RHp-zeros, LQG, stabilizationn and state estimation
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We have a system with two possible measurements and a single input. The transfer functions for these measurements are;
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This system has a minimal state-space realization
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The system has open-loop poles at 0.2 and - 0.2 (can read this off the diagonal of A because the system matrix is triagonal).
We consider three cases: 

1. We can measure both states directly – excellent performance for load disturbance and process noise.

2. Observer design: because the sensor used to measure x1 can fail, we design a Kalman filter to estimate x1 based on measurement of y2.

3. Sensor failure: feedback control using estimate of x1.

The control objective is stabilization. We use an LQR controller with minimum input usage; Q=0, R=1. This gives feedback gain of 
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Case 1: Full state measurement
The resulting controller is a proportional controller for y1 with set point y1 = 0 and controller gain Kc = - 2. The closed-loop poles are now both located at – 0.2 and the system is closed-loop stable. A unit step added to u at time t = 10 and a unit step is added to x1 at time t = 40. The state responses are shown in Figure 1 and the measurements and input usage are shown in Figure 2.
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	Figure 1: Simulation case (A): blue line is x1, which is the only state used for feedback control. The minimum input controller clearly stabilizes the solution.
	Figure 2: Simulation case (A): blue line is y1, which is the only state used for feedback control. The green line is y2; observe the inverse response resulting from the RHP zero in g2. The black line is the input usage (u).


Case 2: Build an estimator for y1 based on y2
We replace the C-matrix above with its second row-only to disallow measurement of y1. Further, we assume no load disturbances, but significant process noise in the system. Based on this we design a Kalman filter using the kalman function in the Matlab control systems toolbox: 

[Kfilter,ObserverGain,RiccatiMatrix] = kalman(ss(A,B,C,D),1,0.1);
The resulting gain matrix is
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A simulation of the system in closed-loop, but still using direct measurement of y1 yields the following observer estimates; states are shown in Figure 3 and the measured output in Figure 4. In spite of the big error when the step disturbance in the state occurs, we will try this in closed-loop because we may not have too many good options here if the sensor for y1 fails.
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	Figure 3: Simulation case (B):  solid lines show true state values, whereas dashed lines are estimates. We see that the state estimates do not respond well to process noise.
	Figure 4: Simulation case (B): even though state estimates are bad, the situation looks good in the output. This is what is visible online, which confirms the importance of dynamic simulation.


Case 3: Sensor failure
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	Figure 5: Simulation case (C):  solid lines show true state values, whereas dashed lines are estimates. Although the system is stable and the observer seems to work, look at the excessive overshoot; the closed-loop performance is obviously bad.
	Figure 6: Simulation case (C): the observer fits the output perfectly here. Note the black line (input usage); input usage is excessive!


We now test closed-loop behavior when applying the estimator for y1. The results are shown in Figure 5 (states) and Figure 6 (output, input). Note the excessive input usage, compare with Figure 2! If the input had been limited, the system would have been closed-loop unstable. To illustrate we simulate the system but with a saturation on the input signal; 
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The resulting trajectories are shown in Figure 7 and Figure 8. 
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	Figure 7: Saturation on u gives unstable closed-loop behavior. System blows up on the state disturbance.
	Figure 8: Input and output when system blows up (blue: output, black: input).


The lesson learned from this example is that non-minimum phase behavior can create great difficulties for stabilization. Just because a system is state-observable does not mean that estimating more well-conditioned measurements that for some reason are not available from the measurements we do have, it does not mean it is a good idea to do so, at least not if there are fundamental limitations in the input-output behavior of the available measurements.

Computer simulations

The computer simulations used to generate these plots were done using Matlab/Simulink. There are four Simulink files, corresponding to the four simulations above: 

· caseA.mdl: 
Case 1

· caseB.mdl: 
Case 2

· caseC.mdl: 
Case 3

· CaseCb.mdl:
Case 3 with input saturation

Before running these files, run the script file get_lqg.m
which contains the following:

%Define dynamics

A = [0.2 0; 0.5 -0.2];    % open-loop A-matrix has poles in 0.2 and -0.2

B = [-0.2; 0];

C = [1 0; -0.96 0.784];

D = 0;

G=ss(A,B,C,D);

%For Case 2: Kill one measurement

C2=C(2,:);

Gred=ss(A,B,C2,D);

%Create LQR controller

Q=zeros(2); R=1;    %Q=0 gives minimum input usage

Klqr=lqr(A,B,Q,R);

%Set disturbance signal parameters (for use in Simulink)

loadD=1; stateD=1; LTime=10; STime=40;

%Create Kalman filter based on (A,B,C2):

[Kest1,L1,P1]=kalman(Gred,1,0.1);

%Simulate each case for tf=80.

%Simulation variables are stored in workspace, with naming convention

%   VariableName_CASE_#

%To avoid opening simulink for each case, use the syntax 

%   sim('caseA',80)

_1304164093.unknown

_1304164116.unknown

_1304165064.unknown

_1304166281.unknown

_1304164104.unknown

_1304164081.unknown

