RHp-zeros, LQG, stabilizationn and state esti-
mation

Héakon Dahl-Olsen
NTNU, Trondheim, 20 May 2009

We have a system with two possible measurements and a single input. The transfer functions for these
measurements are;

B and a. — —4.8s+1
%" 5 %= et
This system has a minimal state-space realization
X=Ax+Bu

with
02 0 -0.2 1 0
A= ,B= ,C= ,D=
[0.5 —0.2} { 0 } {—0.96 0.784}

The system has open-loop poles at 0.2 and - 0.2 (can read this off the diagonal of A because the system
matrix is triagonal).

We consider three cases:
1. We can measure both states directly — excellent performance for load disturbance and process
noise.
2. Observer design: because the sensor used to measure x; can fail, we design a Kalman filter to es-
timate x; based on measurement of y,.
3. Sensor failure: feedback control using estimate of x;.

The control objective is stabilization. We use an LQR controller with minimum input usage; Q=0, R=1.
This gives feedback gain of
Kr =[-2 0].

Case 1: Full state measurement

The resulting controller is a proportional controller for y; with set point y; = 0 and controller gain K. = - 2.
The closed-loop poles are now both located at — 0.2 and the system is closed-loop stable. A unit step add-
ed to u at time t = 10 and a unit step is added to x; at time t = 40. The state responses are shown in Figure

1 and the measurements and input usage are shown in Figure 2.

0.5 T T T T T T T 15

States
States

\

-1.5r

\
\\ e - — /
\\ J,” ‘
2r \ 1 -15F |
| ~ |
20 30 40 50 60 70

_ 2 '
80 0 10 20 30 40 50 60 70 80

Time Time
Figure 1: Simulation case (A): blue line is x;, which is the only Figure 2: Simulation case (A): blue line is y;, which is the only
state used for feedback control. The minimum input controller state used for feedback control. The green line is y,; observe the
clearly stabilizes the solution. inverse response resulting from the RHP zero in g,. The black line
is the input usage (u).

-2.5 .
0 10

Case 2: Build an estimator for y; based on y,

We replace the C-matrix above with its second row-only to disallow measurement of y,. Further, we as-
sume no load disturbances, but significant process noise in the system. Based on this we design a Kalman
filter using the kalman function in the Matlab control systems toolbox:

[Kfilter,ObserverGain,RiccatiMatrix] = kalman(ss(A,B,C,D),1,0.1);

The resulting gain matrix is

) . |0.98
ObserverGain =10" x :
1.23
A simulation of the system in closed-loop, but still using direct measurement of y; yields the following
observer estimates; states are shown in Figure 3 and the measured output in Figure 4. In spite of the big
error when the step disturbance in the state occurs, we will try this in closed-loop because we may not
have too many good options here if the sensor for y, fails.

0.5

States
States

-25[1 “,‘“ i
-30F “!‘“ -
351 | ;J‘ 4
-40- i

45}~ A

% 10 2 % 20 50 60 70 80 2 10 2 % 20 50 50 70 80
Time Time
Figure 3: Simulation case (B): solid lines show true state values, Figure 4: Simulation case (B): even though state estimates are
whereas dashed lines are estimates. We see that the state esti- bad, the situation looks good in the output. This is what is visible
mates do not respond well to process noise. online, which confirms the importance of dynamic simulation.

Case 3: Sensor failure

We now test closed-loop behavior when applying the estimator for y;. The results are shown in Figure 5
(states) and Figure 6 (output, input). Note the excessive input usage, compare with Figure 2! If the input

100 T T T T T T T 60

40
30+
20+

10+

States
Outputs

10k

-20

40t

50 c I c c I r c 50 c I c c I r c
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Time Time

Figure 5: Simulation case (C): solid lines show true state values, Figure 6: Simulation case (C): the observer fits the output per-
whereas dashed lines are estimates. Although the system is stable fectly here. Note the black line (input usage); input usage is ex-
and the observer seems to work, look at the excessive overshoot; cessive!

the closed-loop performance is obviously bad.

had been limited, the system would have been closed-loop unstable. To illustrate we simulate the system
but with a saturation on the input signal;

-5 <u(t) <5.
The resulting trajectories are shown in Figure 7 and Figure 8.

500

450
400
350
30 bt
300

250
20~ bt

States
Outputs

200

150
101 bt

100

50

0

75030 35 40 45 50 55 60 65 70 75 80 71030 35 40 45 50 55 60 65 70 75 80
Time Time
Figure 7: Saturation on u gives unstable closed-loop behavior. Figure 8: Input and output when system blows up (blue: output,
System blows up on the state disturbance. black: input).

The lesson learned from this example is that non-minimum phase behavior can create great difficulties for
stabilization. Just because a system is state-observable does not mean that estimating more well-
conditioned measurements that for some reason are not available from the measurements we do have, it
does not mean it is a good idea to do so, at least not if there are fundamental limitations in the input-
output behavior of the available measurements.

Computer simulations

The computer simulations used to generate these plots were done using Matlab/Simulink. There are four
Simulink files, corresponding to the four simulations above:

e caseA.mdl: Casel
e caseB.mdl: Case 2
e caseC.mdl: Case 3
e CaseCh.mdl: Case 3 with input saturation

Before running these files, run the script file get_Iqg.m
which contains the following:

$Define dynamics

A = [0.2 0; 0.5 -0.21; % open-loop A-matrix has poles in 0.2 and -0.2
B [-0.2; 0];

C=[10; -0.96 0.784];

D 0;

G=ss (A,B,C,D);

$For Case 2: Kill one measurement
C2=C(2,:);
Gred=ss (A,B,C2,D);

$Create LQR controller
Q=zeros (2); R=1; %0=0 gives minimum input usage
Klgr=1lgr (A,B,Q,R);

%Set disturbance signal parameters (for use in Simulink)
loadD=1; stateD=1; LTime=10; STime=40;

%$Create Kalman filter based on (A,B,C2):
[Kestl,Ll,Pl]l=kalman (Gred,1,0.1);

%Simulate each case for tf=80.

$Simulation variables are stored in workspace, with naming convention
VariableName CASE #

To avoid opening simulink for each case, use the syntax
sim('caseA',80)

oe oe

oe

