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ABSTRACT

Robust Control and Model Predictive Control have been two of the main areas of
interest within the process control community during the last decade. This thesis is
a study on how these two control concepts may be applied to Distillation Control. A
simple distillation model is used as an example process throughout the thesis.

The structured singular value (SSV, u) framework is used to define and assess
robustness in this work. The thesis presents guidelines for how to transform (approxi-
mate) a control problem formulated in physical terms into frequency dependent weights
defining a problem suitable for p-analysis and synthesis.

Two different approaches to performance weight selection are presented and studied.
The first approach considers direct bounds on important transfer functions, the second
approach considers the output response to sinusoidal disturbances, setpoints and noise.
Both approaches has their strong sides and it is often fruitful to use both.

Gain and delay uncertainty is commonly used to quantify plant model mismatch
in process control. This parametric uncertainty description cannot be directly used
in the p-framework. The thesis presents a thorough study on how to obtain tight
approximations of gain and delay uncertainty on linear fractional form, suitable for
the u-framework. Both complex and real perturbations are considered, in combination
with both rational and irrational weighting functions. It is shown that a non-optimistic
and non-conservative approximation of the gain and delay uncertainty can be derived,
however, from a practical point of view, a less tight approximation is preferred for most
applications.

The design of a two degree of freedom controller, for a benchmark problem from the
literature, is used to demonstrate how a given control problem may be approximated
into a p-problem, and solved by DK-iteration (u-synthesis). The obtained controller
satisfies all objectives specified in the benchmark, and thereby outperforms several
other controllers proposed in the literature.

Model Predictive Control (MPC) provides means to deal with constraints, a very
valuable property for process control applications. In the thesis one of the most popular
MPC algorithms, Dynamic Matrix Control (DMC), is examined and three inherent
limitations with this algorithm are highlighted. The thesis also demonstrates how to
modify the DMC algorithm in order to avoid these limitations.

Finally, opportunities and difficulties with 5 x 5 distillation control is studied, i.e.
control of levels, pressure and composition by one multivariable controller. The distil-
lation model used in this chapter is much more detailed than what is usual in control
studies. Both MPC and p-methods are applied in the design of the 5 x 5 controller.
It is demonstrated that multivariable interactions can be counteracted with a 5 x 5
controller, however, the main advantage is constraint handling which requires on-line
optimization, as in MPC. It is also shown that weights and D-scales from H,/p con-
troller design yields useful guidelines for robust tuning of an MPC controller.
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Chapter 1

Introduction

Robust Control and Model Predictive Control have been two of the main areas of
interest within the process control community during the last decade. In this thesis
these two control concepts are applied to Distillation Control.

The thesis consists of this introductory chapter, five self contained chapters each in
form of a separate paper, and finally a chapter where the overall conclusions from the
work are presented.

The purpose of this introductory chapter is to briefly present each of the three
sub-topics of this thesis

e Distillation Control
e Robust Control
e Model Predictive Control

and to present a short overview of each of the chapters.

1.1 Distillation Control

Distillation is used to separate a binary- or multi-component feed stream into two
or more product streams with different compositions. It is one of the most common
operations in refineries, petrochemical and chemical industries. In refineries crude oil
is separated into heavy oil, light oil, gasoline etc., by distillation. In petrochemical and
chemical industries distillation is the most common technique used to separate desired
products from bi-products and unreacted raw material.

The physical principle for separation in a distillation column is the difference in
volatility of the separated components. The separation takes place in a vertical column
where heat is added to a reboiler in the bottom and removed from a condenser in the
top. A stream of vapor, produced in the reboiler, rises through the column and is
forced into contact with a liquid stream, from the condenser, flowing downwards in the
column. The volatile (light) components are enriched in the vapor phase and the less

1



2 CHAPTER 1. INTRODUCTION

volatile (heavy) components are enriched in the liquid phase. A product stream taken
from the top of the column will therefore mainly contain light components, while a
stream taken from the bottom will contain heavy components.

Composition control of distillation columns has been studied for several years and
by a large number of researchers, e.g. Boyd (1946) and Rijnsdorp (1965). Despite
this fact there are still sides of this topic to unravel. In their 500 pages long book
Buckley, Luyben and Shuta (1985) formulate it like this: “A truly definitive treatment
of composition control, even for simple binary distillation, has not yet been published
— and the reader will not find one here.”

There are many reasons for the large interest in distillation control. From an aca-
demic point of view distillation control is an interesting multivariable problem, and
from an industrial point of view improved distillation control has a potential to sub-
stantially increase profit. The major benefits with improved composition control are:

1. Reduced energy consumption.
2. Increased yield.
3. Higher throughput.

In industry most columns are operated by single input single output (SISO) con-
trollers and usually only one composition is automatically controlled (one-point-control).
This leads to waste of valuable products and excessive use of energy. However, au-
tomatic control of both compositions may be very difficult to obtain due to strong
interaction between top and bottom compositions. Skogestad et al. (1988) showed
that in particular high purity columns, i.e. columns where both top and bottom com-
positions are very pure, suffer from strong interaction which makes the system very
sensitive to inaccuracies in the manipulated variables (input uncertainty). Without a
rigorous method for dealing with uncertainty it may be practically impossible to tune
a two-point-controller for a system with strong interaction. This may in fact be one of
the reasons to why one-point-control is so commonly used.

The development of robust control theory during the last decade provides a rigorous
framework to address uncertainty issues. Skogestad (1987) was one of the first to apply
these new methods to distillation control. This thesis is to some extent continuing parts
of Skogestad’s work. The thesis mainly deals with two-point composition control, but
in chapter 6 a controller used to control levels, pressure and compositions is considered.

1.2 Robust Control

“Robust Control” is a novel control field, however, robustness has always been of major
importance for feedback control, since any control strategy has to be robust in order
to become successful.

In this thesis we use the structured singular value (SSV, p) (Doyle, 1982) to define
and assess robustness. Other branches of robust control also exist, but are not consid-
ered here. In the p-framework performance is defined using the H,-norm. This norm
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provides a direct generalization of classical SISO Bode-plot design methods to MIMO
systems. Historically the H,-norm was introduced because of its ability to deal with
non-parametric uncertainty, however, now H,,-methods are used also for parametric
uncertainty.

This thesis does not contribute to the theoretical development of H.,/p methods,
but focus on applications of these methods. Brief introductions to the p-framework
are presented in chapters 2,3 and 4 of this thesis, more detailed presentations of p can
be found in articles referred to in these three chapters.

Robust control is one of the most active areas of control research. An overview of the
most recent developments within this field is available in the January 1993 number of
Automatica, which is a special issue on robust control. This special issue also contains
a bibliography on robust control by Dorato et al. (1993).

Several books on the topic have also been published the last years (see Dorato et
al., 1993). Computer software for robust analysis and design is also readily available
through two ‘toolboxes’ for MATLAB (Balas et al., 1991; Chiang and Safonov, 1992).

1.3 Model Predictive Control

The optimal operating condition for a process is almost always at a limiting constraint.
This is true both for distillation columns and for other process. A constraint is a strong
non-linearity and can generally not be effectively dealt with using a linear controller.
However, a Model Predictive Controller which uses on-line optimization, can deal with
constraints.

Model Predictive Control (MPC), or Receding Horizon Control as it is also called,
emerged in the process industry in the late seventies, Richalet et al. (1978) and Cut-
ler and Ramaker (1979). There are several different variants of MPC, known under
names such as Dynamic Matrix Control, Model Algorithmic Control, Model Predictive
Heuristic Control etc. The main idea for all of these methods is to optimize a control
objective over a moving or receding horizon.

While robust control theory has been developed in a rigorous mathematical frame-
work by academics, MPC has not had a solid fundamental basis until recently, e.g.
Bitmead et al. (1990). However, several successful implementations of different vari-
ants of MPC has shown the strength of this control concept.

1.4 Thesis overview

The overall motivation for the research presented in this thesis is the fact that un-
certainties and constraints are two central issues for process control. The effect of
uncertainties can be rigorously analysed in the structured singular value framework,
and constraints can be dealt with using MPC. However, in order to apply these meth-
ods in practice, guidelines for doing so are required. The purpose with the thesis is to
derive and present such guidelines.
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The backbone of the thesis are the five papers presented in chapters 2 to 6. These
papers have all been presented at international conferences [18], [25], [24], [21] and [17].
Chapter 2 has also been published in an international journal [19].

A very simple distillation model proposed by Skogestad, Morari and Doyle (1988)
called “column A” is used in some sense or another in all five papers. This model is
not a very good representation of a distillation column, but it captures the interactions
between top and bottom compositions and is an excellent model for studies concerning
robustness to input uncertainty. Due to its simplicity this model has been used by
several authors to illustrate different aspects of robust controller design. In fact this
model was the basis for an entire session of the 1991 CDC at Brighton, U.K.

Chapter 2. This chapter presents different approaches to performance weight
selection when the H,,-norm is used to specify desired performance.

Upper bounds on important transfer functions are used to specify performance in
the first approach. This approach is very similar to classical loop shaping techniques for
SISO systems, however instead of specifying the desired open-loop transfer function,
we specify an upper bound on the sensitivity function. The method can of course also
be used to specify bounds on other important closed loop transfer functions. The main
advantage with this method is that well understood criterions in terms of sensitivity,
complementary sensitivity and other closed loop transfer functions can be employed.

The other method is a signal oriented approach. Here the maximum allowed ‘size’ of
input and output signals of a system are specified by input and output weighting func-
tions. This approach has a more direct connection of the induced norm interpretation
of the H,-norm and is sometimes more appropriate for multivariable systems.

This chapter also presents an improved solution to the example problem from Sko-
gestad, Morari and Doyle (1988). Several properties of this improved controller clearly
indicates that it is very close to the true optimal controller.

The chapter is almost identical with the paper published in Transactions of the
Institution of Measurements and Control [19] , however some minor correction have
been made and Appendix 2 has been added. The nomenclature used in this chapter is
slightly different from that used in the rest of the thesis. An early version of this paper
was presented a the Symposium on “Robust Control System Design Using H-infinity
and Related Methods” in Cambridge March 1991 and published as a chapter in the
proceedings from this conference [18].

Chapter 3. This chapter deals with uncertainty modelling for controller analysis
and design using the structured singular value framework. Most of the material pre-
sented here is from [25], but the uncertainty model based on a real perturbation and
irrational weights (section 3.3.4) has not been presented elsewhere.

Four classes of linear fractional uncertainty models are presented: 1) Complex per-
turbation with rational weight, which is the most useful class from a practical engineer-
ing point of view and may be used for both analysis and synthesis; 2) Complex pertur-
bation with irrational weight, which yield a tighter uncertainty model than 1 due to the
irrational weight, but can only be used for analysis; 3) Mixed real /complex perturba-
tion with rational weight, which yield a tighter model than 1 due to the real/complex
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perturbation, but the real perturbation also complicates the computation of u; and fi-
nally 4) Mixed real /complex perturbation with irrational weight, which yields a perfect
match of the gain delay uncertainty up to a certain frequency.

Chapter 4. In this chapter a benchmark problem from the literature (Limebeer,
1991) is used to demonstrate the flexibility with the p-framework for robust controller
design. The controller designed and presented in this paper satisfies all performance re-
quirements specified in the benchmark, and thereby it outperforms all other “solutions”
to this problem presented in the literature.

Chapter 5. Limitations of "standard DMC” is highlighted in this chapter. The
main problems with DMC are the model representation and the disturbance assumption
employed by the algorithm. With these two problems identified, the paper also outlines
how to avoid these problems.

This chapter presents results obtained during a stay at Manfred Morari’s group at
Caltech in 1990. The material presented in this chapter is strongly connected to the
results presented in Lee, Morari and Garcia (1991) and in Morari and Lee (1991) where
the examples from chapter 5 are used.

A short version of the chapter was presented at the 1st European Control Conference
in Grenoble, France, 1991 [21]. Since then, further improvements of MPC has been
suggested, e.g. Rawlings and Muske (1993) have demonstrated how a finite horizon
problem may be reformulated as an infinite horizon problem. This modification yields
an algorithm which guarantees Nominal Stability, which was not guaranteed with the
standard finite horizon approach.

Chapter 6. This chapter is an updated and somewhat extended version of a paper
presented at ADCHEM’94 [17]. Here we discuss opportunities and difficulties with
a truly multivariable distillation control scheme, i.e. control of levels, pressure and
compositions The ideas in the Model predictive part of the paper has previously been
presented at the Annual AIChE meetings in Los Angeles 1991 [15] and Miami Beach
1992 [16].

Chapter 7. This chapter presents conclusions and suggestions for future work.

During the work with this thesis the author has participated in several projects
which in all have resulted in 5 journal publications ([37], [32], [19], [38] and [40]) and
18 conference papers or presentations ([9], [11], [12], [15], [16], [17], [18], [20], [21], [22],
(23], [24], [25], [31], [34], [35], [36] and [39])
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Abstract

The paper discusses, from a process control perspective, different approaches
to performance weight selection when using H-infinity objectives. Approach
A considers direct bounds on important transfer functions such as sensitivity
and complementary sensitivity. Approach B considers the output response to
sinusoidal disturbances, setpoints and noise. We also give some insight into
the practical use of H-infinity and p methods. p is the structured singular
value (SSV) introduced by Doyle (1982). p-synthesis is generally not a convex
optimization problem and is presently not straightforward. We will discuss some
of the problems we have encountered.



Figure 2.1: Block diagram of conventional feedback system.



2.1. INTRODUCTION 11

for why weight selection is difficult:

e One obvious reason is that in most real design cases the specifications are not
fixed before the design starts, and the weights are “knobs” which the engineer
adjusts until he obtains a system which performs satisfactory.

e Another reason is that there are several ways of setting up the problem, and
each of these yield different ways of adjusting the weights. There are several
physical interpretations of the H.,-norm (Doyle, 1987) which give rise to different
procedures for selecting the performance weights. In this paper we will mainly
discuss two of these procedures:

Approach A) The transfer function or loop shaping approach. Here one considers
direct bounds on important transfer functions such as S, T'= GCS and CS. Of-
ten several transfer functions are considered simultaneously and “stacked” on top
of each other when evaluating the H,,-norm. For example, Yue and Postlethwaite
(1988) consider the transfer functions S and C'S, and use the norm

H W, SW!
WoCSW |

Similarly, Chiang and Safonov (1988) and Chiang et al. (1990) consider the
transfer functions S and T'. In this case the first transfer function may be used to
specify the bandwidth to achieve acceptable disturbance rejection, whereas the
latter is used to avoid amplification of noise at high frequency. McFarlane and
Glover (1990) use a direct loop-shaping approach.

(2.2)

Approach B) The signal approach (e.g., Doyle et al., 1987). Here one considers
the response to sinusoidal signals. In this approach one cannot directly specify
bandwidth, etc. However, this approach may be more appropriate for multivari-
able problems where a number of objectives must be taken into account simul-
taneously. Also, in such systems the concept of bandwidth is often difficult to
use.

e There are different ways of handling model uncertainty. Above, we discussed
nominal performance (NP). The ability to address also robust stability (RS) and
robust performance (RP) in a consistent and rigorous manner is probably the
most important reason for using the H,-norm for performance. However, there
are at least two approaches for taking model uncertainty into account:

1) The mixed NP-RS approach: Add the robust stability condition as an addi-
tional H-objective to be minimized. One example is to try to optimize simul-
taneously nominal performance using wpS and robust stability with respect to
relative output uncertainty of magnitude |wy(jw)| using woT. These objectives
are combined and the controller is designed to minimize the combined objective
function

wPS) (2.3)
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Note that this is the same objective as discussed by Chiang and Safonov (1988),
but here the bound on 7T follows as a RS-condition and not as a condition for noise
amplification. This follows since the same transfer function may be given both
a performance and a stability interpretation. In practice, these considerations
are often combined when selecting the weights, and Approach A for performance
selection is usually combined with the mixed NP-RS approach for model uncer-
tainty.

2) The RP-approach: Use the same H.-performance specification, but require
that it is satisfied (or minimized) not only for the nominal plant, but for all plants
as defined by the uncertainty description, that is, require robust performance. For
example, when performance is measured in terms of w,S, the robust performance
objective with output uncertainty becomes (e.g., Skogestad et al., 1988)

wol ng) (2.4)

minsup 4(Nrp);  Nrp = (wp S weS

Comment: For this particular case with both performance and uncertainty mea-
sured at the plant outputs there is almost no difference between the mixed NP-RS
approach and the RP approach. (At each frequency u(Ngp) is by most a factor of v/2
larger than 6 (Np,)). However, for ill-conditioned plants with uncertainty at the plant
inputs (which is always present), this is not the case and the mixed approach may yield
very poor RP. For example, this applies to the example studied by Skogestad et al.
(1988) which is also studied in this paper.

The RP-approach is used in this paper. It is more rigorous than the mixed NP-RS
approach, but it requires use of the structured singular value. This makes controller
synthesis rather involved, but analysis is straightforward. A good design approach
may be to synthesize controllers using the mixed approach, and analyze them using
RP and p. It may be necessary to iterate on the weights in order to obtain acceptable
p-values (Actually, as discussed in the next section, the presently used “D-K” iteration
for p-synthesis involves solving a series of H-problems).

Software to synthesize H.,-controllers has been available for some time, for exam-
ple, through the Robust Control toolbox in MATLAB (Chiang and Safonov, 1988).
Recently, a p-toolbox for MATLAB has become available (Balas et al., 1990). This
toolbox includes alternative H,-software, and p-analysis and synthesis is included as
outlined above. All computations presented in this paper have been done employing
this toolbox.

Some important terms:

Nominal stability (NS): The closed-loop system without uncertainty is stable.

Robust stability (RS): The system is stable for all defined uncertainty (“worst case
is stable”).

Nominal performance (NP): The system satisfies the performance requirements for
the case with no uncertainty.
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Robust performance (RP): The system satisfies the performance requirements for
all defined uncertainty (“worst case satisfies performance requirement”).

2.2 Model uncertainty and the structured singular
value

The objective of this section is to give the reader a short introduction to model uncer-
tainty and the structured singular value, p. A more detailed introduction to u is given
by Doyle (1982; 1987) and Skogestad et al. (1988).

An important reason for selecting the H,,-norm for performance, is that also model
uncertainty may be readily formulated using this norm. In particular, this applies to
uncertain or neglected high-frequency dynamics that are always present, and which
cannot be modelled by parametric uncertainty in a state space model with fixed order.
In the H-framework the model uncertainty is modelled in terms of uncertain pertur-
bations, A;. Using weights they are normalized such that their H,-norm is less than
1.

[Aillee <1 & 7(Ai(jw)) < 1,Vw (2.5)

Unstructured uncertainty. In the simplest approach all the uncertainty is lumped
into one perturbation matrix, A, for example at the output. This is an unstructured
uncertainty description, and gives rise to robust stability conditions in terms of the
singular value (Hy-norm). For example, for input uncertainty of magnitude ws, where
also “cross-channel” uncertainty is allowed, A is a full matix, and the RS-condition
becomes ||woT7|| < 1. However, this approach is generally conservative because it will
include a lot of plant cases that cannot occur in practice. If cross-channel uncertainty
does not occur in practice then the correct RS-condition is p(weT;) < 1,Vw, where A
is a diagonal matrix as given in Eq. 2.6 below.

Structured uncertainty. To model the uncertainty more tightly we must consider
structured uncertainty, that is, use several perturbation blocks. Usually each of these
blocks is related to a specific physical source of model uncertainty, for example a mea-
surement uncertainty or an input uncertainty. For example, for the input uncertainty
without cross-channel coupling we need one perturbation block for each input and we
get for a system with n inputs

A= ) (2.6)

Robust stability. To test for robust stability the system with the uncertainty blocks
is rearranged such that Ngg (which includes the uncertainty weights) represents the
interconnection matrix from the outputs to the inputs of the uncertainty-blocks, A. In
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the following we assume that Ngg is stable. Using the small gain theorem, we know
that robust stability will be satisfied if || Ngs|/co < 1, or equivalently

RS if 0(Ngs) <1, Yw (2.7)

However, this bound is generally conservative unless the uncertainty is truly unstruc-
tured. First, the issue of stability should be independent of scaling. Thus, an improved
robust stability condition is

RS if gl(i%a(DNRSD—l) <1l; Vw (2.8)
where D is a real block-diagonal scaling matrix with structure corresponding to that
of A, such that AD = DA. A further refinement of this idea led to the introduction
of the structured singular value (Doyle, 1982, 1987). We have (essentially, this is the

definition of )
RS iff wu(Ngs)<1l; Vw (2.9)

Thus minp 5(DM D™!) is an upper bound on u(M). Tt is usually very close in mag-
nitude. The largest deviation reported so far is about 10-15% (Doyle, 1982, 1987).
Computationally tractable lower bounds for p also exist and are in common use.

Robust Performance. An additional bonus of using the H,,-norm both for perfor-
mance and uncertainty is that the robust performance problem may be recast as a
robust stability problem (Doyle, 1982), with the performance specification represented
as a fake uncertainty block. To test for robust performance one considers the intercon-
nection matrix Ngp from the outputs to the inputs of all the A-blocks, including the
“full” Ap-block for performance. Nrp depends on the plant G, the controller C' and
on the weights used to define uncertainty and performance. The condition for robust
performance within the H-framework is (see Fig. 2.2)

RP iff px(Nge) <1, Yw ,A= A0 (2.10)
0 Ap

Analysis of robust performance for a given controller using pu is straightforward, but
controller design using p-synthesis is still rather involved. The present “D-K iteration”
uses the upper bound on p, and involves solving a number of “scaled” H.,-problems.
We will discuss this further in section 2.6.

Uncertainty weights. Since uncertainty modelling using the H-framework is a
worst-case approach, one should generally not include too many sources of uncertainty,
since it otherwise becomes very unlikely for the worst case to occur in practice. One
should therefore lump various sources of uncertainty into a single perturbation when-
ever this may be done in a non-conservative manner. On the other hand, one should be
careful about excluding physically meaningful sources of uncertainty that limit achiev-
able performance. From this it follows that selecting appropriate uncertainty weights
is very problem-dependent, and it is important that guidelines for specific classes of
problems be developed.



Figure 2.2: General block structure for p analysis.

Sometimes one might use a smaller uncertainty set for robust performance than for
robust stability. The idea is to guarantee stability for a large set of possible plants, but
require performance only for a subset. This is to avoid very conservative designs with
poor nominal performance.

For the example in this paper we only consider input uncertainty. The effect of
output uncertainty, time constant uncertainty, and correlated gain uncertainty was
studied by Skogestad et al. (1988). They found that these sources of uncertainty were
less important than the input uncertainty for this particular ill-conditioned plant.

2.3 Performance weights

There are several different physical interpretations of the H,-norm of E' (Doyle, 1987,
Zhou et al., 1990), and as mentioned in the introduction this gives rise to different
methods for weight selection.

Approach A. Consider F as a transfer function. Since ||EF||o = sup, d(E(jw) the
H,,-norm may be viewed as a direct generalization of classical frequency-domain
bounds on transfer functions (loop-shaping) to the multivariable case.

Approach B. Alternatively, consider E(jw) as the frequency-by-frequency sinusoidal
response. That is, for a unit sinusoidal input to channel j with frequency w, the
steady-state ouput in channel 7 is equal to E;;(jw). To consider all the channels
combined, we use the maximum singular value, ¢(E(jw)), which gives the worst-
case (with respect to choice of direction) amplification of a unit sinusoidal input
of frequency w through the system.

Approach C. The induced norm from bounded power spectrum inputs to bounded
power spectrum outputs in the time domain is equal to the H,,-norm.



Figure 2.3: General feedback system with weights, a two-degree-of-freedom controller
and input uncertainty. It is assumed that the outputs are measured directly. The
transfer function E is used for H-performance with Approach B.

There are also other interpretations of the H,,-norm: It is equal to the induced
2-norm (energy) in the time domain. It is equal to the induced power-norm. It is
also equal to induced norm in the time domain from signals of bounded magnitude to
outputs of bounded power.

The following discussion is mostly relevant to approaches B and C. A general way
to define performance within the H-framework is to consider the H,,-norm of the
closed-loop transfer function F between the external weighted input vector w (distur-
bances d, setpoints y, and noise n) and the weighted output vector z (may include
Yy — Ys, manipulated inputs u which should be kept small, etc.). Weights are chosen
such that the magnitude (in terms of the 2-norm) of the normalized external input
vector is less than one at all frequencies, i.e. ||w(jw)||l < 1, and such that for accept-
able performance the normalized output vector is less than 1 at all frequencies, i.e.
|z(jw)||so < 1. With z = Ew the performance requirement becomes

1E]leo = supo(E(jw)) <1 (2.11)

Introducing the weights W,, W,, W,, W, and W, into Fig. 2.1 yields the block
diagram in Fig. 2.3 where E is given as shown by the dotted box. We also have
introduced an “ideal response” W from y, to y, and use a “two degree of freedom
controller”. Note that it is only the magnitude of these weights that matters; they
should therefore be stable and minimum phase.
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2.3.1 Performance approach A. Weights on transfer func-
tions (Loop shaping)

Many performance specifications may be translated into an upper bound 1/|wp| on the
frequency plot of the magnitude of the sensitivity function S = (I + GC)™ .

d(S(jw)) < 1/|wp(jw)|, Yw (2.12)

This is equivalent to (2.11) with £ = wpS (weighted sensitivity). The concept of
bandwidth, which is here defined as the frequency wp where the asymptote of 7(S)
first crosses one, is closely related to this kind of performance specification, and most
classical frequency domain specifications may be captured by this approach.

Classical frequency domain specifications. For example, assume that the following
specifications are given in the frequency domain:

1. Steady-state offset less than A.

2. Closed-loop bandwidth higher than wp.

3. Amplification of high-frequency noise less than a factor M.
These specifications may be reformulated in terms of Eq. 2.12 using

1 TelS + M
wp(s) = —

= S Tas T ith 7, = 1 2.13
Morgst 40 b T =1/ ws (2.13)

and the resulting bound 1/|wp(jw)| is shown graphically in Fig. 2.4.

In many cases a steeper slope on S is desired at frequencies below the bandwidth
to improve performance. For example, this may be the case if the disturbances are
relatively slow as discussed below (Section 2.3.3).

Several transfer functions. As mentioned in the introduction one may define similar
performance objectives in terms of other transfer functions, and consider the combined
effect by stacking them together when computing the H,-norm.

Matrix valued weights. In the multivariable case the generalized weighted sensitivity
is WpSWJ,. For example, one may use different bounds on the sensitivity function for
various outputs. Assume we want the response in channel 1 to be about 10 times faster
than that in channel 2. Then we might use the performance specification

IWeSle <15 Wp= ("0 Y ) (2.14)
wWp22
with wp11 = 10wpee. We shall later study the use of different weights in each channel
for the distillation example.

Introducing matrix valued weights is necessary if the disturbances have strong di-
rectionality. However, the direct implications for the shape of the sensitivity function
then become less clear, and it is then probably better to shift to the more general
signal-oriented approach discussed next.
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Figure 2.4: Asymptotic plot of 1/wp = MTTCZZ:—:A‘:‘I where 74, = 1/wp. |S(jw)| should lie
below 1/|wp| to satisfy classical frequency-domain specifications in terms of A, M and

waB.

2.3.2 Performance approach B. Frequency by frequency si-
nusoidal signals

In many cases it is not possible, or at least difficult, to directly specify appropriate
weights on selected transfer functions. A sinusoidal signal-oriented approach is then
more suitable. For example, this approach is used in the space shuttle application
study by Doyle et al. (1987).

In this approach we consider the effect of persistent sinusoidal input signals of a
given frequency. Consider again Fig 2.3, the signal weights Wy, W, and W,, will be
diagonal matrices which give the expected magnitude of each input signal at each
frequency. Typically, the disturbance weight, W, and the setpoint weight, W, do not
vary very much with frequency !, while the noise weight, W,, usually has its peak

!That is, in this approach B we should not add a integrator (1/s) to the weight even if step changes
in disturbances or setpoints are expected (however, in approach C this is correct). The reason is that
in approach B we consider the response frequency-by-frequency and a step change cannot really
be modelled very well, and certainly not as a slow-varying sinusoid of infinite magnitude. A more
reasonable approach is to consider a range of sinusoids and use a nearly constant weight with the
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value at high frequency. W, is a diagonal matrix which at each frequency specifies
the inverse of the allowed magnitude of a specific output error. If we want no steady-
state offset the weight should include an integrator such that its magnitude is infinite
at steady-state (we require offset-free response to slow-varying sinusoids) 2. We let
the weight (W) level off at high frequencies at a value 3;W,*. The factor M limits
the maximum peak of ¢(S) and is a way of including some loop-shaping ideas from
Approach A. Often the value of M is about 2. The corner frequency for the weight
W, (where it levels off) should be approximately M /7., where 74, is the maximum
allowed closed-loop time constant for that output. The actuator penalty weight, W,
is usually small or zero at steady-state 3. W, may be close to a pure differentiator (s)
if we want to penalize fast changes in the inputs.

It is important to check that the various performance requirements are consistent.
This may be done by evaluating their influence of the required loop shapes (approach
A), in particular, at low and high frequencies. Alternatively, one may test if it is
possible to get ;1 < 1 for NP by performing a H,,-synthesis with no uncertainty.

The approach described above tends to give a large number of weights, and this
is an disadvantage. First, the dimension of the problem grows and the solution takes
more time. Second, with too many independent sources of noise and disturbances
it may become very unlikely for the worst case to occur in practice (note that the
H,,-norm represents a worst-case approach as the singular value picks out the worst
direction). For example, if we have a large number of measurements (it may be possible
to have 100 measurements in a distillation column), it will be very unlikely that the
worst combination of measurement noise will ever occur in practice. Mejdell (1990)
encountered this problem and found it necessary to reduce the number of independent
noise directions.

2.3.3 Combining performance weights (going from Approach
B to A).

There are of course cases where Approaches A and B are identical, but in general there
is a significant difference between considering A) the shape of the transfer functions
(e.g., in terms of its slope and frequency where it crosses one), and B) considering the
magnitude of a specific output signal to sinusoidal disturbances.

To illustrate how specifications on setpoints and disturbance rejection (approach
B) may be reformulated as bounds on the weighted sensitivity (approach A) consider
Fig. 2.3 and evaluate the transfer function from normalized disturbances and setpoints

same magnitude as of the step.
2Note that we may not require offset-free response for y — y; if the measurement noise is nonzero at
steady-state (w = 0). Therefore, to get a controller with integral action we should select W, to be zero
at w = 0. Alternatively, we may require no offset for y,,, — ys, where y,,, = y + n is the measurement.
3The use of actuators inputs of a certain magnitude is often unavoidable (independent of the
controller) in order to reject slow-varying disturbances, and penalizing the inputs at low frequencies
makes little sense in such cases.
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to normalized errors. We have

z=é=E( ):Ew (2.15)

Us
With conventional feedback control (one-degree of freedom), no setpoint filtering (W =
I) and no uncertainty (A; = 0) we have (Fig. 2.3)

E=(W.SG,W; W.SWy). (2.16)

The performance specification is ||E||, < 1, but we want to obtain a bound on &(S).
To this end we find a weight wp(jw) such that at each frequency ¢(wpS) = 6(E). For
the SISO (scalar) case we get o(E) = |WeS|\/\Gde|2 + |[W,|? and 5 (wpS) = |wpS|,
and we have at each frequency

wp| = [We|/|GaWal2 + W, 2 (2.17)

Consider the following special SISO case where we assume:
i) Outputs have been scaled such that for setpoints W = 1;
ii) G4 has been scaled such that disturbances d are less than 1 in magnitude, thus
Wd = 1,
iii) Disturbance model G4 = kq/(1 + 74s); and
iv) The errors, e, should be less than M in magnitude at high frequencies, and we
want integral action and require a response time better than about 7., i.e., W, =
(TeteS + M)/ MTyes.

With the exception of at most a factor /2 (at frequencies where |G,4| ~ 1) we may
then use the following approximation for Eq. (2.17):

kal L\ st M/racs+ R

1—i—Td$Jr >_ Ms  s+1/my

wp(s) & We(s) ( (2.18)
Obviously, if the disturbance gain, |k4|, is small compared to 1 (the magnitude of
the setpoints), then wp(s) ~ W,(s), and the disturbance does not affect the bound
on S(jw). However, in general the requirement of disturbance rejection may require
a faster response than the response time, 7., required by the weight W,. The most
important feature of the performance weight, wp(s), is it’s bandwidth requirement, wj,
which we define as the frequency where the asymptote of wp(s) crosses 1. Introduce
the response time constant imposed by disturbances

Td

M-——- 2.1
oal + 1 (2.19)

Teld =
A closer analysis of (2.18) shows that wj; = max{1/7ge, 1/Taq}. For 744 < 7y the
bandwidth requirement is determined by disturbance rejection. This is illustrated in

Fig. 2.5 where we show the bound 1/|wp| on |S| as a function of frequency. The solid
line shows the requirement for setpoint tracking only, whereas the various dotted lines
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Figure 2.5: Asymptotic plot of 1/wp (Eq. 2.18) for cases where 74, < 74 (M = 2,
Tete = 20 min and 74 = 100 min is used in the plot).

show the requirement for increasing magnitude of the disturbance. In this case with
“slow disturbances” (7qe/M < 74) the weight in (2.18) has a region at low frequencies
where |wp(jw)| has a slope of -2 on a log|wp|-logw plot.

In the multivariable case we must use matrix-valued weights, and it is not possible
to transform approach B into a scalar bound on S. Specifically, 6(SGy(jw)) may
be significantly smaller than ¢(S(jw))d(Gy4(jw)) when G4 is in the “good” direction
corresponding to the large plant gains (see Skogestad et al., 1988).

2.3.4 Performance approach C. Power signals - Power spec-
trum weights

This is not a frequency-by-frequency approach. Rather one must consider the entire
frequency spectrum. One may think of the weights W,, W,, and W, as upper bounds
on the power spectral density of the input signals, whereas W, and W, are equal to the
inverse of the upper bounds on the power spectral density of the output signals. For
example, if we allow for step changes of the setpoints, we may choose a weight W, = 1/s
(but we will also allow a lot of other signals bounded by this spectral density). We will
not discuss this approach any further, but just note that it compared to approach B
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in many cases corresponds to shifting integrators from the output weights to the input
weights.

2.4 Fixed or adjustable weights

One advantage with H,, or p-optimal control is that it is relatively well-defined what
an objective function with a value close to 1 means: The worst-case response will
satisfy our performance objective. If y at a given frequency is different from 1 then
the interpretation is that at this frequency we can tolerate 1/u times more uncertainty
and still satisfy our performance objective with a margin of 1/p.

Controller synthesis almost always consists of a series of steps where the designer
iterates between mathematical formulation of the control problem, synthesis and anal-
ysis. In p-synthesis the designer will usually redefine the control problem by adjusting
some performance or uncertainty weight until the final optimal p-value is reasonably
close to 1. In most cases this is done in an more or less ad hoc fashion, but it may
also be done systematically. One attractive option is to keep the uncertainty weight
fixed (of course, it must be possible to satisfy RS) and evaluate the achievable perfor-
mance with this level of uncertainty, that is, adjust some performance weight to make
sup,, t(Ngrp) = 1. There are two obvious options to adjust the performance weight:

1) Scale the performance frequency-by-frequency such that pu(Ngp) = 1 at all fre-
quencies, that is, at each frequency find a k(w) which solves

NRPn NRPlz > _
“(kNRPm kN ) ! (2.20)

This option is most attractive for analysis with a given controller. The numerical search
for k is straightforward since p increases monotonically with k£, and since a solution
always exists provided we have RS.

2) Adjust some parameter in the performance weight such that the peak value of
w(Ngp) is 1. This option is most reasonable for p-synthesis, that is, if the controller is
not given. For example, with the performance weight (2.13) we may adjust the time
constant 7, such that the optimization problem becomes
mig ITal;  st. uw(Ngp(Ci71a)) <1, Vw (2.21)

Tels

Different plants may then be compared based on their maximum achievable bandwidth.
A disadvantage with this approach is that it may be impossible to achieve pu(Ngp) =1
by adjusting 7, in the performance weight if, for example, the high-frequency spec-
ification (value of M) is limiting. Skogestad and Lundstrom (1990) have used this
approach to compare alternative control structures for a distillation column example.
An other approach is to keep 7, and M in the weight (2.13) fixed, and rather adjust
the weight at all frequencies with the same constant. However, sometimes this does
not make sense from a physical point of view since we cannot adjust the weight very
much at high frequencies (since S & I at high frequencies).
In this paper we do not employ these approaches, but use fixed weights only.
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2.5 Skogestad et al. (1988) example revisited

We shall use the same plant as studied previously by Skogestad et al. (1988). The

plant model is
1 (0.878 —0.864)

Gs) =7\ 1082 —1.096

which has a condition number of 141.7 and a RGA-value of 35.5 at all frequencies.
The unit for time is minutes. This is a very crude model of a distillation column, but
it is an excellent example for demonstrating the problems with ill-conditioned plants.
Freudenberg (1989) and Yaniv and Barlev (1990) also used this model to demonstrate
design methods for robust control of ill-conditioned plants.

In Skogestad et al. (1988) the following specifications were used:

1) The relative magnitude of the uncertainty in each of the two input channels is
given by

(2.22)

wi(s) = 0.2(5s +1)/(0.55 + 1). (2.23)

Thus the uncertainty is 20% at low frequencies and reaches 1 at a frequency of approx-
imately 1 rad/min. Note that the corresponding uncertainty matrix, Ay, is a diagonal
matrix since we assume that uncertainty does not “spread” from one channel to an-
other (for example, we assume that a large input signal in channel 1 does not affect
the signal in channel 2).

2) RP-specification (using performance approach A): The worst case (in terms of
uncertainty) Hy-norm of wpS should be less than 1.

wp(s) = 0.5(10s + 1)/10s (2.24)

This requires integral action, a bandwidth of approximately 0.05 rad/min and a max-
imum peak for 5(S) of 2.
The resulting u-condition for Robust Performance becomes (see Fig 2.2):

where 5
_ [~w;CSG wICS]. x|
Nee=|" 066 —wns)’ A= 8 N (2.26)
P

In the following we shall keep the uncertainty description fixed, but consider alternative
performance specifications.

2.5.1 Original problem formulation (Performance approach
A)

Skogestad et al. (1988) used a software package based on the H,,-minimization in Doyle
(1985) (denoted “the 1984-approach” in Doyle et al., 1989) to design a “u-optimal”
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Figure 2.6: p-plots for Cppew (solid curves) and Cpqq (dashed curves).

controller. Their controller has six states and gives sup,, 4(Ngp) = ptrp=1.067 for both
structured and unstructured A;. We will denote this controller C,q. Freudenberg
(1989) used another design method and achieved a controller with five states giving
wrp=1.054 for unstructured A;. Yaniv and Barlev (1990) do not present a p value for
their design, but show some time responses®.

New optimal design. With the new H-software (Balas et al., 1990) based on the
state-space solution of Doyle et al. (1989), the p-synthesis (“D-K iteration”) performs
better than with the 1984-approach. We were able to design a controller which, com-
pared to Cl4, lowered pgrp from 1.067 to 0.978. The new controller will be denoted
Cunew- It has 22 states and a state space representation is given in Appendix 1.

Figure 2.6 shows p for RP, NP and RS as a function of frequency for Ce (solid
curves) and Cjq (dashed curves). u(Ngp) for the new controller is extremely flat and
the peak value, ugp, is substantially lower than for the old controller. The nominal
performance is generally worse for the new controller, while robust stability is improved
for some frequencies.

Fig. 2.7 shows the time response to setpoint changes for controller C;pe,,. The solid

“Based on the data in Yaniv and Barlev (1990) we obtained ugrp = 1.97 for their design. However,
our time responses did not quite match those presented in their paper.
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Set-point changeiny;

0 5 10 15 20 25 30
Time[min]

Set-point changein y,

0 5 10 15 20 25 30
Time [min]
Figure 2.7: Simulation of setpoint changes using controller C,;.,,. Responses are shown

both for nominal case (solid curves) and with input uncertainty given in Eq. 2.27
(dashed curves).
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Table 2.1: Optimal pgp-values for the original problem formulation, Eq. 2.25-2.26,
(Approach A).

Controller wrp ki ko T Tro D1 TD2
type min. min. min. min.
p-ODF (Cpnew) | 0.978
p-TDF (Ch2) | 0.926
PI 1.50 142 -25.6 644 1.35
PID 1.32 163 -39.1 41.2 0.896 0.342 0.290

curves show the nominal response, and the dotted curves the response with model
error. The specific model error we use is

—0.55+1.2 0
o) = (TR oy ) ulo) .20

0.55+1

where u is the true input signal and u, the input signal computed by the controller.

This uncertainty is covered by the the uncertainty description, w;(s)). By compar-
ing the time responses to those presented for the controller C,4 in Skogestad et al.
(1988) we see that the difference is relatively small.

2.5.2 Alternative controller designs (Approach A)

Table 2.1 shows minimized p-values obtained for different controller structures. p-ODF
is a One Degree of Freedom p controller and pu-TDF is a Two Degree of Freedom pu
controller. The second row shows that with a TDF controller we may reduce the u-
value for RP from 0.978 to 0.926. (To avoid numerical problems when obtaining this
controller we had to introduce some measurement noise). In general, a TDF controller
yields improved performance when we have simultaneous disturbance rejection and
command following. In our case the model uncertainty in effect introduces disturbances
(generated internally) and makes it advantageous to use a controller which shapes the
setpoints differently.

In Table 2.1 we also show the results using two PI- or PID-controllers of the form
below.

_ (cpip,(s) 0 ) ) _l41s 1+7ps
C(S) N ( 0 CPIDz(S) ’ CPID”'(S) = ki ;8 1+ 0.17p;s (2'28)

Optimal PI/PID tunings were obtained using a general-purpose optimization algorithm
to minimize prp with respect to the six parameters °>. We obtained optimal pzp-values
of 1.50 for PI-control and 1.32 for PID-control. Note that the optimal tunings are very

5We set up the problem as a min-max problem, min. max, u(Ngp), and used the routine “mini-
max” in the Optimization toolbox for MATLAB (Grace, 1990)
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Table 2.2: Optimal pgrp-values for different performance weights, Eq. 2.13, (Approach
A).

Controller | prp 71 Taz ki ky T Tr2 D1 TD2

type min. min. min. min. min. min.

uw-ODF | 0.978 20 20

uw-ODF | 0.970 40 10

u-ODF | 0.937 80 )

u-ODF | 1.098 20 10
PID 1.32 20 20 163 -39.1 41.2 0.896 0.342 0.290
PID 1.15 40 10 984 -17.7 67.5 0.769 0.385 0.529
PID 1.09 80 5 56.2 -39.3 68.1 1.48 0.332 0.582
PID 1.33 20 10 164 -37.2 39.2 0.674 0.398 0.327

different for the two channels in spite of the fact that the problem formulation is
nearly symmetric. This is probably caused by the fixed structure and limited number
of states of PI/PID controllers. This issue is discussed in more detail by Lundstréom et
al. (1991).

2.5.3 Other performance weights (Approach A)

Here we use the same problem formulation as in the previous section, except for using
different performance weights in each output channel.

0 deiS-i-M

WP(S)Z(wéJ1 wp_z); we,(s) = 37 (2.29)

Tclis

Intuitively, we may reduce the “interactions” (this is a term which is relevant for single-
loop control) in the system by having one channel with a fast response, and one channel
with a slow response. Optimal p-values for different choices of 7., and 7, are shown in
Table 2.2. We keep the “average” response time constant by holding 7., 7., constant.
We see that the p-values are somewhat lower when we allow different response times in
the two channels (Of course, this is only true to a limited extent, since the response time
of the fast channel is limited by the uncertainty weight which crosses one at a frequency
of 1 rad/min). The fourth entry in Table 2.2 does not have the same “average” response
time, but is included to illustrate that the pgp-value increases markedly if we require
that one loop is made faster without relaxing the requirement of the other loop.

As expected, the reduced interaction becomes even more clear if we study single-
loop (decentralized) control using PID controllers. The tuning parameters and pugp for
different choices of performance weights are also given in Table 2.2. The last entry in
the table shows that for these controllers we can increase the speed of one channel at
almost no cost in terms of ugp.
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Figure 2.8: Frequency plot of the weights used in Approach B in section 2.5.4.

2.5.4 Performance approach B

Consider a revised problem that includes disturbance rejection as shown in the block
diagram in Fig. 2.3. We shall design a two-degree-of- freedom controller using approach
B. The plant G is given in Eq. 2.22. G describes the effect of disturbances (feed flow, F,
and feed composition, zz) on the two controlled variables (top and bottom composition,
yp and ).

1 0.394 0.881
Gals) = 7537 (0.586 1.119) (2.30)
We use the following weights to define the problem:
O 02 b S . X bl n - S+ 1 Z .
1 5s+1
Wi (s) = Ly 3 Wi(s) =02 Ty 2.32
1(8) = 5y 1(8) = 02552 Tous (2.32)
100 20s + 2 50s + 1
W,.(s) = — Iogo W.(s) =0.01 ————15, 2.33
() = 5~ —5g5 T2 () 0.0005s + 1" 22 (2.33)

These weights are plotted in Fig. 2.8.
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G and G4 were found by linearizing a non-linear model at an operating point where
yp = 099,z = 0.01,F = 1.0 and zr = 0.5 (Skogestad and Morari, 1987). Wy
shows that we are expecting up to 0.3/1=30% variation in F' and 0.2/0.5=40% in
zp. Similarly, Wy specifies the setpoint variations, 0.98 < yps, < 1.00 and 0.00 <
Zsp < 0.02. These weights reflect the relative importance of the external inputs,
i.e. we consider 30% variation in F' to be comparable to a setpoint variation of 0.01
kmol/kmol. The noise at high frequency is allowed to be of magnitude 0.01. We
see from the weight W, that the allowed output error y — ys is 2/100=0.02 at high
frequencies and the required response time 7., = 20 min. The factors 0.01 and 100 in
the weights for W, W,, and W, correspond to an output scaling, and could alternatively
have been accomplished by multiplying the elements in G and Gy by 100.

The optimal controller, C,p, gives a ugrp value for this problem definition of 1.04,
whereas the controller C)pe, (With input ys — yy,), which is essentially tuned for set-
points only, gives a value of 1863 at high frequencies and 1.75 at low frequencies. The
reason for the extremely high p-value is that C);,¢,, is tuned without any direct penalty
on manipulated inputs, while in the new formulation (Approach B) such a penalty
(W,) is included. Conversely, when applied to the original problem definition, C)p,
gives upp = 1.18, whereas Cje, gives 0.978.

Recall the analysis of Eq. 2.17 where we analyzed the relative importance of dis-
turbance and setpoint tracking on performance. If in this example we look at the
disturbance rejection from a scalar point of view, the performance time constants, 7.4
in Eq. 2.19, for the effect of the two disturbances in F' and zr on output x g are about
2-75/(0.3-58.6 + 1) = 8.0 min and 2 -75/(0.2-111.9 + 1) = 6.4 min, respectively,
whereas 7., for setpoints is 20 min. However, this does not take into account the
direction of the disturbances. In our cases the disturbance condition number (Skoges-
tad et al., 1988) for the two disturbances are 11.5 and 1.8, respectively, whereas the
“disturbance” condition number for the two setpoints are 111 and 89 (Skogestad and
Morari, 1987). Thus, the disturbances are in the “good” directions of the plant, and
the bandwidth requirements imposed by the disturbances are not as hard as computed
above. However, the disturbances do put tighter restrictions at lower frequencies (the
“slope two” requirement) than the setpoint requirement. This is also clear from the
simulations discussed next.

In Fig. 2.9 controller C}pe,, and Cyp are compared with respect to disturbance
rejection. The disturbances are in F' (+30%) at time ¢t = 0 and in zp (+40%) at
t = 50 min. Solid curves show the response for controller C},,, and dashed curves
are for controller C,g. We note that controller C),c,, gives a rather sluggish return
to the setpoint. This dominant (low-frequency) part of the response is significantly
improved with the controller C,z. The controller, C e, for approach A, could have
been improved by using a performance weight, wp, with slope two at intermediate
frequencies. Also, note that the disturbance in zp is simpler to reject because it is
almost exclusively in the “good” direction.

Fig. 2.10 shows the setpoint response with and without model error (Eq. 2.27) for
controller C,5. We note that in terms of setpoints the response is not better than with
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12

Disturbancein F and z-
10

0 10 20 30 40 50 60 70 8 90 100
Time [min]
Figure 2.9: Simulation of a disturbance in F' (+30%) at time ¢ = 0 and in zr (+40%)

at t = 50 min using controller C),ne, (solid curves) and C,,5 (dashed curves). The input
error in Eq. 2.27 is used in the simulations.

controller Cunew (Fig. 2.7).

2.6 Some comments on p-synthesis

The p-synthesis procedure employed today makes use of the upper bound of y, trying
to “solve”
min | DNp(C)D | (2.34)

The algorithm, often called ”D-K iteration”, is as follows:

1 Scale the original problem with a stable and minimum-phase transfer matrix D with
appropriate structure.

2 Find a controller C' by minimizing the Hy-norm of DNgp(C)D!.

3 Compute pu(Ngp(C)) and obtain at each frequency the optimal “D-scales” from
minp 5’(DNRPD71).
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Set-point changein y,
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Figure 2.10: Simulation of setpoint changes using controller C,z. Responses are shown

both for nominal case (solid curves) and with input uncertainty given in Eq. 2.27
(dashed curves).



32 CHAPTER 2. PERFORMANCE WEIGHT SELECTION ...

4 Fit the magnitude of each element of D(w) to a stable and minimum- phase transfer
function.

5 Test a stop criterion. Stop or go to 1.

The major problem with p-synthesis is that the D-K iteration is not guaranteed
to find the global optimum of Eq. 2.34. Both step 2 and step 3 in this algorithm are
convex optimization problems, but this does not imply joint convexity for the whole
algorithm (Doyle and Chu, 1985). A second problem is the difficulty to define a stop
criterion for the optimization.

Good initial D-scales in step 1 of the algorithm, reduces the number of iterations,
and may even, because of local minimas, affect the final minimum p-value. For our
example problem with the original problem definition, we observed that a natural phys-
ical scaling of the problem (using “logarithmic compositions” as discussed by Skogestad
and Morari, 1988), that corresponds to multiplying all elements in G(s) by a factor
100, gave very good initial D-scales. With this simple scaling the u-value after the first
iteration was 1.2, as compared to 14.9 without scaling. An other way to obtain good
scalings is to start the algorithm at step 3 using a “good” controller obtained by any
design method.

The D-K iteration depends heavily on optimal solutions in step 2 and 3, and also
on good fits in step 4. The H-design (step 2) generally works fine using the pu-
toolbox. The u software does sometimes not compute a sufficiently tight upper bound
of u. Thereby the D-scales are not optimal, and the D-K iteration suffers. We have
experienced cases where, for some frequencies, the computed p-value has been larger
than the maximum singular value. When this occurs the D-K iteration often starts
diverging.

The last critical factor is the fitting of the D-scales. It is important to get a good
fit, preferably by a transfer function of low order. The software for D-scale fitting in
the p-toolbox requires that the user specifies the order of the transfer function and
decides if the fit is good enough. The optimal order of the transfer function D varies as
the D-K iteration progress. It is sometimes better to increase the order, and sometimes
the order should be decreased. 1f it is difficult to obtain a good fit it often helps to use
a different frequency range for the fit. It may also help to use a finer frequency grid.

The final problem is to determine when to stop the iteration. Two intuitive candi-
dates for criterion for terminating the iteration are:

1) An iteration criterion
Mr—1 — Uk < €1 (235)

and,
2) A “flatness” criterion

m‘f}x(/‘peak — p(w)) < e (2.36)

1) In Eq. 2.35 the subscript denotes the k — 1%} and the k' iteration respectively. This
is a standard criterion, the iteration terminates if the objective function (u) does not
improve. There are two problems with this criterion. First, we may have found a local
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minimum, which means it is possible to improve p by using a different D. Second,
this criterion would terminate the iteration if i increases. That may sound reasonable,
but we have experienced situations where j increases for a number of iterations and
then start to decrease again. 2) Eq. 2.36 relies on the optimal controller giving a flat u
versus frequency plot. However, this is not always possible to obtain. For instance, the
optimal solution to the problem in Skogestad et al. (1988) does not give a flat u-plot,
instead p always goes to 0.5 at high frequencies (since S goes to I, and wp goes to 0.5
I). As the number of iterations are increased one is able to extend the frequency where
u starts dropping down to 0.5, but the curve never becomes flat at all frequencies.
The results presented in this paper are obtained by terminating the D-K iteration
when the H-norm equals p and g is totally flat for frequencies less than 10 rad /min.

2.7 Conclusions

In this paper we have addressed performance weight selection when using the H,,-norm.
We have stressed the difference between an approach where we try to shape directly a
few important transfer functions such as S and 7', which gives us the opportunity to,
for example, specify directly minimum and maximum bandwidth requirements (Ap-
proach A), and an approach where we consider the magnitude of signals (Approach B).
The difference between the two performance approaches is probably most clear when
one consider disturbance rejection; in this case the required bandwidth to achieve ac-
ceptable disturbance rejection is not clear (at least not for multivariable systems), and
Approach B is preferable. An important advantage with Approach A, is that one may
to some extent combine performance and robustness issues. For example, there may be
bandwidth limitations related to robustness or the sampling time. With Approach B,
robustness is generally handled by modelling the uncertainty explicitly and evaluating
Robust Performance using the structured singular value. In practice, most engineers
will probably use a combination of Approach A and B when selecting weights, but when
doing this it is important to realize the different ways of thinking that are involved.
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Nomenclature

A - steady-state offset specification (Eq. 2.13)

C(s) - controller

D - D-scaling matrix (Eq. 2.8)

G(s) - linear model of process

k - controller gain

M = max, 7(5)(jw) - maximum peak of sensitivity function (Eq. 2.13)
NP - Nominal Performance

ODF - One Degree of Freedom
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RP -
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Robust Performance

RGA - Relative Gain Array

RS -

S(s)
T(s)

Robust Stability
= (I + G(s)C(s))™! - sensitivity function
=G(s)C(s)(I +G(s)C(s))~! - complementary sensitivity function

TDF - Two Degree of Freedom

wp -

performance weight (Eq. 2.13)

Greek symbols

IN||ooc = sup,, (N (jw)) - Hy-norm of N
A - complex perturbation matrix

0 - complex perturbation scalar

i - structured singular value

HRP

= sup,, 4(Nrp(jw))

0 - maximum singular value
T - time constant

Tel -
D -

(maximum) closed-loop time constant
controller derivative time constant [min]

77 - controller integral time constant [min]
w - frequency [rad/min]
Also see Fig. 2.3
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Appendix 1

State space description of Cpypner(s) = C(sI — A) !B+ D. The controller has 22 states,
2 inputs and 2 outputs. The A matrix is given in tridiagonal form with the complex
conjugate roots in real two by two form, ¢.e. A is a bandmatrix with all non-zero
elements on the main diagonal and the two adjacent diagonals. The D matrix is a zero
2 by 2 matrix.

A:
row diagonal main diagonal
number below main diagonal above main
1 —1.0000e — 07 0
2 0 —1.0000e — 07 0
3 0 —5.3681e — 04 0
4 0 —6.8364e — 04 0
5 0 —3.4883e — 03 0
6 0 —5.5976e — 02 0
7 0 —5.7017e — 02 0
8 0 —2.0050e — 01 0
9 0 —2.6267¢ — 01 —1.1744e — 01
10 1.1744e — 01 —2.6267e — 01 0
11 0 —4.8527e — 01 0
12 0 —3.1117¢ + 00 —6.9774e — 01
13 6.9774e — 01 —3.1117e + 00 0
14 0 —1.9255¢ + 01 0
15 0 —4.1007e + 01 0
16 0 —1.1341e + 02 0
17 0 —1.2966e + 02 —8.7070e + 01
18 8.7070e + 01 —1.2966e + 02 0
19 0 —1.3042e + 02 —8.6556e + 01
20 8.6556e + 01 —1.3042¢ + 02 0
21 0 —1.8112e + 02 0

22 0 —6.3929¢ + 05
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B and C7:

B
column one

8.5088e — 01
1.6792e + 00
2.6054e — 02
1.1099¢ — 01
—7.4077e — 02
1.1255¢e + 00
6.1913e — 01
—1.4905e + 00
—6.5002e + 00
7.4959¢ + 00
—1.0500e + 00
8.4252e — 01
—3.0556¢ + 00
—8.0530e + 01
4.1453e 4 01
7.7061e + 02
—2.4073e + 01
3.3649¢ + 02
—5.1808e + 02
—3.8541e + 02
1.3625¢e + 03
—1.2773e 4 04

B
column two

1.0625¢e + 00
—1.3426e + 00
—2.0838e — 02

1.3877e — 01
—9.2619e — 02

1.4072e 4+ 00
—4.9518e — 01
—1.8635¢ + 00

9.1989¢ + 00
—5.9952¢ + 00
—1.3128e + 00

1.0534e + 00
—3.8204¢ + 00

6.4408e + 01
—3.3154e + 01

9.6349¢ + 02

1.9254e + 01
—2.6913e + 02
—6.4776e + 02
—4.8188¢e + 02

1.7036e + 03
—1.5970e 4 04

C

IroOw one

9.6138e — 01
1.5210e + 00
—2.3158e — 02
1.1712e — 01
7.4475e — 02
1.2294e + 00
5.1127e — 01
—1.6054e + 00
—5.6709¢e + 00
—2.4034e + 00
—7.4675e — 01
—6.4611e — 01
—1.9699¢ — 01
5.4282¢ + 01
—3.3348e + 01
—1.7348e + 02
—1.8973e + 02
2.4277e + 01
—5.7626e + 01
3.3056e + 02
2.8059%e + 02
—1.4449¢ + 04

C

row two

—9.6366e — 01
1.5194e + 00
—2.3122¢ — 02
—1.1731e — 01
—7.4592e — 02
—1.2313e + 00
5.1046e — 01
1.6079e + 00
—5.6620e + 00
—2.3997e + 00
7.4792e — 01
6.4712e — 01
1.9730e — 01
5.4197e + 01
—3.3296e + 01
1.7375e + 02
—1.8944e + 02
2.4239%¢ + 01
2.7717e + 01
—3.3108e + 02
—2.8103e + 02
1.4471e + 04

37
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Appendix 2

This Appendix is not a part of the published paper, but has been added specifically
for this thesis.

The purpose of this Appendix is to present a controller with less states and a slightly
lower ppp-value than the controller in Appendix 1. We also want to demonstrate that
presenting the “optimal” D-scales is a much more compact way of defining a controller
than presenting the state space matrices as in Appendix 1.

In the paper we reported problems with obtaining good transfer function approxi-
mations, D(s), of the frequency response D-scales, D(jw), from the u software. This
software has now been improved, Balas et al. (1991). After some iterations with the
new software we obtained a controller with ugrp = 0.9735, as compared to the old
result 0.978, and with 18 states, which is 4 states less than the old controller. This new
controller can be obtained by H-synthesis for a D-scaled problem with the following
“optimal” D-scales and the desired Hy,-norm (“gamma value”) set equal to 0.9735.

D(s) = diag{d(s), d(s), Ix2} (2.37)

(s 4 1000)(s + 0.25)(s + 0.054)
(s + 0.67 + j0.56)(s + 0.67 — j0.56)(s + 0.013)

Note that these D-scales are for unstructured uncertainty. In the paper we mentioned
that both structured and unstructured uncertainty yield the same pgrp value for the
studied example, but we did not present any explanation to this phenomenon. Later,
Hovd et al. (1993) have proved that the uncertainty structure does not affect y for this
problem.

d(s) =2.0%107°

(2.38)
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Abstract

Gain and delay uncertainty is commonly used to quantify plant-model mis-
match in the process control community. This parametric uncertainty descrip-
tion cannot be directly used for robustness analysis and controller synthesis in
the structured singular value (u) framework. This paper provides tight approxi-
mations of gain and delay uncertainty on linear fractional form, suitable for the
p-framework. The derived uncertainty models are divided into four classes with
different restrictions imposed on perturbations and weight functions. Complex
perturbations and rational weights yield the most useful uncertainty models from
a practical engineering point of view. However, irrational weights allow tighter
uncertainty models. Real perturbations also allow tighter uncertainty models,
but makes it much harder to compute p. A distillation example is used to illus-
trate differences between the derived uncertainty models.
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Figure 3.1: Linear fractional uncertainty
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2. Demonstrate the difference between modelling with complex and real perturba-
tions, A, as well as with rational and irrational weights, T".

In the p framework each uncertainty is modelled as a “norm bounded linear frac-
tional perturbation” as illustrated in Fig. 3.1, where A is an unknown perturbation
with bounded magnitude. The perturbation A and the interconnection matrix I' forms
a Linear Fractional Transformation (LFT) which defines a set of possible mappings
from input u to output y.

Yy = FU(F, A)U = [FQQ + FQlA(I — FllA)_lFlg]u (32)

A plant model may include several uncertainties at different locations, which may be
combined into one big LFT and a block diagonal perturbation matrix, A, ¢.e. a A with
a specific structure. The structured singular value, p, was introduced as a refinement
of the H,,-norm stability condition, which measures stability with respect to an un-
structured perturbation matrix A, i.e. without utilizing locational information about
the uncertainties. The main reason for introducing H., methods for controller design
and analysis was to obtain a framework where non-parametric uncertainties could be
dealt with, .e uncertainties that cannot be assigned to a specific uncertain parameter,
but may be viewed as uncertain frequency domain data. This type of uncertainty is
modelled using complex perturbations. However, while the H,, condition can only
deal with non-parametric uncertainties (complex perturbations), y may deal with both
parametric and non-parametric uncertainties (mixed real/complex perturbations).

Using mixed real/complex uncertainty perturbations we may derive tighter (less
conservative) uncertainty descriptions than with pure complex perturbations. However,
the mathematical properties of y are better for pure complex perturbations, so the
tightness gained by modelling with mixed perturbations may be lost when computing
the upper and lower bounds on a “mixed” u.

The term “structured uncertainty” is here used to denote that the perturbation
matrix A has a structure. In the literature “structured uncertainty” is sometimes used
to denote parametric uncertainty and “unstructured uncertainty” is sometimes used to
denote non-parametric uncertainty.

The uncertainty models F,(T',A) presented in this paper are divided into four
classes based on different restrictions imposed on I' and A as illustrated in Table.3.1,
where C' = complex, M = mixed, R = rational and I = irrational..

Table 3.1: Classes of uncertainty models.

[(s) | T(jw)
A CR | CI
complex
A
. MR | MI
mixed
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In class C'R all perturbations are complex and all weights are rational transfer
functions of the Laplace operator s. This class of uncertainty models may be used for
both analysis and synthesis and is therefore the most useful from a practical point of
view. However, when it comes to deriving tight uncertainty models, C'R is the most
restrictive class, since real perturbations are not allowed and all weights have to be
rational. In class CI irrational transfer functions may be used, which allows tighter
uncertainty models to be derived, but these models can not be used for synthesis. Class
MR also yields tighter models than C'R, however, the tightest models are obtained in
class M1 where both complex and real perturbations may be used, in combination
with both irrational and rational weights.

Gain and delay uncertainty modelling in the g framework has previously been
studied by Laughlin et al. (1986,1987), Lundstrém et al. (1991) and Wang et al.
(1994). Laughlin et al. studied gain-delay and time constant uncertainty for a first
order system with dead time. They restricted their study to complex perturbations and
rational weights (class CR) and fixed the nominal model to be equal to the parametric
average model. Lundstrom et al. (1991) defined an uncertainty set in class C'I where
the nominal model was chosen in order to minimize the uncertain disk shaped region
generated on the complex plane, and presented a numerical solution to this problem. In
the present paper we present an analytical solution to the same problem. Wang et al.
(1994) studied several gain and delay uncertainty models in class C' R, evaluating what
kind of model properties that are advantageous for p synthesis. They demonstrated
that it is not trivial to choose the “best” approximation of some given uncertainty.
They also showed that p-optimal controllers seem to be very sensitive to unconsidered
(uncovered) possible plants. This means that too “optimistic” uncertainty models
should be avoided.

The paper is organized as follows. In section 3.2 the structured singular value
framework is briefly reviewed. In section 3.3 the gain-delay uncertainty models are
derived. In section 3.4 an example process from the literature (Skogestad et al., 1988)
is used to evaluate the derived uncertainty models. Finally, the obtained results are
discussed and the conclusions are presented.

3.2 The pu-framework

This section gives a very brief overview of the structured singular value framework,
focusing on issues with special importance for this paper. A detailed introduction to
the mathematical aspects of p for complex perturbations is found in Packard and Doyle
(1993). Computation of bounds on x for mixed real/complex perturbations is treated
in Fan et al. (1991) and Young et al. (1991). Introductions to p focusing on control
aspects are available in Skogestad et al. (1988), Stein and Doyle (1991) and Balas et
al. (1991), for example.

The general problem formulation in the pu framework is illustrated in Fig. 3.2. The
left block diagram consists of an augmented plant P (including nominal plant model
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. A
Ay, ‘A

d— Pl—e <=
u K Yy

Figure 3.2: General problem description

and weight functions), a controller K, and a (block-diagonal) perturbation matrix
Ay = diag{Aq,---,A,} representing uncertainty. d is a vector of external input
signals (e.g. disturbances and set-points). e is a vector of output signals which should
be kept small (e.g. manipulated inputs and deviation from set-points). The weights in
P are used to specify performance requirements and to normalize each A; to be less
than one in magnitude at each frequency.

The right block diagram in Fig. 3.2 is used for robustness analysis. M is a function
of P and K, and Ap is a fictitious “performance perturbation” connecting e to d.
Provided that the closed loop system is nominally stable the conditions for RS and RP
are:

RS & pgs =suppa,(Mi(jw)) <1 (3.3)
RP & pgpp=suppa(M(jw)) <1 (3.4)
where A = diag{Ay, Ap}.
The following remarks are important for this paper:
1. The u framework can only deal with linear fractional uncertainties (LFT, Eq. 3.2).

2. The necessity of the u robustness conditions requires that the uncertainty de-
scription includes only “allowed” uncertainties.

3. The sufficiency of the p robustness conditions requires that the uncertainty de-
scription includes all “allowed” uncertainties.

4. 1 can generally not be computed exactly, but tight computable upper and lower
bounds on p exist for pure complex perturbations.

5. Bounds on p for mixed real/complex perturbations is much more difficult to
compute than for pure complex perturbations.
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6. p analysis is performed on a frequency by frequency basis, while p synthesis is
performed in a state-space setting (Balas et al. 1991). For analysis it is therefore
sufficient to obtain the frequency response of the interconnection matrix M, which
means that even irrational uncertainty models may be used. For u synthesis, M
has to be a finite dimensional state-space model. Because of this, tighter bounds
may be derived for analysis than for synthesis.

7. At present there is no p synthesis method for systems where the perturbation
matrix A includes real entries.

8. prp = 0.8 means that the uncertainty perturbations in Ay could be increased
by a factor 1/0.8 = 1.25 (i.e. a larger uncertainty set) and still the performance
specifications would be satisfied by a margin of 1.25. The performance margin for
the specified uncertainty set, i.e. ||Ay|lo < 1 may be computed using a “skewed
p” (Packard 1988), here denoted J and defined by

([t sdin]) -1 e

J = 0.8 means that the performance is satisfied by a margin of 1.25 for ||Ay||s <
1.

1) = {7

3.3 Uncertainty Models

In this section we derive linear fractional uncertainty models which approximates the
gain and delay uncertainty set II defined in Eq.3.1. The models derived here are
divided into the four classes defined in Table 3.1. We start with models based on
purely complex perturbations and continue with mixed real-complex perturbations.
The following notation is used:

kmaw + kmm

f = fmae + o (3.6)
7 — Omas -2|' Omin (3.7)
s = M (3.8)
b5 = M (3.9)
= % (3.10)
0* = max{|Ominl, |Omaz!} (3.11)

k and 6 are the average gain and delay, respectively, k; and ; are the maximum
absolute gain and delay errors, k, is the relative gain error and 6* is the maximum



Figure 3.3: Gain and delay uncertainty template on the complex plane (set IT).

delay, if |Omaz| > |Omin|, or the maximum prediction, if |0pez| < |Omin|- 0* is defined
in order to obtain simple formulas which cover cases both with and without prediction
error. If there is no prediction error, #* may be replaced by 6,,.,, in the following
formulas.

3.3.1 The gain and delay uncertainty set

The set IT (Eq.3.1) maps onto a “template” on the complex plane at each frequency,
as illustrated in Fig. 3.3. At zero frequency, w = 0, the entire set II covers only a
segment of the real axis, namely from £k,,;, to k.. At each frequency in the range
0 < w < 27/|0maz — Omin|, II covers a segment of an annular region with center
at 0 + 70, inner radius k,,;, and outer radius k,,.,. At sufficiently high frequencies,
w > 27/|0maz — Omin|, I1 will cover the entire annular region defined above.

The set II may in principle be ezactly described by

1 = {(k + ksAp)e~@H0Ra)s . 1 <AL <1, —1A,< 1} (3.12)

where A, and Ay are real scalars. However, this representation cannot be written as
an LFT (Eq.3.2) due to the delay uncertainty where Ay enters in the exponent. The
expression in Eq.3.12 is therefore not suitable for the pu-framework.

3.3.2 Complex uncertainty, irrational weight

The simplest way to represent II within the py-framework is by a nominal plant model
subject to a single complex additive or multiplicative perturbation, which generates
a “disk”-shaped region on the complex plane at each frequency. In this section three
different choices of nominal models are considered and for each of them analytical
expressions for the smallest perturbation needed to cover every plant in I are presented.



Figure 3.4: Disk with delay free nominal model (set IIcp).

i.e. these models yield sufficient conditions for robustness with respect to the original
set II. For all three models, A is complex and |A(jw)| < 1Vw.

Set Ilc; : Delay free nominal model.

Multiplicative uncertainty with nominal model k.

Men = {9(jw)|9(jw) = k(1 + L(w)A(jw)]} (3.13)
h(w) = (14 ky)e 90w — 1] = \/kf +2(1 4 k.)(1 — cos (f*w)) for w < w/6*
! 2+ k, for w > /60"
(3.14)
Set Ilcpo : Average gain and delay in nominal model.
Multiplicative uncertainty with nominal model ke=9«?.
Mo = {§(jw)|§(jw) = ke[ + l(w)A(jw)]} (3.15)

(14 ke 9% — 1 = \/k2 +2(1 + k,)(1 — cos (sw)) for w < 7/6;
2+ k, for w > /05
(3.16)

) = {

Set Ilci3 : Smallest disk that covers II.

This set may be represented as additive uncertainty with an irrational nominal model.
A pure multiplicative description cannot be used because the nominal model is 0 at
high frequencies. We use a mixed multiplicative/additive representation.

Mo = {§(jw)|g(jw) = ke 7 [ms(w) + I3 (W) A (jw)]} (3.17)



Figure 3.5: Disk with average gain and delay in nominal model (set Il¢gg2).

m3(w) and l3(w) are obtained by minimizing

m%n) lg(u)) , s.t. I C Iy, Yw (318)
ma(w
This constrained optimization may be solved analytically and yields

w ‘ mz(w) ‘ l3(w)

wa m \/k? + tan?(fsw)

wp | (1 + k) cos(bsw) | (1 + k) sin(fsw)

We 0 1+ kr

1 1—ky T
where 0 < wy < 5g; AICCOS (1+kr) < wp < 55 Swe.

Comparison of the sets

[Icry and Icpe are special cases of the uncertainty model studied by Laughlin et al.
(1987). The two sets are identical if 8,00 = —Omin-

[l generates the largest disk on the complex plane at each frequency, of the three
sets above, and Ilcrs generates the smallest, i.e. l1(w) > la(w) > I3(w) Yw, as shown
in Fig. 3.7. Ilcn; and Il have equally large radii at high frequencies, 2 + k., while
the radius of Il¢3 is only 1 + k.. Intuitively, one may believe that Ilc3 is the least
conservative approximation of II, since it is the smallest at each frequency. However,
this is not necessarily the case, it is not the size of the set, but the worst case plant
within the set that matters, and there are plants (possibly “worst-case”) within the
smallest set IIc3 which do not belong to the larger sets Ilc;; and Il¢ps, as illustrated
in Fig. 3.8.

There is no unique parametrization of the I' interconnection matrix for the sets
above, but the following parametrizations are valid.

Ten (jw) = l ,(—i ll%‘)) ] (3.19)



Figure 3.6: Smallest disk that covers IT (set IIcy3).

Fer(jw) = [ Eegwé ,;lszﬂa ] (3-20)

. _ 0 B l3(&))
Lo (jw) = [ Le—iwb l_ﬁe_j“’amg(w) ] (3.21)

['cri(jw) has only one irrational element, I;(w), while I'ci2(jw) has two, l3(w) and
e 999 and I'c(jw) has three, I3(w), e 7% and ms(w).

3.3.3 Complex uncertainty, rational weight

A proper rational transfer function P(s) (Fig. 3.2) is required for p-synthesis (DK-
iteration) using the state-space Hy, synthesis method (Doyle et al., 1989). This means
that neither of the uncertainty sets in the previous section can be used for synthesis,
since all of them include irrational elements. To obtain an uncertainty model for
synthesis we derive a proper rational transfer function ws (s) which is an upper bound
of ly(w) in Tgp, |wi(jw)| > li(w) Yw. Substituting /; (w) by wi(jw) in Eq.3.13 yields
the set IIcg which is suitable for p synthesis and covers every plant in II.

Set Ilcg : Delay free nominal model with rational weight.
Hor = {9(5)[9(s) = k[1 +wi(s)A(jw)]} (3.22)
* 2 *

(1+5)0%s + &, (%2) +2¢ (22) +1

Gs+1 (9%)2+2§,, (Z2) +1

c

wy(s) =

(3.23)

The first part of wy (s) is derived from a first order Padé approximation?, the second part
is a second order correction factor used to obtain II C Ilgg, i.e. |wi(jw)| > l1(w). The

1
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Figure 3.7: Comparison of /;(w) (dashed), lo(w) (dash-dot) and I3(w) (solid) for k& €
0.8, 1.2] and 0 € [0, 1].
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Figure 3.8: Comparison of IT (template), IIcpy (largest disk), Ilcre (second smallest disk)
and IIcys (smallest disk) on the complex plane at w = 0.35 [rad/min] for k& € [0.8, 1.2]
and 6 € [0, 1].
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(w1 (jw) —h (w)

o) }, for optimal and fixed param-

Table 3.2: Maximum relative error, max, {
eters ¢, ¢, and (, for different k,’s.

Optimal parameters (Eq.3.25) || Fixed (Eq.3.26)
k. c ¢, Cp error error
0 |2.3625 | 0.8376 | 0.6849 | 0.0202 0.0204
0.1]2.3740 | 0.8121 | 0.6644 | 0.0181 0.0211
0.2 | 2.3864 | 0.7889 | 0.6464 | 0.0163 0.0229
0.3 | 2.4022 | 0.7698 | 0.6324 | 0.0149 0.0256
0.4 |2.4179 | 0.7528 | 0.6203 | 0.0137 0.0288
0.5 | 2.4327 | 0.7376 | 0.6098 | 0.0126 0.0324
0.6 | 2.4470 | 0.7233 | 0.6002 | 0.0115 0.0362
0.7 [ 2.4600 | 0.7112 | 0.5924 | 0.0106 0.0401
0.8 | 2.4685 | 0.7075 | 0.5915 | 0.0104 0.0441
0.9 | 2.4758 | 0.7060 | 0.5925 | 0.0103 0.0480
1.0 | 2.4830 | 0.7046 | 0.5936 | 0.0103 0.0519

optimal values of ¢, (, and (, are dependent of k,, but independent of §*. Numerical
minimization of the worst case relative mismatch between |w;(jw)| and [;(w) over
frequency for different values of k.,

min max { wiGw)| b (w)}

cCzlp W ll((x))
s.t. Jw(Jw)| > Li(w) , Yw

(3.25)

yields the results shown in Table 3.2 (100% relative gain uncertainty is of course un-
realistic, but is included to make the table complete). As seen from Table 3.2 the
optimal ¢, (, and ¢, do not vary much for different values of k,. To simplify w;(s), we
may therefore neglect the dependency of k, and use fixed parameter values

c=2.363, (;, =0.838 and ¢, = 0.685 (3.26)

The last column of Table 3.2 shows that fixed parameter values do not introduce much
extra conservativeness. This is also demonstrated in Fig. 3.9, which shows that |w; (jw)|
(dashed) is a very tight upper bound on /;(w) (solid) even when fixed parameter val-
ues (Eq.3.26) are used in the correction weight. Fig. 3.9 also demonstrates that the

_8s
2
I+

—(1+ &) s+k

—].
9*9 l
2

\kme—a*s _ ;;\ ~ |1+ k) — % (3.24)

Only the magnitude of the weight matters.
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Figure 3.9: Comparison of the irrational uncertainty weight, /;(w) (solid), the ap-
proximation |w;(jw)| with fixed parameters (Eq.3.26) (dashed) and |w;(jw)| without
correction factor (dotted). The plotted curves are for £, = 0.2 and 6* = 1 min.

correction factor in w, (s) is required in order to avoid a too optimistic weight (dotted).
To sum up, Ilcg is only slightly more conservative than Ilcr;, but may be used for
both analysis and synthesis (DK-iteration).

3.3.4 Real uncertainty, irrational weight

In the previous sections all perturbations have been restricted to be complex. With
real perturbations it is possible to derive tighter descriptions of II by avoiding covering
a template with a disk. In this section we allow real perturbations in A as well as
irrational weights in I'; 4.e. the class of uncertainty models studied here is the least
restrictive w.r.t. A and .

To derive the uncertainty model presented in this section we start by approximating
the uncertain delay (not including the nominal part) of Eq.3.12 using a first order Padé
approximation.

_ 1%
e I0swho 1+6C‘)A9 (3.27)
1+ .L26_WA9

The Padé approximation may be represented by the block diagram shown in Fig. 3.10.
The magnitude of the approximation is always correct, namely 1, while the phase of the
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Figure 3.10: Block diagram representation of the Padé approximated delay uncertainty.

approximation lags behind the correct value. However, inspection of Fig. 3.10 shows
that it is extremely simple to correct this if an irrational weight I' may be used. We
simply replace %@w in the block diagram by a function which is defined to give the

correct phase. To find this function we use

e J0swhe —

(3.28)

and obtain for w < ;’—6

, 1— jtan(%2)A
eritotis —1<A <1} = . an(92 )2 ; m1< A <1 (3.29)
1+ jtan(*2)A,

So the desired function is tan(%2). Note that A; # A, in Eq. 3.29, however the two
sets are equivalent.

Set Il : Real uncertainty, average gain and delay in nominal model.

This uncertainty set may be used for frequencies w < ;T—S.

1-— ] tan(g‘;ﬂ)Ag

1+ jtan(%2)A, - -

G(jw) = k(1 + Agk,)e %

Iy = {é(jW)

where both A, and Ay are real valued perturbations.
[Ty may also be represented as shown in Fig. 3.11, using the following matrices.

0 k|

r_[1 0 -1 1] [jtan%? 0
70 et -2 1] | 0 1




Figure 3.11: Uncertainty model with real A’s

—1<A,<land —1<A,<1 (3.32)

The map of II onto the complex plane is covered ezactly by Il for frequencies
0 < w < 7/, i.e. until IT covers 360 deg around the origin on the complex plane,
and becomes an annular region. Often it is sufficient to analyze a system up to this
frequency only, however, we may combine ITy;; and Ilgz to obtain an approximation
of II which is non-optimistic and non-conservative for all frequencies. The combined
uncertainty set also belongs to class M1 and we denote it [Ty;,. With non-optimistic
and non-conservative we mean that the approximation shall include all plants in II
(non-optimistic) and may also include other plants if it can be guaranteed that these
plants are not worst case plants (non-conservative).

Set Ilys : Non-optimistic non-conservative gain and delay uncertainty model.

_ ) Hun for w < /205

Iy = { ey (mg =0, ls3=1+k,) forw > n/20; (3.33)

At low frequencies, Il covers Il exactly, using model IIy;. At high frequencies,
w > /205, model Tlcy3 is used, which ezactly covers the annular region II and the
disk inside this region. However, including this interior disk does not introduce con-
servativeness since the worst case uncertainty is known to be at the boundary of the
disk. Therefore, we know that the worst case plant within II is also the worst case
plant within ITyp. Note that Iz is used in the frequency range /205 < w < /60
where both Ilc3 and IIyg are valid. We do this because the complex set has better
computational properties.

3.3.5 Real uncertainty, rational weight

At present there is no p synthesis method for systems where the perturbation matrix A
includes real entries. However, it seems likely that a possible future synthesis method
will require a proper rational interconnection matrix P(s), just like the present DK-
iteration synthesis method for complex A’s.
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Figure 3.12: Uncertainty model with real A’s

In this section we derive a model where the interconnection matrix I' is restricted
to be a proper rational transfer function. The gain uncertainty model in the previous
section yields a proper rational interconnection matrix and does not have to be modified
to fit the restriction imposed on I' in this section. The delay model on the other hand
has to be modified.

The following approximation of the time delay, including both the nominal and
uncertain parts, yields a proper rational LFT.

-1

0 05 n 9 6 )
e—(@-{—ﬂ&Ag)s ~ 1—- @S B _627&8 — 1 - @S __né:g Ae 1— _57%_8 A 1 _
1+%s+052ﬁ"s 1+%s 1+%s 1+%3 1—|—%3
(3.34)

In this form, the delay model requires n repeated real scalar Ay’s and 4n states, i.e.
the representation is not minimal. We may, however, reduce the number of states to
the minimal number n by utilizing the fact that the interconnection matrix I'y may be
written in a form where the state matrix A is the same for all four I'y;;-elements and
Biy = By, Big = Byy, C11 = C13 and Uy = Co.

Set IIyr : Real uncertainty, rational nth order delay approximation.

This uncertainty set may be represented as shown in Fig. 3.12 with n F,,(T'y, Ag)’s
in series, meaning that Ay is an n repeated perturbation.

0 k
Iy = [ LT ] (3.35)
Ty T A ‘BU Dz _%‘ 2%@ %n
FO = [ FH F12 ] == 011 D11 D21 — 1 —%S O (336)
noE Co1 | D D 2 |- -1

—1<Ap<land —1<Ay<1 (3.37)
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This set does not quite cover II, but is a tight approximation. By increasing n, the
number of I'y’s, an arbitrary close approximation may be obtained. However, in most
practical applications a second order approximation would probably suffice. In many
cases Iy is a subset of 11, i.e. Ilyyg is an inner approximation and yields a necessary
robustness conditions with respect to the original set II. These special cases are:

1. The delay uncertainty includes both prediction and delay, i.e. 6,,;, < 0 and
Omaz > 0, or

2. Either 6,,;, = 0 or 6,,,, = 0.

The parameterization of I'y causes problems if:

1. ez = —bOmin = 0 = 0, and some elements of I'y will be infinite;
2. Opmin =0 = (1 —Tp1;A)~" improper for A = —1;

3. Opaz =0 = (1 —Ty1;A) ! improper for A = 1.

These problems are avoided by adding or subtracting a small quantity to 6,,i, or 0,4,

3.4 Distillation Example

The purpose of this section is to demonstrate the tightness of the uncertainty sets
presented in the previous section. The example processes is a high-purity distillation
column presented in Skogestad et al. (1988), however, here we let the uncertainty be
defined in terms of gain-delay uncertainty, while Skogestad et al. defined the uncer-
tainty in terms of a proper rational bound on a complex multiplicative perturbation.

3.4.1 Problem definition

The uncertain plant model is

N | 0.878 —0.8647 [kie % 0
G(S)_753+1 1.082 —1.096H 0 ke =02 (3.38)
where
k€108, 1.2] ; 6;€[0,1] ; i=1,2 (3.39)

i.e. 20% relative gain uncertainty and up to 1 min delay in each input channel.
The required performance is specified in terms of a frequency dependent bound,
W,(s), on the sensitivity function S = (I + GK)™! for the worst case plant G.

RP& sup |[W,(I+GK) e <1 (3.40)
kl,k2,01,92

(205 + 2)

1
Wy(s) = z o 2
»(%) = 3205 + 109

L. (3.41)
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3.4.2 Analysis

In this section we compare sets Ilcr, Ilcri, o, s, [yr and Ilye. The controller,
used in this comparison, was synthesised by DK-iteration (Balas et al., 1991) with
uncertainty set [Ior representing the gain-delay uncertainty in each input channel.
Parameter values used in the uncertainty weight are the optimal values for k. = 0.2,
i.e. ¢ = 2.386, ¢, = 0.789 and (, = 0.646, and the ‘optimal’ D-scales are

D(s) = diag{d(s), d(s), Iox2} (3.42)

(s +69.6)(s+ 0.172)(s + 0.071)
(s +0.445 + j0.61)(s + 0.445 — j0.61)(s + 0.015)

The controller yields pgrp = 1.028, so RP is almost satisfied.

The complex perturbation sets Ilcgr, Ilcii, IIcie and Il are all outer approxima-
tions of the gain-delay set IT. Because of this we know that upper bounds of J (Eq.3.5)
for these approximations will yield upper bounds of J(IT) (denotes J for uncertainty set
IT). Similarly, since ITyig is an inner approximation (for the uncertainty in this exam-
ple), a lower bound of J(IIygr) yields a lower bound of J(IT). Finally, both the upper
and lower bounds of J(Ilyy) are also bounds of J(II), since Iy is a non-optimistic
and non-conservative approximation of II.

Fig. 3.13 shows J for the distillation example where the uncertainty is modelled
by sets IIcg (solid), II¢py (dash-dot), g (dotted), Ilgrs (dash), Iyg (using n = 2)
(dash-dot) and ITye (solid). An interesting observation is that at most frequencies the
tightest smallest upper and lower bounds are quite close to each other, i.e. J(II) is
determined by rather tight bounds. At some frequencies between 0.01 and 0.1 [rad /min]
J(Ilcrs) > J(I1cr), which shows that at these frequencies the smaller set I3 includes
plants which are worse than any plant within the larger set [Icg. However, at most
frequencies the smallest set J(Ilci3) yields the tightest upper bound on J(IT). J(Ilcr)
and J(IIgrp) are almost identical for all frequencies except 1 < w < 20, which is
natural since wi(s) in [Icg yields a very tight upper bound on [y (w) in Icpy. Of the
two lower bounds we see that J(ITyye) is the tighter at most frequencies, in particular
for 1 < w < w. However, the upper bound obtained with uncertainty set Iy is
not very tight, which demonstrates the difficulties in computing upper bounds for real
valued perturbations. At high frequencies we see that uncertainty set Ilc does not
perform very well, but yields a J which oscillates between very high values and the
values obtained for IIcqs.

d(s) =2.8x107* (3.43)

3.5 Discussion

The only uncertainty model suitable for synthesis, presented in this paper, is IIcg which
has the advantage of a very simple nominal model with no delay. The main reason for
not including any delay in the nominal model is to keep the order of P(s) as low as
possible, since a controller obtained by DK-iteration has the same number of states as
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Figure 3.13: The “skewed p” J as a function of frequency for different uncertainty sets.

the augmented plant P(s) (Fig. 3.2) including the D-scales. Of the same reason, the
correction factor in w;(s) (Eq.3.23) may be omitted when it is not necessary to cover
every plant in II. Another reason for not including any delay in the nominal model,
when a rational model (T') is used, is to avoid approximation of this delay.

Set [1are, where the average delay is included in the nominal model, could of course
also be approximated by a rational model suitable fo synthesis. This is done by Laugh-
lin et al. (1987), however, the result is often more conservative, as shown by Wang et
al. (1994) and also illustrated in Fig. 3.13.

The analysis in section 3.4.2 is based on J (Eq.3.5) instead of p, since a comparison
based on p may be misleading when different representations of a given uncertainty
set are studied. Consider a gain-delay uncertain plant with k., = 0.2 and 65 = 1
and represent this uncertainty by sets Ilc;z and Ilyr. At a frequency w > 2”76, Icrs
covers all plants within a disk with center on the origin and radius 1 + k.., [Iyig covers
all plants within an annular region with outer radius 1 4+ k.. It can be shown that
the worst case plant is at a maximum distance from the origin, so Ilg3 and Ilyg
covers the same worst case plant. Assume that a controller K3 yields p = 1.1 for
uncertainty set Ilgs, i.e. a performance margin of 1/1.1 for all plants within a radius
Ay(l+ k) = {5(1 +0.2) =~ 1.09. Consider another controller Kygr which yields
the same p but for Ilyg, i.e. the same performance margin but for a larger radius
1+ Apk, =1+ %10.2 ~ 1.18. This shows that u for the two cases cannot be directly
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compared , since y in case 1 gives the performance margin with respect to a smaller
uncertainty set than in case 2.

3.6 Conclusions

The smallest single complex perturbation that covers a gain-delay uncertainty may be
derived analytically (Set I3, Eq. 3.17). This uncertainty set may be used for analysis
but not for synthesis (DK-iteration), since it requires an irrational weight.

The smallest set is not always the least conservative. It is not the size of the set,
but the worst case plant within the set that determines the conservativeness.

A delay free nominal model subject to a low order multiplicative perturbation (Set
IIcr, Eq. 3.22) is recommended for p-synthesis.

It is possible to derive, on a frequency by frequency basis, a model which yields a
necessary and sufficient condition for robustness with respect to a single-input-single-
output gain-delay uncertainty. In this model (Set IIyo, Eq. 3.33), the delay uncertainty
is modelled by an irrational weight and a real perturbation at low frequencies and a
complex perturbation at high frequencies.

An arbitrary tight approximation of the gain-delay uncertainty may be derived
using real structured uncertainty (Set IIyr, Eq. 3.35-3.37). This uncertainty set may
in principle be used both for analysis and synthesis, but no synthesis method for real
perturbations is available at present.

Acknowledgements The authors want to thank Richard D. Braatz for helpful dis-
cussions, and Matthew P. Newlin and Peter M. Young for providing the program rmu
for calculating p with mixed real/complex perturbations.

Nomenclature

G(s) - MIMO linear model of process
g(s) - SISO linear model of process
J(w) - skewed p (Eq.3.5)

K (s) - controller

k - gain

k, - relative gain error

l(w) - uncertainty weight

ms(w) - complex scalar (Eq.3.17)

W (s) - weight matrix

w(s) - weight scalar

|M||so = sup,, 6(M(jw)) - He-norm of M
A - perturbation matrix

g - time delay (min)

g5 - time delay error (min)



REFERENCES 29

i - structured singular value
0 - maximum singular value
w - frequency (rad min™!)
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Abstract

The structured singular value framework is applied to a distillation bench-
mark problem formulated for the 1991 CDC. A two degree of freedom controller,
which satisfies all control objectives of the CDC problem, is designed using pu-
synthesis. The design methodology is presented and special attention is paid to
approximation of given control objectives into frequency dependent weights.
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4.1 Introduction

The purpose of this paper is to demonstrate, by an example, how the structured singular
value (SSV, p) framework, Doyle [4], may be used to design a robust controller for
a given control problem, defined by an uncertain model and control objectives that
cannot be directly incorporated into the u-framework. In particular, we consider how
to approximate the given problem into a u-problem by deriving suitable frequency
dependent weights, which define model uncertainty and control objectives in the u-
framework.

The control problem studied in this paper was introduced by Limebeer [8] as a
benchmark problem at the 1991 CDC, where it formed the basis for a design case
study aimed to investigate advantages and disadvantages of various controller design
methods for ill-conditioned systems.

The problem originates from Skogestad et al. [17] where a simple model of a high
purity distillation column was used to demonstrate that ill-conditioned plants are po-
tentially extremely sensitive to model uncertainty. In [17] uncertainty and performance
specifications were given as frequency dependent weights, i.e. the problem was defined
to suit the pu-framework and therefore a p-optimal controller yields the optimal solution
to that problem.

However, in the CDC benchmark problem [8] uncertainty is defined in terms of
parametric gain and delay uncertainty and the control objectives are a mixture of time
domain and frequency domain specifications. These specifications cannot be directly
transformed into frequency dependent weights, but has to be approximated to fit into
the u-framework.

The distillation problem in [17] and variants of this problem, like the CDC problem
(8], has been studied by several authors, e.g Freudenberg [6], Yaniv and Barlev [21],
Lundstrém et al. [10], Hoyle et al. [7], Postlethwaite et al. [14], Yaniv and Horowitz [22]
and Zhou and Kimura [24]. In three recent studies; Limebeer et al. [9], van Diggelen
and Glover [3] and Whidborne et al. [20], two degree of freedom controllers are designed
for the CDC problem. The three latter papers are all based on the loop shaping design
procedure by McFarlane and Glover [13], where uncertainties are modelled as H-
bounded perturbations in the normalized coprime factors of the plant. To obtain the
desired performance, [9] use a reference model design approach, [3] use the Hadamard
weighted Ho-Frobenius formulation from [2], while [20] use the method of inequalities
(Zakian and Al-Naib [23]) where the performance requirements are explicitly expressed
as a set of algebraic inequalities.

The two degree of freedom design in this paper differs from [9], [3] and [20] in
that we use p-synthesis for our design. With this method uncertainty is modelled as
linear fractional uncertainty and performance is specified as in a standard H.-control
problem. Like [9], we specify some of the control objectives as a model-matching
problem.

The paper is organized as follows: A brief introduction to the p-framework is pre-
sented in section 4.2. The definition of the benchmark problem is given in section 4.3.
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In section 4.4 we outline the design method used in this paper. In section 4.5 we grad-
ually transform (approximate) the given problem into a p-problem and demonstrate
the effect of different weight adjustments. The final controller designed in this sec-
tion demonstrates that the control objectives defined by Limebeer [8] are obtainable.
Finally the results are discussed and summerized.

All results and simulations presented in this paper has been computed using the
MATLAB “u-Analysis and Synthesis Toolbox” [1].

4.2 CDC problem definition

The plant model and design specifications for the CDC benchmark problem [8] are
presented in this section.

4.2.1 Plant model

The plant is an ill-conditioned distillation column, modelled by

N 0.878 —0.8647 [ ke %1 0
Gls) = 755+ 1 [ 1.082 —1.096“ 0 kge ¥ (4.1)
ki €[0.8 1.2] ; 6; €[0.0 1.0] (4.2)

In physical terms this means 20% relative gain uncertainty and up to 1 min delay in
each input channel. The set of possible plants defined by Eq.4.1-4.2 is in the following
denoted II.

4.2.2 Design specifications

Specifications S1 to S4 should be fulfilled for every plant G € II:
S1 Closed loop stability.

S2 For a unit step demand in channel 1 at ¢ = 0 the plant outputs y; (tracking) and
yo (interaction) should satisfy:

y1(t) > 0.9 for all £ > 30 min.
y1(t) < 1.1 for all ¢

0.99 < y1(0) < 1.01

yo(t) < 0.5 for all ¢

—0.01 < y3(00) < 0.01

Corresponding requirements hold for a unit step demand in channel 2.

S3 (K,S) < 316, Vw.



Figure 4.1: Block diagram without weight functions.

S4 Alt.1: 5(GK,) < 1 for w > 150
Alt.2: 6(K,S) < 1 for w > 150

Here K, denotes the feedback part of the controller and S = (I + GK,) ! the
sensitivity function for the worst case G.

Specifications S3 and S4 are not explicitly stated in [8], but formulated as “the
closed loop transfer function between output disturbance and plant input [Kyg] be
gain limited to about 50 dB [~ 316 (S3)| and the unity gain cross over frequency of
the largest singular value should be below 150 rad/min [(S4)].” Different researchers
have given the latter specification different interpretations, e.g. [3] use Alt.1. while
[20] use Alt.2. For the purpose of this paper, this diversity is advantageous, since it
gives us the opportunity to start with the easier alternative (Alt.1) and then show how
to refine the p-problem to achieve the tougher requirement (Alt.2).

Note that S4 Alt.1 in practice is implied by S1 which in turn is implied by S2, so
the actual performance requirements are S2 and S3 (and S4 Alt.2).

Most of the specifications in this paper may be viewed as bounds on transfer func-
tions from some inputs to some outputs. The notation for these transfer functions is
defined by Fig. 4.1 and the matrices in Eq. 4.4 - 4.5. The controller K in Fig. 4.1 may
be a One Degree of Freedom controller (ODF) or a Two Degree of Freedom controller
(TDF). A TDF controller may be partitioned into two parts

AK ‘ BK'/' BKy
C’K ‘ DK'/‘ DKy

K =K, K,] = (4.3)

where K, is the feedback part of the controller.
For an ODF controller K, = K, which yields the following transfer functions:

€ S T— Tyr,id T d
yl=| s T T r (4.4)
u K,S K,S K,S||n

Note that if T}, ;o = I, then the transfer function from r to e is the sensitivity function,
T - Ty?‘,id - S
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Figure 4.2: General problem description

For a TDF controller K, # K, which yields the following transfer functions:

e S  SGK, —Ty, T d
y|l=| S SGK, T T (4.5)
u K,S (I+K,G)'K, K,S n

In this case, the transfer function from 7 to e is not equal to the sensitivity function if
T,

yryid — I.

4.3 The p-framework

This section gives a very brief introduction to p-analysis and synthesis and define some
of the nomenclature used in the rest of the paper. For more details, the interested
reader may consult for example [17], [18] and [1].

The Ho-norm of a transfer function M (s) is the peak value of the maximum singular
value over all frequencies.

[1M(s)]]oc = sup o(M (jw)) (4.6)

The left block diagram in Fig.4.2 shows the general problem formulation in the
p-framework. It consists of an augmented plant P (including a nominal model and
weighting functions), a controller K and a (block-diagonal) perturbation matrix Ay =
diag{Ay,---, A, } representing uncertainty.

Uncertainties are modelled by the perturbations (A;’s) and uncertainty weights
included in P. These weights are chosen such that ||Ay||e < 1 generates the family of
possible plants to be considered. In principle Ay may contain both real and complex
perturbations, but in this paper only complex perturbations are used.

Performance is specified by weights in P normalizing d and e such that a closed-
loop Hyo-norm form d to e less than 1 (for the worst case Ay) means that the control
objectives are achieved !.

!Note that d and e in Fig. 4.2 are not equivalent to d and e in Fig. 4.1, but may contain d and e
among other signals.
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The framework in Fig.4.2 may be used for both one degree of freedom (ODF) and
two degree of freedom (TDF) controllers. In the ODF case the controller input y is
the difference between set-points and measured plant outputs, y = r — ¥,,,, while in the
TDF casey = [r, —ym]".

The right block diagram in Fig.4.2 is used for robustness analysis. M is a function of
P and K, and Ap (||Apllee < 1) is a fictitious “performance perturbation” connecting
e to d. Provided that the closed loop system is nominally stable the condition for
Robust Performance (RP) is:

RP & ppp=suppua(M(jw)) <1 (4.7)

where A = diag{Ay, Ap}.

i is computed frequency-by-frequency through upper and lower bounds. Here we
only consider the upper bound

pa(M(jw)) < inf 6(DMD™) (4.8)
DeD

where D = {D|DA = AD}.

At present there is no direct method to synthesize a p-optimal controller, however,
p-synthesis (DK-iteration) which combines p-analysis and H-synthesis often yields
good results. This iterative procedure was first proposed in [5] and [15]. The idea is to

attempt to solve
min inf supa(DMD™) (4.9)
K DeD w

(where M is a function of K) by alternating between minimizing sup, (DM D) for
either K or D while holding the other fixed. The iteration steps are:

DK1 Scale the interconnection matrix M with a stable and minimum phase rational
transfer matrix D(s) with appropriate structure (an identity matrix with right
dimensions is a common initial choice).

DK2 Synthesize an H,-controller for the scaled problem, ming sup, (DM D™!).

DK3 Stop to iterate if the performance is satisfactory or if the H,.-norm does not
decrease, else continue.

DK4 Compute the upper bound on p (Eq.4.8) to obtain new D-scales as a function
of frequency D(jw).

DKS5 Fit the magnitude of each element of D(jw) to a stable and minimum phase
rational transfer function and go to DK1.

Each of the minimizations (steps DK2 and DK4) are convex, but joint convexity is
not guaranteed.

The H,-controller synthesised in step DK2 has the same number of states as the
augmented plant P plus two times the number of states of D, so it is desirable to keep
the order of P and the D-scales as low as possible.
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4.4 Design procedure

The CDC specifications in section 4.2 cannot be directly applied in the p-framework.
The reasons for this are: 1) The gain-delay uncertainty in Eq. 4.1-4.2 has to be ap-
proximated into linear fractional uncertainty (Fig.4.2); 2) Specification S2 need to be
approximated since it is defined in the time domain; 3) In the p-framework it is not
possible to directly bound the four SISO transfer functions associated with S2 and
the 2 x 2 transfer function associated with S3 (and S4 Alt.2). Instead these con-
trol objectives must be reflected in the H,,-norm of the transfer function from d to e
(Fig.4.2).

The following approach makes it possible to apply p-synthesis to this kind of a
problem:

1 Approximate the given problem into a p-problem.
2 Synthesize a robust controller for the p-problem.

3 Verify that the controller satisfies the original specifications (S1-S4) for the original
set of plants (II).

Step 1 is our major concern in this paper. Several approaches may be used to
obtain the p-problem, however, the following guidelines are general: A) Choose d and
e such that all essential control objectives are reflected in the H,-norm of the transfer
function between these signals. At the same time keep the dimension of d and e as small
as possible. B) Use low order uncertainty and performance weights to keep the order
of P and thereby the order of the controller low. The complexity and order of these
weights may later be increased, if required. C) Use weight parameters with physical
meaning, since these parameters are the tuning knobs during the design. Derivation of
such weights for the CDC problem is treated in detail in the next section.

Step 2 is fairly straight-forward with DK-iteration using available software (e.g. [1]).
Experience with this iterative scheme shows that for the first iterations it is best if the
controller synthesized in step DK 2 is slightly sub-optimal (H.-norm 5-10% larger than
the optimal) and the D-scale fit in step DKS5 are of low order. In subsequent iterations
more optimal controllers and higher order D-scales may be used if required. However,
it is recommended that also the final controller is slightly sub-optimal since this yields
a blend of ‘H, and Hy optimality with generally better high frequency roll-off than the
optimal H.-controller.

Step 3 is in this paper performed using time simulations with the four extreme
combinations of gain uncertainty (Eq.4.2) and a 1 minute delay (approximated as a
second order Padé).

4.5 Controller design

In this section we design controllers for the benchmark problem, using the design pro-
cedure outlined above. Actually, we start with a controller designed for the “original”



Figure 4.3: Original ODF-problem formulation.
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for the four extreme uncertainty combinations defined in Eq. 4.1, i.e. the four gain
combinations and maximum delay. The simulation results are also summerized in Table
4.1 where bold entries mark violations on S2. We see that the closed loop system is
stable, so S1 is satisfied. The setpoint tracking requirements in S2 are almost satisfied,
but the interaction is much too strong.

The performance with respect to S3 is demonstrated in Fig. 4.5. It is clear that
7(K,S) (the gain from setpoints 7, n oise n and disturbances d to manipulated inputs
u) is much too high at high frequencies and also around the closed loop bandwidth
(w = 0.1 rad/min).

The performance specification in the original problem is a bound on the sensitivity
function S. Fig. 4.6 shows the maximum and minimum singular values of the sensitivity
function for the four extreme combinations of uncertainty. From this plot we see
that the original performance requirement 7(S) < |1/W,| is NOT satisfied for w =
2 rad/min despite the fact that pgp < 1.0. The explanation is of course that the
uncertainty weight Wa does not quite cover the four extreme combinations.

yll yl2
15 15
k1l k2
— 12 1.2
- 12038
"""" 08 1.2
'''''' 0.8 0.8
-0.5 ‘ -0.5 ‘
0 50 100 0 50 100
y21 y22
15 15
== 0
-0.5 -0.5
0 50 100 0 50 100

Figure 4.4: Output responses for ODF-original controller with plant-model mismatch.
v;; shows response in output ¢ for step change of set-point j at ¢ = 0. All responses
with 1 min. delay (2nd order Padé).
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Table 4.1: Control performance for ODF-original with gain uncertainty and a second
order Padé approximation of a 1 min. delay. (See also Fig.4.4)

step | gain unc. set-point tracking interaction
ch. | &k ke |t=30| max |[t=100| max |t =100
1.2 1.2 | 0989 | 1.008 | 1.000 | 0.856 | 0.000
1.2 0.8 | 0934 | 1.001 | 1.001 | 1.047 | 0.000
0.8 1.2 | 0.941 | 1.006 | 1.000 | 0.427 | -0.001
0.8 0.8 | 0.889 | 1.000 | 1.000 | 0.625 | 0.000
1.2 1.2 | 0.993 | 1.095 | 1.000 | 0.859 | 0.001
1.2 0.8 | 0964 | 1.007 | 1.000 | 0.536 | -0.001
0.8] 1.2 | 0.956 | 1.198 | 1.001 | 0.934 | 0.000
0.8 0.8 | 0.929 | 1.000 | 1.000 | 0.627 | 0.000

NN NN = ===
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Figure 4.5: Maximum and minimum singular values of K5 for ODF-original. Dashed:
Specification S3 and S4 Alt.2, respectively.

To sum up: The ODF-controller above does almost satisfy the tracking require-
ments, but suffers from strong interactions and excessive use of manipulated inputs, in
particular at extremely high frequencies (w > 10 rad/min).
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Figure 4.6: Maximum and minimum singular values of S for ODF-original. Dashed:
Original upper bound on S (1/W,, Eq.4.12).

4.5.2 TDF-controller for “original” specifications

In this section we check performance of a TDF controller from [10] with respect to the
CDC specifications. This controller yields prp = 0.926 for the “original ” problem and
we denote it “T'DF-original”. Note that, in the design of this controller, W, is not a
weight on the sensitivity function S, since the controller K, in Fig. 4.3 is replaced by
a TDF controller with two inputs r and y (recall Eq.4.4-4.5).

Simulations and tabulated data for TDF-original are shown in Fig. 4.7 and Table
4.2. The setpoint tracking is still not quite satisfied, but the interactions have almost
disappeared compared to the ODF-original response. However, there are unpleasant
high frequency oscillations in all responses. This oscillation also shows up as a “ringing
peak” in the transfer function from r to e (SGK, — I) as illustrated in Fig. 4.8. This
peak could have been eliminated if a better uncertainty weight had been used, 7.e. an
uncertainty weight that covers a 1 min delay and 20% gain uncertainty.

TDF-original also suffers from a very high sensitivity function. This deficiency
does not show up in the simulations but is illustrated in Fig. 4.9. The high sensitivity
function signals that disturbances in the frequency range about 2 rad/min may be
amplified up to 100 times! The reason is that W, is not a weight on S in the TDF
problem, but on SGK, — I.
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Figure 4.7: Output responses for TDF-original controller with plant-model mismatch.
1;; shows response in output 4 for step change of set-point j at ¢ = 0. All responses
with 1 min. delay (2nd order Padé).

Table 4.2: Control performance for TDF-original with gain uncertainty and a second
order Padé approximation of a 1 min. delay. (See also Fig.4.7)

step| gain unc. set-point tracking interaction
ch. | k1 | ky |t=30| max [t =100| max |t =100
1.2 1.2 | 0.889 | 1.008 | 1.003 | 0.175 | 0.004
1.2 | 0.8 | 0.913 | 1.000 | 1.000 | 0.497 | 0.000
0.8 1.2 | 0.902 | 1.000 | 1.000 | 0.257 | 0.000
0.8 0.8 | 0.905 | 1.000 | 1.000 | 0.156 | 0.000
1.2 | 1.2 | 0.891 | 1.014 | 1.005 | 0.175 | 0.004
1.2 0.8 | 0.917 | 1.000 | 1.000 | 0.126 | 0.000
0.8 1.2 | 0.928 | 1.000 | 1.000 | 0.368 | 0.000
0.8 0.8 | 0.921 | 1.000 | 1.000 | 0.156 | 0.000

DN DN DN = = ==
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Figure 4.8: Maximum and minimum singular values of SGK, — I for TDF-original.
Dashed: Original upper bound on S (1/W,, Eq.4.12).

4.5.3 Weight selection for CDC specifications

In this section we approximate the CDC specifications into frequency dependent weight.

Uncertainty weights

The gain-delay uncertainty in Eq.4.2 is not quite covered by the uncertainty weight
defined in Eq.4.11. A better weight is presented in [12]:

(14 50,008 + Ky 1.1s + 0.2
Wa(s) = 2 =0
als) 9”‘%3 +1 22 0.5s+1

Irxo (4.16)

where k. = 0.2 is the relative gain uncertainty and #,,,, = 1 is the maximum delay.
This weight has the same low order as Eq. 4.11 but does almost cover the gain and
delay uncertainty. A slight modification of Eq.4.16 yields a weight that completely
covers the uncertainty ([12]), but is of higher order:

2
~ 11s+0.2 (2_363) + 2% 0838555 + 1
WA(S) = * 2

0.55+1 <L) +2%0.685-—=— +1

o (4.17)
2.363 2.363

Often is fruitful to start with the simpler weight (Eq. 4.16) and if the performance
verification (step 3 of the design procedure) shows that this uncertainty model does
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Figure 4.9: Maximum and minimum singular values of S for TDF-original. Dashed:
Original upper bound on S (1/W,, Eq.4.12).

not yield a robust controller for the set of plants II, then the more rigorous uncertainty
model (Eq. 4.17) should be used.

ODF performance weights

A simple way to approximate the performance specifications S2 and S3 into a u-
problem is shown in Fig.4.10, where K, is an ODF-controller.

The time domain requirements of specification S2 is approximated by a frequency
domain bound (Ws,) on the sensitivity function S, just like in the original formulation

|

Y

Ky -5+ G
U

AN
T o gl
b

Wg3

Y

Figure 4.10: Block diagram for one degree of freedom controller.



Figure 4.11: Block diagram for two degree of freedom controller.
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The set-point tracking should ideally be decoupled and the response and overshoot
requirements are the same for both channels. To keep the order of T, ;4 small, while
at the same time have the freedom to allow for some overshoot in the ideal response,
we use a second order reference model in each channel

1

T
TZ-ZdSZ + 2Cz'd7—z'd5 + 1

yrid —

Loso (4.21)

The weights W,, and W, in Fig.4.11 are used to obtain specification S3 by bounding
|| KySp||co- Note that even without S3 it is necessary to include the noise 72 or another
signal (non-zero for w — oc) between G and K to obtain a proper controller, since G
is strictly proper (lim,_,. 0(G(jw)) = 0).

Figure 4.11 gives

[é] _ [WeNHWT —WeNmWn] [f] (4.22)
U n ’

WuN21Wr _WuN22Wn
where Nll = SpGpKT — Tyr,id = Tyr,p — Tyr,id; N12 = GpKySp = Tp, N21 = (I +
K,G,) 'K, and Nyy = K, S, (index p denotes a perturbed system, i.e G, = G(I +
AyWa). For simplicity, we use diagonal weights with the same weight in both channels
(Wi = w; * Ingo, @ = e,u,r,n), i.e. W,W, forms a bound on Ny; and W, W,, forms a
bound on Nos.

Now, Wgy and Wg3 (Eq. 4.18 and 4.19) are used as a starting point to find appropri-
ate signal weights W,., W,,, W, and W,,. The combined weight W, W,, should be similar
to Ws3 and W.W, may be chosen similar to Wsy to obtain a reasonable bound on the
mismatch between actual and ideal response. However, the off-diagonal elements in
Eq.4.22, W, N;oW,, and W, Noy W,. also have to be considered when selecting the signal
weights, since it is the H,-norm of the entire transfer function that is minimized by
the controller. This demonstrates that the weights have to be selected with some care
in order to avoid impossible performance specifications.

We may always choose one of the signal weights arbitrary and then shape the other
signals relatively to the arbitrary weight. Let W, = I at all frequencies. This yields
Ni; bounded by W, = Wg, and Ny, bounded by W,. At low frequencies 2 Ny; ~ Nog,
so let W,, = Ws3. Next consider how to choose W,, such that W, NooW,, reflects S3 and
W,.N1sW,, does not limit the performance of the overall system. At low frequencies
Nip ~ I, so W, has to be smaller than W;! in this frequency range. At higher
frequencies W,, is chosen such that W, W,, becomes an active bound on Ngy. One way
to obtain this is to use

W r(s) = Ioyo (423)
1 TelS + MS
[/[/e = _
() Mg 1qs + A 2%?

2At low frequencies (I + GK,)"'GK, ~ I = K, =~ K, = Ny = (I + K,G)7'K, ~ K,(I +
GKy)_l = Nay
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1
Wu(s) = Vs 2 (4.25)
TelS + A
W, = I 4.26
() TasS + My 2 ( )

My in Eq.4.26 is a bound on the low frequency peak value of Ny, (the complemen-
tary sensitivity function). This parameter is used to adjust the frequency where W, W,
becomes an active bound on Ns.

The performance weights derived above have several parameters, however, it is
relatively easy to find reasonable numerical values for these parameters since they all
have some physical meaning. In fact, most of the numerical values used in the design
below, are almost directly obtained from the specifications in section 4.2.

4.5.4 TDF-controller for CDC specifications; Alt.1

In this section we synthesize a TDF controller for the CDC specifications with S4 Alt.1.
We use an unstructured perturbation matrix Ay which gives D(s) = diag{d(s), d(s), Laxa}-
Ay in Eq.4.13 is structured, however, it can be shown that the TDF problem (with the
diagonal weights defined in the previous section) belongs to a class of problems where
an unstructured Ay may be used without introducing conservativeness (Hovd et al.,
1993).

Initially d(s) were set to 0.01, obtained from a natural physical scaling (‘logarithmic
compositions’ [16]). This simple scaling substantially reduces the number of iterations
required to obtain ‘good’ D-scales.

The initial weight parameters were chosen to: 1) Yield an ideal response which
satisfies S2 with some margin without too large overshoot (1;¢ = 8,(a = 0.71); 2)
Require a close fit to the ideal response at low frequencies (4 = 10~*) and a looser fit
at high frequencies (74, = 10, Mg = 3); 3) Yield a loose requirement on K,S, to be
increased if required (My = 3, Mg = 630 (56dB)).

Only two DK-iterations was needed to get ugrp < 1, however, the performance with
respect to S2 and S3 was not quite achieved. Mg, My and 7, was adjusted to 3.5, 2.0
and 9.5, respectively. After two more DK-iterations a controller which satisfies S1-S4
was obtained. The controller has 24 states, yields a closed loop H,-norm of 1.015 and
may be synthesized using the final weights and D-scales given in Table 4.3.

The performance of the TDF controller is demonstrated in Fig.4.12 where time
responses for the four extreme combinations of uncertainty are shown. The simulation
results are also summerized in Table 4.4 and are seen to satisfy specification S2. The
maximum peak of 7(K,S) = 306 (Fig. 4.13), which is less than 316 (50 dB), as required
in S3, and the unit gain cross over frequency, 5(@Ky) =1, is at 1 rad/min, well below
150 rad/min, as required in S4 Alt.1. Specification S4 Alt.2 is not satisfied as shown
in Fig. 4.13.

The transfer functions Ni5 and No;, which are not part of the CDC problem, have
peak values of 3.4 and 420, respectively.
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Table 4.3: Final weight parameters and D-scales

Weight parameters
Tid | Ga | Ta | A | Ms | My | Mks
8.0[0.71 [9.5][107* | 35 | 2.0 | 630

D(s) = diag{d(s), d(s), Laxa}

(s +5.70) (824 2% 0.6645 x 0.112s + 0.1122)
(s +0.0144) (s2 + 2 0.622 * 0.568s + 0.5682)

d(s) = 0.00299

Table 4.4: Control performance for TDF-Alt.1 with gain uncertainty and second order
Padé approximation of a 1 min. delay. (See also Fig.4.12)

step| gain unc. set-point tracking interaction
ch. | k1 | ky |t=30| max [t =100| max |t =100
1.2 1.2 | 1.066 | 1.092 | 0.998 | 0.0561 | 0.001
1.2 0.8 | 0.984 | 1.036 | 0.999 | 0.471 | -0.001
0.8 1.2 | 0.969 | 1.030 | 1.000 | 0.426 | 0.001
0.8 0.8 | 0.906 | 1.000 | 1.000 | 0.138 | 0.000
1.2 | 1.2 | 1.052 | 1.074 | 0.999 | 0.051 | 0.001
1.2 | 0.8 | 0.987 | 1.030 | 1.000 | 0.265 | 0.001
0.8 1.2 | 1.002 | 1.038 | 0.999 | 0.310 | 0.000
0.8 0.8 | 0.950 | 1.002 | 1.000 | 0.138 | 0.000

DN ===

4.5.5 TDF-controller for CDC specifications; Alt.2

In this section we show that specification S4 Alt.2 used in [20] can be achieved by the
design procedure presented in this paper. The u-formulation in Fig.4.11 is used also
for this TDF-design. However, the signal weights W, and W,, are not the same as in
the previous “Alt.1” design. In addition we use the rigorous uncertainty weight from
Eq. 4.17.

Specification S3 and S4 Alt.2 yield:

. { 50 dB  w < 150 rad/min (4.27)

o(KyS(jw)) < 0dB w > 150 rad/min

The high frequency roll-off requirement in Eq. 4.27 is harder than in Alt.1. To deal
with this, weights W, and W,, in Fig.4.11 are modified. We use the same procedure
as in the previous design, first approximating Eq.4.27 by a rational transfer function
bound (Wg34) on Kyg , and then derive W, and W,, from Wgs,.



4.5. CONTROLLER DESIGN 79

y1l y12
1.5 1.5

0 50 100 0 50 100

Figure 4.12: Output responses for TDF-Alt.1 controller with plant-model mismatch.
1;; shows response in output 4 for step change of set-point j at ¢ = 0. All responses
with 1 min. delay (2nd order Padé).

Let

Wezs = ! s Ioxo (4.28)
Mpgs L s

For ||[Wg34K,Sp||eo < 1 this weight yield:

1 Maximum allowed low frequency peak less than Mkg.

2 Maximum unity-gain crossover frequency less than (approximately) wp.

The parameter n in Eq.4.28 is an integer. By increasing n, a steeper approximation of
Eq.4.27 is obtained at the expense of a higher order weight. The parameter ¢ > 1 in
Eq.4.28 is used to obtain a good approximation around the unity cross over frequency.
From Eq.4.28 the following weights with n = 3 and ¢ = 5 are obtained:
n n—1
1 %s +1 Y
MKS L8 +1

cwo

Wu(s) = Ipyo (4.29)
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Figure 4.13: Maximum and minimum singular values of K,S for TDF-Alt.1. Dashed:
Specification S3 and S4 Alt.2, respectively

Table 4.5: Final weight parameters and D-scales

Weight parameters
Tid | Ga | Ta | A | Ms | My | Mkgs | wo
8.0[07119.5[10°*] 3.0 ] 25 | 1000 | 200

D(s) = diag{d(s), d(s), Isxa}

(s +23.1)(s*> + 2 % 0.637 * 0.1165 + 0.116?)
(s +0.0213)(s + 0.372) (s + 0.673)

d(s) =7.3%10"*

+ A M’l‘/;s +1

TS

o o Loyo (4.30)
TelS + MT %S + ]_

W, (s)

After some iterations and parameter adjustments a controller which satisfies S1,
S2, S3 and S4 Alt.2 was obtained. The final weight parameters and D-scales are given
in Table 4.5. The controller yields a closed loop H,-norm of 1.0 and has 34 states.
However, the order may be reduced to 22 without violating the control objectives. The
performance of the 22 state controller is shown in Fig.4.14. The simulation results are
also summerized in Table 4.6 and are seen to satisfy specification S2.
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Figure 4.14: Output responses for TDF-Alt.2 controller with plant-model mismatch.

i; shows response in output 4 for step change of set-point j at ¢ = 0. All responses

with 1 min. delay (2nd order Padé).

Table 4.6: Control performance for TDF-Alt.2 with gain uncertainty and second order
Padé approximation of a 1 min. delay. (See also Fig.4.12)

step| gain unc. set-point tracking interaction

ch. | k1 | ky |t=30| max [t =100| max |t =100
1 |1.2] 1.2 | 1.063 | 1.082 | 0.991 | 0.036 | 0.008
1 |1.2] 0.8 | 0.976 | 1.013 | 0.990 | 0.464 | -0.001
1 108 1.2 | 0.977 | 1.031 | 0.999 | 0.424 | 0.010
1 08| 0.8 | 0.908 |0.998 | 0.998 | 0.130 | 0.002
2 | 1.2 1.2 | 1.050 | 1.067 | 0.994 | 0.036 | 0.008
2 | 1.2 0.8 | 0.995 | 1.036 | 1.001 | 0.264 | 0.008
2 108 1.2 | 0994 | 1.019 | 0.992 | 0.305 | 0.001
2 1081 0.8 | 0951 {0.999 | 0.999 | 0.130 | 0.002
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Figure 4.15: Maximum and minimum singular values of K,S for TDF-Alt.2. Dashed:
Specification S3 and S4 Alt.2, respectively

Fig. 4.15 shows that the maximum peak of (K,S) = 313, which is less than 316
(50 dB), as required in S3, and the unit gain cross over frequency, 5(Ky§) =1, is
below 150 rad/min, as required in S4 Alt.2.

To obtain these improvements compared to TDC-Alt.1, the performance with re-
spect to Ng; has degenerated. Nj5 and Ny; have peak values of 2.6 and 435, respectively.
However, these transfer functions are not strictly part of the specifications.

4.6 Discussion

The inability to independently penalize separate elements of the closed loop trans-
fer function complicates the performance weight selection in the p-framework. The
Hadamard weighted approach [3] does not have this problem and will therefore yield
better performance with respect to the specifications in the CDC problem, S1 - S4.
However, for a practical engineering problem the transfer functions N;5 and Np; in
Fig.4.11 are of importance, so it seems reasonable to include them into the control
problem.
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4.7 Conclusions

p-synthesis has been successfully applied to a demanding ill-conditioned uncertain
problem where uncertainty is defined as parametric gain-delay uncertainty and the
design objectives are a mixture of time domain and frequency domain specifications.

Acknowledgements. Support from N'TNF is gratefully acknowledged.
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Abstract

Dynamic Matrix Control (DMC) is based on two assumptions which limit the
feedback performance of the algorithm. The first assumption is that a stable step
response model can be used to represent the plant. The second assumption is
that the difference between a measured and a predicted output can be modeled

as a step disturbance acting on the output.
These assumptions lead to the following limitations.
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CHAPTER 5. LIMITATIONS OF DMC

1 Good performance may require an excessive number of step response coeffi-
cients.

2 Poor performance may be observed for disturbances affecting the plant inputs.

3 Poor robust performance may be observed for multivariable plants with strong
interactions.

Limitations 1 and 2 apply when the plant’s open-loop time constant is much
larger than the desired closed-loop time constant. Limitation 3 is caused by gain
uncertainty on the inputs.

In this paper we separate the DMC algorithm into a predictor and an opti-
mizer. This enables us to highlight the DMC limitations and to suggest how they
can be avoided. We demonstrate that a new Model Predictive Control (MPC)
algorithm, which includes an observer, does not suffer from the listed limitations.
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5.1 Introduction

Dynamic Matrix Control (DMC) has been successfully used in industry for more than
a decade. Several authors have reported improved control performance by use of DMC
as compared to “traditional” control algorithms (Cutler and Ramaker, 1980, Prett
and Gillette, 1980, Garcia and Morshedi, 1986). DMC has the ability to deal with
constraints, which probably is one of the major reasons for its popularity. It also
allows set point changes to be “announced” in advance and it facilitates feedforward
control. However, the feedback properties of a DMC controller are limited by two
restrictive assumptions which are implicit in the algorithm:

A1 A stable step response model can be used to represent the plant.

A2 The difference between a measured and a predicted output can be modeled as a
step disturbance acting on the output.

The objective of this paper is to clearly point out these assumptions and to illustrate
in which situations they may limit the feedback properties of DMC. We also demon-
strate that the limitations can be avoided by use of a new observer based algorithm,
by Lee et al. (1991), which is a direct extension of DMC.

DMC belongs to the family of Model Predictive Control (MPC) algorithms. The
main idea behind these algorithms is to use an explicit model of the plant to predict
the open-loop future behavior of the controlled outputs over a finite time horizon.
The predicted behavior is then used to find a finite sequence of control moves which
minimizes a particular objective function without violating prespecified constraints.
Usually only the first input move is implemented and the procedure is repeated at the
next sampling instant.

This algorithm can be separated into two parts, a predictor and an optimizer.
By splitting up the algorithm this way, similarities with state-observer state-feedback
controllers become apparent. In fact, Lee et al. (1991) show that unconstrained DMC is
equivalent to an optimal state observer (Kalman filter) and linear quadratic feedback,
using a receding horizon approach and special assumptions about disturbances and
measurement noise.

In this paper we use the predictor-optimizer representation of DMC. In this frame-
work the limitations of DMC can be traced to the predictor part of the algorithm. We
only consider unconstrained DMC, but the results carry over to the general case with
constraints, since the issue of constraints only affects the optimizer.

The limitations we want to illustrate are:

L1 Good performance may require an excessive number of step response coefficients.

L2 Poor performance may be observed for “ramp-like” disturbances acting on the
plant outputs. In particular, this occurs for input disturbances for plants with
large time constants.
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L3 Poor robust performance, due to input gain uncertainty (which always is present
in practice), may be observed for multivariable plants with strong interactions.

In addition, there is the obvious limitation that the plant has to be stable.

This paper is organized as follows. In section 2 we present the algorithms we
will use. The purpose is to give a coherent overview of the algorithms and to point
out the implicit assumptions made in DMC. We also use this section to define the
nomenclature. Readers not familiar with MPC are referred to Garcia et al. (1989),
for instance. In section 3 we use a simple single-input single-output (SISO) plant and
a multi-input multi-output (MIMO) distillation column to illustrate the limitations of
DMC and demonstrate that the algorithm by Lee et al. (1991) can be used to avoid
these limitations. Section 4 contains Discussion and Section 5 Conclusions.

5.2 Model Predictive Control

5.2.1 Dynamic Matrix Control
Modeling the plant

In the original DMC formulation (Culter and Ramaker, 1980) a step response model
of the plant is used to predict the future behavior of the controlled variables.
Let the step response of a SISO system be represented by the sequence

[s1 S2 ... Sp—1 Sn Spt1 .- | (5.1)

where the k' element is the output at time k caused by a unit step input at time 0. For
a stable plant this sequence will asymptotically reach a constant value, ¢.e. s, = Sp11.
For a MIMO system with 7, inputs and 7, outputs we get

S1,1,6 51,24 " Slngi
S21,4 52,24 " S22y .

S; = f’ ” i 1=1,---.n (5.2)
Sny,li Sny2i "7 Snynyy

The step response model can be represented in the following state space form, which
is equivalent to that presented by Li et al. (1989).

Y(k+1) = MY(k)+ SAu(k) (5.3)
y(k) = NY(k) (5.4)

where
Au(k) = u(k) — u(k — 1) (5.5)

Y(k)=[yk) y(k+1)" ... y(k+n—-1)7)" (5.6)
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0 I, O 0 0 P
0 0 I, 0 0 Sa
M=\ nkn, ; S= : (5.7)
0 0 0 " I, O Sn-—2
0 0 0 0 I, Sg—l
00 0 -+ 0 I || -
and
mizy
N=[I, 00 -0 0] (5.8)

Awu(k) is a vector of changes in the manipulated inputs at time k. y(k) is the output
vector at time k. The vector Y (k + 1) represents the dynamic states of the system.
Each state, y;(k + [), has a special interpretation: it is the i"* future output at time
k + [ assuming constant inputs (i.e. Au(k + j) = 0 for j > 0). The new state vector
Y (k + 1) is the old vector Y (k) shifted up n, elements plus the contribution made by
the latest input change Au(k).

The predictor

The DMC algorithm is illustrated in Fig. 5.1. The objective of the predictor is to
generate a vector, J(k +1|k), of predicted open-loop outputs over a horizon of p future
time steps, the prediction horizon. This prediction vector is then used as an input to
the optimizer.

The DMC predictor is described by the following equations.

Y(k+1) = MY(k)+ SAu(k) (5.9)
j(k) = NY(k) (5.10)
Y(k+1k) = MY (k) +Z[g(k) - §(k)] (5.11)

where M), is the first p * n, rows of M and

D*Ny
A
la ~

I=[1, I., -+ I, I, |" (5.12)

We use ~ to denote that the output is from the model and not from the true plant.
9(k) is a vector of measured outputs at time k. §(k) and 3(k) are discontinuous at k_
while u(k) is discontinuous at k., i.e. ¢ is measured slightly before time k£ and w is
adjusted slightly after time k.

The optimizer

We use the QDMC objective function from Garcia and Morshedi (1986):

7= min (ICVm(k+ 1K) = R(k+ k) + [AAUGKIR)E) (513
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Figure 5.1: DMC controller separated into a predictor and an optimizer.

where

AUKIE) = [DukR)T Aulk+ 1R ... Au(k+m—1BTT  (5.14)
V(b + 1k) = [ym(k + 1k)" ym(k + 2|k)" ... ym(k + plk)"]" (5.15)

and
Rk +1]k) = [r(k +11k)" r(k +2|k)" ... r(k+plk)"]" (5.16)

AU(k|k) is the optimal control sequence computed at time & for m future input moves,
where m is the input horizon. Y,,(k + 1|k) is a vector of outputs predicted at time
k, over a horizon of p future time steps, including the effect of the m optimal input
moves:

Vi (k + 1|k) =y(k+1\k)+S;”AL{(k|k) (5.17)
where ) )
S 0 .. 0
Sy ST ... 0
5 = S S ... S (5.18)
B T —

R(k+1|k) is a vector describing the desired output trajectory (set points) over p future
time steps. I' and A are weighting matrices and are usually chosen to be diagonal.
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The least squares solution to this problem is
AU(kk) = {(S)TTTS + ATAY H(SMTTT [R(k + 1|k) — Y(k + 1]k)].  (5.19)

Only the first input move is implemented, and the resulting optimizer is a constant
gain matrix, Ky,pc.

Au(k) =[10 ... 0]AU(k|k) = Kype [R(k+ 1]k) — YV(k + 1|k)] (5.20)
Kyupe=[10 ... 0{(S)")'TTTS + ATA} 1(S")'T'T (5.21)

DMC Assumptions

The DMC controller can only be used with stable plants. There are two reasons for
this:

1) The internal model (Eq. 5.9-5.10) can only describe a stable plant;

2) (k) — y(k) can grow unbounded for unstable systems leading to internal instability.

The internal model of the DMC predictor (Eq. 5.9-5.10) does not yield an estimate
of the true plant output. It computes the open-loop model output, j(k), for previous
input moves, but does not account for the effect of disturbances and model-plant mis-
match. This means that §(k) — (k) generally is not zero when there is no steady-state
offset and g(k) = 0. Rather, —j(k) equals the accumulated effect of disturbances and
model-plant mismatch.

Eq. 5.11 gives the predicted open-loop output vector, Y (k+1|k). It is the predicted
effect of previous input moves, Mpf/(k), plus a simple bias adjustment given by the
mismatch between the measured output, §(k), and the output form the internal model,
(k).

To achieve good control performance, ) (k + 1|k) should be close to the true open-
loop output. This requires that n, the number of coefficient matrices in S, is chosen
such that S, ~ Sy, otherwise M,Y (k) will be in error. It also requires that (k) —§(k)
stays approximately constant.

We formulate these requirements as two implicit assumptions made in the DMC
algorithm:

A1 A stable step response model with S,, =~ S,, .1 can be used to represent the plant.
A2 The difference between a measured and a predicted output can be modeled as a
step disturbance acting on the output.

5.2.2 DMC with general state space model

The DMC algorithm can also be derived for a general discrete state space model (Prett
and Garcia, 1988) instead of the step response model (Eq. 5.3-5.4) used in the previous
section. We will denote this algorithm DMCss. The only difference between DMC and
DMCss is the representation of the internal model. We include DMCss in this paper
because it allows us to study DMC without the effects of truncation errors caused by

Sn 7é Sn+1-
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Let the plant model be defined by the following equations.
z(k+1) = Axz(k)+ Bu(k) (5.22)
y(k) = Cz(k) (5.23)

Using this model the DMC algorithm can be described by the block diagram in Fig. 5.1
by making the following substitutions, Y (k) = Az(k) = &(k) — #(k —1),M = A,S =
B,N =[0...0] and

CA
CA+CA?

p =

. (5.24)
i CA

5.2.3 Observer Based Model Predictive Control

This algorithm is from Lee et al. (1991), we will denote it “OBMPC”.

Lee et al. use the following extended version of the step response model in Eq. 5.3~
5.4. The extension is made in order to include measurement noise and general distur-
bances acting on the plant outputs. It also allows modeling of integrating systems.

Y(k+1) = MY(k)+ SAu(k) + TAw(k) (5.25)
y(k) = NY(k) (5.26)
(k) = y(k)+v(k) (5.27)

y
Aw(k) = w(k) —w(k — 1) is a vector of changes in disturbances and v(k) is a vector
of measurement noise.

[0 I, 0 -~ 0 0 0 0 ])
0o 0 I, -~ 0 0 0 0
M=|0 0 0 I,, 0 0 0 |pnxn,+dim{z,}+dim{zs} (5.28)
0 0 0 0 I, 0 0
00 0 0 I, C, Cy
0 0 0 0 0 A, 0
(0 0 0 0 0 0 A,|]
g o
Sy 0
S=|5-—2|, 7=] 0 (5.29)
Sp 1 0
Sh 0
B, 0
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N=[IL, 00 -~ 00 0 0] (5.30)

Y(k)=[y(k)" y(k+1)" ... yk+n—-1)" z,(k)" z,(k)"] (5.31)

A,, B, and C, constitute a state space description of the residual plant dynamics
after n sampling intervals. A,, B,, and C, describe the dynamics of the disturbances.
z, and x, are state vectors for residual plant dynamics and disturbance dynamics,
respectively.

This representation allows very general modeling of plant and disturbances. How-
ever, we will approximate the residual dynamics with n, * n, first order systems, each
describing the slow response from one input to one output. This approximation gives:

A Q15
A, = D Ay = (5.32)
Aunu aunyj
Bul bulj
Bunu bunyj
nyinu
Co=1[1In, In, I, | (5.34)

We also restrict measurement noise and disturbances to the following special case:

1) The measurement noise at each output is uncorrelated white noise.

2) The disturbances at the outputs are integrated white noise filtered through first
order dynamics.

For this special case we get the following diagonal covariance matrices:

Wy

E{Aw(k)Awk)T} = W= (5.35)
Wi,
Vi
E{o(k)o(k)"} = V= (5.36)
Vi,
and

Ay = A2 diag{on, -, an,}; Buw=1I; Cu=1I, (5.37)

For o; = 0, the disturbance at the 7** output is integrated white noise (“type 17
disturbance), while o;; = 1 yields double-integrated white noise (“type 2” disturbance)
at the i*® output.
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Figure 5.2: Observer based MPC controller separated into a predictor and an optimizer.

The OBMPC predictor

The OBMPC predictor is using an optimal state observer (i.e. Kalman filter), as seen
in Fig. 5.2. This observer is described by the following equations.

Y(klk) =Y (klk — 1) + K{j(k) — g(k|k — 1)} (5.38)
Y(k+1|k) = MY (k|k) + SAu(k) (5.39)
where
Y (klk—1) = [g(klk — )" gk + 11k — )7 ... gk +n — 1|k — 1)7 2, (klk — 1)7 2, (k|k — 1)T]T
(5.40)

y(k +1|k) is the estimate of y(k + ) based on measurements up to and including time
k. The predicted output vector (the input to the optimizer) is

V(k +1|k) = M,Y (k|k) (5.41)

For the special noise and disturbance case defined in the previous section, the
optimal filter gain K in Eq. 5.38 is parametrized as follows (Lee et al., 1991).

- Iny - - 0 -
I, I,
Iny (fa)l Iny + -’4 (fb)l
K= : + : (5.42)
Iny (fa)ny Z?:_02 Az (fb)ny
0 0
L 0 | [ AT
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; (fa)2 .
() 1+ a; — a;(fa)i == (5.43)
The adjustable parameters, (f,);, are determined by the disturbance-to-noise ratio for

the i output, W;/V;.

(fa)i =0 for Wi/Vi—0 (5.44)
(fa)i =1 for  Wi/V; — oo (5.45)

Hence, we may compute the optimal Kalman filter gain without solving a Riccati equa-
tion, and (f,); and «; may be used as on-line tuning parameters.

State-observer State-feedback interpretation

The unconstrained OBMPC described above is a state-observer state-feedback con-
troller using a receding horizon approach. The optimal state-observer is defined by
Eq. 5.38-5.39 and the linear quadratic state feedback gain is Ky pcM,. The closed-
loop dynamics is determined by the following state transmission matrix.

Y (k) | M —SKypcM, SKypcM, Y(k—1)
Y(k)=Y(klk) | — 0 M—-KNM || Y(k-1)-Y(k—-1k—1)
(5.46)
The eigenvalues of M — SKypcM, are the regulator poles and the eigenvalues of
M — KNM are the observer poles.

If the measurements are noise-free and the disturbances are random steps acting

on the plant outputs, then an unconstrained DMC controller where S, = 5,11 is
equivalent to the unconstrained OBMPC controller. That is, for this special case
M,Y (k[k) = MY (k) + Z[5(k) — §(k)] (5.47)

and DMC is an optimal state-observer state-feedback controller.

5.3 Limitations of Dynamic Matrix Control

5.3.1 Limitation 1: Good performance may require an ex-
cessive number of step response coefficients

In the previous section we stated that the DMC step response model requires S,, ~
Spi1- In this section we demonstrate the consequence of sacrificing this requirement.
Assume that a high closed-loop bandwidth is desired for the plant described by the

following model.

100

T 100s+1°
In order to achieve the desired bandwidth a short sampling interval is required. (A
common rule is to use AT < 2 where wp is the closed-loop bandwidth, e.g. Mid-

10w
dleton (Eq. 6.1, 1991)). We select AT = 1 min. According to common practice (e.g.

P(s) - (5.48)
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Table 5.1: Tuning parameters for controllers.

Type r A AT m p N Gy buij a;  (fa)i
[min.]

A DMC 1 0 1 3 4 30
B DMCss 1 0 1 3 4 -
C DMCss Ioxs 0.02Lsyo 1 5 10 —
D OBMPC 1 0 1 3 4 30 1 Sp+1 — Sn 1 0.5
E OBMPC Ipxy 0.125Ip 1 5 10 30 0.995 8ijni1—Sijn 0.995 0.9
F OBMPC IQ><2 02><2 1 5 10 30 0.995 3i,j,n+1_3i,j,n 0.995 0.22

K (4r)

PI CPI(Z) = (z-1)

+K.; K.,=045 7 =>5.0min, AT = lmin

Cutler and Ramaker, 1980), the truncation error should not be larger than about 5%,
which in our case yields 300 step coefficients. However, there is always a practical limit
on the number of coefficients (states) that can be used in the internal model, since a
large number of coefficients leads to an excessive use of computer memory and a high
computational load.

Consider the case of selecting n = 30, which is a typical industrial choice (e.g. Cutler
and Ramaker, 1980). The effect of this truncation on feedback control is demonstrated
in Fig. 5.3 which shows the response to a unit step disturbance acting on the plant
output at time ¢ = 10. The simulation is performed with a dead beat DMC controller
(controller A, Table 5.1). The truncated step response causes an erroneous prediction
(a “jump”) n — 1 sampling intervals after the disturbance occurred. The error here is
so large that it leads to instability.

From this example we conclude that heavily truncated models cannot be used, and
thereby the computer hardware may restrict the choice of sampling interval and the
achievable closed-loop bandwidth. This is especially important for plants with a large
open-loop time constant.

5.3.2 Avoiding limitation 1

Limitation 1 may be avoided by using a state space model which has no truncation
error. For example, the DMCss algorithm requires only 2 states to represent Eq. 5.48
for AT = 1, one state for the first order transfer function and one for the delay. More
states are needed if AT is less than the delay.

The OBMPC controller can also be used to avoid limitation 1. Instead of truncating
the response after n time steps (as would be the case with a DMC step response model)
we may use A, and B, in Eq. 5.32-5.33 to model the slow dynamics. This way we
can reduce the number of states required to represent the plant and thereby allow
a short sampling interval. A, and B, allows us to use any first order model of the
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Figure 5.3: Effect of truncation. Response for the SISO plant (Eq. 5.48) with DMC
controller A (Table 5.1). A unit step disturbance acts on the plant output at ¢t = 10.

slow dynamics. We could obtain an exact model of the plant in Eq. 5.49 by using
A, = e AT/ and B, = 5,41 — 5,. However, in this example we will approximate the
slow dynamics with an integrator, and select A, = 1, B, = s, 41 — S, and n = 30.

In Fig. 5.4 we compare the open-loop model response to a unit step in « at time 0
for the exact model (Eq. 5.48) (solid curve) with the truncated DMC model (Eq. 5.3-
5.4) (dashed curve) and the OBMPC model (Eq. 5.25-5.26) with the residual dynamic
approximation given above (dash-dot curve). The last model gives a large error as time
increases, but does not have the abrupt change at ¢t = nAT which is characteristic for
the truncated DMC model. In the frequency domain (Fig. 5.5), the truncated DMC
model is poor both at high and low frequencies. The integrating OBMPC model on
the other hand, yields excellent agreement with the exact model at high frequencies,
but displays large deviation at low frequencies.

Simulations with DMC and OBMPC (controllers A and D) are shown in Fig. 5.6.
The disturbance is a unit step on the plant output. We conclude that the rough
integrating approximation of the residual dynamics is better than the truncated model.
Note that controller D is tuned for ramp disturbances, & = 1 (to take care of the low
frequency mismatch) and some measurement noise, f, = 0.5 (to achieve high frequency
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Figure 5.4: Open-loop response to unit step in u at t=0 for different models of 525e™*
The DMC step response model is truncated at n = 30, AT = 1 (Eq. 5.3-5.4). The

OBMPC model uses A, =1, B, = sp41 — Sp, n =30 and AT =1 (Eq. 5.25-5.26).

robustness).

5.3.3 Limitation 2: Poor response for ramp-like disturbances

The DMC performance may be very poor for disturbances which do not act as steps
on the output. Fig. 5.7 shows the responses for the plant in Eq. 5.48 to a unit step
acting on the plant output and input, respectively. A DMCss controller is used in
both simulations in order to avoid truncation effects. The controller is tuned for dead-
beat control (controller B) and the output disturbance (solid curve) is rejected in one
sampling interval, since the disturbance is in accordance with assumption A2. The
response to the input disturbance (dashed curve) is extremely sluggish. The reason is
that a step disturbance on the input results in a slow, ramp-like disturbance on the
output. In this case assumption A2 does not hold and the output prediction used by
the algorithm is incorrect which results in poor performance. The response cannot be
improved by a different tuning since a dead beat controller gives the highest feedback
gain of any choice of I'; A, p and m for a given AT.
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Figure 5.5: Frequency response for different models of 10102116*5. The DMC step
response model is truncated at n = 30, AT =1 (Eq. 5.3-5.4). The OBMPC model
uses A, =1, B, = sp41— S, n =30 and AT =1 (Eq. 5.25-5.26). (Both these models

are multiplied with G(z) = [(z — 1)/z] to remove the inherent integrator.)

5.3.4 Avoiding limitation 2

An observer based MPC algorithm makes it possible to avoid the output step distur-
bance assumption (A2) which causes limitation 2. To demonstrate this we compare the
dead beat DMCss response (controller B) with the OBMPC response (controller D).
We also included a PI controller in this comparison to demonstrate the performance of
a very simple controller. The PI controller is tuned according to Ziegler-Nichols rules
taking into account an extra delay of half the sampling time (Table 5.1).

Responses to a unit input disturbance are shown in Fig. 5.8. The DMCss response is
sluggish, while the other controllers perform well. Actually, the PI controller is almost
as good as OBMPC for this simple plant.

The difference between the controllers is also illustrated in Fig. 5.9, showing the
sensitivity function vs. frequency. The DMCss controller yields a sensitivity function
with slope 1 for frequencies below the bandwidth. This shape of the sensitivity function
is optimal for step disturbances and is a consequence of assumption A2. However, for
“ramp-like” disturbances we need a stronger disturbance suppression at low frequencies.
With a DMC controller this can only be achieved by increasing the bandwidth of the
closed-loop system, since the shape of the sensitivity function is fixed (due to A2). The
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Figure 5.6: Responses for the SISO plant (Eq. 5.48) with different controllers (Ta-
ble 5.1). A unit step disturbance acts on the plant output at ¢ = 10.

maximum bandwidth for a given AT is obtained by using A = 0 (dead-beat) and if the
resulting suppression of low frequency disturbances is not enough, then a smaller AT
has to be used. With an OBMPC controller we may use « to adjust the disturbance
suppression.

Fig. 5.9 also shows that the sensitivity function for DMCss controller B goes to zero
at w = /AT rad/min. This is due to the dead-beat tuning and makes the controller
very sensitive to high frequency uncertainty, e.g. dead time uncertainty.

5.3.5 Limitation 3: Poor response for interactive MIMO
plants

In this section we will show that there are cases with model-plant mismatch when a
DMC controller does not perform well, even when the disturbance actually is a step
acting on the output.

There is always a certain mismatch between a real process and a model. The
mismatch has various sources: uncertainty in the model parameters and the model
structure, inaccuracies of the actuators and measurement devices, etc. Multivariable



5.3. LIMITATIONS OF DYNAMIC MATRIX CONTROL 101

— Output disturbance ]
------ Input disturbance

0 5 10 15 20 25 30 35 40 45 50
Time [min]

_1- L o o e e 2
0 5 10 15 20 25 30 35 40 45 50
Time [min]

Figure 5.7: Responses for the SISO plant (Eq. 5.48) with DMCss controller B (Ta-
ble 5.1). Solid curves: Unit step disturbance acting on the plant output at t = 10.
Dashed curves: Unit step disturbance acting on the plant input at t = 10.

systems introduce a special problem here because the “gain” of a multivariable process
varies not only with frequency, but also with “direction”. Skogestad et al. (1988) show
that if a plant is ill-conditioned irrespective of scaling, then the control performance
is strongly affected by input uncertainty, in particular, when the controller is trying
to invert the plant. The DMC controller is such a controller, especially, if the penalty
weight on input moves is low. Since there is always some input uncertainty, it should be
clear that a DMC controller is potentially bad when used for an ill-conditioned plant.

MIMO example

We use a distillation column as an example process. The model is from Skogestad and
Morari (1988) and is denoted “column A” in their paper. The column is described by
the following equations:

k11 ,—0s kiitkis  _kn —0s
[dyD _ 1—|—T1se ( 147258 1+’rls) € dL (5 49)
dx - ka1 —0s (kzl-l-kzz _ _kn ) —0s dV; :
B 1+TlsgL(S)e 147258 14718 € B
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Figure 5.8: Responses for the SISO plant (Eq. 5.48) with different controllers (Ta-
ble 5.1). A unit step disturbance acts on the plant input at ¢ = 10.

where gr,(s) expresses the liquid flow dynamics.

1
1+ (9L/nT)s)”T

gr.(s) = ( (5.50)
01, is the overall liquid lag from the top to the bottom of the column. ny in Eq. 5.50
should be equal to the number of trays in the column, but we use ny = 5 to avoid a
model of unnecessary high order. Reflux, L, and boilup, Vg, are manipulated inputs,
top composition, yp, and bottom composition, g, are controlled outputs. We use the
following parameter values; k11 = 0.878, k15 = —0.864, ko; = 1.082, k9y = —1.096, 77 =
194 min, 75 = 15 min, # = 1 min, §;, = 2.46 min and ny=5. Skogestad and Morari
do not include any specified delays in their model, instead they use a norm bounded
uncertainty description to cover the effect of delays and other unmodeled high frequency
dynamics. In Eq. 5.49 we assume the delays to be known and equal to 1 minute for
each transfer function. We do this only because known delays fit better into the MPC
framework.

Skogestad et al. (1990) demonstrate that a frequency dependent relative gain ar-
ray (RGA) (Bristol, 1966) is a useful tool to check how sensitive a plant is to input
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Figure 5.9: Sensitivity function vs. frequency for the SISO plant (Eq. 5.48) with
different controllers (Table 5.1).

uncertainty. Fig. 5.10 shows the (1,1) RGA element, A, 1, of the distillation column, as
a function of frequency. A;; is high (35.1) at low frequencies but falls to one at higher
frequencies. This shows that a DMC controller may have problems with low frequency
input uncertainty.

Effect of input uncertainty

We assume that there is 20% uncertainty in the input moves. From a singular value
analysis, one can determine that the worst steady state effect is obtained when the
uncertainties in AL and AVp act in opposite directions (Skogestad et al., 1988). In
the simulations we use

ALauctual = 1-2ALcomputed and AVBa,ctual = 0-SAVBcomputed- (551)

Responses for controller C (Table 5.1) to a 0.001 step disturbance acting on yp are
shown in Fig. 5.11. Errors in the input gains lead to very sluggish disturbance rejection
although the disturbance is in accordance with the DMC disturbance assumption. The
reason for this slow settling is that the effect of the errors in the manipulated inputs
is similar to the effect of input step disturbances.
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Figure 5.10: Magnitude vs. frequency plot of the (1,1)-RGA element of the distillation
column (Eq.5.49). The interactions are large at low frequencies (A ; ~ 35.1), but not
at high frequencies (A1 ~ 1.0).

This can also be demonstrated in a plot of the singular values of the sensitivity
function (Fig. 5.12). Both the solid curves (no uncertainty) have slope 1 which is a
consequence of the disturbance assumption. They also lie close to each other, which
shows that the sensitivity function is well-conditioned. Since the plant itself is ill-
conditioned we can conclude that the controller is compensating for the directionality
of the plant. Such a controller is basically inverting the plant and the system should be
sensitive to input uncertainty. Indeed, this is the case as seen both from the simulation
in Fig. 5.11 and from the large difference between solid and dotted curves in Fig. 5.12.
The dash-dot curve in Fig. 5.12 is included as a reference. It is an upper bound
on sensitivity functions which achieve about 20 min closed-loop time constant and a
maximum sensitivity peak of 2.

By comparing Fig. 5.10 and Fig. 5.12 we see that there is an excellent agreement
between the predicted effect of uncertainty, based on the RGA-plot, and the actual
effect seen in the sensitivity plot. (However, this sensitivity plot is only showing how
the control performance deteriorate for this specific input error (+20% in L and —20%
in V), and there may be an even larger effect for other error combinations of the
same magnitude, i.e. the plot is not showing the “worst case” of a norm bounded
uncertainty.)

5.3.6 Avoiding limitation 3

There are two different ways to deal with the problem caused by input uncertainty
demonstrated in Fig.5.12:

1 Use a controller that does not correct for the directionality of the plant.
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Figure 5.11: Responses for the distillation column (Eq. 5.49) with DMCss controller C

(Table 5.1). A 0.001 step disturbance acts on yp at ¢ = 10. Uncertainty as defined in
Eq. 5.51.

2 Increase the gain at those frequencies where the suppression of disturbances is poor.

The first method is suggested in Skogestad et al. (1988). It gives a controller with
somewhat sacrificed nominal performance, but the performance is much less sensitive
to uncertainty because the controller does not correct for directionality.

The second approach will work if the uncertainty only causes problem at low fre-
quencies. With this approach the controller is still sensitive to uncertainty, but this is
counteracted by increasing the controller gain at low frequencies to make the nominal
response much better than what is nominally needed.

We will now demonstrate the two approaches, using OBMPC controllers E and
F (Table 5.1). In both cases the residual plant dynamics for each input-output pair
is approximated by b;;/(z — a;;) where bj; = 8; jnt1 — Sijn and a;; = 0.995, i.e. a
first order response with a time constant approximately equal to 200 min and a gain
determined at the “truncation” step. The disturbance is assumed to have the same
dynamics as the plant, ¢.e. o; = 0.995.
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Figure 5.12: Maximum and minimum singular values of the sensitivity function for the
distillation column (Eq. 5.49) with DMCss controller C (Table 5.1). Uncertainty as
defined in Eq. 5.51.

Fig. 5.13 and 5.14 show responses for OBMPC controllers E and F, respectively, for
the same output disturbance as used in Fig. 5.11. The OBMPC controllers perform
well despite the uncertainty (Eq. 5.51) and suppress the disturbance much faster than
DMCss does (Fig. 5.11). The response of controller E is nearly unaffected of the
uncertainty. Controller F yields an almost perfectly decoupled response when there is
no uncertainty (i.e. xp is not affected by the disturbance in yp), while the response
with input error clearly demonstrates interaction between the two loops.

In the case of an input disturbance the difference between the OBMPC controllers
and the DMCss controller would be even larger, because of limitation 2.

The sensitivity plot for controller E is shown in Fig. 5.15. This controller is using
a high input weight and a large disturbance-to-noise ratio. The plot shows that this
controller does not try to invert the plant; the solid curves (no uncertainty) do not lie
close to each other. We can also conclude that it is insensitive to uncertainty since the
dotted curves (uncertainty defined in Eq. 5.51) lie close to the solid curves.

Fig. 5.16 shows the sensitivity plot for controller F. This controller has no weight
on the inputs (dead-beat Kj;pc) but is tuned for substantial measurement noise (f, =
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Figure 5.13: Responses for the distillation column (Eq. 5.49) with OBMPC controller
E (Table 5.1). A 0.001 step disturbance acts on yp at ¢ = 10. Uncertainty as defined
in Eq. 5.51.

0.22). From the plot we see that this controller is inverting the plant for frequencies
above w & 0.01 rad/min. Below this frequency it is still trying to invert the plant, but
it does not succeed, since the true plant and the model with approximated residual
dynamics are slightly different. This controller is sensitive to input uncertainty, in the
sense that nominal performance and performance with uncertainty are very different.
However, the low frequency controller gain is so high that even the performance with
uncertainty is satisfactory, except over a short frequency range.

Although controller F yields satisfactory performance, we may conclude that the
plant is rather sensitive to input uncertainty also at frequencies above the bandwidth.
Thus, the best tuning approach for this plant is approach 1 above, used for tuning
controller E.
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Figure 5.14: Responses for the distillation column (Eq. 5.49) with OBMPC controller
F (Table 5.1). A 0.001 step disturbance acts on yp at ¢ = 10. Uncertainty as defined
in Eq. 5.51.

5.4 Discussion

We have studied feedback limitations of unconstrained DMC with a quadratic objec-
tive function (Eq. 5.13). There are several variants of DMC: “original” DMC (Cutler
and Ramaker, 1980), DMC with least squares satisfaction of input constraints (Prett
and Gillette, 1980), DMC with constrained linear programming optimization (LDMC)
(Morshedi et al., 1985), DMC with constrained quadratic programming optimization
(QDMC) (Garcia and Morshedi, 1986). These variants use different optimizers but the
predictor is the same for all of them. Both the limiting assumptions (A1 and A2), which
we have studied, are implicit in the predictor and will not be avoided by modifying
the optimizer, so the results in this paper hold for all of these algorithms. The results
also carry over to the general case with constraints, since the issue of constraints only
affects the optimizer.

The requirement S, ~ 5,1 of assumption 1, can be avoided within the DMC
framework (as defined by Fig. 5.1) by using a general state space model instead of
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Figure 5.15: Maximum and minimum singular values of the sensitivity function for the
distillation column (Eq. 5.49) with OBMPC controller E (Table 5.1). Uncertainty as
defined in Eq. 5.51.

a step response model. However, the plant still has to be stable to ensure internal
stability. Assumption A2 cannot be avoided unless the constant matrix Z is exchanged
with a transfer function including states. This is most clearly seen in the DMCss
algorithm where the input to Z is g(k). (k) cannot be “filtered” by Z since it has no
states and therefore no knowledge of previous measurements. Using a gain different
form 1 in Z would not filter §(k), but rather introduce a steady state offset.

In this paper we have excluded the feedforward part of the algorithms, although
feedforward control is a standard feature of MPC. It is simple to include feedforward
in the algorithms by introducing measured disturbances as inputs to the predictor.
However, this does not affect our results, the feedback limitations are still present.

In the following we discuss some of the results and our choice of example processes
and controller tunings.

The SISO example (Eq. 5.48) has a time constant much larger than the time delay.
This parameter choice is made on purpose to demonstrate limitations .1 and L2, since
they are especially important when the time constant of the open-loop plant is large,
compared to the desired closed-loop time constant. In the SISO simulations we use
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Figure 5.16: Maximum and minimum singular values of the sensitivity function for the
distillation column (Eq. 5.49) with OBMPC controller F (Table 5.1). Uncertainty as
defined in Eq. 5.51.

controllers where the optimizer is tuned for dead-beat control. The reason for this
tuning is that we want to produce clear illustrative simulations where the controller
action is easy to understand. In real applications one should always use a non-zero
input weight A to achieve some robustness to noise and high-frequency model-plant
mismatch.

All the simulations presented in this paper are without measurement noise. Again
the reason is that we want to show clear illustrative simulations. (We have also per-
formed the simulations with noise and it does not change our results.)

We have demonstrated that a truncated step response model may cause severe
model-plant mismatch, both at high and low frequencies. Low frequency mismatch is
not critical as long as the “sign” of the process is correct, but high frequency mismatch
may yield an unstable system (Fig. 5.3). With the OBMPC controller truncation is
avoided. In controller D we use a rough approximation of the residual dynamics (an
integrator) to show that even this approximation is better than truncation.

The sensitivity plots for the distillation column (Fig. 5.12, 5.15 and 5.16) shows
singular values of the sensitivity function for no uncertainty and for one specific case
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of uncertainty. However, we have used the structural singular value, u, to check that
the controllers will perform well also for other cases of uncertainty (see Skogestad et
al. 1988, for instance).

We have not put any effort into finding the best approximation of the residual
dynamics, although that may have improved the OBMPC responses further, instead
the simplest choices of A, and B, are used throughout the paper. Hovd et al. (1991)
discuss how to choose A, and B, in an optimal fashion.

5.5 Conclusions

We have shown that there are situations where the feedback performance of DMC is
poor irrespectively of tuning. This poor performance is due to the two assumptions
(A1 and A2) made in the predictor part of the algorithm. This explains why the
performance cannot be improved by a different tuning — different tuning only affects
the optimizer part of the algorithm.

The Observer Based Model Predictive Control (OBMPC) algorithm by Lee et al.
(1991) allows us to avoid the limitations of DMC and still preserve all the attractive
properties of the DMC algorithm.

Nomenclature

A - state matrix

A - disturbance state matrix, Eq. 5.37
a - element in state matrix

B - input matrix

b - element input matrix

C - output matrix

fa - tuning parameter in filter gain K
f» - tuning parameter in filter gain K
7 - Eq. 5.12

K - Kalman filter gain

K. - Pl-controller gain

Kype - MPC feedback gain

kij - gain, Eq. 5.49

L - reflux

M - matrix in step response model, Eq. 5.3
m - input horizon

N - matrix in step response model, Eq. 5.4
n - model horizon

n, - number of inputs

n, - number of outputs

p - prediction horizon
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R - set point vector

S - step response coefficient matrix, Eq. 5.3
s - step response coefficient

T - disturbance input matrix, Eq. 5.25
AT - sampling time

t - time [min]

U - optimal control sequence

u - manipulated input

V' - noise covariance matrix

Vg - boilup

v - measurement noise

W - disturbance covariance matrix

w - disturbance

x - state variable

zp - bottom composition [kmol/kmol]
Y - output vector

Y - dynamic states of DMC predictor
Y - dynamic states of OBMPC predictor
Y - predicted output vector

y - controlled output

7 - measured output

yp - top composition [kmol/kmol]

z - shift operator

Greek symbols

« - parameter in disturbance model, Eq. 5.37

[' - output weighting matrix, Eq. 5.13

A - Au(k) = u(k) —u(k —1)

g - time delay [min]

A - input weighting matrix, Eq. 5.13

A1 - (1,1) RGA element

77 - Pl-controller integral time constant [min]

Ty, To - time constant [min], Eq. 5.49

w - frequency [rad/min]

wg - closed-loop bandwidth [rad/min]

Abbreviations

DMC - Dynamic Matrix Control

DMCss - Dynamic Matrix Control with state space model
MIMO - Multi Input Multi Output

MPC - Model Predictive Control

OBMPC - Observer Based Model Predictive Control
QDMC - Quadratic Programming Dynamic Matrix Control
RGA - Relative Gain Array
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Abstract

Multivariable 5 x 5 distillation control, ¢.e. control of levels, pressure and
compositions by one multivariable controller, provides opportunities to improve
the control performance as compared to decentralized control. Multivariable
interactions can be counteracted with a 5 x 5 controller. However, the main
advantage is automatic constraint handling which can not be realized by a fixed
linear 5 x 5 controller, but requires a solution based on on-line optimization,
for example, using a Model Predictive Control (MPC) strategy. A multivariable
control scheme also presents some difficulties. Unconsidered model uncertainty
may be a severe problem. It may also be difficult to tune the multivariable con-
troller. In this paper the MPC approach is combined with the Hoo/p framework
in order to obtain a robust design.
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Figure 6.1: One-feed two-product distillation column.
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system hits some constraint. For example, if a stabilizing loop saturates, the system
goes unstable. To avoid this, the plant has to be operated sufficiently far away from
the constraints, or facilities for loop reconfiguration have to be installed “on-top” of
the SISO controllers. For example, for a decentralized control scheme where pressure
(Pp) is controlled by manipulating the condenser cooling (Q¢) and maximum cooling
is reached, the controller has to be reconfigured and use, for example, heat input to
the reboiler (Qg) for pressure control.

From a theoretical point of view it is obvious that the ‘optimal’ controller should
use all available information (measurements, plant model, expected model uncertainty,
expected disturbances, known future setpoint changes, known constraints, etc.) to
manipulate all 5 inputs in order to keep all 5 outputs at their optimal values (5 x 5
control) (Skogestad, 1989). It is also clear that constraint handling is a very important
issue for this ‘optimal’ control scheme, since, in general, optimality is obtained at some
constraint, for example, maximum throughput.

A fundamental difficulty with any optimizing scheme is to define an objective func-
tion which yields a mathematically optimal solution in agreement with what is actually
desired. Another problem is to obtain sufficiently accurate information (measurements,
plant model, uncertainty bounds, etc.) to make the optimization worthwhile.

The purpose of this paper is to evaluate the opportunities and difficulties with
applying 5 x 5 control to a distillation column. The paper is organized as follows. In
section 6.2 we present a fairly rigorous non-linear 5 x 5 model, which, contrary to most
other distillation models, does not assume constant pressure (which would yield a 4 x 4
model). In section 6.3 we perform a controllability study using a linearized model. We
also consider a decentralized controller which leads to rather poor performance for the
example column in question. In section 6.4 we study the unconstrained multivariable
problem, using the H,-norm to measure control performance. This norm makes it
possible to specify desired responses in terms of closed-loop time constants, allowable
steady state offset and acceptable overshoot, and also allows us to address robustness
using the structured singular value, p (Doyle, 1982). In section 6.5 we consider model
predictive control using a state observer based MPC algorithm (Morari and Ricker,
1991). To obtain a robust controller, we first attempt to tune the unconstrained MPC
controller to mimic the performance of the robust H,/p controller by using p-analysis
and the weights obtained from the H, design. Of course, this may not be done directly
as an MPC controller behaves similar to an Hs-controller, which is not quite the same
as an Hy-controller (the norms are somewhat different). When the unconstrained
performance has been assessed using u, we use simulations to evaluate the performance
for the constrained case.

6.2 5 x5 Distillation Model

In this section we briefly present the distillation column which is used as an example
process in the rest of the paper. The example column separates a binary mixture into a
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Table 6.1: Column data

Feed (d): F = 1.0 [kmol/min]
zr(l) = 0.5 [kmol/kmol]
Pt = 011 [MPa]

Controlled

outputs (y): zp(l) = 0.99 [kmol/kmol]
zp(l) = 0.01 [kmol/kmol]
P, = 0.1 [MPa
Mp = 32.1 [kmol]
My = 11.0 [kmol]

Manipulated

inputs (u): Ly = 2725 [kmol/min]
Qr = 129.09 [MJ/min]
Qc = -129.02 [MJ/min]

D = 0.5 [kmol/min]
B = 0.5 [kmol/min]
Key hydraulic
parameters: I ~ 2.4 [sec|
Y1, ~ 93 [sec]
KQ(TOP) ~ 0.5
KQ( Bot) ~ 0.8

top and a bottom product of relatively high purity (99%). The column closely matches
“column A” studied by Skogestad and Morari (1988), but the model used here is much
more detailed:

1. Pressure is not assumed constant.
2. Vapor holdup is included.

3. Vapor flow rate from one tray to another is computed from the pressure difference
between the trays.

4. Liquid flow rate is computed from the Francis weir formula, including a corre-
lation between vapor flow and froth density (Bennett et al., 1983) such that a
change in vapor flow will have an initial effect on the liquid flow (the “K,”- or
“M-effect”, Rademaker et al., 1975).

The column has 39 trays plus a total condenser and a reboiler, and is modelled
using 41 control volumes. It is assumed that each control volume contains a perfectly
mixed two-phase system in thermal and vapor-liquid equilibrium. An implicit UV-flash
calculation is used to obtain liquid and vapor compositions, temperature and pressure
on each tray. This yields a model with 3 states (differential equations) per control
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Table 6.2: Data used in Fig. 6.2

Input Perturbation at t=20 min

Lr 2.724 to 2.729 kmol/min (0.18%)
Qr 128.849 to  129.049 kJ/min  (0.16%)
Qc  —120.018 to —128.818 kJ/min  (0.16%)
D 0.500 to 0.505 kmol/min (1.00%)
B 0.500 to 0.505 kmol/min (1.00%)

Output Range

Tp 0.987 to 0.993 kmol/kmol

B 0.007 to 0.013 kmol/kmol

Pp 0.099 to 0.107 MPa

Mp 31.000 to 33.500 kmol

Mp 9.500 to 12.000 kmol

volume (the molar holdup of each component and the internal energy), resulting in a
total of 123 states for the column with condenser and reboiler.

The nonlinear model has been implemented in the equation oriented simulation
package SPEEDUP (Pantelides, 1988). This package has been used to obtain the
steady-state solution and to linearize the system. The dynamic open-loop responses
presented in this paper (Fig. 6.2) were also obtained by using SPEEDUP, while the
closed-loop responses are linear simulations performed in MATLAB.

A summary of the column data is given in Table 6.1. Open-loop time responses
are summarized in Fig. 6.2 and Table 6.2. Note that a perturbation of Q¢ yields
inverse responses in all outputs except in Pp. The heat duties, Qg and )¢, are defined
positive if heat is added to the reboiler and condenser, respectively. Also note that
we assume that the heating and cooling duties are adjusted directly, that is, there
is no “self-regulation” and ()¢ and ) are not affected by changes in pressure and
temperature in the column. This may be the case, for example, if heat is provided
by condensation, and cooling is provided by boiling. This assumption yields a very
long time constant for the open-loop pressure response, and it may be estimated to be
about (M, + 4My)/F = 74 min., where M, and My are the total liquid and vapor
molar holdups in the column, condenser and reboiler, and F' is the molar feed flow.
This formula is derived from an overall heat balance assuming that the temperature
change is the same throughout the column. The factor 4 for the vapor holdup is a
typical value, and is due to the fact that cpy > cpr, and that some energy is needed for
evaporation when pressure increases. If we have self-regulation in the condenser, e.g.,
Qc =UA(Teo1 — Tp), then we get F + UA/cpy, in the denominator instead of F', and
the time constant is much smaller, typically about 2 min.
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Figure 6.2: Open loop step responses showing the effect of the 5 inputs (u) on the 5
outputs (y). 200 min simulation time. Perturbations and output ranges are displayed
in Table. 6.2

6.3 Controllability analysis

In this section simple linear tools (e.g., Wolff et al., 1992) are used to assess the
controllability properties of the plant, that is, to evaluate any inherent performance
limitations. The results from the controllability analysis are also used to specify re-
alistic requirements for control performance and thereby reduce the need for iterative
adjustments of the performance requirements, i.e. the ‘weights’ used to tune the con-
troller.

Conclusions drawn from some of the measures, such as the inputs required for
perfect control or the presence of RHP-zeros, are valid independently of the control
algorithm, while some other measures (CLDG, PRGA) only apply to decentralized
control.

The model used in this section was obtained by linearizing the non-linear model
using the linearization package CDI within SPEEDUP and then reduce the number of
states from 123 to 15, using ‘ohkapp’ from Robust Toolbox (Chiang and Safonov, 1992).
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Table 6.3: Maximum acceptable deviation (mad) for used scaling. (Units and order of
elements for these vectors are given in Table 6.1.)

Output error: Ymaa = [0.010.01 0.050 30. 10.]"
Setpoints: Tmaa = [0.010.010.025 0.5 0.5]"
Inputs: Umea = [2.7 130 130 0.5 0.5]7
Feed disturbances: d.q = [0.15 0.1 0.025]"

The open-loop model of the plant has two pure integrators, namely the holdups in
reboiler and condenser. These pure integrators may cause numerical problems for CDI
and for the model reduction routine. To avoid this problem, the levels are stabilized in
the non-linear model, before linearization, using very low proportional feedback from
the levels to D and B, respectively, thereby placing the eigenvalues at -0.0001 instead
of 0.

6.3.1 Scaling

RGA, poles and zeros are independent of scaling, but most other measures depend
critically on scaling. Therefore, all results and plots in the following are in terms of
scaled variables, i.e., all outputs, setpoints, inputs and disturbances are scaled by “the
maximum acceptable deviation” from the desired operating condition of each variable,
such that the scaled variables stay within +1 if the acceptable deviation limits are not
violated. The values used for scaling are tabulated in Table 6.3 For example, the scaled
reflux (input) is wy = ALyp/Ly, ,, where Ly, is the maximum allowed deviation in
reflux. From Table 6.3 Ly, = 2.7 kmol/min, and since this is equal to the nominal
flow, we get that u; = —1 corresponds to zero reflux and u; = +1 corresponds to a
reflux of 5.7 kmol/min.

Note that the performance requirement for the levels are very lax, as the allowed
error in Table 6.3 (30.0 and 10.0) is much larger than the allowed setpoint change (0.5
and 0.5). This is reasonable since we have no strict requirements for level control, but
rather want to use variations in level to avoid sudden changes in the product flows, D
and B.

6.3.2 Relative gain array (RGA)

The RGA (Bristol, 1966) was originally introduced as a steady state interaction mea-
sure and as a tool for input-output pairing for decentralized control. However, the RGA
may be computed frequency-by-frequency and used to assess interaction at frequencies
other than zero, and also to analyze sensitivity to input uncertainty for multivariable
control (Skogestad and Morari, 1987b). The frequency dependent RGA for a square
system G is defined by RGA(w) = G(jw) x (G71(jw))T where the symbol x denotes
element-by-element multiplication.
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The steady state RGA for the linearized 5 X 5 plant is:

Ly Qr Qc D B

Tp 36.76 —64.65 28.88 0.00 0.00
rg | —35.72 63.49 —26.76 0.00 0.00
Pp —0.04 2.16 —1.12 0.00 0.00
Mp 0.00 0.00 0.00 1.00 0.00
Mp 0.00 0.00 0.00 0.00 1.00

(6.1)

The conventional “LV-configuration”, which is considered for the decentralized con-
troller in this paper, corresponds to pairing on the diagonal elements.

The first observation from the steady-state RGA is that the 4,4 and 5,5 elements
are 1.0 while all other elements in columns 4 and 5 and rows 4 and 5 are zero. Following
the conventional pairing rule for decentralized control we should pair on elements close
to 1, 7.e. use D to control Mp and B to control Mpg.

The second observation is that the 3,3 element is negative. From the results of
Grosdidier et al. (1985) we know that a decentralized control scheme with integral
action paired on this negative RGA element leads to

1. The overall system is unstable, or
2. The pressure loop is unstable, or
3. The remaining system is unstable if the pressure loop fails.

In practice, this means that using ()¢ to control Pp and tuning for a stable pressure
loop and a stable overall system leads to instability if the pressure loop fails, e.g. if
Q¢ saturates. Thus, one must be very careful to avoid saturation in the pressure
loop if decentralized LV control is used. (Recall that we assume that the heat duties
Q¢ and Qg may be manipulated directly. If self regulation is included the negative
RGA-element will most likely disappear.)

The third observation is that there is strong two-way interactions in the upper
left 3 x 3 subsystem, while there is no two-way interaction in the rest of the system.
The physical explanation for the latter is that manipulation of D affects Mp, and B
affects Mpg, but has almost no influence on the other outputs. Thus, one of the main
advantage with the LV-configuration is that composition control is insensitive to the
tuning of the level loops.

The RGA elements (RGA;;) as function of frequency are shown in Fig.6.3 with the
diagonal RGA elements (i = j) as solid lines. We see that the RGA elements de-
creases as frequency increases, but there are significant interactions also at frequencies
corresponding to the expected closed loop bandwidth (w ~ 0.1 [rad/min]).

The 3 x 3 interaction for the composition and pressure subsystem could in principle
(if there was no uncertainty) be corrected for by a multivariable controller, for example
a decoupler. However, the large RGA elements (Fig. 6.3) at frequencies around the
closed-loop bandwidth signal high sensitivity to diagonal input uncertainty (Skogestad
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Figure 6.3: Relative Gain Array elements as function of frequency (solid lines: diagonal
elements).

and Morari, 1987b) and thereby prevent the use of a decoupler. Thus, we may already
at this stage conclude that it is essential to consider input uncertainty when tuning a
multivariable controller for this plant.

6.3.3 RHP-zeros

The 5 x 5 model has no multivariable right half plane (RHP) zeros. However, there are
RHP zeros in several elements of the 5 x 5 model, as shown from the inverse responses
in Fig. 6.2. Specifically, a change in cooling duty )¢ yields inverse responses for all
outputs, except for the pressure. The main reason behind this is that a change in
Qc, with the other manipulated inputs kept constant, yields an inverse response for
the vapor flow V entering the condenser: Initially, an increase in cooling yield a fast
increase in V. However, with increased cooling, ()¢, and constant heating, QJg, the
column temperature starts decreasing, and the heat of vaporization increases leading
to a steady state decrease in Vi = Q¢/H"P. The inverse responses in the outputs
are very slow (zero locations: z13 = 0.0367; 293 = 0.0264; 243 = 0.0204; 255 = 0.0580
min~'), so for single-loop control the cooling duty can only be used to control the
pressure. However, this means pairing on a negative RGA-element and results in the
complications described in the previous section. Using the results from Hovd and
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Skogestad (1992) we know that the negative RGA (3,3-element) must imply that there
is a RHP transmission zero in the remaining subsystem, since there is no RHP zero
in the 3,3 SISO-element itself and no 5 x 5 RHP transmission zeros. Indeed, we find
that the upper 2 x 2 system (from Ly and Qg to p and zg) has a RHP transmission
zero at 0.0129 min~! (the lower 2 x 2 system is decoupled and does not influence this
value). This RHP transmission zero implies that fast control of both compositions
(closed loop bandwidth less than about 75 min.) requires that the pressure controller
is functioning, if SISO pressure control paired on the 3,3 element is used.

6.3.4 Input saturation

Input saturation imposes a fundamental limitation on the control performance. The
inputs required for perfect control are u = G~!'r + G71G4d. Thus, in terms of scaled
variables the elements in the matrices G~' and G~'G, should be less than 1 in the
frequency range where control is needed. For our example, with the allowed variations
in the inputs as given by u,,.q in Table 6.3, we find from frequency-dependent plots
of the elements of these matrices (not shown) that input saturation is not a serious
problem for this plant, not even at relatively high frequencies.

6.3.5 Decentralized control

From the frequency-dependent RGA-plot in Fig.6.3 we note that the diagonal elements
are fairly large (about 3) also in the frequency-region important for control, w ~ 0.1
rad/min. Thus, we can expect interactions at these frequencies when decentralized
control is used.

To evaluate decentralized performance for setpoint changes the Performance RGA,
which is scaling dependent, is the appropriate tool. This is not shown here, but one
main finding is that the worst setpoint change is for top composition, zp s, and in
particular that a strong interaction is expected for the pressure.

The closed-loop disturbance gains (CLDG) yield the effect of disturbances under
decentralized control. For all outputs the worst disturbance is the feed rate F', and the
effect of this disturbance is given in Fig.6.4. The bandwidth requirement for rejecting
a 15% disturbance in F' is about 14 min for top composition (zp), 7 min for bottom
composition (zg) and 6 min for top pressure (Pp).

The controllability analysis for decentralized control indicates that xp ¢ is the most
difficult setpoint to track and F is the most difficult disturbance to reject (for this
system and with the scalings used here). This has also been confirmed by simulations.
All simulations presented in the paper will therefore show responses to changes of zp s
(+0.01 kmol/kmol, i.e. +1 in scaled variables), and F' (+15% of nominal feed, +1 in
scaled variables).

One conclusion from the controllability analysis is that it is difficult to obtain high
control performance with decentralized control due to the strong 3 x 3 interaction. This
is confirmed by the simulation in Fig. 6.5. The controller used in the simulation was
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Figure 6.4: Closed Loop Disturbance Gain for decentralized control.

tuned to yield a closed loop time constant of 3 min for the pressure loop, about 15 min
for top composition zp and 8 min for the bottom composition zp (individually, i.e.,
without considering interactions). The level loops, which have essentially no effect of
the rest of the system, were very loosely tuned to closed loop time constants of 30 min.

Fig. 6.6 demonstrates that the system, with decentralized control, goes unstable if
Q)¢ saturates (the active constraint in the simulation is Q¢ > 0).

Remarks on decentralized control: ()¢ can in practice only be used to control the
pressure, since all other outputs yield very slow inverse responses to changes in Q¢.
However, this means pairing on a negative RGA element which make the system highly
sensitive to pressure control failure.

6.4 H./u control

6.4.1 Weight selection

In this section we study the unconstrained control problem using the H,/u framework.
The purpose is to study possible improvements in performance with multivariable con-
trol. The H,.-norm is used because it is rather straightforward to specify the desired
responses in terms of ‘classical’ measures such as closed-loop time constants, allowable
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Figure 6.5: Simulated decentralized control performance for setpoint change in xp at
t = 0 and 15% feed disturbance at ¢ = 100 min. Upper plot: Scaled controlled outputs.
Lower plot: Scaled manipulated inputs.
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Figure 6.6: Simulated decentralized control performance with constraint Q¢ > 0, for
setpoint change in xp at t = 0 and 15% feed disturbance at ¢ = 100 min. Upper plot:
Scaled controlled outputs. Lower plot: Scaled manipulated inputs.



Figure 6.7: Block diagram for robust H.-problem.

steady state offset and acceptable overshoot. Furthermore, one significant advantage
with the H,,-norm is that it allows worst-case model uncertainty to be included ex-
plicitly (using the structured singular value, denoted SSV or u).

The block diagram in Fig. 6.7 defines the problem studied in this section. K is the
controller to be designed. It may be a two-degree-of-freedom (TDF) controller with
separated inputs 7 (setpoint) and y,, (measured outputs) as in the figure, or with a
one-degree-of-freedom controller (ODF) with input r — yy,.

G is the normalized (scaled) plant model with 8 inputs (5 manipulated inputs
u and 3 unmeasured disturbances d) and 5 outputs y. The scalings used for the
normalization of GG are given in Table 6.3. W,, W, and W,, are weight matrices for
setpoints r, disturbances d and measurement noise n, respectively. W, and W, are
weights on deviation from desired setpoint, e, and manipulated inputs, u, respectively.
The weighting matrices are diagonal with elements [W,] = Tmaa/Ymad, [Wa] = 1, [Wh] =
0.01,[W,] =1 and

Wd(s) = 3 S,

= — Mg=2,A=0.0001 6.2
MS TclS+A ) S ) ( )

with 7, = [30 30 30 60 60] min. For the compositions, for which the setpoints r and
controlled outputs y have identical scalings, Mg is the maximum allowed peak of the
sensitivity function and 7, is the required closed-loop response time for that output.
Note that A is very small so that integral action is in practice required for all outputs.

Model uncertainty is represented by W;D;'A;D; = W;A; which models input un-
certainty, and D,'A,D,W, = A,W, which models output uncertainty. A; (and A,)
is any diagonal matrix with H.,-norm less than one, and the D’s are scalings for the
p-problem as discussed below. W; = 0.1 I5«5. and W, = (a/gﬁ x I5y5, corresponding
to 10% relative gain uncertainty in each input, and a delay of up to approximately 6 =
1 min in each measurement.

We arrived at this problem formulation and these weights through several steps,
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starting with a pure H,,-problem with only setpoints and no uncertainty and ending up
with the overall u-problem as defined by Fig.6.7. In the following we shall go through
some of these steps because it yields some insight.

6.4.2 Setpoint tracking with no uncertainty

This corresponds to the case with d= 0,A; =0,A, =0 and yields a pure H,-problem
for which synthesis software is readily available (Balas et al., 1991, Chiang and Safonov,
1992). The optimal controller yields a closed-loop Hs-norm equal to 0.83. Since this
is less than 1 the performance requirement for the worst case direction is achieved
with some margin. The H..-controller uses rather high gains at high frequencies; the
‘roll-off’ frequency is about 10 [rad/min]. This is typical for all the cases we studied
and it may be avoided by using a slightly sub-optimal controller with higher H,.-norm.
This sub-optimal controller yields a blend of H, and Hs optimality (which is desirable
since our ultimate objective is to use model predictive control which uses the Hy-norm)
with ‘roll-off” at a lower frequency than the optimal H..-controller, resulting in better
robustness with respect to high frequency uncertainty. For this case a sub-optimal
controller with H,-norm equal to 1.0 (rather than 0.83) gave approximately the same
low-frequency behavior as the optimal controller, but a ‘roll-oft’ frequency of about 0.2
[rad /min].

The obtained suboptimal controller is a ‘full’ 5 x 5 controller, however, a more
careful analysis of the controller reveals the following two interesting properties:

1) The controller may be decomposed into one 3 x 3 composition and pressure controller
and two single-loop controllers for the levels, corresponding to a multivariable LV-
configuration.

2) The 3 x 3 pressure and composition controller is essentially a decoupler. This may
be seen by evaluating the condition number of GK.

These two statements are not true when disturbances and/or uncertainty is considered,
as discussed below.

Remarks: For setpoint tracking of this system without uncertainty there is 1) No
advantage in using the information from Mp (Mp) to compute manipulated inputs
other than D (B), and 2) No advantage in computing D (B) based on information
from measurements other than Mp (Mp). 3) No advantage with TDF controller, since
there are no uncertainties and no disturbances.

6.4.3 Including model uncertainty

Robust performance analysis of the system in Fig.6.7 with model uncertainty, is per-
formed by connecting the scaled outputs [¢4]7 to the scaled inputs [fda]” through
a “performance perturbation” Ap and then rearranging the system into the MA-
structure shown in Fig.6.8 where A = diag{A;, A,, Ap}. To analyze such a system we
must use the structured singular value, u, instead of the H,-norm. In this paper we use
as a tight approximation for p the scaled Ho,-norm, minp |[DM D ?!||. The structure



Figure 6.8: M — A structure for p-analysis.

of the D-scales depend on the model uncertainty. In our case with diagonal uncertainty
at the input and the output we get D = diag{D;, D,, Is} where D; and D, are diagonal
matrices each with 5 entries which are “adjusted” to minimize the scaled H,,-norm
above. The p-optimal controller is then obtained by D K-iteration (Doyle, 1983) : 1.
K-step. Fix D and obtain K by minimizing the Hy-norm (ming ||DM(K)D || - 2.
D-step. Obtain D-scales by computing x using the upper bound, minp ||[DM D™}| .
These D-scales are frequency-dependent and are fitted to low order transfer functions.
One iterates between these two steps until convergence. Note that convergence to the
p-optimal controller is not guaranteed with this procedure, although it usually works
well if the problem is reasonably scaled to begin with. Usually only a few iterations
are performed such that a sub-optimal p-controller is obtained.

6.4.4 Setpoint tracking with input uncertainty

To consider the effect of model uncertainty we added input uncertainty (but no dis-
turbances or output uncertainty) and obtained an ODF controller by D K-iteration.
Actually we found that the controller obtained by using D; = I5.5 was almost as good
as any other controller. It yields urp = 0.938. This value could possibly be reduced a
few percent by a more sophisticated higher order D-scale, but after a few D K-iterations
with only slightly reduced pugrp we decided to use D; = I545. This choice leads to a
low order controller and it also makes it easy to apply the H.,/u weights in the MPC
design (see section 6.5).

In Table 6.4 the gains of the ODF controller at frequency w = 0.01 rad/min are
given. The main difference between this controller and the controller designed for no
uncertainty is that this controller does not invert the plant. Also note that the diagonal
elements are the largest elements in each row/column. A second difference is that the
level measurements Mp and Mp are not only used to compute D and B, but have a
major impact also on the other manipulated variables. However, note that D and B
are almost only affected by Mp and Mpg. We found that this H,,-controller can be
reasonably well approximated by a decentralized L /D V/B - configuration (compare
with Eq.11 in Skogestad and Morari, 1987a). In this scheme D is computed from Mp,
B is computed from Mp, but Lz is computed from both xp and Mp and V is computed
from both zp and Mpg. These results are consistent with earlier findings which found



130 CHAPTER 6. OPPORTUNITIES AND DIFFICULTIES...

Table 6.4: Controller element-by-element modulus at w = 0.01 rad/min.

€zp €zp €prp €Mp €My

Ly | 1.4289 0.3660 0.2290 1.1815 0.7863
Rr | 0.1913 0.9435 0.4865 0.3867 0.4439
Qc 1 0.3328 0.7201 0.7358 0.4851 0.0370
D |0.0663 0.0339 0.0193 1.3192 0.1242
B | 0.0875 0.0986 0.0376 0.3217 0.7884

that this configuration has much lower RGA-values and is preferable when there is
input uncertainty.

Remarks. 1) Here we do not consider any disturbances, and the reason for utilizing
the level measurements when computing Lz, Qg and Q¢ must be that the effect of the
input uncertainty shows up in these measurements. 2) The required bandwidth for the
pressure response is not very high, however, the controller tuned for input uncertainty
‘chooses’ to use a high pressure bandwidth to reduce the effect of the uncertainty. 3)
A two-degree-of-freedom controller improves the performance in this case. It yields
trp = 0.94 using D = I5«5. Again this is explained by the fact that the uncertainty
acts as a disturbance.

6.4.5 Including disturbances and output uncertainty

Including disturbances and output uncertainty to the problem, yields the system shown
in Fig. 6.7. This system will after a few D K-iterations yield a controller of rather high
order, due to the D-scales. To avoid this high order controller, we use a problem
formulation without output uncertainty when synthesizing the controller, and then
check the performance using p-analysis on the full problem.

It turns out that the neglected measurement delays (high frequency output uncer-
tainty) can be dealt with by using a sufficiently sub-optimal H,-controller. The finding
from the previous section, that D; = I5.5 is a good D-scale simplifies the design even
further to a pure H-problem.

The controller used for the simulations shown in Fig. 6.9 was obtained by Heo-
synthesis using a problem with setpoint changes, disturbances, noise and input un-
certainty, but without output uncertainty. To obtain robustness w.r.t. the neglected
measurement delays (high frequency output uncertainty), we synthesized a sub-optimal
Ho-controller with H,,-norm 1.35. Then we computed p for the full problem. ugp
with output uncertainty is 1.21 and pgs is 0.99, ¢.e. the performance is not quite as
good as required by the weights, but stability is guaranteed for the worst case plant.

The response of this controller is shown by the dashed lines in Fig.6.9. As seen it
performs much better than the decentralized controller shown in Fig. 6.5
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6.4.6 Final remarks

Some final remarks seem in order. Most of these are in accordance with previous
findings.

1) With the scalings used for the plant, the optimal input uncertainty D-scales are
close to 1 for all cases. The optimal D-scales for the output uncertainty are about 5.

2) The weights were chosen to yield p ~ 1+ 0.2 for all problems. The reason is
that interpretation of y is difficult if it is too different from 1.

3) A controller designed for setpoint changes only, does not perform well if distur-
bances are considered.

4) A controller designed without considering input uncertainty performs poorly
with input uncertainty.

5) A controller designed without considering output uncertainty performs well if
the controller is slightly H, sub-optimal.

6.5 Model Predictive 5 x 5 control

In this section we use a Model Predictive Control algorithm which involves constrained
on-line optimization over a finite receding horizon to explicitly address input con-
straints. There are several different variants of these schemes, but they differ mainly
in the way that future outputs are predicted. The commonly used QDMC algorithm
(Garcia et al., 1986) makes the crude assumption that all disturbances act as steps on
the outputs, but as shown by Lundstrom et al. (1991b) this may lead to poor results
when both compositions are controlled. Therefore, we use a state observer based MPC
algorithm with a steady state Kalman filter gain'. The tuning parameters for this MPC
controller are: H, the output prediction horizon, H, the control horizon, A, output
weight, A, input weight and Ky the Kalman filter gain. The filter gain is a function
of the disturbance model and the disturbance and noise covariance matrices.

Resently Lee and Yu (1994) presented tuning rules for obtaining robust MPC per-
formance. For the case of diagonal input uncertainty they penalize the input moves
using A, in order to obtain robustness. Applying this method to the distillation prob-
lem from Skogestad et al. (1988) gave urp = 2.23, whereas the optimal value is known
to be less than 0.978 (Lundstrom et al. 1991a). This is not satisfactory, therefore, in
this paper we do not use the input weight A,, but the observer parameters to obtain
robustness with respect to input uncertainty.

Our main objective is to use the weights obtained from the rigorous robustness
analysis in the previous section as a starting point for weight selection for the MPC
controller. There are several difficulties here. First, the MPC scheme uses the Hs-norm
rather than the H,,-norm. Second, the MPC controller is a finite horizon controller
which contains additional tuning parameters. Third, uncertainty can not be included
explicitly.

'The MPC controller we use here is from the program “scmpc” in the the MPC-toolbox for MAT-
LAB (Morari and Ricker, 1991).
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In spite of these difficulties, we were able to tune the MPC controller to mimic
the p-controller very closely. One reason for this success is probably that the H, /-
controller is sub-optimal and therefore “Hs-ish” and easier to mimic with MPC. The
final tuning of the response time was done by adjusting a single parameter « in the
output weight to minimize p in the robustness problem defined in the previous section.
The input uncertainty was in the MPC design represented by opening the loop through
A;, which results in a weight (D;) penalizing the use of u and a disturbance weight
(W;D; ') acting on the plant inputs. Output uncertainty was not included since the
robustness analysis found that this uncertainty was not crucial. The tuning parameters
are summarized next.

Optimization part of MPC' controller.

Sampling time: 1 min, horizons H, = 60 and H, = 3.

Ay =aWe Ay, = |W,|+ |D; (6.3)

(where W, and W, are the H,-weights and D; the D-scale representing the input
uncertainty).

Kalman filter part of MPC' controller. Augmented disturbance model to include
model uncertainty

Gy =C(sI — A)7'B = G diag{W;D; ', W,} (6.4)

This leads to the Kalman filter gain K; = P;CTV ™! where P; is obtained by solving
the Riccati equation P AT + APy — P;CTV~'CP; + BW BT = 0 where the covariance
matrices for disturbance is W = I3 and for noise is V = W2

For each value of a we obtained the frequency response of the discrete controller
and added zero order hold elements at the controller outputs. Using the same problem
specification as in the previous section we then minimized g and obtained a value
i = 1.15 for @« = 0.03. The linear robust performance was thus in fact somewhat
better than the sub-optimal H-controller obtained in section 6.4.5

The solid lines in Fig.6.9 show the simulated performance of the MPC controller
when no constraints are active, that is, when it behaves like a linear controller. The
response is seen to be very similar to the py-optimal controller found previously (dashed
lines). The main difference is the speed of response of the levels and the use of inputs
D and B.

Fig.6.10 shows the MPC responses when ()¢ is constrained to be at its nominal
value. As we see, the MPC controller preserves stability, and manages to keep the
levels and the pressure close to their desired values. However, the composition control
is relatively poor since these can not be maintained at their setpoints when one degree
of freedom is lost.

Some final remarks.

1. In the simulations we used a 1 minute delay in each measurement and used -10%
input gain error in all inputs except Qg which has +10% uncertainty.?

2This input uncertainty was found to be the worst of all £10% combinations.



6.5. MODEL PREDICTIVE 5 x 5 CONTROL 133

| | | |
50 100 150 200 250 300
Time [min]

0.4 ! ! ! ! !
0 50 100 150 200 250 300
Time [min]

Figure 6.9: Simulated unconstrained control performance for setpoint change in zp
at t = 0 and 15% feed disturbance at ¢ = 100 min. Solid lines: MPC. Dashed lines:
p~controller Upper plot: Scaled controlled outputs. Lower plot: Scaled manipulated
inputs.
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Figure 6.10: Simulated MPC performance with constraint ()¢ > 0, for setpoint change
in zp at t = 0 and 15% feed disturbance at ¢ = 100 min. Upper plot: Scaled controlled
outputs. Lower plot: Scaled manipulated inputs.
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2. The unconstrained simulation shows that the controller performs well both for
setpoint tracking and disturbance rejection. No excessive input usage is required. The
performance for the outputs in Fig.6.9 is significantly better than for the decentralized
scheme shown in Fig.6.5.

3. In the constrained case the use of a MPC scheme avoids the need for complicated
logics including overrides and retuning. If the decentralized control scheme from Section
6.3 is used, then the system goes unstable when )¢ is fixed. The multivariable p-
controller does not go unstable, but performs very poorly, and simulations show that
it goes unstable when Qg is fixed.

4. In the simulations there was given no forewarning about the desired setpoint
change at ¢ = 0. Most controllers are causal and would not be able to make use of
this information, but in many MPC implementations such information may be used.
For example, if at ¢ = —100 min the MPC optimizer was told that a setpoint change
is desired at ¢ = 0, then it would immediately start changing the inputs to make the
transition as fast as possible.

6.6 Discussion

It is often desirable to use a compensator-based controller which retains some of the
simplicity of a decentralized controller, that is, K = C}Kyiae(s)C2 where C; and Co
are fixed matrices (or at least contain very simple dynamics) which take care of the
interactions whereas Kgi,q consists of simple single-loop controllers to take care of the
dynamic effects. One insight from analyzing the optimal multivariable controllers is
that a precompensator Cs (mixing of measurements, that is use level measurement also
for composition control) is useful, while a postcompensator C; (mixing of inputs) is
less useful due to the presence of input uncertainty. A pure precompensator scheme is
sometimes implemented as a regular decentralized control scheme, but with a “feedfor-
ward” action from the disturbances, where disturbances are estimated from level and
pressure measurements. Another insight is that a multivariable prefilter (two degree of
freedom controller) may reduce the interactions for setpoint changes. Although such
schemes may improve the multivariable properties of the controller, they will still need
special logics to handle constraints.

The reboiler and condenser holdups of a distillation column (and to some extent
also the pressure) do not have to be tightly controlled, but may be considered ‘slack’
output specifications. The slackness of these specifications yields a system which may
be viewed as a temporarily non-square system with access of inputs. That is, as long as
the levels Mp and Mg are within their upper and lower limits we may use all five inputs
Lr,Qgr,Qc, D and B to control three outputs xp,xp and Pp. At first we thought this
may be used to improve performance. However, in the case of a distillation column, the
‘freed’ variables D and B are not effective for controlling xp, x5 or Pp, so the slack level
requirements cannot be used to improve the composition or pressure control, however
the slack specifications are often used to eliminate fast variations of the inputs D and
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B.

6.7 Conclusions

The results in this paper indicate that the main advantages with 5 x 5 distillation
control are the improved disturbance detection by indirect use of the level and pressure
measurements, and the explicit input constraint handling. One difficulty is the tuning
of the controller, but in our example we were able to tune the MPC scheme quite
easily to get acceptable robustness. The following procedure was used: 1) Define a
robust H.-problem with an optimal p-value close to 1. 2) Use the weights and scaling
found for this problem to derive MPC tuning parameters. The critical uncertainty,
in this case at the inputs, is represented as fictitious disturbances. 3) One adjustable
parameter in the MPC controller is used to minimize p. 4) Time simulations are used
to check the results and possible adjust some weights. The resulting controller is not
‘optimal’ in any mathematical sense, but was found to perform very well.
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Chapter 7

Final Discussion and Conclusions

7.1 Discussion

This thesis deals with robust multivariable distillation control, using the structured
singular value (SSV, p) as a robustness measure. Multivariable controllers are designed
both by DK-iteration (u-synthesis) and by use of a Model Predictive Control (MPC)
technique. The purpose with the thesis is to derive and present guidelines for how to
deal with uncertainties and constraints using the structured singular value framework
and MPC.

The thesis starts with a study on performance weight selection, 7.e. how to choose
control objectives in the u-framework. Then uncertainty weight selection is considered,
i.e. how to model the mismatch between the plant and a nominal model. The results
from these two steps are then applied in the design of a two degree of freedom controller.
Limitation of one of the most common MPC algoritms is then studied, and finally u
and an improved MPC algorithm are used to design a 5 x 5 multivariable controller
for a distillation column.

Through the work with this thesis it has become clear (in the authors opinion)
that p is an excellent tool for analysis of uncertain systems. The p-framework is also
useful for controller synthesis, althoght it is not very likely that p-optimal controllers
will be implemented for process control applications. Instead, the main reason for
synthezising a p-optimal controller is to assess the limits for achievable control with
an unconstrained linear controller.

The paper on which chapter 2 of this thesis is based (Lundstrém et al., 1991) has
had some impact on the use of p, for example, Craig (1993) uses and refers to Eq. 2.13
in a controller design study for a run-of-mine milling circuit.

A second effect of this paper is based on the presented ‘u-optimal’ controller. This
controller is very close to the ‘true’ p-optimal controller, and due to this, it has ‘u-
optimal’ properties which may be studied. Engstad (1991) examined this controller and
showed that it could be decomposed into an “SVD”-controller, i.e. a diagonal controller
with pre- and post-compensators obtained from a singular value decomposition of the
plant. Later, Hovd et al. (1993) refined these findings and proved that the true u-
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optimal controller for this problem is indeed an SVD-controller. Hovd et al. also
showed that the structure of the uncertainty is unimportant for this example.

Previously in this section it is stated that it is not very likely that p-optimal con-
trollers will be used for process control applications. However, there are other appli-
cations where p-controllers seem to be ideal for implementation. Consider a technical
device, produced in a large number, which requires rather complicated feedback con-
trol in order to function properly. In such a situation it may be very expensive to
tune each controller individually. Instead one may use u and specify a nominal model
of the device and an uncertainty set which covers the normal differences between the
produced devices, and then design one p-controller which performs well for the entire
set of possible devices.

The theorectical foundation for Model Predictive Control has improved during the
last years. In particular it seems clear that the receding horizon approach does not
provide any advantages to an infinite horizon approach. This means that the observer
based MPC algorithm used in this thesis can be further improved. The tuning approach
used in chapter 6 is valid also for an infinite horizon algorithm.

7.2 Conclusions

The main contributions of this thesis are summarized below:

Chapter 2. The chapter exemplifies different approaches to performance weight
selection when using H,-objectives. The approaches presented here have been used
by other researchers, as discussed in the introduction of the chapter. The contribution
of this chapter is the discussion, comparision and exemplification of the approaches. A
second contribution is the improved controller presented for the problem proposed in
Skogestad et al. (1988).

Chapter 3. This chapter presents tight approximations of gain and delay uncer-
tainty on linear fractional form, suitable for the u-framework. Two of the presented
approximating sets are special cases of the uncertainty model studied by Laughlin et
al. (1986, 1987), but the other approximations are new. These new approximations
are contributions on there own;

Set Il yields an analytical expression for the smallest complex perturbation that
covers a gain-delay uncertainty,

Set [Icr yields a rational low order outer approximation recommended for p-synthesis,
Set Il yields a non-conservative and non-optimistic approximation using mixed
real /complex perturbations,

Set [Iyr yields an arbitrary tight approximation which should be suitable for synthesis
when synthesis methods for mixed perturbations becomes available.

The paper also demonstrates that tightness obtained from tight modelling with real
valued perturbations may be lost when computing p, due to the looser upper and lower
bounds obtained from mixed-u problems as compared to pure complex problems.

Chapter 4. A detailed Two-Degree-of-Freedom controller design using the pu-
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framework is presented. The paper demonstrates how a given set of specifications may
be transformed/approximated into frequency dependent weights which specifies a -
problem. Gradual refinements of p-specifications are also shown, and the effects of
such refinements are illustrated. The controller presented in this chapter demonstrates
that all performance requirements in Limebeer’s CDC problem (1991) are obtainable.

Chapter 5. It is shown that there are situations where the feedback performance
of Dynamic Matrix Control is poor irrespectively of tuning. The poor performance is
due to two essential assumptions made in the predictor part of the algorithm. This
explains why the performance cannot be improved by a different tuning, since this only
affects the optimizer part of the algorithm. It is also shown that a new MPC algorithm,
which includes an observer, does not suffer from the limitations of DMC, but preserves
all attractive properties with DMC.

Chapter 6. An ad hoc method for robust tuning of an observer based MPC
algorithm is proposed. With this method a p-controller is first synthesized and then
the weights and D-scales (obtained from the p-synthesis) are used to tune the MPC
controller. Only the unconstrained performance of the MPC controller is considered.

The paper also demonstrates severe problems for decentralized control of a distilla-
tion column where heat duties in reboiler and condenser are directly manipulated. The
decentralized system goes unstable if the pressure control loop is lost, for example due
to condenser cooling saturation. The MPC controller handels this saturation without
going unstable.

7.3 Directions for Future Work
7.3.1 Tuning of MPC

The tuning procedure presented in chapter 6 is ad hoc but yields reasonably tuned
controllers for the problems we have studied.x However, further work on robust tuning
of MPC controllers is needed, also for the unconstrained case.

7.3.2 u synthesis

The controller designs by DK-iteration presented in this thesis (chapters 2, 4 and
6) have demonstarted that the choice of initial D-scales are important. This is not
surprising, since D K-iteration is not guaranteed to converge to the optimal solution.
However, it shows that it would be useful to have guidelines for how to choose the initial
D-scales. The results in this thesis indicates that physically based scaling of inputs and
outputs, like in chapter 6, makes D = I a reasonable choice. However, more research
could give a better understanding of the importance of the initial D-scales.

Another issue related to the one above is the following: The two uncertainty per-
turbations W;Ay and Ay W; are equivalent from a modelling point of view, but yield
different optimal D-scales. Is it possible to say when one of the two alternatives is
likely to yield a better result than the other when used for D K-iteration?
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7.3.3 Implementation of y-controller

Practical problems with implementation of p-optimal controllers should be studied.
For example, how do one handle anti-windup?

7.3.4 5 x 5 control

The study on 5 x 5 control presented in chapter 6 should be continued. For example,
a study where different condensers and reboilers are used (and the heat duties are
not directly manipulated variables) would be interesting. The main difference between
studying a 5 x 5 model and a 2 x 2 model is that in the first case we do not have
to assume any pairing and therefore the obtained results are more general, .e. all
possible 2 x 2 cases are coverd. The insights obtained from such a study could be used
to determine

1) For what kind of columns is multivariable control substantially better than decen-
tralized control?

2) How much performnce (measured in terms of p or another measure) is lost when
decentralized control is used?

3) What effect does different designs, for example differnt reboilers and condensers,
have on controllability?
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