — — uo
1l
PR R R R PP

%Constants, from VBA

Nl=const (1); % ni num costing horizon

NU=const (2); %ontrol horizon

N2=const (3); %rexi num costing horizon

| anda=const (4); %ontrol -wei ghting sequense

ny=const (5); % unber of outputs

nu=const (6); % unber of inputs

wl=const (7); % eferense trajectory(=setpoint) Mle Fraction Ethane in
Et hane

w2=const(8); %ef.traj. LV fraction propane in propane
w3=const (9); %ef.traj. LV fraction propane in T-2 Bottons

N=N2- N1+1; 9% ost horizon

%Decl are vari abl es
y=zeros(ny, 1l); %outputs
u=zeros(nu,1); % nputs

%°r ocess data from Hysys

%Past out put

u( 1) =Dat aFr omHysys(1); % ow ethane. Unit in knol/s

u(2) =Dat aFr omHysys(2); %l ow propane. Unit in knol/s

u( 3) =Dat aFr onHysys(3); %Reboil ratio

y(1) =Dat aFronmHysys(4); % Mol e Fraction ethane in ethane* stream
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y(2) =Dat aFromHysys(5); %.\V Fraction propane in propane* stream
y(3) =Dat aFr onHysys(6); %.\V Fraction propane in T-2 Bottons* stream

%\ornal i ze data from Hysys because tine-series nodels are devel oped with
% ormal i zed data

ynor nry- ynean;

ymean_new=al f anor nty+( 1- al f anor m) *ynean;

unor meU- unean;

urmrean_new=al f anor mfu+( 1- al f anor n) *unean;

% r eat e setpoint vector
% ength (w) needs to be Nny

w=[];
for =1:N

w=[ w; wl; w2; wa] ;
end

st orage of process data
upast =[unorm upast (1:size(upast,1)-nu)];
ypast =[ynorm ypast(1:size(ypast,1)-ny)];

%Cal cul ate delta u = u(t)-u(t-1). Used in free response for cost function
with
%lelta u as variable. Not generalized for different nunbers of nu
for s=1:(size(upast,1l)-nu)/nu
del ta_u(nu*s-2)=upast (nhu*s-2) - upast (nu*s+nu- 2) ;
del ta_u(2*s-1)=upast (2*s-1)-upast(2*s+nu-1);
del ta_u(2*s) =upast (2*s) - upast (2*s+nu) ;
end

%Cal cul ate the Di ophantine eq recursivly
[E_rec, F_rec]=di ophantinemul ti (A, B, N ny);

%Create gconv, used to calculate the G matrix

9%Not generalized for different numbers of ny!

for r=1:N
gconv(ny*r-(ny-1),:)=conv(E_rec(ny*r-(ny-1),:),B(ny-2,:));
gconv(ny*r-(ny-2),:)=conv(E_rec(ny*r-(ny-2),:),B(ny-1,:));
gconv(ny*r,:)=conv(E_rec(ny*r,:),B(ny,:));

end

%Sel ect diagonals fromgconv matri x
for i=1:nu*NU

gdi ag(:,i)=di ag(gconv,i-1);
end
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% reate G matrix used in the nodel prediction
G=zer os(N*ny, NU*nu) ;
for j=1:NU*nu
&:,j)=gdiag(:,j);
end

% Conpute the GL, &,...G\2 for the free response
gf ree=triu(gconv, nu);
for p=1:Nny

gtemp(p,:)=[gfree(p, nu+p: end) zeros(1, p+tnu)];
end
gdi ff=gtenp(:, 1:size(gtenp, 2)-ny);

% he free response

free2=F rec*ypast (1:size(F_rec,2));

freel=gdi ff(:,2:end)*delta_u(1l:size(gdiff,2)-1);
f=freel+free2

% Conpute cost function as a gp-probl em
| =eye(size(G 2));
H=2* (G *Gtl anda*1l); %matrix Hin the gp-function
b=2*((f-w)'*Q; % ow vector in the gp-function
I r=eye( N*ny, NU*nu) ;
R=[Ir;-Ir;G-G; %onstrain-matrix. Ru <= ¢
| y=eye(ny, nu);
| gpy=zeros(N-ny, nu); %elp matrix for constrains calc.
for i=1:N
Lapy(i*ny-(ny-1):i*ny,:)=ly;
end

o%Constrai nts val ues

um n=[ 0; 0; 0. 6] ; %m ni mum control signal val ues
umax=[ 0. 8333; 0. 6944; 0. 95] ; %rexi mum control signal val ues
u0=[ 0.4722; 0. 3611; 0. 934]; %start values for optinalization

ym n=[ 0. 96; 0. 95; 0]; % ni mum out put val ues
ymax=[ 1; 1; 0. 005] ;  %rexi num out put val ues

%Normal i ze constraints val ues
um nnor mFuUmMm n- unean

umaxnor MFUMax- unean,;

ym nnor meym n- ymean;
ynmaxnor mey max- ynmean;

uOnor m=u0- unmean

uStart vector for the optinalization. Needs to be of dim NU*nu
uOnor niL=[ uOnor m uOnor ny ;
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%onpute ¢ matrix in constrains eq Ru <= ¢
c=[ I gpy* umaxnor nm - 1 gpy*umi nnor m | gpy*ymaxnor mf; - | gpy*ym nnor m+f ] ;

%ol ving the QP-probl em
[ uopt norm fval, exi tfl ag, out put ] =quadprog(H, b, R c,[1,[].[]1.,[],uOnormt);
ExitFl ag=[ Exi t Fl ag exitfl ag];

%hen the maxi mum nunber of iterations was exceeded or the problemis
unbounded,
% nf easi bl e, or QUADPROG failed to converge with a solution X
% he optinmal solution = startpoint to avoid unstability in Hysys
if exitflag <=0
uopt nor m=uOnor ni;
end

%Change optimalized inputs fromnormalized to rea
uopt =uopt nor m( 1: nu) +unean

set points=[uopt (1:nu)]; %nly the first control actions are sended to

Hysys

%scal i ng set poi nt sdat a.

% here is a convertion in Hysys which needs to be

%dj usted in Matlab

set poi nt s(1)=set poi nts(1)*1300/10. 83;

set poi nt s(2) =set poi nt s(2)*1190/ 8. 264;

set poi nt s(3) =(setpoints(3)*142.89-71. 458)/ 3600;

% eboil ratio need to be to be divided with 3600

%ecause of convertion due to units in Hysys. Reboil ratio is sended to
Hysys as a

%l ar flowin knol/s

%he RLS part

%el ect inputs and outputs data sended to RLS al gorithm
rl sdat a=[ ypast (ny+1: 2*ny) ; unorni ;

%all the RLS algorithm

[A B]=adaptnmul ti (rl sdata);

%Jpdat e meanval ues for nornalizing
ymean=ymean_new,
unean=unean_new;

%St ore ynmean and unmean to see drifting in process
ynst ore=[ ynst ore ynean];
unst or e=[ unst ore unean];
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%St ore data from process

Et hl nEt h=[ Et hl nEt h Dat aFr ontysys(4)];

Pr opl nPr op=[ Propl nProp Dat aFromHysys(5)];
Pr opl nBot =[ Propl nBot Dat aFr onHysys(6)];
Reboi | Rat i o=[ Reboi | Rati o Dat aFr omHysys(3)];
Et haneFl ow=[ Et haneFl ow Dat aFr omHysys(1)];
Pr opaneFl ow=[ Pr opaneFl ow Dat aFr omHysys(2)];

done=1; %alue that tells VBA that Matlab finished the cal cul ati ons

J.5 Program Code RLS Multivariable Case

function [A B]=adaptmulti(rl sdata)
%Adapti ver based on RLS nmethod in the nultivariable case
% | sdata is data fromthe GPC function

global ny nu yrls urls wA B ypast beta P K

%lecl are vari abl es
ypred=zeros(1, 3);

%v is the setpoint trajectory

%A and B is nodel paranters

%past is the past nmesured val ues

%rls and urls is vectors the past vector is nade from

O%beta is the paraneter estimate in a colum vector, P is the covar. nmatrix
%nd Kis the gain vector

%Bave the past data

yrls=[rlsdata(l:ny);yrls]; %pdate the past measurenent vector

url s=[rl sdat a( ny+1: ny+nu);urls]; %update the past control signals vector
i =si ze(yrls,1); %ount how nmany data the rls al gorithm has

%Choose val ues for the degree of polynomials and the deadtine
n=2; %begree of the A polynon na

m=4; 9% egree of the B pol ynoni na

d=1; %Deadtine

%est if there is enough data to run RLS

i f i>=(mtd+ny)*ny
%Const ant s
€c=1000; % or initializing of the P matrix
gama=0.9; % orgetting factor
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al f a=0. 0045; %variance to the error, found from PRBS-dat a

%nitializing of the system
beta_init=zeros(n*ny+ntnu,ny); %nitialize the beta-vector
| =eye(nmtnu+n*ny); % dentity matrix
Pinit=c*l; %nitialize the P matrix
%vector with past data from nmeasurenent and ctrl signa
ksi=[yrls(l:ny*n);urls(l+d: nu*mtd)];
% Conput e nodel prediction
i f i==(mtd+ny) *ny
ypred=ksi' *beta_init; %f the |oop runs the first tinme, uses the
initlized beta
el se
ypred=ksi'*beta; %f the loop runs 2nd tinme or nore, uses the beta
fromlast run
end

%Jpdat e gai n vector
i f i==(mtd+ny)*ny
K=(Pinit*ksi)./(al fa*ganma+ksi' *Pi nit*ksi);
el se
K=(P*ksi)./ (al fa*gama+tksi' *P*ksi);
end

%Jpdat e paraneter estinates
i f i==(mtd+ny)*ny
bet a=beta_ init+K*((yrls(1:ny))'-ypred);
Yupdat e nodel paraneter A The first coeff is always the identity
mat ri x
A=[ eye(ny);-beta(l:ny*n,1l:ny)]";
Yupdata B. -beta conmes fromdifferent definition of A and Bin RLS
and GPC
B=[ zer os(d*nu, ny) ; - bet a( n*ny+1: n*ny+n¥nu, 1: ny)]"';
el se
bet a=bet a+K*((yrls(1:ny))'-ypred);
A=[ eye(ny);-beta(l:ny*n,1l:ny)]";
B=[ zer os(d*nu, ny); - bet a( n*ny+1: n*ny+nfnu, 1: ny)]";
end

%Conmput e covariance nmatrix for next iteration
i f i==(mtd+ny)*ny
P=(1/gam) *(I-K*ksi"')*Pinit;
el se
P=(1/gama) * (I -K*ksi')*P
end
else %lse if i>md+1
% f not enough data, the ARX-nodel found from PRBS-data is used
%A and B given fromthe PRBS data
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A=[ 1.0000
0
0

-0. 2364
0. 9633
-0. 0797

B=[ 0
0
0

0.11440
- 0. 0005
0. 0353

end %end if

0
1. 0000
0

-0.0571
- 0. 0429
0. 6990] ;

0
0
0

- 0. 0029

- 0. 0005
0. 0003

i >m+d+1

0 -1. 6900 0. 2388 0. 0595 0.6971
0 0. 0251 -1. 9607 0. 0451 -0. 0256
1. 0000 0. 1511 0. 0849 -1.6938 - 0. 1500
0 0.0179 0. 0055 -0. 0967 0.0032 -0.0023
0 0. 0008 0. 0001 0. 0037 0.0004 -0.0005
0 0. 0009 0. 0009 -0.0235 0. 0049 0. 0002
-0. 0018 - 0. 0362 0. 0011 -0.0004 -0.0148
0. 0001 -0. 0054 0. 0007 0. 0002 0. 0010
- 0. 0007 -0.0132 0. 0040 0. 0000 0. 0005];

106



K COMPOSITION PROFILE IN T-2 COLUMN

SlsYiel=3 = E=1la1EN

Figure K.1 Composition profile ethane and propane in column T-2
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L PROGRAM CODE IN VBA

Thhkkkhkhkkkhkhkkhkhhkkhkhhkkhkhhkkhkhhkhkhkhkhkhkhkhkhhkhkhhhkhhhkhhkiihhkihhkihhkihhihiiikx

'Description: Program that execute HYSYS.Plant simulation
‘and Matlab algorithm that gives control inputs from

'‘GPC with model-updating based on RLS, and transfer
'information between the two programs.

'Excel File: MPCControl.xlIs

‘Matlab file: mpcgp.m

'HYSYS file:B&VSimulationDiam.hsc

‘Author: Elvira Marie Bergheim

'Date: 30.Jan.2001

Ihkkkhkhkhkhkhhhhkhkhkhkhkhhkhhhhhkhhkhkhkhhirrhhhhkhkkhhhkhrirrirhhhhhhiiiiiiixx

'Require all variables to be explicit declared
Option Explicit

'Decleare HYSYS objects

'Note: chech HYSYS Type Library and Matlab Aut. Server type
'under Tools --> References

Public HyAppl As Object

Public HyCase As SimulationCase

Public HyFlowsheet As Flowsheet

Public HyStreams As Streams

Public HyQStreams As Streams

Public Matlab As Object

Public ColumnFlowsheet As ColumnFlowsheet

'Declare variables

Dim Res As String ' Help variable for Matlab commands

Dim DataToMatlab(5, 0) As Double 'array sending data to Matlab

Dim DataToMatlablm() As Double ‘Imaginary part of DataToMatlab

Dim Constants(8, 0) As Double 'Array collection constants values

Dim Constantsim() As Double ‘Imaginary part of Constants

Dim FirstRun As Boolean 'Value True when algorithm runs for the first time
Dim MatlabFinish(0, 0) As Double 'tells if Matlab finished the calculations
Dim MatlabFinishim() As Double 'Imaginary part of MatlabFinish

Dim ToHysysR(2, 0) As Double 'Array containing information to Hysys
Dim ToHysysIm() As Double ‘Imaginary part of ToHysysR

Dim EthController As Controller

Dim PropController As Controller

Dim BoilupController As Controller

Dim T2 As ColumnOp

Dim CompEth As Variant
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Dim CompProp As Variant
Dim CompT2Bot As Variant

Sub MPCControl()
FirstRun = True 'First time the sub is runned

'‘Connect to Matlab if not already connected
If Matlab Is Nothing Then

Set Matlab = CreateObject("Matlab.Application")
End If

'‘Connect to HYSYSS objects

Set HyCase =
Dokument\Diplom\Hysys\Dynamics\B&VSimulationDiam105.hsc™)
'‘Connect to applications object

Set HyAppl = HyCase.Application

'Set an object reference to currently active Hysys simulation

Set HyCase = HyAppl.ActiveDocument

'If there is no currently active case then display error message
If HyCase Is Nothing Then

MsgBox "A HYSYS Simulation Case must be open”

Exit Sub
End If

'‘Connect to flowsheet in active simulation case
Set HyFlowsheet = HyCase.Flowsheet

‘Connect to a collection of all material streams
Set HyStreams = HyFlowsheet.MaterialStreams
‘Connect to a collection of all energy streams
Set HyQStreams = HyFlowsheet.EnergyStreams
‘Connect to column

Set T2 = HyFlowsheet.Operations.ltem("T-2")

‘Connect to operations

Set EthController = HyFlowsheet.Operations.ltem(*'FC-Ethane")
Set PropController = HyFlowsheet.Operations.ltem("FC-Propane")
Set BoilupController = HyFlowsheet.Operations.ltem("RC-Boilup™)

'‘Change directory

GetObject(""c:\Mine

Res = Matlab.Execute("cd c:\MATLABR11\work\Diplom\MatlabHysys")

'Initialize data
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If FirstRun Then

Res = Matlab.Execute("Initialize™)

FirstRun = False 'not first time sub is executed anymore
End If

'Let the communication between Matlab and Hysys go for a certain time
While True
" 'Check if Hysys solver is ready
If HyAppl.ActiveDocument.Solver.Integrator.IsRunning Then
DoEvents
Else

'Send GPC constants to Matlab

Constants(0, 0) = 1 'Minimimum cost horizon

Constants(1, 0) = 2 'Control horizon

Constants(2, 0) = 5 'Maximum cost horizon

Constants(3, 0) = 1.5 'Lamda (control-weigthing sequence)

Constants(4, 0) = 3 'Number of outputs

Constants(5, 0) = 3 'Number of inputs

Constants(6, 0) = 0.9708 'Setpoint mol fraction ethane in ethane

Constants(7, 0) = 0.9622 'Setpint Liquid VVolume Fraction propane in propane
Constants(8, 0) = 0.000086 ' Setpoint Liquid VVolume Fraction propane in T-2 Bottoms

'Send Constant-values to Matlab
Call Matlab.PutFullMatrix("const", "base", Constants, Constantsim)

'Get data from Hysys that is necessary for control calculation.

'past inputs (u)

DataToMatlab(0, 0) = HyStreams.ltem(*'Ethane*").MolarFlow
DataToMatlab(1, 0) = HyStreams.ltem("Propane*").MolarFlow
DataToMatlab(2, 0) = BoilupController.PVVValue 'send the smoothed value

'get component fractions

CompEth = HyStreams.ltem("'Ethane*").ComponentMolarFraction.Values
CompProp = HyStreams.Item("Propane*").ComponentVolumeFraction.VValues
CompT2Bot = HyStreams.ltem("T-2 Bottoms*").ComponentVVolumeFraction.Values

'Past outputs

DataToMatlab(3, 0) = CompEth(1) 'Molar Fraction Ethane in Ethane
DataToMatlab(4, 0) = CompProp(2) 'LV Fraction Propane in Propane
DataToMatlab(5, 0) = CompT2Bot(2) 'LV Fraction Propane in T-2 Bottoms

'Send data to Matlab
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Call Matlab.PutFullMatrix("DataFromHysys", "base", DataToMatlab,
DataToMatlablm)

'‘Matlab execute file

Res = Matlab.Execute("mpcqgp")

MatlabFinish(0, 0) =0

‘chech if Matlab fishish algorithm execution

While MatlabFinish(0, 0) =0
Call Matlab.GetFullMatrix(*"done", "base", MatlabFinish, MatlabFinishim)
DoEvents

Wend

'Get setpoints to slavecontrollers for control in Hysys
‘Variable "setpoints” from Matlab need to be columnvector
Call Matlab.GetFullMatrix(*setpoints™, "base"”, ToHysysR, ToHysysIm)

'Give Hysys the new setpoints values from Matlab
HyStreams.ltem("HelpEthane").MolarFlow.SetValue ToHysysR(0, 0)
HyStreams.ltem("HelpPropane™).MolarFlow.SetValue ToHysysR(1, 0)
HyStreams.ltem("HelpRatio™).MolarFlow.SetValue ToHysysR(2, 0)

'Run model one timestep and stop
HyAppl.ActiveDocument.Solver.Integrator.RunFor 2, "minutes"”
DoEvents
End If
Wend 'Return to new loop

End Sub

111



M PERFORMANCE OF THE GPC CONTROLLER

M.1 Responses in manipulated variables
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Figure M.1 Mole fraction ethane in ethane outlet for different cost and control horizons
when decreasing ethane molar flow in feed stream
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M.2 Responses in control signals
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N PERFORMANCE OF THE BUILT-IN MPC

N.1 Responses manipulated variables

0.9719

—— N=5 Ctrl interval 2min

T
|

0.9719 “ - - - N=25 Ctr! interval 2min
— - N=5 Ctrl interval 30 sec

0.9718
0.9718
0.9718 ;
0.9717

0.9717

Ethane in Ethane [mole fraction]

0.9716

0.9716

0.9715 : ‘ : : :
0 20 40 60 80 100 120

Time in minutes

Figure N.1 Mole fraction ethane in ethane outlet for different cost horizon and control
interval when decreasing ethane molar flow in feed stream
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N.2 Responses in control signals
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O COMPARISON OF GPC AND BuUILT-IN MPC

0.1 Responses manipulated variables
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Figure O.1 Mole fraction ethane in ethane outlet responses for the GPC and the built-
in MPC when decreasing ethane molar flow in feed stream
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0.2 Responses in control signals
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decreasing ethane molar flow in feed stream.
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