SOLUTION

EXAM IN COURSE 43917
MULTIVARIABLE CONTROL USING FREQUENCY DOMAIN METHODS
Exam date: Friday 07 June 1996
Solution prepared by: Sigurd Skogestad

Problem 1. Controllability analysis.
(a) Given
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det G(s) =5

Thus, we have 4 poles (of which 2 are unstable)
S1,2 = 2, S3 = —1, S4 = -3
and we have 2 LHP-zeros
S1 = —0.93,82 = —15.1

In this case we see directly that the two unstable poles (p12 = 2) are associated with the
offdiagonal elements; thus the output directions are
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The main problem with this plant is that we need a bandwidth greater than about 2p = 4 (rad/s)
for stabilization. From the information given this should be achievable. Due to the unstable
modes we would probably want to pair on the off-diagonal elements if we use decentralized
control (but this needs to be checked).

(b)

G(s) =

— Ol =

O =IO N

N =W DN

O N DN
Il

| — |
Ql
w]liey
—_

First, evaluate the poles from
det(sI —A)=s*—s5—2=(s+1)(s—2)=0

which has the roots s; = —1 and s, = 2. The direction for the unstable pole (p = s5 = 2) is
most easily evaluated from y, = Ct where ¢ is the corresponding eigenvector of A. We have
At = 2t or t; + 2ty = 2t;,t; = 2t, and we have (selecting t, = 1) that ¢ = [2 l]T. Thus,
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Thus the unstable pole is mainly associated with output 2.
The transfer function is G(s) = C(sI — A)™'B + D where
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Since the system only has two poles, the numerator must have the factor (s+1)(s—2) and long
division yields
45?2 + 65 — 6 (s — 0.686)(s + 2.186)
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and the zeros are s; = 0.686 and s, = —2.186, so there is a RHP-zero z = 0.686 quite close to
the RHP-pole p = 2. To evaluate the zero direction evaluate

det G(s) =
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G(z) = G(0.686) = [1.157 3.686
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which is singular as expected. The zero direction [y;  yo ]T is given by —1.157y; + 2.941y, = 0,
and we get [Zl] = [;';iﬂyo, and we select yo to normalize the length to one and get,
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This is mainly in the direction of output 1, which is good since the RHP-pole is mainly in output
2. To evaluate this more exactly, compute the angle between the RHP-pole and RHP-zero,

¢ =cos™ |yl y,| = cos™' 0.73 = 42.7°

and we have for any controller design that ||S|| > ¢ and ||T||cc > ¢ where from Eq. (6.27)
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(which does not seem too bad.) In conclusion, stabilization of this plant is fairly difficult,
especially since the RHP-zero is closer to the origin than the RHP-pole, so the controller must
most likely be unstable (see remark 5 on p. 226).

Remark 1. The algebra involved for hand calculation for this example is a bit extensive. Also,
if you evaluate the zeros by evaluating the determinant of the transfer function you must apply
some insight: To find the zeros you get a fourth order polynomial, see (3), but note that two of
the roots are known — they are the poles — and can be eliminated, for example, by long division.
It is possible to evaluate the zeros also from the generalized eigenvalue problem, see eq. (4.61)
in the book, but I do not how this is done analytically.

Remark 2. Numerical calculations, using MATLAB, are of course preferred:

a=[1 2;1 0]; b=[2 2; 3 4]; c=[0 1; 1 0]; d=[1 2;2 0];

g = pck(a,b,c,d);

spoles(g)

szeros(g)

gp=frsp(g,-1.99i); [u,s,vl=vsvd(gp); yp = sel(u,’:’,1)
gz=frsp(g,-0.681); [u,s,v]=vsvd(gz); yz = sel(u,’:’,2)

% Generally, it is better to use state space form:

% Compute eigenvalues of A and eigenvector, and similar for zeros
% using the generalized eigenvalue problem

Additional exercise. Design a controller for this plant using MATLA B, using whatever design method
you like, to see if acceptable performance can be achieved.

(c)

10 s+1 3
Gls) = — —
N e R
Get
(s+4)(s—2)
——T—
100 ((s +1)* —9) (s—2)
det G(s) = = 100
eLG) = 1 v ap (5+1)2(s+4)

So the system has 3 stable poles (at s;o = —1 and s3 = —4), and 1 RHP-zero at s = z = 2.
From G(z) = % [g g] the zero direction is 3y; + 3y, = 0, which gives the normalized direction
_Tom
Y== | -0

so the zero has equal effect in the two outputs. The RHP-zero implies that we cannot have tight
control in this direction around frequency 2 [rad/s].

Are there any particular control problems for the three plants?
e We have already answered this when it comes to the effect of RHP-poles and RHP-zeros.

e Input constraints may also be a problem. I would suggest to look at G(0)~!, and if there
is any element larger than 1 then it may signal problems with references (since perfect



control requires u = G~'r). For the three above cases, we find that in none of the cases
does G(0)~! have elements larger than 1 in magntidue — the closest is in case 2 which has
one element equal to —1.

e Another problem may be uncertainty, but I don’t see any large RGA-elements or large
condition number (look at the product of the largest element in G and G™! to get a rough
idea of the condition mumber) which may signal sensitivity to uncertainty.

(d) For the plant in (c) there are three possible disturbances,

1 10 1 10 1 [10
gd1_108+1 10 7gd2_8+1 10 Jgd3_s+1 _10

Is acceptable disturbance rejection possible for each of these? We will look at two issues: (i)
Input constraints and (ii) the possible conflict between the desire for disturbance rejection and
RHP-zeros.

(i) For perfect disturbance rejection we need u = —G~'gq4d, so if the variables are scaled
appropriatly, we need the elements in the vector G='g4 to be less than 1 in magnitude
to avoid input constraints '. Let us look at steady-state, since things improve at higher
frequencies (since the gain of g4 drops more rapidly than that of G at high frequencies).

We have
101 3

G(0) 1[3 1], G(0>1=f—0[_1(.)55 _1(‘55}

and G71(0)gq(0) for the three disturbances is [i], [”, and [g] In conclusion, input

constraints may be a problem for disturbance 3.

(ii) (This is also the solution to Problem 3(e)). With feedback control y = Sg¢qd, and we assume
the variables have been scaled such that the worst-case disturbance is |d| = 1 and we want
for acceptable control ||y|| < 1 at all frequencies, that is, we want ||Sgq|| to be less than 1
at all frequencies. But we have

1S9alloo > 11y2 S gallo > |y S(2)94(2)| = |yf 9a(z)]| (4)

Proof of (4): The first inequality is just because the gain in any direction must be larger than
the gain in a specific direction, the second inequality is the maximum modulus principle which
says that the maximum in the RHP for a stable system is achieved on the jw-axis, and the final
equality is because when G has a RHP-zero at z, then for internal stability S(z) must have gain
1 in the direction of the RHP-zero, y2S(z) =y, see (6.4).

From (4) it then follows that we must at least require |y g4(z)| < 1 for acceptable distur-
0.71 ]

bance rejection in the presence of a RHP-zero. As found earlier z = 2 and y, = [_0 -

and we find for the three disturbances

|yfgd1(2)| =0, ‘Z’/fgdl(zﬂ =0, |y59d1(2)| =47

Lf this is satisfied then we are OK; if not then we may start looking into the more fine details about acceptable
control (|y| < 1 rather than y = 0), e.g. see eq. (6.47), which may give different results for ill-conditioned plants
if disturbance rejection is actually not required in some directions).
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In conclusion, the presence of the RHP-zero at z = 2 is not a problem for disturbances 1
and 2 (the output direction for disturbance 3 is orthogonal to the direction of the RHP-
zero), but it is a problem for disturbance 3 (4.7 being much larger than 1).

In conlusion, taking both the RHP-zero and input constraints into account, we may expect
serious problems for disturbance 3.

Exercise. Again, try this out using MATLAB. Design a controller, using whatever design method you
like, to see if acceptable performance can be achieved for each of the three disturbances (you may want
to design a diferent controller for each disturbance).

Problem 2. General control formulation.

Consider a stable uncertain plant
Gp =G +WiA)) + WA, Al <1
for which the robust performance (RP) objective is to achieve

[WsSplloe = IWs(I + GpK) oo < 1, VG,

(a) The block diagram representation of the closed-loop system with all weights included is shown
in Figure 1. The block Ap is a ficticious uncertainty block for the performance specification.
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Figure 1: Block diagram of uncertain plant in Problem 2

(b) Let the overall block-diagonal uncertainty matrix be A = diag{A;, As}. The generalized
plant P with uncertainty (from [ua, ua, w u]” to[ya, ya, 2z v]°;see Figure 3.21 in
the book) is then:
0 0 0 1
p_ 0 0 0 1
WsGW, WsWy Wi WiG
-GW, W, -1 -G
The corresponding interconnection matrix N with the controller included ((from [ua, ua, w]
to [ya, wa, 2] ;see Fig. 3.22) is:
~KGUI+KG)" "W, —K(I+GK)"'Wy —K(I+GK)
N=|-KGU+KG)'W, —K(I+GK) "W, —K(I+GK)"
WaG( + KG)" "Wy Wi(I +GK)" "Wy  Wy(I + GK)™!

T
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~TyW, —-KSW, —KS
= | -TyWw, —KSW, —KS
W3GSW, W;SW, W;S

The matrix M for stability analysis consists of the upper left 2 x 2 block of V.
(c) The RS- and RP-conditions in terms of N and M are:

RS: pua(M) < 1,Vw

RP: prpn o 1(N)<1,Vw
0 o)

where Ap is a full matrix compatible with the dimensions of w and z as shown in Figure 1. In
addition, we should as always check nominal stability (NS).

(d) Finally, we want to derive analytical expressions for RS and RP for the case of a SISO plant.
We get

where S = (I + GK)™' and T = GK(I + GK)™L.

These conditions can be derived in several ways, and we here outline two approaches. We only
derive the expression for RP, since RS is a special case obtained by setting W5 = 0.

(i) We here start from the condition in terms of p(N). Since the blocks are scalar we have that

wiT wLT w\T
W3S W3S W3S

Proof:

The order of G and K etc. does not matter for SISO.
We can “move” G from column 1 to row 1; e.g. use (8.84).
We can “move” W; from column 1 to row 1; e.g. use (8.84).

We can “move” Wy from column 2 to row 2; e.g. use (8.84).

AR el R S e

The negative sign in row 1 and 2 can be absorbed into the A-block, e.g. use (8.83)

The final result then follows from the fact

a a a
pwlb b b =lal+ b+
c ¢ ¢

Proof. This follows since N here is rank 1 matrix and we can write the 3 x 3 matrix NA =
[a b ¢]'[A; A, As]. We then get that det(I — NA) = det(I — AN) = 1 —al; — bA; — cAs.
To make this determinant most easily equal to zero we select the A; of magnitude § and with
phase such that 1 — |a|6 — |b|0 — |c|6 = 0, and it follows that 4 = 1/6 = |a| + |b| + |¢|. (This
provides a generalization of the derivation at the end of p. 317 in the book, and we see that it
may be easily genarlized to matrices of larger size).
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(ii) The RP-condition is |(W3S,| = |[W3/(1 + G,K)| < 1,Vw,VG,. We get

Ws

| W3S
1+ GK +GKW Ay + KW)A,

1+ WiTA; + WoKSA,

| <1

This should be satified for any |A;| < 1 and |As| < 1, and we see that the worst case is
when we select |A;| = 1 and the phases of the A;’s such that the condition becomes

W3S
T [W,T| = [W,oKS|

Problem 3. Various.
(a) Rewrite G = (I—I’IA)_1 = I—f—HA(I—HA)_l = Fu(J, A) = J22+J21A(I— JnA)_lJlg, SO
H I
1=l 1)

(b) Given the “true” plant and nominal model

GI( ) _ 36—0.15 ( ) _ 3
T s+ )01+ 12 T T 9541
The magnitude of the multiplicative difference is
‘G, _ G‘ , 6—0.15
—=G/)G| - 1=|—7F——75—1
|G| &'/a ‘(0.15 +1)2 |

This is easily evaluated numerically using MATLAB; see Figure 2:

% Use mu toolbox

w = logspace(-1,2,61);

delw = delay(0.1,w); % delay command: See MATLAB source files
num=nd2sys (1, [0.01 .2 1]);

nunw = frsp(num,w);

reldiff = msub( mmult(delw,numw), 1);

vplot(’liv,1m’ ,reldiff,1,’:°);}

For an analytic evaluation use the approximation e %* ~ 1 — 0.1s (which is exact at low
frequencies; we could have used a Pade approximation instead — you can try that). We get

|G' =G| [5(0.01s +0.3)]
G| [(0.1s+1)2]

The low-frequency asymptote is 0.3s which increases with a slope 1 and crosses 1 at frequency
3.33 [rad/s] (which is close to the actual value; see Figure 2). The asymptotic plot has a peak
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Figure 2: Magnitude of multiplicative difference computed using MATLAB

of 3 at frequency 10 (rad/s) (the actual peak is less than 2; see Figure ) and approaches 1 at
high frequencies.

Remark. Note that if we consider all possible delays between 0 and 0.1 and also all time constants
up to 0.1, then the weight would level off at 2 at high frequencies; see Figure 7.8 on p. 262 in the
book. But in this case we are not told that the delay and time constants are uncertain — we simply
want to reprent the known dynamics as uncertainty — it is then correct to let the weight levell off at 1
at high frequency. In any case, this discussion is largely academic, as the most important result is the
frequency where the unecertainty reaches 100%, which is at about 3.3 [rad/s].

(c) This problem shows that element-by-element uncertainty can also be written easily in the
standard form, for example, in terms of additive uncertainty.

Go(s) = [(1 +An)gn (1+Aw)gie
? (14 Ag)gn (14 Ag)gre

An 0 0 gin 0
_ gi1 912 + 1 1 0 0 0 Alg 0 0 0 gi2
921 g2 00 1 1[0 0 Ay 0 |]|gy ©
E V‘V; A 0 0 0 AQQ | 1 0 gggJ
a W

(we could also put the g;;’s into W, instead). To find the interconnection matrix M for RS,
consider a negative feedback block diagram and evaluate the (closed-loop) transfer function from
the output of A to its input. We find M = —W,K(I + GK)~'W, (see also p. 307).

(d) All of these are NOT true:



e To disprove (i), consider u = p (i.e. select A = §I since the property must hold for any

8 (1)] which has p(4) = 0. Thus, p and p do not satisfy the

positivity requirement of a norm.

structure) and select A = [

é and select B = [(1) 8] Then
p(A + B) = 1 which is larger than p(A) + p(B) = 0+ 0 = 0. Thus, p and p do not satisfy
the triangle inequality, and are therefore not norms.

e To disprove (ii), consider again y = p and A = {8

e To disprove (iii), select A = [8 é] and B = [(1) 8], which gives AB = [é 8] We have

p(AB) =1 then which is larger than p(A)3(B) =0-1=0.

Remark. The disproof of (iii) illustrates that (8.94) in the book is not generally true (since as
shown it does not apply for A =61), i.e.,

NOT generally true : pa(AB) < a(A)ua(B)

unless it is assumed that A has the same structure as A. Thus, as pointed out by Skogestad
and Morari (1988a), there is an error in the original paper of Doyle (1982) — please note this,
because the error keeps reappearing in other papers and books.

(e) To explain and derive |yZg4(2)| < 1, see eq.(4) above.

(f) The task is to define and briefly explain the difference between the Hs-, H.- and Hankel
norms of a transfer function G(s).

e See the book for the definitions.

e One difference with reference to (4.119), (4.122) and (4.134) is: Consider an input and
measure the output using the 2-norm (“energy”). The Hy-norm results when the input
is the worst impulse combination. The H,,-norm is for the worst input with energy less
than 1. Finally, the Hankel-norm is the same as for the H,-norm, but we must turn
off the input when we start measuring the output. Clearly, the Hankel norm is always
smaller than the H,,-norm. However, there is no general relationship between the Hy- and
H,-norm. For example, note for the Hy-norm that the energy of an impulse is infinite;
on the other hand, we have much more freedom in selecting the time dependency of the
input when we evaluate the H.,-norm.

e Another difference, with reference to (4.121) and (4.124), is that the Hy-norm meaures
some average of the frequency reponse (all frequencies, all directions), whereas the H,-
norm considers the worst frequency and worst direction.



(g) We consider a system where the disturbance enters at the plant input, G4, = G. The question
is what form the controller should have if we want acceptable performance with minimum input
usage.

This is discussed in the book on page 48 (SISO) and page 82 (MIMO). It is assumed that the
system 1is scaled such that we have disturbances of unit magnitude and require the output to
be less than 1. The answer is then that the controller should have the form K = G 'G,U =U
corresponding to the loop transfer function L = G4U = GU. Here U is a unitary matrix
(rotation and phase only, unit gain in all direction). In addition, we usually add some integral
action at low frequencies, and some roll-off at high frequencies.

(h) What are the advantages and disadvantages of inverse-based controllers (decouplers)?

e Advantage decoupling: When we make a setpoint change for a given output, there is no
undesirable reponse in the other outputs (no interaction).

e Disadvantages decoupling: (1) Generally not optimal for disturbance rejection (while try-
ing to make the response decoupled we may have to sacrifice disturbance rejection). (2)
Sensitive to modelling errors if the plant has large RGA-elements, and also for some other
plants. (3) If the plant has RHP-zeros, then decoupling generally introduces extra RHP-
zeros into the closed-loop system (increases their multiplicity because the inverse response
must occur in all outputs rather than in a single direction). (4) Decoupling may give
unnecessary large input signals.
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