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Abstract

A chemical plant may have thousands of measurements and control loops. By the term
plantwide control it is not meant the tuning and behavior of each of these loops, but rather
the control philosophy of the overall plant with emphasis on the structural decisions. The
structural decision includes the selection/placement of manipulators and measurements as
well as the decomposition of the overall problem into smaller subproblems (the control con-
figuration).

Based on a review of the existing methods, a plantwide control design procedure is pro-
posed. The procedure starts with a top-down analysis of the plant. Where the emphasis is on
selecting controlled variables, which will give an easy and more robust optimization. This is
achieved by controlling the active constraints, and for the unconstrained degrees of freedom
variables with a flat optimum is preferred. A flat optimum indicates that an implementation
error or a disturbance will have a small effect on the economic performance. The next step
is to choose the throughput manipulator.

The top-down analysis is followed by a bottom-up design of the control system. The
bottom-up design is guided by controllability analysis. The goal is first to stabilize the plant
(including nearly unstable poles), such that it is possible to operate the plant manually. This
is the regulatory control layer. Finally, the supervisory control layer is designed.

One issue that needs to be resolved is if such a control hierarchy can impose new and
fundamental limitations, which is not present in the original plant. It is shown, that if the
setpoints and measurements of the lower layer are available to the next layer and that the
lower layer controller is stable and minimum phase, it is not possible to introduce new fun-
damental limitations. When the lower layer measurements and/or the lower layer setpoints
are unavailable it is possible to introduce new limitations.

The procedure is applied on several applications:

1. A liquid phase reactor with a distillation column and recycle.

2. A gas phase reactor with separator, compressors and recycle.

3. The methanol synthesis loop (a special case of application 2).

4. The Tennessee Eastman challenge problem.

5. Anindustrial heat integrated distillation columns (from the methanol plant).

All these plants have in common that their behavior is changed by recycle or heat integration.

In the case of a liquid phase reactor, there is no economic penalty for increasing the
holdup in the reactor. In fact, the holdup should be as large as possible in order to increase
the conversion per pass, which will make separation cheaper. Luyben has proposed a control
strategy in which he uses the reactor holdup as a throughput manipulator. This will give an
economic penalty which most other authors so far have neglected. For the remaining degree
of freedom there is a flat optimum for all but a few variables. One of the conclusion is that the
“Luyben-rule”, i.e. “fix one flow in recycle” has bad self-optimizing properties and should
not be applied to this plant.



For the gas phase plant, the situation is different. Due to compression costs there are
a cost associated with the hold-up (pressure). In fact, the optimum is unconstrained in this
variable. Control of recycle-rate, purge fraction, or reactor pressure gives a system with
good self-optimizing properties. This is linked to the behavior of these variables as conver-
sion increases. As expected purge flow is a bad alternative as a controlled variable. More
unexpectedly, inert composition in the recycle turned out to have bad self-optimizing prop-
erties. This is also explainable by the behavior of this variable when conversion is increased.
The results for the simple gas phase reactor carries well over to the methanol case study.

The Tennessee Eastman problem is a well-studied test problem, but few have studied
the selection of controlled variables based on the economics of the plant. In addition to the
constrained variables, reactor temperature, C in purge and recycle flow or compressor work,
should be controlled. A very common claim is that it is necessary to control the inventory of
inert components, this is not true. The shape of the objective function is very unfavorable,
and a small implementation error leads to infeasibilities.

The heat-integrated distillation columns are similar too simple distillation in many as-
pects. But there are differences, e.g. the number of degrees of freedom are different. We
argue that the heat transfer area between the two columns, top compositions (of valuable
products), and pressure in the low-pressure column should be controlled at their constraints.
There is one unconstrained degree of freedom, and for this particular case control of a tem-
perature in the lower part of the column shows good self-optimizing properties.

It is shown that it is not given that poles at the origin will not show up in the relative gain
array. It may happen if it is possible to stabilize the pole with two different control loops.
This should be seen as an argument for using the frequency dependent relative gain array.

The emphasis in this thesis has been on case studies. By the use of systematic tools
for analysis, some “rules” that have been presented in the process control community are
shown to have had a weak theoretical basis. The thesis has improved the understanding of
the control of a large scale processing plants.
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Chapter 1

| ntroduction

1.1 Motivation

The behavior of a complete chemical processing plant is not only given by its individual
units, the connections between the units are equally important. The behavior of a plant with
the units connected in series, is easy to predict form the behavior of the individual units. This
does not imply that the units can be operated like individual units: The output of one unit will
act as a disturbance on the next unit, and at steady state they must have the same through-
put. Even for a system with simple connection, certain considerations needs a perspective
above the unit operation. A simple example is the placement of level controllers for a plant
with units in series. It is exactly such a type of structural question that the field of plantwide
control seeks to answer. Chapter 2 gives a more precise definition of plantwide control.

The presence of heat integration and mass recycle changes the dynamic and steady state
behavior of the plant in ways which are difficult to predict from the behavior of the individual
units. Therefor heat integration and mass recycle makes the need for a plantwide perspective
much more pronounced when the control structure is designed.

The field of plantwide control is divided in two different approaches:

e A mathematically oriented approach.
e A process oriented approach.

The process oriented approach has proposed heuristics for plantwide design based upon case
studies and their experience. This approach has two main drawbacks: The insight gained
from a specific case study may be too narrow to make the conclusions general. Secondly,
since the control objectives often are unclear the rules that are proposed has a weak basis.

In this thesis a number of cases are studied in a systematic manner. In this way we hope
to better understand the issues that are involved in plantwide control. In particular we will
question some of the heuristic rules, which we feel has a weak theoretical basis.

A better understanding of plantwide control will lead to a better design of control system.
Better control systems will give plants with lower energy consumption and better utilization
of raw material. This is important for both the society and the company.



2 CHAPTER 1. INTRODUCTION

1.2 Main contributions and thesis overview

This thesis contains seven chapters, they may be read independently. This is particular valid
for Chapter 3 and 8. It is however recommended to read chapter 2 first. Chapter 4, 5 and 6
are strongly related and should be read together.

In Chapter 2 we present a large and comprehensive literature review of plantwide control.
Based on this review we have presented a control structure design procedure. This chapter is
based on an article submitted to Journal of Process Control.

Chapter 3 shows that the lower control layer may impose fundamental limitation if some
information from the lower layer is unavailable to the higher layer. Chapter 3 was presented
at the AIChE annual meeting 1998, Miami Beach.

In Chapter 4, 5 and 6 we deal with the control of processes with recycle. In the case
studies we have been using systematic method for selection of control structure. We have
shown that Luybens basis for his rule “fix one flow in recycle” is wrong. For the liquid phase
plant it has bad self-optimizing properties. The heuristic “maximize recycle flow” by Fisher,
is not correctly formulated. It was not economically optimal to maximize the recycle flow.
The correct interpretation should be to avoid unnecessary reductions in recycle flow (open
valves etc.).

For a chemical plant it is important to avoid the accumulation of chemical components,
and inert may be particularly tricky. This has led many to believe that inert composition
should always be controlled. This is not true, with a reasonable control structure the level of
inert is normally self-regulating, and in our cases we have shown that it is a bad candidate
for self-optimizing control.

Chapter 4 and 5 has been presented, in several versions, on NPCW-1998 Stockholm,
CAPE Forum 99 Liége and AIChE annual meeting 1999, Dallas. A version of Chapter 6 is
to be submitted to Ind. Eng. Chem. Res.

In Chapter 7 has looked on the control of an industrial heat integrated distillation column.
For this case there where only one unconstrained degree of freedom at the optimum. The
active constraints are, pressure in the low pressure column, heat transfer area between the
column and both top compositions. Temperature on tray six has good self-optimizing prop-
erties. This chapter was presented at the AIChE annual meeting, Dallas November 1999.

In Chapter 8 we have shown how poles at the origin may be present in the relative gain
array.



Chapter 2

Plantwide control -
A review and a new design procedure

Truls Larsson and Sigurd Skogestad

Based on a paper submitted to Journal of Process control.

Abstract

Most (if not all) available control theories assume that a control structure is given at the outset. They
therefore fail to answer some basic questions that a control engineer regularly meets in practice (Foss, 1973):
“Which variables should be controlled, which variables should be measured, which inputs should be manipu-
lated, and which links should be made between them?” These are the questions that plantwide control tries to
answer.

There are two main approaches to the problem, a mathematically oriented approach (control structure
design) and a process oriented approach. Both approaches are reviewed in the paper. Emphasis is put on
the selection of controlled variables, and it is shown that the idea of “self-optimizing control” provides a link
between steady-state optimization and control.

We also provide some definitions of terms used within the area of plantwide control.



CHAPTER 2. PLANTWIDE CONTROL -
4 A REVIEW AND A NEW DESIGN PROCEDURE

2.1 Introduction

A chemical plant may have thousands of measurements and control loops. By the term
plantwide control it is not meant the tuning and behavior of each of these loops, but rather
the control philosophy of the overall plant with emphasis on the structural decisions. The
structural decision include the selection/placement of manipulators and measurements as
well as the decomposition of the overall problem into smaller subproblems (the control con-
figuration).

In practice, the control system is usually divided into several layers. Typically, layers
include scheduling (weeks), site-wide optimization (day), local optimization (hour), super-
visory/predictive control (minutes) and regulatory control (seconds), see Figure 2.1. The

Scheduling
(weeks)

Site-wide optimization
(day)

Y\
N
Local optimization

(hour)

Y|
Y |
SUPervisory
control
(minutes)

Control
layer

Regulatory
control
(seconds)

Figure 2.1: Typical control hierarchy in a chemical plant.

optimization layer typically computes new setpoints only once a hour or so, whereas the
feedback layer operates continuously. The layers are linked by the controlled variables,
whereby the setpoints are computed by the upper layer and implemented by the lower layer.
An important issue is the selection of these variables.

Of course, we could imagine using a single optimizing controller who stabilizes the pro-
cess while at the same time perfectly coordinates all the manipulated inputs based on dynam-
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ic on-line optimization. There are fundamental reasons why such a solution is not the best,
even with today’s and tomorrows computing power. One fundamental reason is the cost of
modeling, and the fact that feedback control, without much need for models, is very effective
when performed locally. In fact, by cascading feedback loops, it is possible to control large
plants with thousands of variables without the actual need to develop any models. However,
the traditional single-loop control systems can sometimes be rather complicated, especially
if the cascades are heavily nested or if the presence of constraints during operation make it
necessary to use logic switches. Thus, model based control should be used when the mod-
eling effort gives enough pay-back in terms of simplicity and/or improved performance, and
this will usually be at the higher layers in the control hierarchy.

A very important (if not the most important) problem in plantwide control is the issue of
determining the control structure:

e Which “boxes” should we have and what information should be send between them?

Note that that we are here not interested in what should be inside the boxes, which is the
controller design or tuning problem. More precisely, control structure design is defined
as the structural decisions involved in control system design, including the following tasks
((Foss, 1973); (Morari, 1982); (Skogestad and Postlethwaite, 1996))

1. Selection of controlled outputs ¢ (variables with setpoints)
2. Selection of manipulated inputs m
3. Selection of measurements v (for control purposes including stabilization)

4. Selection of control configuration (a structure interconnecting measurements/setpoints
and manipulated variables, i.e. the structure of the controller K which interconnects
the variables ¢, and v (controller inputs) with the variables m)

5. Selection of controller type (control law specification, e.g., PID, decoupler, LQG, etc.).

In most cases the control structure design is solved by a mixture of a top-down consideration
of control objectives and which degrees of freedom are available to meet these (tasks 1 and
2), and a with a bottom-up design of the control system, starting with the stabilization of the
process (tasks 3,4 and 5).

In most cases the problem is solved without the use of any theoretical tools. In fact,
the industrial approach to plantwide control is still very much along the lines described by
Page Buckley in his book from 1964. Of course, the control field has made many advances
over these years, for example, in methods for and applications of on-line optimization and
predictive control. Advances have also been made in control theory and in the formulation
of tools for analyzing the controllability of a plant. These latter tools can be most helpful
in screening alternative control structures. However, a systematic method for generating
promising alternative structures has been lacking. This is related to the fact that plantwide
control problem itself has not been well understood or even acknowledged as important.

The control structure design problem is difficult to define mathematically, both because
of the size of the problem, and the large cost involved in making a precise problem definition,
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which would include, for example, a detailed dynamic and steady state model. An alternative
to this is to develop heuristic rules based on experience and process understanding. This is
what will be referred to as the process oriented approach.

The realization that the field of control structure design is underdeveloped is not new. In
the 1970’s several “critique” articles where written on the gap between theory and practice
in the area of process control. The most famous is the one of (Foss, 1973) who made the
observation that in many areas application was ahead of theory, and he stated that

The central issues to be resolved by the new theories are the determination of
the control system structure. Which variables should be measured, which inputs
should be manipulated and which links should be made between the two sets?

The gap is present indeed, but contrary to the views of many, it is the
theoretician who must close it.

A similar observation that applications seem to be ahead of formal theory was made by
Findeisen et al. (1980) in their book on hierarchical systems (p. 10).

Many authors point out that the need for a plantwide perspective on control is mainly
due to changes in the way plants are designed — with more heat integration and recycle and
less inventory. Indeed, these factors lead to more interactions and therefore the need for a
perspective beyond individual units. However, we would like to point out that even without
any integration there is still a need for a plantwide perspective as a chemical plant consists
of a string of units connected in series, and one unit will act as a disturbance to the next, for
example, all units must have the same throughput at steady-state.

Outline

We will first discuss in more detail some of the terms used above and provide some defini-
tions. We then present a review of some of the work on plantwide control. In section 2.4 we
discuss the mathematically oriented approach (control structure design). Then, in section 2.5
we look at the process oriented approach. In section 2.6 we consider a fairly simple plan-
t consisting of reactor, separator and recycle. In section 2.7 we consider the most studied
plantwide control problem, namely the Tennessee Eastman problem introduced by Downs
and Vogel (1993), and we discuss how various authors have attempted to solve the problem.
Finally, in section 2.8 we propose a new plantwide control design procedure.

2.2 Terms and definitions

We here make some comments on the terms introduced above, and also attempt to provide
some more precise definitions, of these terms and some additional ones.

Let us first consider the terms plant and process, which are almost synonymous terms.
In the control community as a whole, the term plant is somewhat more general than process:
A process usually refers to the “process itself” (without any control system) whereas a plant
may be any system to be controlled (including a partially controlled process). However, note
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that in the chemical engineering community the term plant has a somewhat different mean-
ing, namely as the whole factory, which consists of many process units; the term plantwide
control is derived from this meaning of the word plant.

Let us then discuss the two closely related terms layer and level which are used in hi-
erarchical control. Following the literature e.g. Findeisen et al. (1980) the correct term in
our context is layer. In a layer the parts acts at different time scales and each layer has some
feedback or information from the process and follows setpoints given from layers above. A
lower layer may not know the criterion of optimality by which the setpoint has been set.
A multi-layer system cannot be strictly optimal because the actions of the higher layers are
discrete and thus unable to follow strictly the optimal continuous time pattern. (On the other
hand, in a multilevel system there is no time scale separation and the parts are coordinat-
ed such that there are no performance loss. Multilevel decomposition may be used in the
optimization algorithm but otherwise is of no interest here.)

Control is the adjustment of available degrees of freedom (manipulated variables) to
assist in achieving acceptable operation of the plant. Control system design may be divided
into three main activities

1. Control structure design (structural decisions)
2. Controller design (parametric decisions)
3. Implementation

The term control structure design, which is commonly used in the control community,
refers to the structural decisions in the design of the control system. It is defined by the five
tasks (given in the introduction):

1. Selection of controlled outputs (¢ with setpoints c;).
2. Selection of manipulated inputs (m).

3. Selection of measurements (v)

4. Selection of control configuration

5. Selection of controller type

The result from the control structure design is the control structure (alternatively denoted
the control strategy or control philosophy of the plant).

The term plantwide control is used only in the process control community. One could
regard plantwide control as the “process control” version of control structure design, but this
is probably a bit too limiting. In fact, Rinard and Downs (1992) refer to the control structure
design problem as defined above as the “strict definition of plantwide control”, and they point
out that plantwide control also include important issues such as the operator interaction,
startup, grade-change, shut-down, fault detection, performance monitoring and design of
safety and interlock systems. This is more in line with the discussion by Stephanopoulos,
(1982).
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Maybe a better distinction is the following: Plantwide control refers to the structural
and strategic decisions involved in the control system design of a complete chemical plant
(factory), and control structure design is the systematic (mathematical) approach for solving
this problem.

The control configuration, is defined as the restrictions imposed by the overall controller
K by decomposing it into a set of local controllers (sub-controllers), units, elements, blocks)
with predetermined links and possibly with a predetermined design sequence where sub-
controllers are designed locally.

Operation involves the behavior of the system once it has been build, and this includes a
lot more than control. More precisely, the control system is designed to aid the operation of
the plant. Operability is the ability of the plant (together with its control system) to achieve
acceptable operation (both statically and dynamically). Operability includes switchability
and controllability as well as many other issues.

Flexibility refers to the ability to obtain feasible steady-state operation at a given set of
operating points. This is a steady-state issue, and we will assume it to be satisfied at the
operating points we consider. It is not considered any further in this paper.

Switchability refers to the ability to go from one operating point to another in an accept-
able manner usually with emphasis on feasibility. It is related to other terms such as optimal
operation and controllability for large changes, and is not considered explicitly in this paper.

We will assume that the “quality (goodness) of operation” can be quantified in terms of a
scalar performance index (objective function) .J, which should be minimized. For example,
J can be the operating costs.

Optimal operation usually refers to the nominally optimal way of operating a plant as it
would result by applying steady-state and/or dynamic optimization to a model of the plant
(with no uncertainty), attempting to minimize the cost J by adjusting the degrees of freedom.

In practice, we cannot obtain optimal operation due to uncertainty. The difference be-
tween the actual value of the objective function J and its nominally optimal value is the
loss.

The two main sources of uncertainty are (1) signal uncertainty (includes disturbances (d)
and measurement noise (n)) and (2) model uncertainty.

Robust means insensitive to uncertainty. Robust optimal operation is the optimal way of
operating a plant (with uncertainty considerations included).

Integrated optimization and control (or optimizing control) refers to a system where op-
timization and its control implementation are integrated. In theory, it should be possible to
obtain robust optimal operation with such a system. In practice, one often uses a hierarchi-
cal decomposition with separate layers for optimization and control. In making this split we
assume that for the control system the goal of “acceptable operation” has been translated into
“keeping the controlled variables (¢) within specified bounds from their setpoints (¢;)”. The
optimization layer sends setpoint values (c;,) for selected controlled outputs (c) to the control
layer. The setpoints are updated only periodically. (The tasks, or parts of the tasks, in either
of these layers may be performed by humans.) The control layer may be further divided,
e.g. into supervisory control and regulatory control. In general, in a hierarchical system, the
lower layers work on a shorter time scale.

In addition to keeping the controlled variables at their setpoints, the control system must
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“stabilize” the plant. We have here put stabilize in quotes because we use the word in an
extended meaning, and include both modes which are mathematically unstable as well as
slow modes (“drift”) that need to be “stabilized” from an operator point of view. Usual-
ly, stabilization is done within a separate (lower) layer of the control system, often called
the regulatory control layer. The controlled outputs for stabilization are measured output
variables, and their setpoints may be used as degrees of freedom for the layers above.

For each layer in a control system we use the terms controlled output (y with setpoint
ys) and manipulated input (u). Correspondingly, the term “plant” refers to the system to
be controlled (with manipulated inputs » and controlled outputs y). The layers are often
structured hierarchically, such that the manipulated input for a higher layer () is the setpoint
for a lower layer (yo), i.e. y2s = uy. (These controlled outputs need in general not be
measured variables, and they may include some of the manipulated inputs (u).)

From this we see that the terms “plant”, “controlled output” (y) and “manipulated input”
(u) takes on different meaning depending on where we are in the hierarchy. To avoid con-
fusion, we reserve special symbols for the variables at the top and bottom of the hierarchy.
Thus, as already mentioned, the term process is often used to denote the uncontrolled plant as
seen from the bottom of the hierarchy. Here the manipulated inputs are the physical manipu-
lators (e.g. valve positions), and are denoted . Correspondingly, at the top of the hierarchy,
we use the symbol ¢ to denote the controlled variables for which the setpoint values (c;) are
determined by the optimization layer.

Input-Output controllability of a plant is the ability to achieve acceptable control perfor-
mance, that is, to keep the controlled outputs (y) within specified bounds from their setpoints
(r), in spite of signal uncertainty (disturbances d, noise n) and model uncertainty, using avail-
able inputs (u) and available measurements. In other words, the plant is controllable if there
is a controller that satisfies the control objectives.

This definition of controllability may be applied to the control system as a whole, or to
parts of it (in the case the control layer is structured). The term controllability generally
assumes that we use the best possible multivariable controller, but we may impose restric-
tions on the class of allowed controllers (e.g. consider “controllability with decentralized PI
control”).

A plant is self-regulating if we with constant inputs can keep the controlled outputs within
acceptable bounds. (Note that this definition may be applied to any layer in the control
system, so the plant may be a partially controlled process). “True” self-regulation is defined
as the case where no control is ever needed at the lowest layer (i.e. m is constant). It relies
on the process to dampen the disturbances itself, e.g. by having large buffer tanks. We rarely
have “true” self-regulation because it may be very costly.

Self-optimizing control is when an acceptable loss can be achieved using constant set-
points for the controlled variables (without the need to reoptimize when disturbances occur).
“True” self-optimization is defined as the case where no re-optimization is ever needed (so
¢, can be kept constant always), but this objective is usually not satisfied. On the other hand,
we must require that the process is self-optimizing within the time period between each
re-optimization, or else we cannot use separate control and optimization layers.

A process is self-optimizing if there exists a set of controlled outputs (c) such that if
we with keep constant setpoints for the optimized variables (c,), then we can keep the loss
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within an acceptable bound within a specified time period. A steady-state analysis is usually
sufficient to analyze if we have self-optimality. This is based on the assumption that the
closed-loop time constant of the control system is smaller than the time period between each
re-optimization (so that it settles to a new steady-state) and that the value of the objective
function (.J) is mostly determined by the steady-state behavior (i.e. there is no “costly”
dynamic behavior e.g. imposed by poor control).

Most of the terms given above are in standard use and the definitions mostly follow those
of Skogestad and Postlethwaite (1996).

2.3 General reviews and books on plantwide control

We here present a brief review of some of the previous reviews and books on plantwide
control.

Morari (1982) presents a well-written review on plantwide control, where he discusses
why modern control techniques were not (at that time) in widespread use in the process
industry. The four main reasons were believed to be

1. Large scale system aspects.

2. Sensitivity (robustness).

3. Fundamental limitations to control quality.

4. Education.

He then proceeds to look at how two ways of decompose the problem:

1. Multi-layer (vertical), where the difference between the layers are in the frequency of
adjustment of the input.

2. Horizontal decomposition, where the system is divided into noninteracting parts.

Stephanopoulos (1982) states that the synthesis of a control system for a chemical plant
is still to a large extent an art. He asks: “Which variables should be measured in order
to monitor completely the operation of a plant? Which input should be manipulated for
effective control? How should measurements be paired with the manipulations to form the
control structure, and finally, what the control laws are?” He notes that the problem of
plantwide control is “multi-objective” and “there is a need for a systematic and organized
approach which will identify all necessary control objectives”. The article is comprehensive,
and discusses many of the problems in the synthesis of control systems for chemical plants.

Rinard and Downs (1992) review much of the relevant work in the area of plantwide
control, and they also refer to important papers that we have not referred. They conclude the
review by stating that “the problem probably never will be solved in the sense that a set of
algorithms will lead to the complete design of a plantwide control system”. They suggests
that more work should be done on the following items: (1) A way of answering whether or
not the control system will meet all the objectives, (2) Sensor selection and location (where
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they indicate that theory on partial control may be useful), (3) Processes with recycle. They
also welcome computer-aided tools, better education and good new test problems.

The book by Balchen and Mummeé (1988) attempts to combine process and control
knowledge, and to use this to design control systems for some common unit operations and
also consider plantwide control. The book provides many practical examples, but there is
little in terms of analysis tools or a systematic framework for plantwide control.

The book “Integrated process control and automation” by Rijnsdorp (1991), contains
several subjects that are relevant here. Part Il in the book is on optimal operation. He dis-
tinguishes between two situations, sellers marked (maximize production) and buyers marked
(produce a given amount at lowest possible cost). He also has a procedure for design of an
optimizing control system.

Loe (1994) presents a systematic way of looking at plants with the focus is on functions.
The author covers “qualitative” dynamics and control of important unit operations.

van de Wal and de Jager (1995) list several criteria for evaluation of control structure
design methods: generality, applicable to nonlinear control systems, controller-independent,
direct, quantitative, efficient, effective, simple and theoretically well developed. After re-
viewing they conclude that such a method does not exist.

The book by Skogestad and Postlethwaite (1996) has two chapters on controllability
analysis and one chapter on control structure design. Particularly in chapter 10 there is some
topics, which are relevant for plantwide control, among them are partial control and self-
optimizing control (a term introduced later).

The coming monograph by Ng and Stephanopoulos (1998a) deals almost exclusively
with plantwide control.

The book by Luyben et al. (1998) has collected much of Luyben’s practical ideas and
summarized them in a clear manner. The emphasis is on case studies.

There also exists a large body of system-theoretic literature within the field of large-scale
systems, but most of it has little relevance to plantwide control. One important exception is
the book by Findeisen et al. (1980) on “Control and coordination in hierarchical systems”
which probably deserves to be studied more carefully by the process control community.

2.4 Control Structure Design (The mathematically orient-
ed approach)

In this section we look at the mathematically oriented approach to plantwide control.

Structural methods

There are some methods that use structural information about the plant as a basis for control
structure design. For a recent review of these methods we refer to the coming monograph
of Ng and Stephanopoulos (1998a). Central concepts are structural state controllability, ob-
servability and accessibility. Based on this, sets of inputs and measurements are classified as
viable or non-viable. Although the structural methods are interesting, they are not quantita-
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tive and usually provide little information other than confirming insights about the structure
of the process that most engineers already have.

In the reminder of this section we discuss the five tasks of the control structure design
problem, listed in the introduction.

2.4.1 Selection of controlled outputs (c)

By “controlled outputs” we here refer to the controlled variables ¢ for which the setpoints ¢,
are determined by the optimization layer. There will also be other (internally) controlled out-
puts which result from the decomposition of the controller into blocks or layers (including
controlled measurements used for stabilization), but these are related to the control configu-
ration selection, which is discussed as part of task 4.

The issue of selection of controlled outputs, is probably the least studied of the tasks in
the control structure design problem. In fact, it seems from our experience that most people
do not consider it as being an issue at all. The most important reason for this is probably that
it is a structural decision for which there has not been much theory. Therefore the decision
has mostly been based on engineering insight and experience, and the validity of the selection
of controlled outputs has seldom been questioned by the control theoretician.

To see that the selection of output is an issue, ask the question:

Why are we controlling hundreds of temperatures, pressures and compositions
in a chemical plant, when there is no specification on most of these variables?

After some thought, one realizes that the main reason for controlling all these variables is
that one needs to specify the available degrees of freedom in order to keep the plant close to
its optimal operating point. But there is a follow-up question:

Why do we select a particular set ¢ of controlled variables? (e.g., why specify
(control) the top composition in a distillation column, which does not produce
final products, rather than just specifying its reflux?)

The answer to this second question is less obvious, because at first it seems like it does not
really matter which variables we specify (as long as all degrees of freedom are consumed,
because the remaining variables are then uniquely determined). However, this is true only
when there is no uncertainty caused by disturbances and noise (signal uncertainty) or model
uncertainty. When there is uncertainty then it does make a difference how the solution is
implemented, that is, which variables we select to control at their setpoints.

Self-optimizing control

The basic idea of what we have called self-optimizing control was formulated about twenty
years ago by Morari et al. (1980):

“in attempting to synthesize a feedback optimizing control structure, our main
objective is to translate the economic objectives into process control objectives.
In other words, we want to find a function ¢ of the process variables which when
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held constant, leads automatically to the optimal adjustments of the manipulated
variables, and with it, the optimal operating conditions. [...] This means that by
keeping the function c¢(u, d) at the setpoint ¢, through the use of the manipulated
variables u, for various disturbances d, it follows uniquely that the process is
operating at the optimal steady-state.”

If we replace the term “optimal adjustments” by “acceptable adjustments (in terms of the
loss)” then the above is a precise description of what Skogestad (2000) denote a self-optimizing
control structure. The only factor Morari et al. (1980) fail to consider is the effect of the im-
plementation error ¢ — ¢,. Morari et al. (1980) propose to select the best set of controlled
variables based on minimizing the loss (“feedback optimizing control criterion 1”).

Somewhat surprisingly, the ideas of Morari et al. (1980) received very little attention.
One reason is probably that the paper also dealt with the issue of finding the optimal oper-
ation (and not only on how to implement it), and another reason is that the only example
in the paper happened to result in an implementation with the controlled variables at their
constraints. The constrained case is “easy” from an implementation point of view, because
the simplest and optimal implementation is to simply maintain the constrained variables at
their constraints. No example was given for the more difficult unconstrained case, where the
choice of controlled (feedback) variables is a critical issue. The follow-up paper by Arkun
and Stephanopoulos (1980) concentrated further on the constrained case and tracking of ac-
tive constraints.

Skogestad and Postlethwaite (1996) (Chapter 10.3) present an approach for selecting con-
trolled output similar to those of Morari et al. (1980) and the ideas where further developed
in (Skogestad, 2000) where the term self-optimizing control is introduced. Skogestad (2000)
stresses the need to consider the implementation error when evaluating the loss. Skogestad
(2000) gives four requirements that a controlled variable should meet: 1) Its optimal value
should be insensitive to disturbances. 2) It should be easy to measure and control accurately.
3) Its value should be sensitive to changes in the manipulated variables. 4) For cases with
two or more controlled variables, the selected variables should not be closely correlated. By
scaling of the variables properly, Skogestad and Postlethwaite (1996) shows that the self-
optimizing control structure is related to maximizing the minimum singular value of the gain
matrix G, where Ac = Au. Zheng et al. (1999) also use the ideas of Morari et al. (1980) as a
basis for selecting controlled variables. The relationship to the work of Shinnar is discussed
separately later.

Other work

In his book Rijnsdorp (1991) gives on page 99 a stepwise design procedure for designing
optimizing control systems for process units. One step is to “transfer the result into on-
line algorithms for adjusting the degrees of freedom for optimization”. He states that this
“requires good process insight and control structure know-how. It is worthwhile basing the
algorithm as far as possible on process measurements. In any case, it is impossible to give a
clear-cut recipe here.”

Fisher et al. (1988a) discuss plant economics in relation to control. They provide some
interesting heuristic ideas. In particular, hidden in their HDA example in part 3 (p. 614) one
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finds an interesting discussion on the selection of controlled variables, which is quite closely
related to the ideas of Morari et al. (1980).

Luyben (1988) introduced the term “eigenstructure” to describe the inherently best con-
trol structure (with the best self-regulating and self-optimizing property). However, he did
not really define the term, and also the name is unfortunate since “eigenstructure” has a an-
other unrelated mathematical meaning in terms of eigenvalues. Apart from this, Luyben and
coworkers (e.g. Luyben (1975), Yi and Luyben (1995)) have studied unconstrained prob-
lems, and some of the examples presented point in the direction of the selection methods
presented in this paper. However, Luyben proposes to select controlled outputs which mini-
mizes the steady-state sensitive of the manipulated variable () to disturbances, i.e. to select
controlled outputs (c) such that (0u/dd). is small, whereas we really want to minimize the
steady-state sensitivity of the economic loss (L) to disturbances, i.e. to select controlled
outputs (c) such that (0L/9dd). is small.

Narraway et al. (1991), Narraway and Perkins (1993) and Narraway and Perkins (1994))
strongly stress the need to base the selection of the control structure on economics, and they
discuss the effect of disturbances on the economics. However, they do not formulate any
rules or procedures for selecting controlled variables.

Finally Mizoguchi et al. (1995) and Marlin and Hrymak (1997) stress the need to find
a good way of implementing the optimal solution in terms how the control system should
respond to disturbances, “i.e. the key constraints to remain active, variables to be maximized
or minimized, priority for adjusting manipulated variables, and so forth.” They suggest that
an issue for improvement in today’s real-time optimization systems is to select the control
system that yields the highest profit for a range of disturbances that occur between each
execution of the optimization.

There has also been done some work on non-square plants, i.e. with more outputs than
inputs, e.g. (Cao, 1995) and (Chang and Yu, 1990). These works assumes that the control
goal is the keep all these variables as close to “zero” as possible, and often the effect of
disturbances is not considered. It may be more suitable to reformulate these problems into
the framework of self-optimizing control.

2.4.2 Selection of manipulated inputs (m)

By manipulated inputs we refer to the physical degrees of freedom, typically the valve posi-
tions or electric power inputs. Actually, selection of these variables is usually not much of
an issue at the stage of control structure design, since these variables usually follow as direct
consequence of the design of the process itself.

However, there may be some possibility of adding valves or moving them. For example,
if we install a bypass pipeline and a valve, then we may use the bypass flow as an extra
degree of freedom for control purposes.

Finally, let us make it clear that the possibility of not actively using some manipulated
inputs (or only changing them rarely), is a decision that is included above in “selection of
controlled outputs”.
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2.4.3 Selection of measurements (v)

Controllability considerations, including dynamic behavior, are important when selecting
which variables to measure. There are often many possible measurements we can make,
and the number, location and accuracy of the measurement is a tradeoff between cost of
measurements and benefits of improved control. A controllability analysis may be very
useful. In most cases the selection of measurements must be considered simultaneously
with the selection of the control configuration. For example, this applies to the issue of
stabilization and the use of secondary measurements.

2.4.4 Selection of control configuration

The issue of control configuration selection, including decentralized control, is discussed in
Hovd and Skogestad (1993) and in sections 10.6, 10.7 and 10.8 of Skogestad and Postleth-
waite (1996), and we will here discuss mainly issues which are not covered there.

The control configuration is the structure of the controller K that interconnects the mea-
surements, setpoints ¢, and manipulated variables m. The controller can be structured (de-
composed) into blocks both in an vertical (hierarchical) and horizontal (decentralized con-
trol) manner.

Why is the controller decomposed? (1) The first reason is that it may require less compu-
tation. This reason may be relevant in some decision-making systems where there is limited
capacity for transmitting and handling information (like in most systems where humans are
involved), but it does not hold in today’s chemical plant where information is centralized and
computing power is abundant. Two other reasons often given are (2) failure tolerance and
(3) the ability of local units to act quickly to reject disturbances (e.g. Findeisen et al., 1980).
These reasons may be more relevant, but, as pointed out by Skogestad and Hovd (1995) there
are probably other even more fundamental reasons. The most important one is probably (4)
to reduce the cost involved in defining the control problem and setting up the detailed dy-
namic model which is required in a centralized system with no predetermined links. Also,
(5) decomposed control systems are much less sensitive to model uncertainty (since they
often use no explicit model). In other words, by imposing a certain control configuration, we
are implicitly providing process information, which we with a centralized controller would
need to supply explicitly through the model.

Stabilizing control

Instability requires the active use of manipulated inputs (m) using feedback control. There
exist relatively few systematic tools to assist in selecting a control structure for stabilizing
control. Usually, single-loop controllers are used for stabilization, and issues are which
variables to measure and which manipulated inputs to use. One problem in stabilization
is that measurement noise may cause large variations in the input such that it saturates.
Havre and Skogestad (1996, 1998) have shown that the pole vectors may be used to select
measurements and manipulated inputs such that this problem is minimized.
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Secondary measurements

Extra (secondary) measurements are often added to improve the control. Three alternatives
for use of extra measurements are:

1. Centralized controller: All the measurements are used to compute the optimal input.
This controller has implicitly an estimator (model) hidden inside it.

2. Inferential control: Based on the measurements a model is used to provide an estimate
of the primary output (e.g. a controlled output ¢). This estimate is send to a separate
controller.

3. Cascade control: The secondary measurements are controlled locally and their set-
points are used as degrees of freedom at some higher layer in the hierarchy.

Note that both centralized and inferential control uses the extra measurements to estimate
parameters in a model, whereas cascaded control they are used for additional feedback. The
subject of estimation and measurements selection for estimation is beyond the scope of this
review article; we refer to Ljung (1987) for a control view and to Martens (1989) for a
chemometrics approach to this issue. However, we would like point out that the control
system should be designed for best possible control of the primary variables (c), and not
the best possible estimate. A drawback of the inferential scheme is that estimate is used in
feed-forward manner.

For cascade control Havre (1998) has shown how to select secondary measurements such
that the need for updating the setpoints is small. The issues here are similar to that of select-
ing controlled variables (c) discussed above. One approach is to minimize some norm of the
transfer function from the disturbance and control error in the secondary variable to the con-
trol error in the primary variable. A simpler, but less accurate, alternative is to maximize the
minimum singular value in the transfer function from secondary measurements to the input
used to control the secondary measurements. Lee and Morari ((Lee and Morari, 1991), (Lee
etal., 1995) and (Lee et al., 1997)) considered a similar problem. They used a more rigorous
approach where model uncertainty is explicitly considered and the structured singular value
is used as a tool.

Partial control

Most control configurations are structured in a hierarchical manner with fast inner loops,
and slower outer loops that adjust the setpoints for the inner loops. Control system design
generally starts by designing the inner (fast) loops, and then outer loops are closed in a
sequential manner. Thus, the design of an “outer loop” is done on a partially controlled
system. We here provide some simple but yet very useful relationships for partially controlled
systems. We divide the outputs into two classes:

e y; — (temporarily) uncontrolled output

e 1, — (locally) measured and controlled output (in the inner loop)
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We have inserted the word temporarily above, since y; is normally a controlled output at
some higher layer in the hierarchy. We also subdivide the available manipulated inputs in a
similar manner:

e uy — inputs used for controlling ¥, (in the inner loop)
e u; —remaining inputs (which may be used for controlling y,)

A block diagram of the partially controlled system resulting from closing the loop in-
volving u and y» with the local controller K is shown in Figure 2.2.
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Figure 2.2: Block diagram of a partially controlled plant

Skogestad and Postlethwaite (1996) distinguish between the following four cases of par-
tial control:

Meas./Control Control objective
of y; ? for y ?
I Indirect control No No
I Sequential cascade control Yes No
Il “True” partial control No Yes
IV || Sequential decentralized control Yes Yes

In all cases there is a control objective associated with 1; and a measurement of y,. For
example, for indirect control there is no separate control objective on y,, the reasons we
control ¥, is to indirectly achieve good control of ¢, which are not controlled. The first two
cases are probably the most important as they are related to vertical (hierarchical) structuring.
The latter two cases (where ¥, has its own control objective so that the setpoints y,, are not
adjustable) gives a horizontal structuring.

In any case, the linear model for the plant can be written

Y1 = Gll(S)U1 + GlQ(S)'U:Q + Gdl (S)d (21)
Yo = GQl(S)Ul + G22($)u2 -+ Gdg(s)d (22)
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To derive transfer functions for the partially controlled system we simply solve (2.2) with
respect to u, (assuming that G, (s) is square an invertible at a given value of s)?

up = Gy (5) (y2 — Gar(s)ur — Gaz(s)d) (2.3)
Substituting (2.3) into (2.1) then yields
Y1 = Py(s)ur + Py(s)d + Py(s)y- (2.4)
where
Pu(S) déf Gll(s) - 012G2_21G21(8) (25)
Pis) ¥ Gu(s) — G12GplGa(s) (2.6)
Py(s) € GGz (s) (2.7)

Here P, is the partial disturbance gain, P, is the gain from y, to y;, and P, is the partial
input gain from the unused inputs u;. If we look more carefully at (2.4) then we see that the
matrix P, gives the effect of disturbances on the primary outputs y;, when the manipulated
inputs u, are adjusted to keep y, constant, which is consistent of the original definition of the
partial disturbance gain given by Skogestad and Wolff (1992). Note that no approximation
about perfect control has been made when deriving (2.4). Equation (2.4) applies for any
fixed value of s (on a frequency-by-frequency basis).

The above equations are simple yet very useful. Relationships containing parts of these
expressions have been derived by many authors, e.g. see the work of Manousiouthakis et al.
(1986) on block relative gains and the work of Haggblom and Waller (1988) on distillation
control configurations.

Note that this kind of analysis can be performed at each layer in the control system. At
the top layer we may assume that the cost J is a function of the variables y;, and we can then
interpret y, as the set of controlled outputs c. If ¢ is never adjusted then this is a special case
of indirect control, and if ¢ is adjusted at regular intervals (as is usually done) then this may
be viewed as a special case of sequential cascade control.

2.5 The Process Oriented Approach

We here review procedures for plantwide control that are based on using process insight, that
is, methods that are unique to process control.

The first comprehensive discussion on plantwide control was given by Page Buckley in
his book “Techniques of process control” in a chapter on Overall process control (Buckley,
1964). The chapter introduces the main issues, and presents what is still in many ways the
industrial approach to plantwide control. In fact, when reading this chapter, 35 years later one
is struck with the feeling that there has been relatively little development in this area. Some
of the terms which are introduced and discussed in the chapter are material balance control

1The assumption that G- exists for all values of s can be relaxed by replacing the inverse with the pseudo-
inverse.
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(in direction of flow, and in direction opposite of flow), production rate control, buffer tanks
as low-pass filters, indirect control, and predictive optimization. He also discusses recycle
and the need to purge impurities, and he points out that you cannot at a given point in a plant
control inventory (level, pressure) and flow independently since they are related through the
material balance. In summary, he presents a number of useful engineering insights, but there
is really no overall procedure. As pointed out by Ogunnaike (1995) the basic principles
applied by the industry does not deviate far from Buckley (1964).

Wolff and Skogestad (1994) review previous work on plantwide control with emphasis on
the process-oriented decomposition approaches. They suggest that plantwide control system
design should start with a “top-down” selection of controlled and manipulated variables,
and proceed with a “bottom-up” design of the control system. At the end of the paper ten
heuristic guidelines for plantwide control are listed.

There exists other more or less heuristics rules for process control; e.g. see Hougen and
Brockmeier (1969) and Seborg et al. (1995).

2.5.1 Degrees of freedom for control and optimization

A starting point for plantwide control is to establish the number of degrees of freedom for
operation; both dynamically (for control, V,,) and at steady-state (for optimization, N,,).
These are defined as

N,, Degrees of freedom for control: The number of variables (temperatures, pressures, lev-
els etc.) that may be set by the control system.

N,s Degrees of freedom for steady state optimization optimization: The number of indepen-
dent variables with a steady state effect.

Many authors suggest to use a process model to find the degrees of freedom. However
this approach will be error prone, it is easy to write too many or too few equations. Fortu-
nately, it is in most cases relatively straightforward to establish these numbers from process
insight.

Ponton (1994) propose a method for finding N,, by counting the number of streams and
subtracting the number of “extra” phases (i.e. if there are more than one phase present in that
unit). It is easy to construct really easy examples where the method fails. Consider a simple
liquid storage tank with one inflow and one outflow. According to the above, we would have
N,s = 2, which is clearly wrong. Maybe we should have subtracted the vapor phase which
probably exists above the liquid. This gives N, = 2—1 = 1, which gives the correct answer.
However, if we add a reaction in the tank, then conversion depends on the holdup in the tank
and N,, should be equal to 2. A better approach is needed.

It is well known that IV,,, equals the number of number of adjustable valves plus the num-
ber of other adjustable electrical and mechanical variables (electric power, etc.). According
to (Skogestad, 2000) the number of degrees at freedom at steady-state (V) can be found by
subtracting the number of variables with no steady state effects. These variables are

Npo is the number of manipulated inputs (u’s), or combinations thereof, with no steady-
state effect.
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Nyo is the number of manipulated inputs that are used to control variables with no steady-
state effect.

The latter usually equals the number of liquid levels with no steady-state effect, including
most buffer tank levels. However, note that some liquid levels do have a steady-state effect,
such as the level in a non-equilibrium liquid phase reactor, and levels associated with ad-
justable heat transfer areas. Also, we should not include in IV, any liquid holdups that are
left uncontrolled, such as internal stage holdups in distillation columns.

We find that /V,¢ is nonzero for most chemical processes, whereas we often have N,,,o =
0. A simple example where NV,,,, is non-zero is a heat exchanger with bypass on both sides,
(i.e. N,, = 2). However, at steady-state N,, = 1 since there is really only one operational
degree of freedom, namely the heat transfer rate () (which at steady-state may be achieved
by many combinations of the two bypasses), so we have N,,, = 1.

The optimization is generally subject to several constraints. First, there are generally
upper and lower limits on all manipulated variables (e.g. fully open or closed valve). In
addition, there are constraints on many dependent variables; due to safety (e.g. maximum
pressure or temperature), equipment limitations (maximum throughput) or product specifi-
cations. Some of these constraints will be active at the optimum. The number of “free”
unconstrained variables “for steady-state optimization”, N, frc., IS then equal to

Nss,f'ree = Nss - Nactive

where Ng.ive 1S the number of active constraints. Note that the term “left for optimization”
may be somewhat misleading, since the decision to keep some constraints active, really
follows as part of the optimization; thus all IV, variables are really used for optimization.

Remark on design degrees of freedom. Above we have discussed operational degrees
of freedom. The design degree of freedom (which is not really a concern of this paper)
includes all the N,, operational degrees of freedom plus all parameters related to the size of
the equipment, such as the number of stages in column sections, area of heat exchangers, etc.

Luyben (1996) claims that “design degrees of freedom is equal to the number of control
degrees for an important class of processes.” This is clearly not true, as there is no general
relationship between the two numbers. For example, consider a heat exchanger between two
streams. Then there may be zero, one or two control degrees of freedom (depending on
the number of bypasses), but there is always one design degree of freedom (heat exchanger
area).

2.5.2 Production rate

Identifying the major disturbances is very important in any control problem, and for pro-
cess control the production rate (throughput) is often the main disturbance. In addition,
the location of where the production rate is actually set (“throughput manipulator”), usu-
ally determines the control structure for the inventory control of the various units. For a
plant running at maximum capacity, the location where the production rate is set is usually
somewhere inside the plant, (e.g. caused by maximum capacity of a heat exchanger or a
compressor). Then, downstream of this location the plant has to process whatever comes in
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(given feed rate), and upstream of this location the plant has to produce the desired quantity
(given product rate). To avoid any “long loops”, it is preferably to use the input flow for in-
ventory control upstream the location where the production rate is set, and to use the output
flow for inventory control downstream this location.

From this it follows that it is critical to know where in the plant the production rate is
set. In practice, the location may vary depending on operating conditions. This may require
reconfiguring of many control loops, but often supervisory control systems, such as model
predictive control, provide a simpler and better solution.

2.5.3 The framework of partial control and dominating variables

Shinnar (1981) introduced the following sets of variables

e Y, (the “primary” or “performance” or “economic” variables) is “the set of process
variables that define the product and process specifications as well as process con-
straints”

e Y, is the set of dynamically measured process variables

e Y., (a subset of Y,) is the “set of process variables on which we base our dynamic
control strategy”

e U, is the dynamic input variables

The goal is to maintain Y,, within prescribed limits and to achieve this goal “we choose in
most cases a small set Y, and try to keep these at a fixed set of values by manipulating U,”
(later, in Arbel et al. (1996), he introduced the term “partial control” to describe this idea).

He writes that the overall control algorithm can normally be decomposed into a dynamic
control system (which adjust U,) and a steady-state control which determines the set points
of Y, as well as the values of U, [the latter are the manipulations which only can be changed
slowly], and that we “look for a set Y4, Uy that contains variables that have a maximum
compensating effect on Y,,”. If one translates the words and notation, then one realizes that
Shinnar’s idea of “partial control” is very close to the idea of “self-optimizing control” pre-
sented in Morari et al. (1980), Skogestad and Postlethwaite (1996), and Skogestad (2000).
The difference is that Shinnar assumes that there exist at the outset a set of “primary” vari-
ables Y, that need to be controlled, whereas in self-optimizing control the starting point is an
economic cost function that should be minimized. The authors provide some intuitive ideas
and examples for selecting dominant variables which may be useful in some cases, especially
when no model information is available.

However, it is not clear how helpful the idea of “dominant” variable is, since they are not
really defined and no explicit procedure is given for identifying them. Indeed, Arbel et al.
(1996) write that “the problems of partial control have been discussed in a heuristic way” and
that “considerably further research is needed to fully understand the problems is steady-state
control of chemical plants”.
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Tyreus (1999b) provides some additional interesting ideas on how to select dominant
variables, partly based on the extensive variable idea of Georgakis (1986) and the thermody-
namic ideas of Ydstie, (Alonso and Ydstie, 1996), but again no procedure for selecting such
variables are presented.

2.5.4 Decomposition of the problem

The task of designing a control system for complete plants is a large and difficult task. There-
fore most methods will try to decompose the problem into manageable parts. Four common
ways of decomposing the problem are

1. Decomposition based on process units
2. Decomposition based on process structure

3. Decomposition based on control objectives (material balance, energy balance, quality,
etc.)

4. Decomposition based on time scale

The first is a horizontal (decentralized) decomposition whereas the latter three provide hierar-
chical decompositions. Most practical approaches contain elements from several categories.
Many of the methods described below perform the optimization at the end of the pro-
cedure after checking if there are degrees of freedom left. However, as discussed above,
it should be possible to identify the steady-state degrees of freedom initially, and make a
preliminary choice on controlled outputs (¢’s) before getting into the detailed design.

It is also interesting to see how the methods differ in terms of how important inventory
(level) control is considered. Some regard inventory control as the most important (as is
probably correct when viewed purely from an operational point of view) whereas Ponton
(1994) states that “inventory should normally be regarded as the least important of all vari-
ables to be regulated” (which is correct when viewed from a design point of view). We feel
that there is a need to integrate the viewpoints of the control and design people.

The unit based approach
The unit-based approach, suggested by Umeda et al. (1978), proposes to

1. Decompose the plant into individual unit of operations
2. Generate the best control structure for each unit
3. Combine all these structures to form a complete one for the entire plant.

4. Eliminate conflicts among the individual control structures through mutual adjust-
ments.
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This approach has always been widely used in industry, and has its main advantage that
many effective control schemes have been established over the years for individual units
(e.g. Shinskey (1988)). However, with an increasing use of material recycle, heat integration
and the desire to reduce buffer volumes between units, this approach may result in too many
conflicts and become impractical.

As a result, one has to shift to plantwide methods, where a hierarchical decomposition
is used. The first such approach was Buckley’s (1964) division of the control system into
material balance control and product quality control, and three plantwide approaches partly
based on his ideas are described in the following.

Hierarchical decomposition based on process structure

The hierarchy given in Douglas (1988) for process design starts at a crude representation and
gets more detailed:

Level 1 Batch vs continuous

Level 2 Input-output structure

Level 3 Recycle structure

Level 4 General structure of separation system
Level 5 Energy interaction

Fisher et al. (1988a) propose to use this hierarchy when performing controllability analysis,
and Ponton and Laing (1993) point out that this hierarchy, (e.g. level 2 to level 5) could
also be used for control system design. This framework enables parallel development for the
process and the control system. Within each of the levels above any design method might be
applied.

Ng and Stephanopoulos (1998b) propose to use a similar hierarchy for control structure
design. The difference between Douglas (1988) and Ng and Stephanopoulos (1998b)’s hier-
archy is that level 1 is replaced by a preliminary analysis and level 4 and on is replaced by
more and more detailed structures. At each step the objectives identified at an earlier step
is translated to this level and new objectives are identified. The focus is on construction of
mass and energy balance control. The method is applied to the Tennessee Eastman case.

All these methods have in common that at each level a key point is to check if there
are enough manipulated variables to meet the constraints and to optimize operation. The
methods are easy to follow and give a good process understanding, and the concept of a
hierarchical view is possible to combine with almost any design method.

Hierarchical decomposition based on control objectives

The hierarchy based on control objectives is sometimes called the tiered procedure. This
bottom-up procedure focuses on the tasks that the controller has to perform. Normally one
starts by stabilizing the plant, which mainly involves placing inventory (mass and energy)
controllers.
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Price et al. (1993) build on the ideas that was introduced by Buckley (1964) and they
introduce a tiered framework. The framework is divided into four different tasks:

I Inventory and production rate control.
Il Product specification control

111 Equipment & operating constraints
IV Economic performance enhancement.

Their paper does not discuss points 11 or IV. They perform a large number (318) of simula-
tions with different control structures, controllers (P or PI), and tunings on a simple process
consisting of a reactor, separator and recycle of unreacted reactant. The configurations are
ranked based on integrated absolute error of the product composition for steps in the distur-
bance. From these simulation they propose some guidelines for selecting the throughput ma-
nipulator and inventory controls. (1) Prefer internal flows as throughput manipulator. (2) the
throughput manipulator and inventory controls should be self-consistent (self-consistency is
fulfilled when a change in the throughput propagates through the process by “itself”” and does
not depend on composition controllers). They apply their ideas on the Tennessee Eastman
problem (Price et al., 1994).

Ricker (1996) comments upon the work of Price et al. (1994). Ricker points out that
plants are often run at full capacity, corresponding to constraints in one or several variables.
If a manipulated variable that is used for level control saturates, one looses a degree of
freedom for maximum production. This should be considered when choosing a throughput
manipulator.

Luyben et al. (1997) point out three limitations of the approach of Buckley. First, he did
not explicitly discuss energy management. Second, he did not look at recycles. Third, he
placed emphasis on inventory control before quality control. Their plantwide control design
procedure is listed below:

1. Establish control objectives.

2. Determine the control degrees of freedom by counting the number of independent
valves.

3. Establish energy inventory control, for removing the heats of reactions and to prevent
propagation of thermal disturbances.

4. Set production rate. The production rate can only be increased by increasing the re-
action rate in the reactor. One recommendation is to use the input to the separation
section.

5. Product quality and safety control. Here they recommend the usual “pair close”-rule.

6. Inventory control. Fix a flow in all liquid recycle loops. They state that all liquid levels
and gas pressures should be controlled.
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7. Check component balances. (After this point it might bee necessary to go back to item
4.

8. Unit operations control.
9. Optimize economics or improve dynamic controllability.

Step 3 comes before determining the throughput manipulator, since the reactor is typically
the heart of the process and the methods for heat removal are intrinsically part of the reactor
design. In order to avoid recycling of disturbances they suggest to set a flow-rate in all
recycles loops; this is discussed more in section 2.6. They suggest in step 6 to control all
inventories, but this may not be necessary in all cases; e.g. it may be optimal to let the
pressure float (Shinskey, 1988). They apply their procedure on several test problems; the
vinyl acetate monomer process, the Tennessee Eastman process, and the HDA process.

Larsson and Skogestad, in Chapter 4, question the rule proposed by Luyben. By using
the simple recycle plant they are able to show that application of his rule may lead to large
problem.

McAvoy (1999) present a method in which the control objective is divided into two cat-
egories: variables that must be controlled and product flow and quality. His approach is
to find the set of input that will minimize valve movements, where only as many valves as
controlled variables are allowed to be used. This is first solved for the “must” variables,
then for product rate and quality. The optimization problem is simplified by using a linear
stable steady state model. He gives no guidance into how to find which variables that must
be controlled.

Hierarchical decomposition based on time scales

Buckley (1964) proposed to design the quality control system as high-pass filters for distur-

bances and to design the mass balance control system as low pass filters. If the resonance

frequency of the quality control system is designed to be an order of magnitude higher than

the break frequency of the mass balance system then the two loops will be non-interacting.
McAvoy and Ye (1994) divide their method into four stages:

1. Design of inner cascade loops.

2. Design of basic decentralized loops, except those associated with quality and produc-
tion rate.

3. Production rate and quality controls.
4. Higher layer controls.

The decomposition in stages 1-3 is based on the speed of the loops. In stage 1 the idea is
to locally reduce the effect of disturbances. In stage 2 there generally are a large number of
alternative configurations. These may be screened using simple controllability tools, such
as the RGA. One problem of selecting outputs based on a controllability analysis is that one
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may end up with the outputs that are easy to control, rather than the ones that are important
to control. The method is applied to the Tennessee Eastman test problem.

Douglas (1988), at page 414, presents a hierarchy for control system design, based on
the dynamics that are involved. In this hierarchy the viewpoint is not on the flowsheet but
on steady-state, normal dynamic response and abnormal dynamic operation. Zheng et al.
(1999) continue this work. They places a greater attention to feasibility of the constraints and
robust optimality (self-optimizing control). In addition they proposes to use minimum surge
capacity as a dynamic cost, (Zheng and Mahajannam, 1999). They have not documented that
this will capture the true dynamic cost.

2.6 The reactor, separator and recycle plant

A common feature of most plants is the presence of recycle. A simple example is distillation,
with recycle (“reflux”) of liquid from the top of the column and of vapor from the bottom of
the column.

In this section, we consider the reactor and separator process with recycle of unre-
acted feed from a reactor. This kind of problem has lately been studied by many au-
thors, (Papadourakis et al., 1987), (Wolff et al., 1992), (Price et al., 1993), (Luyben, 1994),
(Luyben and Floudas, 1994), (Mizsey and Kalmar, 1996), (Wu and Yu, 1996), (Hansen,
1998), (Ng and Stephanopoulos, 1998a), Larsson and Skogestad (in Chapter 4) and many
more. It may be difficult to follow all the details in the case studies presented, so instead we
aim in this section to gain some basic insight into the problem.

In the simplest case, let the reactor be a CSTR where component A is converted to a
product and the amount converted is given by

P = kzaM [moleA/s]

The amount of unreacted A is separated from the product and recycled back to the reactor
(for simplicity we will here assume perfect separation). To increase the conversion P one
then has three options:

1. Increase the temperature which increases the reaction rate constant k.

2. Increase the amount of recycle, which indirectly increases the fraction of A in the
reactor, z4.

3. Increase the reactor holdup M. (In a liquid phase system the reactor holdup is deter-
mined by the reactor level, and in a gas phase system by the reactor pressure.)

Here we will assume that the temperature is constant, so there are two options left.

Since at steady-state with given product specifications the conversion of A in the reactor
is given by the feed rate, it follows that only one of the two remaining options can be con-
trolled independently (or more generally, one variable that influences these options), and we
must let the second variable "float” and adjust itself.

Two common control strategies are then



2.6. THE REACTOR, SEPARATOR AND RECYCLE PLANT 27

(A) Control the reactor holdup (and let the recycle flow float)

(B) Control the recycle flow (and let the reactor holdup float).

In case (A) one may encounter the so-called ”snowball effect” where the recycle goes to
infinity. This occurs because at infinite recycle flow we have z, = 1 which gives the highest
possible production. In effect, the snowball effect occurs because the reactor is too small to
handle the given feed rate, so it is really a steady-state design problem.

Luyben (1992, 1994) has studied liquid phase systems and has concluded that control
strategy (B) (or a variant of it) with one flow fixed in the recycle loop should be used to
avoid the "snowball effect”.

Wu and Yu (1996) also study the snowball effect for the reactor/separator and recycle
plant. They propose as a remedy to the snowball effect to distribute the “work” evenly
between the different units. To achieve this they suggest to

(C) Control the reactor composition constant.

Also in this case the reactor volume varies depending on the disturbance.

However, from an economic point of view one should usually for liquid phase systems
keep the reactor level at its maximum value, Chapter 4. This maximizes the conversion per
pass and results in the smallest possible recycle, which generally will reduce the operational
cost. Thus, the recommendation of Luyben (1992, 1994) and (Wu and Yu, 1996), has an
economic penalty which it seems that most researchers so far have neglected.

On the other hand, for gas phase systems, there is usually an economic penalty from
compression costs involved in increasing the reactor holdup (i.e. the reactor pressure), and
strategy (B) where we let the holdup (pressure) float may in fact be optimal. Indeed, such
schemes are used in industry, e.g. in ammonia plants. For example, for processes with gas
recycle and purge, Fisher et al. (1988a) recommend to keep the gas recycle constant at the
maximum value. For a simple gas phase plant and the recycle plant we have shown that the
economic optimum does not coincide with the maximum recycle flow, Chapter 5.

Wolff et al. (1992) studied a similar plant. They included an inert component and looked
on the effects of recycle on the controllability of the process. Their conclusion is that the
purge stream flow should be used to control the composition of inert. They did not consider
the reactor holdup as a possible controlled variable.

All the above works have in common that the authors are searching for the right con-
trolled variables to keep constant (recycle flow, reactor volume, composition, etc.). However,
a common basis for comparing the alternatives seems to be lacking. In terms of future work,
we propose that one first needs to define clearly the objective function (cost) J for the opera-
tion of the reactor system. Only when this is given, may one decide in a rigorous manner on
the best selection of controlled outputs, for example by using the idea of “self-optimizing”
control and evaluating the loss. This is done in a systematic manner Chapter 4 and 5.



Figure 2.3: Tennessee Eastman process flowsheet

2.7 Tennessee Eastman Problem

2.7.1 Introduction to the test problem

The problem of Downs and Vogel (1993) was first proposed at an AIChE meeting in 1990
and has since been studied by many authors. The process has four feed streams, one product
streams, and one purge stream to remove inert. The reactions are
A(g) +C(g) +D(@) — G(lig), Productl,
A(g) + C(g) +E(@) — H(lig), Product 2,
A(g) +E(g) —  F(lig), Byproduct,
3D(g) — 2F(liq), Byproduct,

All reactions are irreversible, exothermic and temperature dependent via the Arrhenius
expression. The process has five major units; a reactor, a product condenser, a vapor-liquid
separator, a recycle compressor and a product stripper; see Figure 2.3. There are 41 mea-
surements and 12 manipulated variables. For a more detailed description see (Downs and
\Vogel, 1993) We will here mainly look at the approaches used to solve the problem, not at
the solutions themselves.

2.7.2 McAvoy and Ye solution

At stage 1 they close inner cascade loops involving eight flows and two temperature. This
reduces the effect of the disturbances associated with these loops. At stage 3 they use a
simple mass balance of the plant. This gives some constraints for stage 2, for example, that
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either the C-feed or the product flow must be left for the third stage.

At stage 2 decentralized loops are closed. They start with the level loops since they are
the most important loops. There are three level loops; reactor, separator and stripper, and
they consider four possible level configurations. Three of the configurations were ruled out
based on controllability analysis. The alternative where the E-feed is used for reactor level
control is analyzed in greater detail. They look at three 6x6, eighteen 5x5, and fifteen 4x4
systems, where the controlled outputs seem to be rather randomly chosen. After an analysis
involving RGA, Niederlinski index and linear valve saturation, only four alternatives are left.
These are further screened on their steady-state behavior for a range of disturbances.

2.7.3 Lyman, Georgakis and Price’s solution

Georgakis and coworkers have studied the problem in several papers (Lyman and Georgakis,
1995), (Price et al., 1994). They start by identifying the primary path, which is from the raw
materials, through the reactor, condenser, the stripper, and to the product flow. They do not
consider the C-feed since it is in excess in the recycle. In (Price et al., 1994) they list all
candidates for throughput manipulations along the primary path: The feed streams, flow of
coolant to reactor condenser, the separator drum bottoms flows and final product flow. Of the
feeds only D is considered. The C-feed was not a candidate as throughput manipulator since
it was assumed not to be on the primary path. Next, they list the inventories that need to be
controlled: pressure, reactor level, separator level and stripper level. Inventory controls are
chosen so to construct a self-consistent path (which does not depend on quality controllers).
At this point they have four different structures. After this reactor temperature controller and
quality controllers are added.

Their procedure is simple and clear to follow. The result is a control system that is fairly
simple to understand.

2.7.4 Ricker’s solution

Ricker (1996) starts by listing the variables that must be controlled: production rate, mole
% G in product, reactor pressure, reactor liquid level, separator level and stripper level.
The production rate is chosen as the input that most likely is going to saturate; namely a
combination of D and E. The remaining control system follows by applying quality control
and inventory control. After that overrides are installed.

2.7.5 Luyben’s solution

Luyben etal. (1997) look on two cases, control of throughput with the product flow or control
with the A-feed. Here we only look at the case where the product flow is the throughput
manipulator. At step 3 they look at energy inventory control, which in this case is to control
the reactor temperature with the reactor cooling water. In step 5 they assign the stripper steam
stream to control stripper temperature, and therefore also the product compositions. Since
the pressure of the reactor must be kept within bounds, they use the largest gas feed (the
feed of C) to control the reactor pressure. Step 7 is the check of component balances, which
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gives a composition controller for inert using the purge flow and a composition controller for
A using the A-feed. After doing some simulations they add a controller for control of the
condenser, using the reactor temperature.

The resulting control system is simple, but there could have been a better justification on
what outputs to control.

2.7.6 Ng and Stephanopulos’s solution

Ng and Stephanopoulos (1997, 1998) start by stabilizing the reactor. Then they proceed to
look at the input/output level of the plant, where the central point is to fulfill material and
energy balances. At this level it should have been possible to say something about how the
feeds should be adjusted in order to achieve the right mix of G and H, but they do not. Rather
they look at which feed or exit flows that should be used to maintain material balance control.

At the final level they translate the control objectives to measurements. Here material
balance control is translated into inventory controllers, like product flow to control stripper
level and bottom flow to control separator level. The next objective is then reactor pressure
where purge is assigned. Finally feed E is assigned to control of product ratio, and E is
assigned to throughput control. The A and C feed is used for controlling composition of A
and C.

The method is somewhat difficult to follow and they seem to repeat many of the argu-
ments in each phase.

2.7.7 Larsson, Hestetun and Skogestad’s solution

Larsson, Hestetun and Skogestad (in Chapter 6) uses the concept of self-optimizing control
for selecting the controlled variables. This problem is well suited since the economic objec-
tive was defined. However this problem is larger in size, and they needs to use process insight
to reduce the number of alternative structures. For example, they choose to control reactor
temperature since everybody else does it. Still they manage to come up with a solution with
good self-optimizing properties.

2.7.8 Other work

The above review is by no means complete, and there are many authors who have worked
on this problem, some are (Wu and Yu, 1997), (Banerjee and Arkun, 1995) and (Scali and
Cortonesi, 1995). In addition there are several others that has looked at other aspects of the
Tennessee Eastman plant.

2.7.9 Other test problems

There are several other test problem, that are suitable for studying issues related to plantwide
control. These include the HDA-plant (Douglas, 1988), the vinyl acetate monomer process
(Luyben and Tyreus, 1998), the recycle plant (Wu and Yu, 1996) and the Luyben and Luyben
plant (Luyben and Luyben, 1995).
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2.8 A new plantwide control design procedure

Based the above review and as a conclusion to this paper, we propose a plantwide design
procedure. The procedure mainly follows the mathematically oriented approach, but with
some elements from the process oriented approach. We propose to first perform a top-down
analysis to select controlled variables, based on the ideas of self-optimizing control. For this
we need a steady state model and operational objectives (steady state economics).The result
is one or more alternative sets for (primary) controlled variables (y; = ¢).

This top-down analysis is followed by a bottom-up assignment and possibly design of
the control loops. This is done in a sequential manner starting with stabilization. Next we
consider the fast loops needed for local disturbance rejection. Here we may make use of
(extra) secondary measurements (y»). This is the “regulatory” control layer (system). The
objective for the regulatory layer is that manual operation of the plant is possible after these
loops are closed.

We now have as degrees of freedom the setpoints of the regulatory layer (r3) plus any
unused manipulators (u,), these should be used to control the primary outputs (y;). This
control layer is often called the supervisory control layer. This name may be misleading
or too limited. Often a supervisory controller is only “activated” when something has gone
wrong (e.g. logical switches), but we will also use it for “active” controllers. An alternative
name could have been advanced control layer, but advanced is a relative word and it is not
given that the controllers in this layer are advanced.

There are two main approaches here: Use of single loop (decentralized) controllers with
possible feed-forward links, or use of multivariable control, e.g. decoupling or model pre-
dictive control (MPC). Properly designed multivariable controllers give better performance,
but this must be traded against the cost of obtaining and maintaining the models used in the
controller.

The main result of this will be the control structure, but controller tuning may also be ob-
tained. Finally, nonlinear dynamic simulations should be performed to validate the proposed
control structure.

2.9 Conclusion

In this paper we have given a review on plantwide control with emphasis on the following
tasks that make up the control structure design problem:

1. Selection of controlled outputs (¢ with setpoints c;).
2. Selection of manipulated inputs (m).

3. Selection of measurements (v)

4. Selection of control configuration

5. Selection of controller type
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The main emphasis has been on the selection of controlled outputs, where we have seen
that the use of a steady-state economic criterion is very useful. It appears that the solution
to this task provides the much needed link between steady-state optimization and process
control, and that the idea of “self-optimizing control” to reduce the effect of uncertainty
provides a very useful framework for making the right decision. We thus propose that the
design of the control system should start with the optimization (or at least identifying what
the control objectives really are) and thus providing candidate sets for the controlled outputs.
The control problem is then defined, and one may proceed to analyze (e.g. using an input-
output controllability analysis, whether the control objectives can be met).

The actual design of the control system is done at the end, after the control problem
has been defined, including the classification of all variables (into inputs, disturbances, con-
trolled variables, etc.). Control system design usually starts with stabilizing control where
it is usually important to avoid input saturation. The control system is then build up in a
hierarchical manner such that each controller is of limited size (usually with as few inputs
and outputs as possible). Emphasis should be on avoiding “long” loops, that is, one should
pair inputs and outputs with are “close” to another.

Most of the proposed process oriented procedures have elements from this way of think-
ing, although some procedures focus mostly on control and operation and seem to skip lightly
over the phase where the overall control problem is defined.

Several case studies have been proposed, which is good. However, some of the work on
these case studies seems to provide little general insight, and their value may therefore be
questioned. A more systematic approach and a common ground of comparison are suggested
for future work.

In summary, the field of plantwide control is still at a relatively early stage of its devel-
opment. However, the progress over the last few years, both in terms of case studies and
theoretical work, bears promise for the future. There is still a need for a clearer definition of
the issues, and it is hoped that this paper may be useful in this respect. In the longer term,
where automatic generation and analysis of alternative structures may become more routine,
the main problem will probably be to be able to generate models in an efficient way, and to
provide efficient means for their analysis (e.g. using input-output controllability analysis).




2.9. CONCLUSION

33

A plantwide control design procedure

Step

Tools (in addition to insight)

Top-down analysis:

CONTROLLED VARIABLES:

What is the control objective and which
variables should be controlled?

Goal: Obtain primary controlled vari-
ables (y1 = c)

PRODUCTION RATE:

Where should the throughput be set?

The throughput manipulator cannot be
used for other control tasks, thus this
choice will have a large effect on the
structure of the control system.

Steady-state model and operational ob-
jectives

Degree of freedom analysis.

Determine the major disturbances.
Evaluate the (economic) loss, with con-
stant controlled outputs and look for
“self-optimizing” control structure.

The optimal choice may follow from
steady-state optimization, but may re-
quire continuous reconfiguration (may
use MPC to avoid this)

The throughput manipulator should have
a strong and direct effect on the produc-
tion rate.




34

CHAPTER 2. PLANTWIDE CONTROL -
A REVIEW AND A NEW DESIGN PROCEDURE

A plantwide control design procedure

Bottom up design:
(With given controlled and manipulated
variables)

REGULATORY CONTROL LAYER.

The purpose of this control layer is to en-
able manual operation of the plant
Stabilization.

Selection of measurements and inputs
for stabilization (including slowly drifting
modes).

Local disturbance rejection.
Often based on secondary measurements.

SUPERVISORY CONTROL LAYER.

The purpose of this control layer is to con-
trol the primary control variables (c).
Decentralized control.

We use a decentralized control structure if
the process is noninteracting and the con-
straints are not changing.

Feed-forward control and ratio control
may be useful here.

Multivariable control

Use for interacting process (coordination
including feed-forward control).

MPC is useful for tracking the active
constraints (if the steady-state optimiza-
tion shows that the active constraints are
changing with disturbances).

REAL TIME OPTIMIZATION

Controllability analysis
Compute zeros, poles, relative gain array,
minimum singular value, etc.

Pole vectors

Give insight about which measurements
and inputs can be used for each unstable
mode. Select large elements: Small input
energy needed and large noise tolerated.

Partially controlled plant

Select secondary measurements (y,) SO
that the effect of disturbances on the pri-
mary output (y;) can be handled by the
operators.

Controllability analysis for decentralized
control

Pair on relative gain array close to iden-
tity matrix at crossover frequency, pro-
vided not negative at stead-state. Closed
loop disturbance gain (CLDG) and per-
formance gain array (PRGA) may be used
to analyze the interactions.

Validation.

Nonlinear dynamic simulation
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Abstract

In this chapter we study how fundamental limitations can be introduced by improper design of the lower control
layer. One useful tool for analyzing this problem is the concept of partial control, which shows how the plant
looks as seen from the higher layer controller.

The conclusion is that we cannot introduce new limitations, provided that we have access to the measure-
ments of the already closed loops, that their setpoints are available as degrees of freedom and that the lower
layer controller is stable and minimum phase.

However, in some cases the requirements are not met, and we may introduce limitations. For example if
the setpoints of the lower layer are unavailable, pairing on a negative RGA may introduce a negative RHP-
zero (inverse response) in the remaining system. We may also introduce sensitivity to disturbances and ill-
conditioning into the remaining system.
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3.1 Introduction

A hierarchical control system arises when design is done in a sequential manner. Typically,
a chemical plant has at least three layers; a regulatory (base) control layer, a supervisory
control layer with local optimization (e.g. model predictive control), and an optimizing layer
(usually based on steady-state optimization). The functions in the two upper layers are often
performed by humans. The lower regulatory control layer usually consists of PID controllers.
The task of this layer is to “stabilize” the plant, so that it can be operated manually, without
the high level controllers in place.

Hovd and Skogestad (1993) proposed some rules for designing the lower layer. One of
the points they mention is that one should not introduce new fundamental limitations, like
RHP-zeros and ill-conditioning, into the remaining control problem. Is this really a problem?
That is, can an improper selection of the base control layer lead to unnecessary limitations,
which cannot be overcome by the higher layers? By “unnecessary” we mean limitations that
were not present as fundamental limitations in the original plant.

The aim of this paper is to study this problem more generally: Can we by improper
design of a lower layer control system, introduce (new) fundamental limitations not present
in the original system?

We will use the terms “lower layer” and “inner loop” as synonyms, and also the terms
“upper layer” and “outer loop” are used as synonyms. The term fundamental limitation will
here imply a restriction on the attainable control performance.

Outline

We first introduce the idea of partial control, and then discuss how to cancel the effect of
the lower control layer. We then discuss the possibility for RHP-zeros in subsystems under
partial control. Next we look at the effect of disturbance under partial control, and then at
ill-conditioning, as indicated by large RGA elements. Finally one example is devoted to a
high-purity distillation column, where it seems that we can remove a fundamental limitation
by closing the lower layer levels.

3.2 Partial Control

One useful tool for analyzing the effect of closing lower layer loops, is the concept of par-
tial control, e.g. (Haggblom and Waller, 1988), (Skogestad and Wolff, 1992), (Havre and
Skogestad, 1996a) and (Skogestad and Postlethwaite, 1996). We partition the inputs « and

outputs y into two sets
I A _ |
i l e ] | l s ]

The linear model y = Gu + G4d may then be written

vy = Guui+ Gus+ Gad (3.1)
Y2 = Gaui+ Goug + Gaod (3.2)
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Figure 3.1: Partial control.

It is assumed that the plant is partially controlled, see Figure 3.1, by closing the loops
involving the variables u, and 3, (measurement noise is ignored),

uy = Ko(re — y2)

(3.3)

where 7, is the reference for y, and K, the lower layer controller. The partially controlled
system becomes (Havre and Skogestad, 1996a) and (Skogestad and Postlethwaite, 1996)

Yy = (Gi1 — GoKo(I + GooK) ' Gor)us +
(Gar — G1oKo(I 4+ G Ky) "Gag)d +
G1aKo(I + GoaKs) 'ry

Yo = (I + GoaKy) 'Goruy + (I + G Ky) ' Gpd +
(I + GoaKy) "G Koy

In compact form the “new” partially controlled plant is written

AN Py P U1 4 Py d
Y2 Py Py To Py
— S——

where from Equation 3.4
P =

Pd:

Sy =

P

Gll - GIQKZS2G21
SQG21

(Gdl - G12K252Gd2)
S2Gaz

I+ Gzsz)_l

Py

GIZKQSQ
G22K252

|

|

(3.4)

(3.5)

(3.6)

(3.7)
(3.8)

By closing the lower layer loops the number of degrees of freedom is not changed, at
least provided dimy, > dim uy and that the setpoints r, may be used by the upper control

layer.
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Comment: It is worth noting that we can rewrite P as
o 0]\ .[I o
po (a2 2] 61 2] 69
0 0 |. . o I 0 :
where we see that inside the paranthesis is different from outside the
0 K2 0 K2

paranthesis. This means that partial control is not just a special case of (a one degree of
freedom) multivariable feedback control.

3.2.1 Perfect control

In the following we assume that dim y, = dim u, So that K5 and G5, are square matrices and
that G5, exists (at least on a frequency by frequency basis). Often the lower layers, involving
12, are much faster than the outer layers, involving y;. This implies that the assumption of
perfect control (yo = r5) is useful for gaining insight into the behavior of the “new” plant as
seen from the layer above. By letting y, = » in equation 3.1 and 3.2, we get

Y1 = (Gn — 012G2_21G21)U,1 + G12G2_217°2 + (Gdl — G12G2_21Gd1)d (310)
Y2 = T2 (3.11)

In compact form:

P l G — G12G§21G21 Gl?G;QI ] (3.12)
0 1
P o= [ (Gar — G(1)2G2_21Gd2) ] (3.13)

where * indicates perfect control.
These equations provide a good approximation at all frequencies where control of y, is
thlgh i.e. Yo R T, SQ ~ 0 and KQSQ ~ G2_21.

3.3 Cancellation of lower control layer

Is it always possible for the higher layer to cancel the effects introduced by the lower con-
trol layer? If this is the case then, in principle, we cannot introduce any new fundamental
limitation by closing the lower layer loops.

To answer this question considers Figure 3.2, where the original partially controlled plant
is shown within the dotted box. Outside this we have added a positive unity feedback that
cancels the negative feedback. Note that this requires access to both y, and 5. In addition,
we have added a block K5 ! at the input, which cancels the effect of K, assuming that K,
is stable and minimum phase so that K, K, ' contains no unstable hidden modes.

Note that the scheme in Figure 3.2 makes use of feedback from y,. Is it possible to cancel
the effect of the lower layer by just using feed-forward from r,? If this was the case then we
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Figure 3.2: Cancellation of the lower layer controller by positive feedback.

would be able to cancel the controller without using y,. For simplicity let us assume that all
outputs are controlled, then our new plant is

y=Tr+ SGud (3.14)
By applying the feed-forward controller » = T-'Gu™** we would get
y=Tr+ SGyd = Gu™™ + SG4d (3.15)

Although we have restored G, the effect of the disturbances are changed from G4 to SG,.
Thus, we cannot cancel the effect of the lower layer feedback loops if we only have access
to T9

We summarize the above findings in the following theorem (see Appendix 3.A for a
complete proof):

Theorem 1 By applying partial control to a plant, Figure 3.1, the achievable control perfor-
mance for the remaining control problem, will be the same as it where for the original plant
if (i.e. the lower control layer can not introduce any new fundamental limitations if)

1. r5 is available as a manipulated variable at the layer above.
2. 1o Is available as a measurement at the layer above.
3. K, is stable and minimum phase so that K, K, * contains no unstable hidden modes.

These results are rather trivial but nevertheless important. At this point we would like to
stress that the goal here is not to show how the lower layer controllers could be canceled,
but to show that the lower layer control does not introduce any new fundamental limitations,
provided that the conditions in the above theorem are met. (In practice one would set the
controllers in manual.)

In practice the conditions in Theorem 1 (and 2), may not always be met and partial
control may introduce some fundamental limitations. For example if the setpoints r, are
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not available as manipulated variables at the layer above, then limitations in Py; will limit
the achievable control performance of y;. Conditions for introducing RHP-zeros in Py, is
discussed in Section 3.4.1 and in Section 3.6.1 the possibility for introducing ill-conditioning
in Py, is discussed.

If the measurement vy, is not available for the higher layer, then as indicated by Equa-
tion 3.15, we may impose limitations in the ability to reject disturbances. This is further
discussed in Section 3.5.

It should also be noted that requirement 3 is not always met as some plants require unsta-
ble or non-minimum phase controller for stabilization, and in other cases, it may be optimal
as seen from the lower layer to use a controller K5 which is unstable or non-minimum phase.
Nevertheless, these cases are relatively rare. An important exception to this is integral action
in K5, which means that K is at the limit to instability. However, as shown in appendix 3.A,
we may cancel the lower layer but not the intergral effect. Then the “new plant” would be
equal to the original plant except that the “new plant” would contain controllable poles at the
origin. But these poles would not represent a fundamental limitation.

3.4 RHP-zeros and partial control

Theorem 1 indicates that we cannot introduce new RHP-zeros in P, provided the controller is
stable and minimum phase. The following theorem is valid only for RHP-zeros and is slightly
stronger than Theorem 1, the condition on a stable controller is removed (see Appendix 3.B
for proof):

Theorem 2 A plant under partial control, Figure 3.1, will only have multivariable RHP-
zeros from the plant G in the transfer-function from the manipulated variables and the mea-
surements of the higher layer if

1. y, is available as a measurement at the layer above.
2. ro is available as a manipulated variable at the layer above.
3. K, is minimum phase.

Any RHP-zeros in the controller K5, will be RHP-zeros of the higher layer plant, i.e. from
(u1,72) 10 (Y1, 92).

Thus we cannot introduce new multivariable RHP-zeros in P which where not present in
either G or K,. However, in many cases we may want to use only w; to control y;, or only r
to control ;. We now want to study if new RHP-zeros can occur in the resulting subsystem,
Py or Pp,.

3.4.1 RHP-zerosin Py

Let us first consider the case where the upper layer does not make use of the setpoints 5. The
relevant transfer function from u; to y; is then Py = G11 — G12K3S55Go;. 1t is well known
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that pairing on a negative steady-state RGA-element in G and use of integral control implies
the introduction of new a RHP-zero in Py, (Shinskey, 1979, Bristol, 1966 and Grosdidier and
Morari, 1985). This was generalized to non-integral control by Jacobsen (1997). Jacobsen
and Hong (1998) gives a general condition for P;; and G1; to have a different number of
RHP-zeros.

The presence of a RHP-zero in P;; implies that there is a fundamental limitation in the
use of u to control y;. However, the significance of the limitation depends on the location
of the RHP-zero and a closer analysis shows that these new RHP-zeros will often be located
at frequencies at or beyond the bandwidth of the control system involving the other outputs
2. This means that if we require the bandwidth in the outer loops to be much less than in the
inner loop, then the RHP-zeros will not be a limitation. This is illustrated by the following
theorem, where we assume perfect (very fast) control in the inner loop.

Theorem 3 Consider a plant G for which it is possible to achieve perfect control for a subset
of inputs and outputs corresponding to the subsystem Gs,. If perfect control is applied
to this subsystem, the remaining part of the plant involving the unused input and outputs,
Py, =Gy — G12G5 G Will contain the RHP-zeros of the original plant G.

The proof is included in Appendix 3.C. Rosenbrock (1970) presented a similar result when
all outputs but one are under perfect control. By continuity arguments, it then follows that
any new RHP-zeros in P;; will move to higher frequencies as we “tighten” the control of the
inner loop involving ..

Example 1 To illustrate the points above, we consider the following plant

Gls) = [ ; i ] (3.16)

The (2, 2)-element of the RGA for this plant is A22 = —1. Pairing on this negative RGA element, e.g. by closing
an “inner” loop us = %(7’2 — y2), gives (K is a constant positive gain.)

u KL _1 g, u
el [ Bl e

T2 s/K+1 s/K+1 "2
Note that the overall plant P does not have any RHP-zeros, that is there are no multivariable RHP-zeros in the
transfer function from (u1,72) to (y1,y2). However, if we do not make use of r», then the remaining plant as
seen from the upper layer is

s/K -1
Sl
s/K+1
and there is a RHP-zero is at K, which is the same as the bandwidth frequency of the inner loop (L, =
G2 K> = K/s). Thus if the outer loop, involving only u; and yq, is significantly slower than the inner loop,

the RHP-zero will not pose much of a limitation. Furthermore if we increase K, i.e. tighten the control of y-
the RHP-zero will move further out in the RHP-plan.

y1 = Priug = (3.18)

It is, however, possible to construct examples where the RHP-zero appears at a frequency
well below the bandwidth of the lower layer, see examples in (Jacobsen and Hong, 1998).
But, as expected from Theorem 3, in all the cases the RHP-zero will move to higher frequen-
cies (becoming a less severe limitation) if the bandwidth of the lower layer is increased.
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3.4.2 RHP-zerosin P due to RHP-poles in Gy

It is well known that the presence of RHP-poles implies a fundamental limitation, e.g.
(Skogestad and Postlethwaite, 1996), as it requires feedback control with active use of plant
inputs. Here we will provide a consequence of this for partial control. Consider the case
where the primary objective is to use the input u4 to control the output y; (the set u, is emp-
ty). However, the plant is unstable, and we also need to use u, to stabilize the plant, for
which we have available the measurement y,. Thus we have (not considering disturbances)

A0 G2
HEESE
Will the instability limit the performance of the control of y;? If the instability is not de-

tectable in y; then the instability will limit the performance of the control of y;. More
specifically we have the following theorem:

Theorem 4 Consider an unstable plant where the instability is not detectable in the output
set y;. Assume that the outputs (measurements) y, with setpoints r, are used for stabilizing
control. Then the RHP-poles of the original plant G as RHP-zeros in the transfer function
Py, from ry to ;.

Proof: The transferfunction from r, to y; is Pio = G12K>5S,. By assumption G5 is stable
and G95 is unstable. For internal stability all RHP-poles in G'o3 must appear as RHP-zeros
in K555 (Youla et al., 1974), and since G5 is stable as RHP-zeros in P,.

Thus we introduce a fundamental limitation in P, whenever we attempt to control vari-
ables not containing this instability. A special case of the above is when y; = uy (P2 = I).
This occurs when we want to control the input used for stabilization (“input-resetting”).

Example 2 Attempting of input resetting for liquid level control. Assume that a flow u» used for controlling
the liquid level y-, which is an integrating process. We would like to freely change the flow, i.e. y1 = us. Thus
the model is
[yl ]:sz[ ! ]uQ (3.19)
Y2 5
A P-controller, with unit gain, us = ro — ¥, is used for stabilization. The resulting transfer function from r,

to yq is
S

- s+1
and we find as expected that the pole at the origin in G2, appears as a zero at the origin in Py5. Thus, it will not

be possible to control the flow y; = u» at steady state. This is well known in practice, and follows physically
from the fact that inflow must equal the outflow at steady state.

Pis (3.20)

3.5 Disturbances and partial control

Without control, the effect of the disturbance d on the outputs is (not considering the inputs)

Yy | _ Ga
AEEE .
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and under partial control (closing the loops involving - and ) we have

y | _ Py d (Gdl - G12K2(I + G22K2)_1Gd2) d ~~ (Gdl - G12G2_21Gd2) d
v | | Pe (I 4+ G K3) "G - 0

(3.22)
where the approximation holds at frequencies where we have tight control of y, i.e. y = 5.
Although the objective of feedback control is to reduce the sensitivity for disturbances on ¥
(i.e. to have || Py || < ||Gail]), we see from the above equations that we may in some cases
get a larger sensitivity, (i.e. ||Pa|| > ||Gal|). For example, we see that if the disturbance
originally had no effect on y4, i.e. G4 = 0, but do effect y5, i.e. G4 # 0, then closing the
inner loop will yield a nonzero transfer function Py, = G1oKo(I + GaoKy) *Gyo.

In summary, we find that if we close a lower loop involving the output y,, then we may in
some cases introduce a sensitivity to disturbance not present in the original transfer function
from u, to y;. If the lower layer measurement is not available in the next control layer then
this may impose a fundamental limitation.

To study the other desired situation, where local feedback through control of y, reduces
the disturbance sensitivity, we assume for simplicity perfect control of y,. Then

Y1 = (I — G12G2_21Gd2G;11)Gd1d (323)
and we see that if G1o = G99 and G4 = G42 then y; = 0 d. To state this in a clear manner

e If the disturbance d and the secondary input u, have similar effects (on y; and ),
i.e. Gg1 =~ Gg and G5 = Gy then the primary measurement y; will become less
sensitive to the disturbance when wu. is used to control ys.

e |f the disturbance d or the secondary input u, have different effects (on y; and y5), then
the primary measurement y; may become more sensitive to the disturbance when
is used to control 5.

This insight is useful to evaluate if cascaded control should be applied. There is more on this
subject on page 429 in (Skogestad and Postlethwaite, 1996).

Comment: Much of this discussion is valid for model uncertainty and for noise.

3.6 lll-conditioning and partial control

3.6.1 Introducing ill-conditioning

The relative gain array (RGA) is defined by RGA(G) = Gx(G~')", where x denotes
element-by-element multiplication. Large RGA-elements imply fundamental control prob-
lems, (Skogestad and Morari, 1987). More specifically, decoupling control can not be used
due to sensitivity to input gain uncertainty, whereas decentralized (diagonal) control yields
poor control, even nominally, since large RGA-elements imply strong two-way couplings.
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The following example shows that partial control invovling u, and y,, may introduce
large RGA-elements into the remaining control problem involving u, and y; (Py1). (How-
ever, note that these large RGA elements do not appear if we look at the “full” partially
controlled plant P including y2 and 7).

Example 3 Consider the following plant

el @ nnl 0.51 | 1.02 -1.89 096 1.91
G= { G” G“ ] = 1 1 0 | RGAG) = 96 0.04 0 (3.24)
2| 1 o] 1 191 0 —0.92

All the RGA elements of G are small, indicating no particular control problem. However, applying partial
control gives the partially controlled plant

0.49 0.51
P = [ 1 1 ] (3.25)
for which the relative gain is
—24.5 25.5
RGA(P) = [ 25.5 —924_5 ] (3.26)

These large values in the RGA indicates sever control problems for using «; to control y;, when w, is used for
controlling y-.

3.6.2 Apparent removing ill-conditioning (distillation example)

Let us first make clear that ill-conditioning (e.g. as expressed by large RGA-element) is a
fundamental problem, so it cannot be removed by applying partial control.

Nevertheless, this is exactly what seems to happen for some high-purity distillation
columns for which the original plant has large RGA-elements. But somehow, by closing
the level loops in a particular way to obtain the DV-configuration, we are able to eliminate
the large RGA-elements. Thus a fundamental limitation seems to have disappeared, which
is obviously not possible. This is puzzling and below we will study how this happens.

Example 4 We consider “column A of Skogestad and Morari (1988), with constant pressure. The column
has four inputs, reflux (L), boil-up (V), distillate (D) and bottom product flow (B). The four outputs are, top
composition of light component (yp), bottom composition of light component (z g), level in condenser (Mp)
and level in the re-boiler (Mp). A simplified linear model is, (Skogestad and Morari, 1988)

Yo gyr(s) gyv(s) 0 0 L
T S s 0 0 vV
My | = gers) gev(s) 0 ol lp (3.27)
M P -L o]l
G
At steady state
351 =341 0 0
gy g ] _[ 878 -864]. | =341 351 0 0
G”_[gu gzv]_[lo&z _1096 | TiGA= 0 01 0 (3.28)
0 0 0 1

These large RGA values indicate a problem with decoupling control.
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The tasks of composition control and stabilization of the levels usually require different bandwidths. We

Mp

therefore partition the plant so that ¢y, = [ Yo ] (compositions) and y» = [
zB Mp

] (levels). The inputs may
be partitioned in many ways, and each choice of u; is denoted a “configuration”, e.g. u; = [ {L/ ] is named

the LV-configuration and u; = is named the DV-configuration.

D
\%
With perfect level control the LV-configuration becomes

Yp | _ | 9z Gyv L 00 ] [ Mps ] 3.99
|:$B:| [gzL ng:||:V:|+|:OO Mg (3:29)
—_— ~—————— ————— —C

Y1 Pl*lLV u P1*2LV To

The RGA of P;LV is thus the same as for the original plant, and at steady-state

35.1 —-34.1
*LVY __
A(PHY) = [ —34.1  35.1 ] (3:30)
indicating fundamental problems with decoupled control of the compositions y; = [ iD ]
B
However, with the DV-configuration, assuming perfect level control, the remaining plant is
YD | _ | —9yL Gyv T GyL D gyrs 0 Mp,
= + 3.31
[5’33 ] [ —9zL  Gzv t GoL ] [ |4 ] [gst 0 Mps (3.31)
Y1 Pl:lg" u1 PPV T2

and the steady state RGA of Py; for this control configuration is

! 0.46 0.54
AP = [ 0.54 0.46 ] (3:32)

Thus, the large RGA values have disappeared(!), and it should be possible to have decoupled control of the
compositions. This seems inconsistent with the large values of the RGA.

A more careful study reveals that in the DV-configuration there are interactions from the level loops to the
compositions, PPV # 0, whereas there are no interactions in the LV-configuration, PV = 0. Apparently
these interactions from the level loops mean that in the DV-configuration we can have decoupling between the
compositions.

In practice, the coupling from the condenser level, imply that we must maintain constant condenser level
when using the DV-configuration. This is clearly a disadvantage, which must be traded against the possibility
for achieving decoupled control of the compositions.

3.7 Conclusion

This paper has followed up a point made by Hovd and Skogestad (1993); that the lower
control layer should in such not impose any new fundamental limitation that was not present
in the original plant.

We find that if both the measurements y, and setpoints r, of the lower layer are available
for the next layer and the lower layer controller is stable and minimum phase, then no new
fundamental limitation can be introduced. This follows because we can then cancel the
lower layer controller with a positive feedback and inversion of the lower layer controller
at the input. However, if either 4, or r, are unavailable then it is possible to introduce new
limitations for the higher layer.
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3.A Proof of Theorem 1

We study the following system (i.e. the partially controlled system in Figure 3.1, where the
loop involving ¥, and us is closed)

Y1 = (G — G12K28:Gor)us + (3.33)
(Ga1 — G12K25:Gg2)d +
G12K5Sors

Yo = SoGorur + SoGaod +
SoGaa Koty

Here r5 is a degree of freedom and we apply a ”two degree of freedom” controller
re = K3uy™ — Kqyo (3.34)
The resulting closed-loop system is

yo = (I+ 52G22K2K4)_152(GQ1U1 + Gaod) +
(I + SQG22K2K4)_152G22K2K3/U;gew

If (I + SoGy0KyK4)™ 1S, = I then the effect of u; and d will become that of the original
plant. This is achieved if (I + SeG22Ky K4) = Ss, which is satisfied if Ky = —1I (i.e.

T>
positive feedback of unity gain). Then

Y1 = G11U1 + Gdld + G12K2K3U,gew (335)
Yy = Gaur + Gad+ GpKyKiuy™

To also restore the original transfer function from u, to y, we need K5 = K,'. Thus,
K, has to be minimum phase and stable (otherwise K, K, * would contain hidden unstable
modes). Thus minimum phase behavior and instabilities introduced by the controller can not
be canceled by the higher layer.

If the controller K, uses integral action then by letting K5 be equal K5, where K, =
K, /s and K is the stable, Equation 3.35 becomes

G
Yy = Guui+Gaud+ %ugew (3.36)

G
Y2 = G21U1 + Gde + %ugew

Provided that either GG or G55 does not have a RHP-zero at the origin then the pole at the
origin will be controllable from u5. Thus the only difference between the above plant and
the original plant G is that it contains a pole at the origin which is not really a fundamental
limitation.

Comment: It is well-known that zeros of a plant are not moved by feedback control, i.e.
the zeros of GK and (I + GK)~'GK are the same. However, as noted from Equation 3.9,
partial control is not a special case of feedback control, and this is why we have (re-)derived
Theorem 2.
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3.B Proof of Theorem 2

For the sake of argument we let K3 in Equation 3.35 be equal to 7, then

I
=G l " 132 ] W 4 God (3.37)

From the above equation we can clearly see that any RHP-zeros of the partially controlled
plant has to come from either G or K, even if K, has RHP-poles.

3.C Proof of Theorem 3

The partially controlled plant is
Py =G — GGy Gy (3.38)
The determinant of the partially controlled plant is
det P;; = det(G11 — G12Gas Go1) (3.39)
Using Schurs formula gives (and assuming that det G, # 0)

det G

det Pll = m
22

(3.40)

The determinant of a system can be written in terms of the zero and pole polynomial,
(MacFarlane and Karcanias, 1976):

detG = c}% (3.41)
det GQQ = ng;zzgz; (342)

where z and p are zero and pole polynomial (may not necessarily be relatively prime) and ¢
is a constant. Thus

det P11 = C/CQQi@ (343)

222 P
Since the roots of py, has to be roots in p, they will not contribute to any zeros in det P;;.
Secondly since we assume that Go5 is used for perfect control it can not have any RHP-zeros.
Which means that any RHP-zeros in det P;; will have to come from z, e.g. from G.
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We consider the control structure selection for a simple plant with a liquid phase reactor, a distillation column
and recycle of unreacted reactants. This class of plants has been studied extensively in the literature. Luyben
has used it as a basis for his generic rule, “fix a flow in a liquid recycle loop”. In this paper we shows that the
basis for his rule is questionable. This is based on a systematic selection of the control structure, by using the
concept of self-optimizing control.
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4.1 Introduction

A common feature of many chemical processing plants is the presence of recycle of mate-
rial. The most common material recycle is to recover unreacted reactant in from the reactor
effluent flow and to recycle it back to the reactor. Figure 4.1 is a simple representation of
such systems. It is a plant with a reactor, a distillation column and recycle of unconverted
reactant. This system is simple but complex enough to capture some of effects encountered
in real plants. This is explains why variations of Figure 4.1 has been extensively studied in
the literature and why it is studied here.

Figure 4.1: A liquid phase reactor with separator and recycle.

Gilliland et al. (1964) used it to illustrated how the dynamics and steady state behavior
where changed by recycle. Luyben (1993a, 1993b and 1994) followed up Gilliand’s points
and described the high sensitivity in the recycle flowrate to the feed-flowrate. An effect for
which he used the term “snowball effect”. He deemed the high gain to be unfavorable. As a
remedy he proposed a generic rule: “fix a flow in a liquid recycle loop”.

Wu and Yu (1996) followed up the work of Luyben (1994) and showed that for a fixed
reactor effluent flow, the reactor hold-up has a high gain for feed-rate changes. Their solution
was to control reactor composition.

Price and Georgakis (1993) used the integrated absolute error of the product composition
to rank different control structures. They found that control of internal compositions, either
distillate or reactor composition, helps the control of bottom composition.

The above works rises some issues that need to be studied further. First, the “Luyben”
rule has not been properly substantiated. Second, in most of the above works, the overall
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control objective for the plant was not clearly defined. Third, a liquid phase reactor should
normally be operated at maximum volume (liquid level) in order to optimize economics, Wu
and Yu (1996) and Luyben propose to let reactor level float. This has an impact on the steady
state economics, an issue that has been overlooked by most researchers so far.

The recycle plant in Figure 4.1 has four degrees of freedom at steady-state (one for the
throughput (feed-rate), one for the reactor and two for the distillation column), see Table 4.2.
In the literature several alternative sets of controlled variables has been proposed for the case
with given feed rate Fy:

1. “Conventional”: Control of M,, zp and z 5.

2. “Luyben”: Control of F', xp and xg, (Luyben, 1994). (In the scheme proposed by
Luyben the reactor level is controlled by using the feed rate Fj, and the setpoint of this
loop is used to achieve the correct feed rate.)

3. “Balanced scheme”: Control of z,., zp and z g, (Wu and Yu, 1996).
4. “Self-optimizing”: Control of M,., L/F and z g, (this paper).

where M, is reactor holdup, xp is distillate composition, =z is bottom composition, z, is
reactor composition, F' is reactor effluent and L is reflux in the distillation column.

Note that Luyben’s scheme and the balanced scheme the reactor level is uncontrolled
(floating), which at first may seem strange. However, the reactor level can be stabilized in
two indirect ways:

1. The composition in the reactor depends on the conversion (kx, M,), thus by control-
ling the reactor composition x, the conversion (per pass) is fixed and reactor level is
stabilized.

2. The (total) conversion may be fixed by recycle the unreacted A. This may be achieved
by controlling the compositions in the distillation column (x p and zg) then any unre-
acted A will be recycle back to the reactor and since the total conversion is given the
reactor level is stabilized.

The main objective of this paper is to study schemes such as the ones listed above. The
difference between them is which variables that are to be controlled. This issue is studied in
a systematic manner by using the concept of self-optimizing control, (Skogestad, 2000). A
brief introduction to self-optimizing control is given in the next section.

4.2 Procedure for selecting controlled variables

As mentioned above (see Table 4.2), there are four degrees of freedom at steady state, and
their value should be selected to optimize the plant economics. At the economic optimum,
some of the degrees of freedom will be used to satisfy constraints, but normally some of
them are unconstrained. The main issue is what to do with these unconstrained degrees
of freedom. That is which variables should be controlled? If there were no uncertainty or
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disturbances, then every choice would give the same economics. However there will always
be uncertainty and disturbances, and each set of controlled variables will give a different
shape of the objective function around the optimum. An ideal set will yield a “flat” objective
function, so that an implementation error will give a small loss from the economic optimum,
(Skogestad, 2000). More precisely, we will consider the economic loss imposed by keeping
a given set of variables constant.

From (Skogestad, 2000) we adopt the following procedure for selection of the controlled
variables.

Step 1. Degrees of freedom analysis. Determine the degrees of freedom available for
steady-state optimization. The easiest way is to count the number of inputs and sub-
tract the number of variables without steady state effect, which has to be, controlled
(e.g. non reacting levels).

Step 2: Cost function and constraints. Define the optimal operation problem by formulat-
ing a scalar cost function .J to be minimized, and specify the constraints.

Step 3: lIdentify the disturbances (uncertainty). These may be caused by errors (uncer-
tainty) in the assumed (nominal) model, disturbances or implementation errors in the
controlled variables.

Step 4. Optimization. The optimization problem is solved both for the nominal case and
for the identified range of disturbances.

Step 5: Identify candidate controlled variables c. Active constraints should be controlled,
especially if there are a measurement associated with them. To select between the
remaining candidates we proceed to step 6.

Step 6: Evaluation of loss. Compute the mean value of the loss for alternative sets of con-
trolled variables. This is done by evaluating the loss, which is the difference between
the cost when fixing the optimal cost and

L,(u(cs),d) = J(u(cs), d) — Jopt(d) (4.1)

with fixed setpoints ¢, as a function of the disturbances d. Controlled variables c,
which results in a small loss are preferred.

Step 7: Further analysis. Normally several candidates gives an acceptable loss, and further
analysis may be based on a controllability analysis.

4.3 Selection of controlled variables

In this section use the concept of self-optimizing control, introduced above, to select the con-
trolled variables for the recycle plant. We will look at two different objectives: minimization
of operation cost and maximization of the production rate. Table 4.1 summarizes the results.
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MINIMIZATION OF OPERATION COST MAXIMIZATION OF THROUGH-PUT

Step 1: Degrees of freedom analysis. (see Table 4.2)

Degrees of freedom at steady state 4 Degrees of freedom at steady state 4

Step 2: Cost function.

Obijective function Obijective function
minimize V maximize  Fy
Constraints Constraints
Reactor level M, < 2800 Reactor level M, < 2800
Product quality zp < 0.015 Product quality zp < 0.015
Feedrate Fy = 460 Vapor boilup V' < 1400

Step 3: Identify the most important disturbances.

Disturbances Disturbances
Feed rate Fy &+ 20% Maximum vapor boilup V' £ 20%
Control error £20% Control error £20%

Step 4: Optimization.
- Active constraints at the optimum 3 Active constraints at the optimum 3
MT,:UB,FO MT, ZUB,V

= Unconstrained degree of freedom 1 Unconstrained degree of freedom 1

Step 5: Identify candidate controlled variables.

F,L,D,L/D,L/F,L]V,zp F,L,D,L/D,L/F,L)V,zp
Step 6: Evaluation of loss.
Good candidates Good candidates
zp, L/D, L/F zp, L/D, L)V, L/F
Bad candidates Bad candidates
D, L,F, L]V D, L F

Step 7: Further analysis.
Ratio control L/ F is easier than composition control zp.

Conclusion.
Control: M,, xp, L/F Control: M,,V,zg, L/F

Table 4.1: Summary of self optimizing control.
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The plant and the design data are taken from (Wu and Yu, 1996). The model is simple
and it is assumed isothermal reactor, first order kinetics (k = 0.3408 hr=') where A — P,
A is the light component, constant relative volatility (o« = 2) and linearized flow dynamics
(7 = 0.0011 hr) in a distillation column with 20 stages and liquid feed at stage 12.

4.3.1 Given feed, minimize operation cost

Step 1: Degrees of freedom analysis There are 4 degrees of freedom at steady-state, see
Table 4.2. (Feed rate Fj is included for consistency.)

Manipulable variables 6
Product flow B
Vapor boilup V
Reflux L
Distillate D
Reactor effluent F
Feed Fj
- Levels without steady state effect
Condenser level Mp
Boiler level Mp
= Degrees of freedom at steady state 4

Table 4.2: Degrees of freedom analysis.

Step 2: Cost function and constraints The goal of the operation is to minimize the oper-
ating cost, we assume that the cost is given by the vapor boilup in the distillation column, i.e.
J = V. There are constraints, on the reactor level and on the product quality x 5. In addition
the feed rate Fj is given.

Step 3: Disturbances The main disturbance is throughput changes, with £20% of the
nominal flowrate of Fy. The control error is assumed to be +-20% in all variables, except for
the top composition z p where it is assumed to be +20% of the impurity 1 — zp.

Step 4: Optimization Table 4.3 shows the results of the nominal optimization.

We find that two constraints are active. Clearly bottom composition has to be at its
constraint, if not we could reduce the vapor boilup and still satisfy inequality constraint.
Since there are no penalty involved in increasing the reactor holdup, M,., it is clearly optimal
to keep it at its upper bound to maximize the conversion “per pass”. Maximum conversion
will reduce the need for recycle, and therefore reduce the load to the distillation column.

Since the feed rate Fy is given, we are left with one unconstrained degree of freedom.
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Case 1: Min. V' Case 2: Max. F

Feed rate Fj 460 493 [kmole/hr]
Reactor effluent 963 1097 [kmole/hr]
Vapor boilup V/ 1216 1400 [kmole/hr]
Reflux L 713 796 [kmole/hr]
Distillate D 503 604 [kmole/hr]
Top composition z p 0.80 0.82 [mole A/(mole A+P)]
Bottom composition x p 0.015 0.015 [mole A/(mole A+P)]
Reactor level M, 2800 2800 [kmole]

Table 4.3: Nominal optimization results for the two cases.

Step 5: Candidates for control Active constraints should be controlled to optimize oper-
ation, i.e. M, and =g should be controlled. Note that this rules out the Luyben scheme from
being candidates for self-optimizing control.

Some of the possible candidates for the remaining degree of freedom are listed in Table
4.1. It could be tempting to set V" directly. But if it is set to at a too low value, we will have
infeasible operation, and if it is set to a too high value it does not give optimal operation.

The reactor composition x,. is not a candidate for control. It is given by the total conver-
sion of A. This can be shown from a total mass balance of component A (and Fy, = B):

= Fo(l”o - fEB)
" kM,

Since the feed (F} and z,) is given, and =z and M, are controlled at their constraints, x, has
to float. This removes the balanced scheme as a candidate for self-optimizing control.

(4.2)

Step 6: Evaluation of the loss Figure 4.2 shows the losses due to control error and the
disturbance. Control of =5, L/F or L/D gives small losses, while D, F', L and L/V gives
larger losses. If we should follow Luyben’s rule then we would have to select either D or F'.
But as can be seen from Figure 4.2 fixing one of these variables would lead to an overload
of the distillation column.

Step 7: Other considerations Since L/F gives a much easier control problem for the
distillation column it will be preferred before control of z .

4.3.2 Maximize the feedrate

We now consider the case where the feedrate is free to choose, but the column has a capacity
limitation. This may be more realistic in practice, and certainly of more interest from an
economic point of view.

Step 1: Degrees of freedom analysis As before, there are four degrees of freedom at
steady state, see Table 4.2.
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Figure 4.2: Losses in V' for the case with given feed Fj.

Step 2: Cost function and constraints The goal here is to maximize the production rate,
i.e. J = —F,. In addition to the other constraints the capacity of the distillation column is
limited (e.g. maximum vapor boilup).

Step 3: Disturbances The boilup V' is in practice set indirectly, and the available V' will
not be constant.

Step 4: Optimization Table 4.3 shows the results from the nominal optimization. Vapor
boilup, reactor level and product composition are constrained at the optimum.

This leaves one unconstrained degree of freedom. To understand this let us assume that
we start with a feed flow of F; = 350 kmole/hr, which gives a certain recycle flow D. At
low production rates there is almost a linear relationship. But as production is increased, the
load to the distillation column increases (F'z,. increases) and recycle purity z p decreases. As
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Figure 4.3: Distillate flow as a function of production rate.

xp decreases, more D is needed to keep up the production, and at F;, = 493 kmole/hr the
production rate can not be increased any further. This is shown in Figure 4.3.

Step 5: Candidates for control Some of the possible candidates for control are listed
in Table 4.1. Reactor composition should be as large as possible, and it is therefore not a
candidate for control.

Step 6: Evaluation of the loss Figure 4.4 shows the losses in production rate due to dis-
turbance and control error. (Note that if V' is constant, then constant L, L/D etc. are the
same as constant D.) Control of zp, L/F, L/V and L/D give small losses, while D, F' and
L give larger losses.

Comment: It is somewhat surprising that the same variable L/F turned out to be the
best variable to control for both cases.

4.4 Comparisons to previous literature

4.4.1 The conventional approach

The conventional control configuration has very good self-optimizing properties. However
the analysis shows that control of the internal composition z is not really needed. From
a self-optimizing point of view x and L/F performs equally well. The latter is preferred
because online measurements are costly and two-point control is often difficult.

4.4.2 The snowball effect and the Luyben rule

Luyben (1994) states “the use of a conventional control structure resulted in a 100% increase
in the recycle flow rate for a 10% increase in the fresh feed flow rate. Such large changes
are very undesirable because columns can only tolerate a limited turn-down ratio.” (In the
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Figure 4.4: Loss in production due to control errors and disturbances.

conventional structure reactor level, bottom and top composition is controlled.) His remedy
was to fix the reactor effluent flow F" and to let reactor holdup be controlled with Fj,. However
his solution has some serious limitations which will be discussed here.

From a material balance we find (Luyben, 1994):

. Fo(FQ(.’L'O - .’,EB) - kMT.fCB)

D = 4.3
k‘MT.QfD - F()(.Z'O — $B) ( )
and we see that as if the reactor holdup is too small compared to F,, more precisely if
M, < M (4.4)
ka:D

then the recycle rate D will approach infinity. This is what Luyben (1994) refers to as the
snowball effect.
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We found above that both for the case where we minimize the boilup (given Fj) and the
case of maximization the feed rate, it is optimal to have the reactor level M, at its maximum
value. In the Luyben scheme the level will “float”.

Later, Luyben et al. (1997) proposed a more generic rule:

Fix a flow in every recycle loop. [...] This is a simple and effective way to
prevent potentially large changes in recycle flows if all flows in the recycle loop
are controlled by levels. [...] the plants separation section is not subjected to
large load disturbances.

We have already discussed that this rule is not economical optimal if it results in a scheme
where the reactor level floats. However, there is also the possibility that we fix a flow in
recycle and control the reactor level M, at its maximum value. This is the scheme was
studied above, and we found that it had poor self-optimizing (Figure 4.2), some of them
where not even able to reject the disturbances. We thus conclude that the Luyben rule should
not be recommended on a generic basis. But does it have advantages from a controllability
point of view? This will be the topic Section 4.5.

Remark on the snowball effect: Thus the “snowball” effect is really not an issue in the
operation of the plant. Rather, it is a design issue, since the reactor size is an unconstrained
optimization variable during the design phase. It may be an option to over-design the reactor
to avoid large fluctuation in recycles for throughput changes.

4.4.3 The balanced scheme

Wu and Yu (1996) indicate that with their control structure, i.e. control of reactor compo-
sition, it will be possible to operate the plant over a wider range of feedrates. However, we
have shown that maximizing the reactor holdup is necessary to achieve maximum produc-
tion. These two views are contradictory and the argument of (Wu and Yu, 1996) is correct
only if we do not include any constraints. However, in practice there will always be a hard
constraint on the reactor level.

4.5 Controllability analysis of the liquid phase system

Consider the case where the feed rate is given. In this section we will look on the con-
trollability analysis of some schemes. (We will in this section assume a level is perfectly
controlled if it is controlled.)

We will look at the following cases (the pairing is based on the relative gain array):

Conventional M, — F,zp — L, xzg -V, Mp — D and Mg — B.
Luyben scheme F,xp — L, x5 — V ,Mp — D and Mg — B.

Luybenrule F, M, — D, xg, Mp — L and Mp — B.
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Self-optimizing M, — F, L/F, x5 —V, Mp — D and Mg — B.

Note the difference between the Luyben scheme and the “Luyben rule”. In the former
the reactor level is floating and in the former it is fixed. In both cases we have applied the
Luyben rule by fixing a flow in the liquid recycle.

From Figure 4.5 we see the closed loop disturbance gain, (Hovd and Skogestad, 1992).
We note only the Luyben scheme is significantly different, and has better ability to reject
disturbance in feed rate.

Magnitude

107 10" 10° 10" 107 107" 10° 10"
Frequency Frequency

(a) Disturbance in feed composition zq (b) Feed rate changes

Figure 4.5: Closed loop disturbance gain.

This is confirmed in the nonlinear simulations, see Figure 4.6. The Luyben scheme
rejects the disturbance in Fj easily, this is related to the use of the reactor holdup as a buffer
for feed rate changes, and not due to the Luyben rule. If we control both the reactor level
and the reactor effluent flow (denoted by Luyben rule on the figure) the system is not even
able to reject the disturbance. This is explained by the steady state analysis in the previous
section: As the feedrate is increased, less D is recycled to maintain the reactor level, and
therefor light component A will accumulate in the distillation column (e.g. V and L will
approach infinity and the column will “saturate”).

4.6 Conclusion

This paper has looked at the selection of controlled variables for a recycle plant. The basis
for the selection has been the concept of self-optimizing control. A very central point is
to base the selection on the steady state economics of the plant. We studied two different
objectives:

1. Minimization of the operating cost, which was the boil-up.

2. Maximization of production rate.
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In both cases there was no cost associated with increasing hold-up. Therefor it should be
controlled at its constraint, to maximize the conversion “per-pass”. In both cases control of
xp or L/F gives small economic losses.

We have shown that the basis given by Luyben (1993c) for the generic rule: “one flow
rate somewhere in the recycle loop should be flow controlled”, can lead to excess load in the
distillation column (i.e. the opposite effect of what the rule seeks to avoid).

However, dynamic simulations showed that the scheme proposed by Luyben (1994) per-
forms better than the conventional scheme and the self-optimizing scheme for disturbances
in the feed rate. This is not due to fixing a flow in the liquid recycle, it is due to the buffer
effect by the floating reactor level. The scheme with both fixed reactor effluent and level
where not even able to reject a 20 % increase in feed rate. If one allows for a non-optimal
control structure, like the Luyben scheme, it may be better to control the reactor level at its
constraint and to over-purify the product.

In a gas phase system the situation would be different, there are a cost associated with
reactor hold-up (pressure) so it is not given that optimal reactor holdup will be at its con-
strained. These systems are more common in the industry, and will be the subject of Part Il
of this work (Chapter 5).
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Abstract

This paper has looked at the selection of controlled variables for recycle processes. We looked at two main
cases, a simple gas phase system and a more realistic case, the methanol synthesis loop. The paper is a
continuation of work done on a simple liquid phase reactor. Our focus has been on the selection of controlled
variables.

Control of recycle-rate, purge fraction, or reactor pressure gives a system with good self-optimizing prop-
erties. This is linked to the behavior of these variables as conversion increases. As expected purge flow is a
bad alternative as a controlled variable. More unexpectedly, inert composition in the recycle turned out to have
bad self-optimizing properties. This is also explainable by the behavior of this variable when conversion is
increased.

The results for the simple gas phase reactor carries well over to the methanol case study.
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5.1 Introduction

A common feature of many chemical processes is the presence of recycle. One example
of mass recycle is a reactor, separator and recycle of unreacted reactant, see Figure 5.1.
This configuration is very common in industry, some common examples are ammonia and
methanol plants.
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Figure 5.1: A gas phase with separator and recycle.
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In part one of this paper we studied a similar plant. That plant had a liquid phase reactor,
a distillation column as a separator and no inert. Even thought gas phase reactors are more
common in the industry, the liquid phase plant has been the most studied. In many aspects
the difference between the two systems is small, but we will show that there is a significant
difference for the selection of control structure.

The gas phase plant has not been studied to the same extent by academic researchers.
Hansen (1998) studied the methanol synthesis loop. He used a complex model for an in-
teresting controllability analysis. Unfortunately, he did not discuss the selection of outputs.
Loe (1994) discusses the industrial practice for control of ammonia plants, and concludes
that it may not be necessary to control the pressure.

Fisher et al. (1988Db) give some heuristics for plant control. The most commonly applied
seems to be: “keep the gas recycle flow constant at its maximum value”. The reason is to
maximize the yield. They used the HDA-plant as an example.

In this work we study first a simple system where component A is converted to P, and
then an industrial example, the methanol synthesis loop. The focus is on the selection of
controlled variables. To address the issue in a systematic manner we will use the concept of
self-optimizing control (Skogestad et al., 1999). This involves searching for the variables,
which when kept constant give the minimum operating cost. The steps that are involved in
this procedure is given in Chapter 4.

5.2 The simple gas phase system

The main modeling assumptions are:
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e |sothermal reactor (no energy balance).

e Sharp split in the separator, reactant A and inert in the gas phase are separated from
the liquid product P.

e Ideal gas law.

e The reaction rate of A — P is given by kx, M,., where M, is the molar holdup in the
reactor, z, is the composition of A in the reactor and & is the reaction rate.

e The reactor effluent flow to the separator is driven by the pressure difference, i.e. F' =

Cy\/| P2, — P2|. Where P, is reactor pressure and P is separator pressure. This is
assumed to be the only pressure drop in the loop.

e The compressor work is modeled as isothermal ideal gas compression.

e The compressors are mounted on a common shaft. This is implies that wecycie/Wmain
is constant, where w is the molar work of either the main or recycle compressor.

We have assumed that both the feed flow rate Fi, and up-stream pressure P, are independent
variables (disturbances). This is not really possible, since a changes in F;; must be followed
by a change in pressure P, (the pressure P, represents some local up-steam gas hold-up). So
implicitly we have assumed that there is a control system in place (i.e. the main compressor
is adjusted to keep P, constant).

Step 1: Degrees of freedom We have assumed that feed rate and up-stream pressure Py
is given, this implies that the main compressor work is given and therefore also the recycle
compressor work (common shaft). Since any valves in the loop should be fully open, we
only have two manipulated variables. One of these, B, is used to control the liquid level in
the separator. There is one degree of freedom at steady state.

Step 2: The objective function The goal of operation is to maximize the values of the
product stream diminished by the value of feed streams and utility costs. For the liquid
phase plant there was only one feed and only one exit stream, hence during the optimization
we need only to minimize the cost of utility. However for the gas phase system we have two
product flows with different price. The objective function to be maximized is then

J = $BB + $SS - $F0F0 - Utility (51)

Where B is the product flow, S is the purge flow, Fj is the feed rate. Using the total mass
balance, S = Fy — B gives

J = (85 — $5)B — (35, — $s)Fy — Utility (5.2)

Fy is given and may be removed form the objective. The utility is compressor work, intro-
duction of a relative cost gives:
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where w, is the relative cost of compressor works compared to $5 — $5. W, and W, com-
pressor work is

P,
Wi = FyRT In — (5.4)
I
Unlike the liquid phase system, there is a penalty for increasing the hold-up (pressure) in the
reactor. If the upstream pressure is higher than P, then there would be no need for the main
compressor and this term would vanish. The recycle compressor work is given by

P,

W, = DRTIn—" (5.5)
Pg
P
— DRTIn——"
RTIn 5—RF

From this equation we see that the pressure drop should be as small as possible, thus any
unnecessary pressure drop should be avoided (fully open valve). Furthermore as the reactor
pressure is increased, this term will decrease. Very often it will be negligible compared to
the main-compressor work. There will only be a small incentive for an independent shaft for
the compressors. They are often mounted on a common shaft, which will be the case in this
study (see section 5.3.3).

The last term in 5.3 represents the valuable product. Hence it should be as large as
possible. Production rate can be increased by increasing the reactor pressure and there by
decreasing the purge. This gives an increase in compressor work, the optimum may be
unconstrained.

Step 3: Disturbances We assume that throughput is the main disturbance here: F, = 1000
mole/s +20%.

Step 4: Optimization Figure 5.2 shows the contributions to the objective function J. As
purge flow is reduced, we produce more valuable product. But the pressure and compressor
work increases. At full conversion, the reactor pressure and compressor work would become
infinite.

In Figure 5.2(c), the objective has been plotted for several relative costs w, (i.e. ranging
from 0 to 4 mole/MJ. It shows how the optimum would move towards lower purge and higher
conversion if the relative weight were reduced so that compressor costs are less. If w, is low
enough the optimum will be constrained, either by maximum pressure or by compressor
load. We will study an unconstrained case, with a relative weight w, = 1 mole/MJ, marked
with a x in Figure 5.2(c).

Step 5: Candidates for control Our candidates for the remaining degree of freedom are:
purge flow S, recycle flow R, purge flow fraction S/R, inert composition in recycle z; and
reactor pressure P,.
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Figure 5.2: Production rate, compressor work and the objective for several relative weights.
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Variable Range Max. loss
S 103 - 155 mole/s 330
R 2230 - 3345 mole/s 1.7
SIR 0.037 - 0.055 1.2
21 0.676 - 0.876 18.2
P, 189 - 231 bar 1.0

Table 5.1: The worst loss due to control error.

Step 6: Evaluation of the losses From Table 5.1 we see that purge flow S and inert com-
position in purge z; are very sensitive to the control error. Let us explain why, Figure 5.2
shows that a small error in purge flow leads to a large drop in the objective. When we ap-
proach the lower limit on purge flow, the inert composition z; approaches one. There will
only a small gain between from S to z;, which implies that an error in z; will be present in
S. Thus control of z; does not change the shape of the objective function much. However,
the reactor pressure P, will approach infinity as S is reduced. By control of P, it will prevent
us from implementing a value of S which is close to the minimum purge flow. This effect
gives a small loss for control error in reactor pressure. Similar arguments applies for R and
S/R.

The losses for controlling P, R and R/ S for feed rate changes are shown in Figure 5.3.
There are only small differences between the candidates, and the final choice should be based
on other considerations.

3

---- Pressure

25l — Recycle flow
- Purge/Recycle
2 g
] \‘\
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Figure 5.3: The loss from optimality by holding selected variables constant.

5.3 The methanol synthesis loop

The methanol synthesis loop is one part of a methanol plant. The feed comes from the
reformer section, where synthesis gas is produced from natural gas. The product flow is sent
to the distillation columns. There exist several good references that describes the methanol
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synthesis, (Olsvik et al., 1997), (Lee, 1990) and (Skrzypek et al., 1994). A brief overview of
the process is given below.

5.3.1 The process and the model

The feed (which consists of CO, CO,, H,O and H,) is compressed to the reaction pressure.
Next it is preheated in the feed/effluent heat exchanger. In the reactor the catalyst is packed
in vertical tubes, which are surrounded by boiling water. The reactor effluent is cooled, and
product and reactant is separated in the flash drums. The overhead gas is divided into purge
and recycle.

Steam
Speed controller ] L |
,,,,,,,,,, N
Steam drum
e —
Purge
Reactor Water
' I
[ Flash drums

Methanol water to distilation

Figure 5.4: The methanol synthesis loop.

Two reactions are considered in the reactor, these are:

Methanol: COy+3H, = (CH3;0H+ H,O —-AHp= 6.09 10* kJ/kmole
Water shift: CO,+ H, = CO+ H,O —AHp = —3.8910* kd/kmole

Commercial methanol catalysts are highly selective, so side reactions are negligible.

The reactor is modeled as a series of isothermal CSTR with kinetic model from Van-
den Bussche and Froment (1996).

For optimal operation it is important to avoid recycle of the product, i.e. an efficient
separations between reactant (gas) and products (liquids) in the flash drum. This is achieved
by cooling the reactor effluent as much as possible, i.e. the cooling in Figure 5.4 should be
at its constraints. This and the fact that the solubility of CO- in the liquid phase is in the
order of 1%, justifies the assumption of perfect separation in the flash drums. Therefor, we
can ignore the heat exchangers (we have already assumed isothermal reactor).

The compressor work is modeled as polytropic compression of ideal gas. Since they are
mounted on a common shaft, the work of the recycle and main compressor is related by
Wrecycle = KWmain Where w is the molar work and £ is a constant. The reactor effluent flow
is given by Cy, AP, where Cy is chosen to give reasonable pressure drop in the loop.
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5.3.2 Selection of controlled variables

Step 1: Degrees of freedom analysis There is one degree of freedom at steady state.

Step 2: The objective function The key element for selection of controlled variables is
the economic objective. In this case there is an important effect which will not be captured
by steady state economic, namely the deactivation rate of the catalyst. This subject has been
studied by Lavik et al. (1998). They showed that there is an optimal temperature profile as a
function of time. Since the deactivation rate mainly depends on reactor temperature, we will
assume that the reactor temperature is given. Therefor a steady state analysis will be used on
the remaining degrees of freedom.

We also make one more assumption: that the synthesis loop is decomposed from the
rest of the plant. There is a small recycle flow from the synthesis loop to the reformer
section, but we do believe that the two-way interaction is small enough to allow for a vertical
decomposition of the problem.

The objective function is

Jl = $BB + $SS + $PP - $F0F0 - Utzlzty (56)

Where B is product flow, S is purge flow, P is steam, Fj is the feed, and Utility is the cost
of utility (compressor work).

How are the different terms in the objective function influenced by our degree of free-
dom? Figure 5.5 shows the production of methanol, steam, and consumed work as a function
of the purge flow-rate. As the purge flow approaches the minimum purge flow (full conver-
sion) S,.in = 607 mole/s, the reactor pressure approaches infinity. This is illustrated in
Figure 5.5(c), where compression work approaches infinity.

As shown in appendix 5.A, there is almost a linear relationship between purge and prod-
uct flow, and Figure 5.5(b) shows that the produced amount of steam is almost a linear
function of purge. Therefor we choose to use a simplified objective

J=DB—wW (5.7)

Where B is the production of methanol, W is the compressor work and w, is the relative
cost.

Step 3: Disturbances Our disturbances are feedrate variations, inert composition and sto-
ichiometric number in, as defined in appendix 5.A.

Step 4: Optimization Figure 5.6 shows the dependency of the objective function for dif-
ferent values of the relative weight w,. For all cases except w, = 0, there is a steep fall only
on one side of the optimum. The smaller the value of w, the closer the optimum is to the
steep fall, which is easily explained by Figure 5.5. We will study an unconstrained optimum
with w, = 1e7®.
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Figure 5.6: The objective for different values of the relative cost from 0 to 3e 5.
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Figure 5.7: The objective as a function of recycle compressor work.

Step 5: Candidates for control Our alternatives for the remaining degree of freedom are:
Reactor pressure, composition of hydrogen and inert in the recycle loop, the recycle flow,
purge flow, recycle flow and purge fraction.

Step 6 Evaluation of the loss Figure 5.8 shows the loss function for the disturbances and
control error. To summarize, purge flow, inert and hydrogen composition have large losses,
while reactor pressure, recycle and purge fraction are good candidates for control.

5.3.3 The common shaft

To save investment costs the compressors are often mounted on a common shaft and we loose
one degree of freedom for operation. This was taken into account in the above. Figure 5.7
shows how to objective could be improved if recycle work was added as an independent
variable. The difference between the current operation point, and the operational optimum
is so small that it will probably not be justifiable to have a separate shaft for the recycle
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compressor. However if there where two different shafts, then we could increase the recycle
compressor work. But as indicated by Figure 5.7 the optimum would most likely be at
a constraint for the recycle compressor. The result obtained above would not have been
changed.

5.4 Conclusion

We have considered the selection of controlled variables for recycle processes. We looked at
two main cases, a simple gas phase system and the methanol synthesis process.

The gas phase and liquid phase systems are fundamentally different in economic opera-
tion. In the liquid phase system there is no cost associated with the reactor hold-up, therefore
it is optimally to control it at its maximum value. In a gas phase system the situation is dif-
ferent, there are a cost associated with reactor hold-up (pressure). The optimum is therefore
unconstrained in this variable.

Control of recycle rate, purge fraction or reactor pressure gives a system with good self-
optimizing properties. This is linked to the behavior of these variables as conversion increas-
es. As expected purge flow is a poor alternative as a controlled variable. More unexpectedly,
inert composition in the recycle turned out to have poor self-optimizing properties. This is
also explainable by the behavior of this variable when conversion is increased. This result
was unexpected and diverts from the common view in the process control community.

The argument made by Fisher et al. (1988b) “keep the gas recycle flow at its maximum
value”, should not be misunderstood. We have shown that the optimal recycle flow is not at
a constraint. However often there are inputs that can be used to increase recycle for a small
cost, i.e. valves and recycle compressors, and these will often be at their constraint.

The results for the simple gas phase reactor carries well over to the methanol case study.

5.A Some simple relations

In order to understand some of the most basics facts of the methanol synthesis, we can derive
some simple equations based on atomic balances.

Inert: Syen, = Fozon,

Carbon: S(y002 + yco) + BxCHgOH = F0(2002 + Zco)

Oxygen: S(2yco, + yco) + B(xcmon + vmo) = Fo(2z2co, + 2co + 2m,0)
Hydrogen: Syu, + B(2rcmon + mo) = Folzm, + 2ms0)

Where we have assumed that there is no methanol in the feed, and that the are no gases
in the product and no liquid in the purge flow. For a given feed we then have six equations
(the four above and two equations for summation of mole fractions) in eight variables, thus
there are 2 degrees of freedom. (These equations do not say anything of the internal flows
and pressures.)

For a given feed, with surplus of H, will have maximum production if all CO and CO,
is converted to methanol. That is in the limiting case yco = yco2 = 0. Then the production
of methanol would be

remonB = Fo(2co, + 2¢0) (5.8)
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The minimum amount of hydrogen in the purge flow
SyH2 = F0(2002 + Zco)(SN —_ 2) (59)

Where the stoichiometric number is defined as SN = %. Which together with the
amount of inert gives the minimum purge flow

S = FO(ZCH4 + (ZCO2 + Zco)(SN - 2)) (5.10)

If SIV = 2 then we will lose no hydrogen in the purge for full conversion.

What these equation tells us is obvious, for a given feed there is an upper limit for pro-
duced methanol which is given by the amount of carbon in the feed. And there is a lower
limit for purge gas, which is given by the amount of inert and surplus of hydrogen in the
feed.

Purge flow is related to feed flow and product flow by (from a total mole balance)

S = Fy— B(3zcu,0m + Tm,0) (5.11)






Chapter 6

Selection of controlled variables
for the Tennessee Eastman problem

T. Larsson, K. Hestetun and S. Skogestad

Abstract

This chapter addresses the selection of controlled variables, that is, “what should we control”. The concept
of self-optimizing control provides a systematic tool for this, and in the paper we show how it may be applied to
the Tennessee Eastman process, which has a very large number of candidate variables. In the paper we present
a systematic procedure for reducing the number of alternatives. One step is to eliminate variables, which with
constant setpoints result in large losses or infeasibility when there are disturbances (with the remaining degrees
of freedom reoptimized).

The following controlled variables are recommended for this problem:

e Equality constrained variables: Product composition and product-rate. (We have not assigned measure-
ments or manipulated variables to these.)

e Optimally constrained variables: Reactor level, reactor pressure, compressor recycle valve, stripper
steam valve and agitator speed.

e Unconstrained variables with good self-optimizing properties: Reactor temperature, composition of C
in purge and recycle flow or compressor work.

A common suggestion is to control the inventory of inert components. However, this is a poor choice for this
problem, since an unfavorable shape of the economic objective function implies that a small error can lead to
infeasibility. Thus, we recommend leeting inert composition float.
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6.1 Introduction

This paper addresses the selection of controlled variables for the Tennessee Eastman process.
We base the selection on the concept of self-optimizing control using steady state models and
steady state economics.

“Self-optimizing control” is when an acceptable (economic) loss can be achieved using
constant setpoints for the controlled variables, without the need to reoptimize when distur-
bances occur (Morari et al., 1980), (Skogestad, 2000). The constant setpoint policy is simple,
but it will not be optimal (and thus have a positive loss) due to the following two factors

1. Disturbances, i.e. changes in (independent) variables and parameters compared to their
nominal values, which cause the optimal setpoints to change.

2. Implementation errors, i.e. differences between the setpoints and the actual values of
the controlled variables (e.g. due to measurement errors or poor control) (Skogestad,
2000).

The effect of these factors (the loss) depends on the choice of controlled variables, and
the objective is to find a set of controlled variables for which the loss is acceptable.

Downs and Vogel (1993) introduced the Tennessee Eastman challenge problem at an
AIChE meeting in 1990. The purpose was to supply the academics with a problem that con-
tained many of the challenges that people in industry meet. There are eight components,
including an inert (B) and a byproduct (F). The reactions are

A(@)+C(@) +D(@ — G(lig) (Product)
A(g) +C(g) + E(@) — H(lig) (Product)
A(9) +E(@) —  F(liq) (Byproduct)
3D(g) — 2F(lig) (Byproduct)

The process has four feed streams (of A, D, E and A+C), one product stream and one
purge stream. The inert (B) enters in the A+C feedstream. The process has five major units;
a reactor, a product condenser, a vapor-liquid separator, a recycle compressor and a product
stripper, see Figure 6.1. There are 41 measurements and 12 manipulated variables. We
here study the optimal operation of the base case (mode 1) with a given 50/50 product ratio
between components G and H, and a given production rate.

This plant has been studied by many authors, and it has been important for the devel-
opment of plantwide control as a field. Many authors have used it to demonstrate their
procedure for the design of a control system, e.g. see Chapter 2 for a review of the various
approaches. We here only consider the selection of controlled variables.

McAvoy and Ye (1994) select the controlled variables in a somewhat ad hoc fashion. In
addition to the liquid levels, they control reactor temperature, reactor pressure, recycle flow
rate, compressor work, concentration of B (inert) in purge, concentration of E in product
flow.

Lyman and Georgakis (1995) recommend a control structure where the following vari-
ables are controlled: Reactor temperature, reactor level, recycle flow rate, agitation rate,
composition of A, D and E in reactor feed, composition of B (inert) in purge and composi-
tion of E in product. Even though they consider the operation cost for the control structure,



Figure 6.1: Tennessee Eastman process flowsheet

it can never become optimal since variables that should be kept at their constraints are used
in control loops (like the recycle valve).

The approach of Ricker (1996) is similar to the one in this paper. First, he chooses to
control the variables that optimally should be at their constraints (“active constraint control”).
Second, he excludes variables for which the economic optimal value varies a lot. This is
in agreement with the concept of self-optimizing control. He ends up controlling recycle
valve position (at minimum), steam valve position (at minimum), reactor level (at minimum),
reactor temperature, composition of C in reactor feed, and composition of A in reactor feed.
He notes that it is important to determine appropriate setpoint values for the latter three
controlled variables.

Luyben et al. (1997) (correctly) sets agitation rate and the recycle valve at their con-
straints. They choose to control the reactor pressure, reactor level, separator temperature,
stripper temperature, ratio between E and D feedrates, A in purge, and B (inert) in purge.

Ng and Stephanopoulos (1998b) proposes to use a multivariable modular controller to
control reactor temperature, reactor level, reactor pressure, G in product flow, stripper tem-
perature, C in reactor feed, A in reactor feed and B (inert) in purge flow.

Tyreus (1999a) used a thermodynamic approach to solve the problem. He (correctly)
sets the agitation on full speed, closes the steam valve and the recycle valve. In addition
he controls reactor temperature, reactor pressure, reactor level and A in reactor feed and B
(inert) in purge flow.

To summarize, most authors do not control all the variables that are constrained at the
optimum, thus they can not operate optimally in the nominal case. Most control reactor
pressure, reactor level, reactor temperature and composition of B (inert) in reactor feed or in
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purge. It is common to control stripper temperature, separator temperature, and composition
of C and/or A in reactor feed.

6.2 Stepwise procedure for self-optimizing control

We will apply the stepwise procedure for self-optimizing control of Skogestad (2000). The
main steps are

1. Degree of freedom analysis
. Definition of optimal operation (cost and constraints)

. Identification of important disturbances

2

3

4. Optimization

5. ldentification of candidate controlled variables

6. Evaluation of the loss with constant setpoints for the alternative combinations of con-
trolled variables (caused by disturbances or implementation errors)

7. Final evaluation and selection (including controllability analysis)

In the earlier Chapters, there was only one unconstrained degree of freedom, so the eval-
uation in step 6 was manageable. However, for the Tennessee Eastman process there are
three unconstrained degrees of freedom, so it is necessary to do some more effort in step 5
to reduce the number of alternatives. We present below some general criteria that are useful
for eliminating controlled variables.

6.3 Degrees of freedom analysis and optimal operation

The process has 12 manipulated variables, 41 measurements and 20 disturbances. In addi-
tion, all the manipulated variables have constraints and there are “output” constraints, in-
cluding equality constraints on product quality and product rate.

Downs and Vogel (1993) specify the economic cost .J [$/h] for the process, which is to
be minimized. In words,

J = (loss of raw materials in purge and products) + (6.1)

(steam costs) + (compression costs)

The first term dominates the cost.

An analysis, see Table 6.1, shows that there are eight degrees of freedom at steady state
which may be used for steady-state optimization. Ricker (1995) solved the optimization
problem using the cost function of Downs and Vogel (1993) and gives a good explanation
on what happens at the optimum. At the optimum there are five active constraints and these
should be controlled to achieve optimal operation (at least nominally).

This leaves three unconstrained degrees of freedom, which we want to select such that a
constant setpoints policy results in an acceptable economic loss (self-optimizing control).
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Manipulated variables

D feed flow

E feed flow

A feed flow

A + C feed flow
Compressor recycle flow
Purge flow

Separator liquid flow
Stripper liquid product flow
Stripper steam flow
Reactor cooling water flow
Condenser cooling water flow
Agitator speed

Levels without steady state effect

Separator level
Stripper level

Equality constraints

Product quality
Production rate

12

Degrees of freedom at steady state
Active constraints at the optimum

Reactor pressure

Reactor level
Compressor recycle valve
Stripper steam valve
Agitator speed

Unconstrained degrees of freedom

3

Table 6.1: Degrees of freedom and active constraints.

6.4 Disturbances

A closer analysis reveals that disturbances 3, 4, 5 and 7 have no steady-state effect on the
economics provided we make appropriate use of the available manipulated variables. For
example, disturbance 4 (a step in the reactor cooling water inlet temperature), is easily coun-
teracted by increasing the reactor cooling water flowrate; thus this disturbance will have no
impact on the economics provided we adjust the cooling rate. Similar arguments can be
made for disturbance 3, 5 and 7, provided we manipulate the reactor coolant flow, separator
cooling water flow and the A+C feedrate. Disturbance 6 (loss of feed A) is considered to be

so serious that it should be handled by overrides, therefore it is not included in this study.

This leaves only the following three disturbances:

e Disturbance 1: Change in A/C ratio in feedstream 4.

e Disturbance 2: Change in fraction of B (inert) in feedstream 4.
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Variable Disturbances

Nominal IDV(1) IDV(2) IDV(3) IDV(4) IDV(5) IDV(7)

A/Cin stream 4 Binstream 4 Dfeed T Rx coolant T Cond coolant T C header P

Cost 114 111 170 114 114 114 114

Rx. T 123 123 124 123 123 123 123

Rx. coolant flow 36.0 36.0 35.5 36.0 38.8 36.0 36.0

Sep T 92 92 93 92 92 92 92

Cond coolant flow 12 12 12 12 12 14 12

C feed flow 9.2 8.7 9.3 9.2 9.2 9.2 9.2

C feed valve 61 57 61 61 61 61 76

Table 6.2: Optimal operation for the nominal case and for disturbances.

e Throughput disturbances: Change in production rate by +15 %.

We use the same constraints (and safety margins) as given by Ricker (1995). Optimizing
the operation with respect to the three unconstrained degrees of freedom, resulted in the same
optimal values as found by Ricker (1995). The optimal (minimum) operation cost is 114.323
$/h in the nominal case, 111.620 $/h for disturbance 1, and 169.852 $/h for disturbance 2.

We define an “acceptable loss” to be 6 $/h when summed over the disturbances.

6.5 Selection of controlled variables

What should we control? More precisely, we have 8 degrees of freedom at steady state, and
we want to select 8 controlled variables that are to be controlled at constant setpoints. We
can choose from 41 measurements and 12 manipulated variables, so there are 53 candidate
variables. Even in the simplest case, where we do not consider variable combinations (such
as differences, ratios, and so on), there are

53-52-51-50-49-48-47 - 46
8-7-6-5-4-3-2-1
possible combinations. It is clearly impossible to evaluate the loss with respect to distur-
bances and implementation errors for all these combinations.
To proceed, one approach is to select a smaller subset of candidates, for example, based

on physical insight. Alternatively, one may consider the four requirements for a “good”
controlled variable given by (Skogestad, 2000):

= 886 - 10°

Requirement 1. Its optimal value should be insensitive to disturbances
Requirement 2. It should be easy to measure and control

Requirement 3. Its value should be sensitive to changes in the manipulated variables (alter-
natively, the optimum should be “flat” with respect to this variable)

Requirement 4. For cases with two or more controlled variables, the selected variables
should not be closely correlated
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However, these requirements require quite a lot of effort with respect to optimization, and
are at the same time rather qualitative. We therefore want to find some more quantitative
criteria for eliminating variables, until we are left with a manageable number.

The following criteria are proposed to reduce the number of alternatives. Most of them
are rather obvious, but nevertheless we find them useful.

1. Active constraint control: We choose to control the active constraints. This reduces
the number of controlled variables to be selected (in our case from 8 to 3). Of course,
we must also eliminate the corresponding variables from further consideration.

2. Eliminate variables related to equality constraints

3. Eliminate variables with no effect on the economics (i.e. with no steady-state effect)
4. Eliminate/group closely related variables

5. Process insight: Eliminate further candidates

6. Eliminate single variables which with constant setpoints yield infeasibility or large loss
when there are (1) disturbances (with the remaining degrees of freedom reoptimized)
or (2) implementation errors.

7. Eliminate combinations (pairs, triplets, etc.) of variables that yield infeasibility or
large loss

After this we enter into the final evaluation:
8. Evaluation of disturbance loss for remaining combinations

9. Evaluation of implementation loss

6.5.1 Active constraint control

As mentioned, there are 5 active constraints. 3 of the constraints are related to the manip-
ulated variables (compressor recycle, stripper steam and agitator speed); this eliminates 3
manipulated variables and also 1 directly related measurement (stripper steam). 2 of the
constraints are related to outputs (reactor level and pressure); this eliminates another 2 mea-
surements.

We are now left with 38 measurements and 9 manipulated variables, from which we
want to select 3 unconstrained controlled variables. This gives 16215 possible combinations,
which is still much too large.

6.5.2 Eliminate variables related to equality constraints

The equality constraints must be satisfied, and if there are directly related variables then
these must be eliminated from further consideration.
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e The stripper liquid flow (product rate) is directly correlated with production rate (which
is specified) and should not be kept constant (eliminates 1 manipulated variables and
1 directly related measurement).

e The ratio of components G and H in the product is specified; this eliminates at least
the combined use of the measurements of G and H in product.

Comment: We have not said that we shall not control throughput or product composition.
The ratio of G and H has to be controlled. The throughput needs also to be set somewhere,
but we will not address it here.

6.5.3 Eliminate variables with no steady-state effect

Two variables have no steady-state effect, namely stripper level and separator level (elim-
inates 2 measurements). Of course, we will measure and control these two variables for
stabilization, but we have actually already accounted for that in our degrees of freedom anal-
ysis.

6.5.4 Eliminate/group closely related variables

The controlled variables should be independent (requirement 4).

o Six of the remaining manipulated variables are measured (A feed, D feed, E feed, A+C
feed, stripper liquid flow, purge flow) that is, there is a one to one correlation with a
measurement (eliminates 5 measurements).

e Hestetun (1999) considered several pairs of variables and found that there are only
small differences between controlling the composition in the purge flow and in the
reactor feed. We therefore eliminate reactor feed composition (eliminates 6 measure-
ments)

Note that the choice of which variables to keep and which to eliminate was more or less
arbitrary, but since the variables are closely related it does not matter very much in the further
analysis. The main idea is to keep one variable in each group of related variables.

6.5.5 Process insight: Eliminate further candidates

Based on understanding of the process some further variables can be excluded form the set
of possible candidates for control:

e The pressures in separator and stripper are probably a measure of the same “quantity”
namely gas holdup. We expect them to be correlated with reactor pressure and will not
control them (eliminates 2 measurements).

e The condenser and reactor cooling water flowrates should not be held constant, since
that would imply a loss for disturbances 4 and 5 (eliminates 2 manipulated variables).
For the same reason we should not keep the reactor and separator cooling water outlet
temperatures constant (eliminates 2 measurements).
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e The separator liquid flow is strongly correlated with the production rate (which is
specified) and should not be kept constant (eliminates 1 manipulated variable)

e The fractions of G in product and H in product should be equal (specified), so by
keeping one of these fractions constant, we will indirectly specify their sum, which is
optimally about 0.98. However, their sum cannot exceed 1.0, so taking into account
the implementation error it is clear that we can not keep G in product or H in product
constant (eliminates 2 measurements).

6.5.6 Eliminate single variables that yield infeasibility or large loss

The idea is to keep a single variable constant at its nominally optimal value, and evaluate the
loss for (1) various disturbances (with the remaining degrees of freedom reoptimized), and
(2) for the expected implementation error. If operation is infeasible or the loss is large, then
this variable is eliminated from further consideration.

Infeasibility. Keeping one of the following four manipulated variables and one measure-
ment constant results in infeasible operation for disturbance 2 (inert feed fraction): D feed
flow, E feed flow , A+C feed flow (stream 4), purge valve purge rate (measurement). This is
independent on how the two remaining degrees of freedom are used, see Table 6.3.

Variable Nominal value Nearest feasible value

(constant) with disturbance 2
D feedrate [kg/h] 3657 3671
E feedrate [kg/h] 4440 4489
A+C feedrate [kscmh=k Sm3/h] 9.236 9.280
Purge rate [kscmh] 0.211 0.351
Purge valve 26 46

Table 6.3: Single variables with infeasibility for disturbance 2

Loss. We have now 1 manipulated variable (A feed flow) and 17 measurements left. Ta-
ble 6.4 shows the loss (deviation above optimal value) for fixing one of these 18 variables at
a time, and reoptimizing with respect to the remaining two degrees of freedom. The losses
with constant A feed flow and constant reactor feedrate are totally unacceptable for distur-
bance 1 (eliminates 1 manipulated variable and 1 measurement), in fact, we could probably
have eliminated these earlier based on process insight. The remaining 15 measurements yield
reasonable losses. However, we have decided to eliminate variables with a loss larger than 6
$/h when summed for the three disturbances. This eliminates the following 5 measurements:
separator temperature, stripper temperature, B (inert) in purge, G in purge and H in purge.

6.5.7 Eliminate pairs of constant variables with infeasibility or large
loss

We are now left with 11 candidate measurements. that is, (11 -10-9)/(3-2) = 165 possible
combinations of three variables.
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Fixed variable Disturbance 1 Disturbance 2 Throughput +15/-15%
A feed flow * 709.8 6.8
Reactor feed flow* 53.5 0.5
Recycle flow 0.0 0.8 05/0.3
Reactor Temp. 0.0 0.9 1.2/0.7
Sep Temp.* 0.0 0.5 42123
Stripper Temp.* 0.1 0.3 43123
Compressor Work 0.0 0.6 0.2/0.1
A in purge 0.0 0.7 04/0.2
B in purge* 0.0 7.4 3.1/16
C in purge 0.0 0.5 0.1/0.1
D in purge 0.0 0.0 0.2/0.1
E in purge 0.0 0.4 0.0/0.1
F in purge 0.0 0.5 0.0/0.0
G in purge* 0.0 0.4 4.1/2.2
H in purge* 0.0 0.4 42122
D in product 0.0 0.1 0.2/0.1
E in product 0.0 0.0 1.2/0.7
F in product 0.0 1.5 1.4/0.8

Table 6.4: Loss [$/h] with one variable fixed at its nominal optimal value and the remaining
two degrees of freedom reoptimized. Variables marked with * have a loss larger than 6 $/h.

The next natural step is to proceed with keeping pairs of variables constant, and evaluate
the loss with the remaining degree of freedom reoptimized. However, there are 55 combina-
tions of pairs, so this does not result in a large reduction in the number of possibilities. We
therefore choose to skip this step in the procedure.

6.5.8 Final evaluation of loss for remaining combinations

As mentioned, there are 165 possible combinations of three variables. A quick screening
indicates that one of the three controlled variables should be reactor temperature, which is
the only remaining temperature among the candidate variables. Furthermore, reactor tem-
perature is proposed by most authors, and it is normally easy to control, so we will now only
consider combinations that include reactor temperature.

A further evaluation shows that we should eliminate F (byproduct) in purge as a candidate
variable, because the optimum is either very “sharp” in this variable, or optimal operation is
achieved close to its maximum achievable value (see a typical plot in Figure 6.2). In either
case, operation will be very sensitive to the implementation error for this variable.

The losses for the remaining 9 - 8/2 = 36 possible combinations of 2 variables are
shown in Table 6.5. Not surprising, keeping both recycle flow and compressor work constant
results in infeasibility or large loss for disturbance 2 and for feed flow changes. This is as
expected, because from process insight these two variables are closely correlated (and we
could probably have eliminated one of them earlier).
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Figure 6.2: Unfavorable shape of cost function with F (byproduct) in purge as controlled
variable. Shown for case with constant reactor temperature and C in purge.

We note that constant F in product results in a large loss or infeasibility for disturbance
2. This, combined with the earlier finding that we should not control F in purge, leads to
the conclusion that it is not favorable to control the composition of byproduct (F) for this
process.

The following four cases have a summed loss of less than 6 [$/h]:

Case |. Reactor temperature, Recycle flow, and C in purge (loss 3.8).
Case Il. Reactor temperature, Compressor work, and C in purge (loss 3.9).
Case I11. Reactor temperature, C in purge, and E in purge (loss 5.1).
Case V. Reactor temperature, C in purge, and D in purge (loss 5.6).

The choice of Ricker (1996), with reactor temperature, A in purge and C in purge, is
somewhat less favorable with a summed loss of 9.8 $/h.

6.5.9 Evaluation of implementation loss

In addition to disturbances, there will always be a implementation error related to each con-
trolled variable, that is, a difference between its setpoint and its actual value, e.g. due to
measurement error or poor control. In Figure 6.3 we plot for “best” case | the cost as a
function of the three controlled variables (the plots for case Il are nearly identical and are
not shown). We see that the optimum is flat over a large range for all three variables, and we
conclude that implementation error will not cause a problem.

To compare, we see from Figures 6.4 and 6.5 that in cases 111 and IV the cost is sensitive
to implementation errors, and we get infeasibility if purge composition of D (case Ill) or E
(case V) becomes too small.
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Case Fixed variables Distur- Distur- Throughput

bance 1 bance 2 +15% -15%

Recycle Flow Comp. Work 0.1 Infeasible Infeasible 40.4

Recycle Flow A in purge 0.0 1.2 Infeasible 9.1

I Recycle Flow C in purge 0.0 1.9 1.3 0.6

Recycle Flow D in purge 0.0 3.7 4.8 3.0

Recycle Flow E in purge 0.0 3.7 3.1 2.2

Recycle Flow D in prod. 0.2 2.6 38.0 11.9

Recycle Flow E in prod. 0.2 1.5 42.1 12.9

Recycle Flow F in prod. 0.2 37.7 1.8 0.8

Comp. Work  A'in purge 0.0 1.3 126.0 8.0

I Comp. Work  C in purge 0.0 1.8 1.4 0.7

Comp. Work D in purge 0.0 4.0 55 3.6

Comp. Work  E in purge 0.0 4.0 35 2.8

Comp. Work D in prod. 0.2 2.0 40.8 12.8

Comp. Work  E in prod. 0.2 1.6 45.3 13.8

Comp. Work  F in prod. 0.2 32.8 1.9 0.9

Ricker | Ain purge C in purge 0.0 2.4 5.3 2.1

A in purge D in purge 0.0 2.3 13.4 5.2

A in purge E in purge 0.0 2.3 10.2 4.6

A in purge D in prod. 0.0 1.6 50.5 10.6

A in purge E in prod. 0.1 1.3 54.6 111

A in purge F in prod. 0.1 17.0 4.5 2.1

v C in purge D in purge 0.0 2.4 2.1 1.1

I C in purge E in purge 0.0 2.4 1.7 1.0

C in purge D in prod. 0.0 1.7 5.1 2.5

C in purge E in prod. 0.0 1.7 5.4 2.7

C in purge F in prod. 0.2 35.6 1.9 1.2

D in purge E in purge 0.0 2.6 77.3 Infeasible

D in purge D in prod. 6.2 5.4 52.6 Infeasible

D in purge E in prod. 5.5 Infeasible 52.2 Infeasible

D in purge F in prod. 0.5 Infeasible 24 1.0

E in purge D in prod. 4.5 5.3 54.9 Infeasible

E in purge E in prod. 3.8 Infeasible 54.3 Infeasible

E in purge F in prod. 0.5 Infeasible 1.6 0.9

D in prod. E in prod. 0.2 3.2 42.4 Infeasible

D in prod. F in prod. 0.2 Infeasible Infeasible 3.3

E in prod. F in prod. 0.2 Infeasible Infeasible 35

Table 6.5: Loss [$/h] when fixing all three degrees of freedom. Reactor temperature is fixed

in all cases.
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Figure 6.5: Shape of cost function for case 1V (with constant reactor temperature and C in
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6.5.10 Summary

In conclusion, control of reactor temperature, C in purge, and recycle flow or compressor
work (cases | or 1) results in a small loss for disturbances, has a flat optimum (and is thus
insensitive to implementation error), and are therefore good candidates for self-optimizing
control.

6.5.11 Should inert be controlled?

A common suggestion is that it is necessary to control the inventory of inert components,
that is, in our case, to control the mole fraction of component B (Luyben et al., 1997)
(McAvoy and Ye, 1994) (Lyman and Georgakis, 1995) (Ng and Stephanopoulos, 1998b)
(Tyreus, 1999a). However, recall that we eliminated B in purge at an early stage because it
gave a rather large loss for disturbance 2 (see Table reftab:2DF). Moreover, and more seri-
ously, we generally find that the shape of the economic objective function as a function of B
in purge is very unfavorable, with either a sharp minimum or with the optimum value close
to infeasibility. A typical example of the latter is shown in Figure 6.6. In conclusion, we do
not recommend controlling inert composition.
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Figure 6.6: Typical unfavorable shape of cost function with B (inert) in purge as controlled
variable (shown for case with constant reactor temperature and C in purge).

6.6 Conclusion

In this study of the Tennessee Eastman process, we have focused on the selection of the
controlled variables using the concept of self-optimizing control (acceptable loss with con-
stant setpoints and with implementation errors). The conclusion is that in addition to the
constrained variables, reactor temperature, C in purge and recycle flow or compressor work,
should be controlled.
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Somewhat arbitrarily, we selected to control reactor temperature. However, since our
final candidates have good self-optimizing properties, it is justifiable. This does not mean
that they are the best alternative, but “acceptable” is good enough here.

A very common suggestion, is that it is necessary to control the inventory of inert com-
ponents. However, this choice may lead to serious operational problems as demonstrated by
Figure 6.6, and in a more careful evaluation we did not find any favorable combination that
included the inert composition.

We have presented a number of criteria for reducing the number of alternatives. However,
note that the number of alternatives would have been much larger if we also had considered
combinations of variables, such as sums, differences, ratios and so on. In some applications,
such as distillation, the use of variable combinations has proved to be very useful.

All the analysis in this paper is based on steady-state economics. We have not said
anything on how the proposed control structure should be implemented. This could be the
subject of future work, and should preferably be based on a controllability analysis.
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Abstract

Heat integration of distillation columns, where condenser and reboiler duties are coupled, is used to reduce
the energy consumption used for separation. It is well known which variables to control in normal distillation
columns, but for heat integrated distillation columns it is more an open issue. This work will focus on the
selection of controlled variables.

We use the concept of self-optimizing control, (Skogestad et al., 1999), in order to select the controlled
variables. This involves a search for the variables which when kept constant give operation with acceptable
economic loss. This provides us with a systematic framework for selection of controlled variables based on
steady state economics.
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7.1 Introduction

Much work has been done on the control of distillation columns, see (Skogestad, 1992) and
references therein. This short review is limited to control studies on double effect distillation
columns, and it is far from complete. There are good papers that have not been included.

Tyreus and Luyben (1976) published one of the first papers addressing control of heat
integrated distillation columns. Their main conclusion was to decouple the two columns
by introducing auxiliary boilers and condensers. Their conclusions where solely based on
simulations. Lenhoff and Morari (1982) questioned their conclusion since they did not find
such an effect.

The work by Roffel and Fontein (1979) is most similar to our work. They discuss some
aspects related to constrained control. Much of their discussion is based on steady state
economics and active constraints. Lenhoff and Morari (1982) point out that it is not always
optimal that the overhead compositions of both distillation columns are at their constraints.

Frey et al. (1984) recommended using ratios of material flows as manipulated variables.
They used the relative gain array as a controllability measure.

Much of the above work used simple models that did not include important effects, (like
flow dynamics or heat transfer area). Gross et al. (1998) present results for a rigorous model.
They used controllability analysis and non-linear simulation, and concluded that a detailed
model is needed in order to capture essential details.

We will use the concept of self-optimizing control, (Skogestad et al., 1999), for selection
of the controlled variables. This involves a search for the variables that when kept constant
will give minimum operation cost. This provides us with a systematic framework for selec-
tion of controlled variables based on steady state economics. Finally nonlinear simulation is
used to confirm that the self-optimizing control structure will work.

7.2 The process and modeling

The plant is shown in Figure 7.1. Methanol and water are feed to the first column that
operates at a high pressure. The bottom flow is feed to the second column that operates at
a lower pressure. Since there is ethanol in the feed, there is a small side stream in the low-
pressure column to avoid accumulation of ethanol. Heat is transferred from the condenser in
the high-pressure column to the reboiler in the low-pressure column.

This paper is based on an industrial case but the design parameters have been somewhat
modified. The main assumptions are

e ldeal equilibrium stages (with fewer stages than the actually number of trays).

e Thermodynamics is based on NRTL-activity coefficients and ideal gas, with parame-
ters from (Gmehling and Onken, 1977) and (Reid et al., 1987).

e Both columns operate below 10 bar, so the hold-up of vapor is neglected.

e The liquid flows are modeled by a simplified Francis weir formula.
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Figure 7.1: High and low-pressure columns.

e The gas flows between the stages are given by F' = ¢,/P} | — P?.
e Cooling is adjusted to achieve constant pressure in the top of the low-pressure column.
e Dynamics in the heat exchangers are ignored.

The columns are operated such that flooding and weeping is avoided. Olsen et al. (1997)
present simulations of the same plant using a different model.

7.3 Selection of controlled variables

We will follow the procedure outlined in Chapter 4.2.

Step 1: Degrees of freedom and constraints

The eleven available manipulated variables are: feed rate, heat to the high-pressure column,
reflux in high-and low-pressure column, distillate flow in high- and low-pressure column, the
heat transfer area for the condenser/boiler, the bottom flow in high and low-pressure column,
the side stream and cooling in the low-pressure column. We loose four degrees of freedom to
the four levels, which must be controlled, and one degree of freedom since the feed is given.

If we do not include the side stream, see discussion below, we are left with 5 degrees
of freedom at steady state, which is one less then two distillation columns without heat
integration.

Step 2: Objective function

There are two conflicting elements in the operation of the plant: we would like as much
valuable product as possible, and we would like to use as little energy as possible. This gives
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the objective (profit function) to be maximized:
J=Dup+ Drp — Qupw, (7.1)

Where Dyp + Dpp [mole/s] is the top product (methanol), and @ zp [M W] is the heat load
to the high- pressure column, and w,. is the relative cost of energy.
The constraints are:

e The low-pressure column pressure must be above 1 bar.

The high-pressure column pressure must be below 10 bar.

Maximum heat transfer area in the combined reboiler/condenser.

Purity constraint on top product Dyp + Dy p (mole fraction 0.99 methanol).

The constraint on bottom purity By p (mole fraction 0.99 water) is only considered in
relation to the side stream.

Step 3: Optimization

The five steady state degrees of freedom will be used for optimization and satisfying the
constraints. We find that the following constraints are at active at the optimum:

e The low-pressure column pressure must be above 1 bar.
e Maximum heat transfer area in the combined reboiler/condenser.
e Purity constraints on top product Dy p + Drp (mole fraction 0.99 methanol).

It was noted in Roffel and Fontein (1979) and Lenhoff and Morari (1982) that it was
optimal for the streams of the two distillation columns to have a different top composition.
We did not find such an effect in this work; it was optimal with both compositions at the
same values (their constraint).

This results in four constraints, and leaves one degree of freedom as unconstrained. Fig-
ure 7.2(a) shows the combined methanol production rate from the two columns as a function
of the heat load. For low heat loads the production increases sharply. But as the bottom prod-
uct gets purer the increase in production rate reduces, and approaches the upper limit slowly.
This figure shows use that if energy is free (i.e. very low relative cost) then the process will
be constrained, either by maximum heat load, flooding or pressure constraints.

Since Figure 7.2(a) has a sharp transition between a steep increase and no increase, it in-
dicates that the optimum is nearly insensitive to the relative cost of energy. This is confirmed
by Figure 7.2(b), which shows the objective as a function of heat load for several relative
costs. With the relative cost of 0.6488 mole/MJ, the optimum heat load is 66.1 MW.

Step 4: Disturbances

The main disturbance is feed rate variations, with an assumed range of 1200 mole/s +20%
Feed composition has only small variations, and will not be considered.
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Figure 7.2: Production rate and objective function as a function of heat load.

Step 5: Candidates for controlled variables
Our candidates for the remaining degree of freedom are:

Heat load to high-pressure column (Q gp).

Pressure in the high-pressure column (Pyp).

Pressure drop in the high-pressure column (A P).

Bottom composition in the high-pressure column (x gz p).

Bottom composition in the low-pressure column (z 5., p).

Temperature in the low-pressure column (Reboiler Tz, p, on tray i T; 1, p).
Bottom flow from high-pressure column (B p).

Reflux flow in high-pressure and low-pressure column (Lp, Lyp).

Ratio between heat load and feed rate Qg p/F'.

Ratio between heat load and reflux in high-pressure column (Qup/Lup).
Ratio between heat load and reflux in low-pressure column (Qzp/LLp).
Ratio between bottom flow from high-pressure column to feed rate Byp/F.

We are looking for candidates with a “flat” optimum. As a first screening, we eliminate
candidates, which gives a large loss, for their expected range (based on changes in the optimal
value due to disturbance and the implementation error). Table 7.1 shows us the six variables
that gives large losses, and the three variables that gives infeasibilities, (see step 7 below).
These nine variables are not considered any further. Note that all open-loop alternatives are
ruled out.

To give a feel for the size of these numbers, if we had a loss of 1 unit in Table 1 and 2
during a whole year, we would lose approximately 100.000 US $. This means that there is a
significant difference between the various alternatives.

Step 6: Evaluation of the loss

Table 7.1 is only an approximation, and Table 7.2 the maximum loss by controlling a vari-
able to a constant setpoint when there are disturbances and implementation errors. The best
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Variable  Range Maximum loss
Qup 51 - 86 MW 68
Pyp 6.7 - 10.5 bar 26
AP 42 - 75 mbar infeasible
1—zgrp 1e-05-0.001 19
TBHP 0.36 - 0.38 24
Tsrp 379-387K 23
Ty Lp 379 -386 K 20
Tyrp 378 -384 K 8
Ts,Lp 359 -367 K 4
Tup 402 -419K 25
Byp 635 - 1018 mol/s infeasible
Lip 876 - 1470 mol/s 43
Lyp 915 - 1600 mol/s 47
Q/F 4.4e-02 - 6.6e-02 MW/mol/s 54
Q/Lip 4.7e-02 - 7.0e-02 MW/mol/s 79
Q/Lyp  4.4e-02 - 6.6e-02 MW/mol/s 79

Table 7.1: The worst loss within the range.

alternative as is temperature on tray six in the low-pressure column, which gives an average
loss of 6 units.

Variable Max loss, disturbance Max loss, control error  Average

P 21 23 22
Teup 21 22 21
Tsrp 18 26 22
Torp 15 21 18
Tyrp 7 12 9
Tsrp 2 10 6
ITBLP 2 20 11

Table 7.2: The worst loss within the range.

Step 7: Further analysis

Control of the pressure drop APy p, bottom composition =gy p, or the bottom flow Byp,
(all in the high-pressure column) may lead to serious operational problems as indicated in
Table 7.2. Figure 7.3 shows the objective as a function of zgzp and Byp . Due to the
multiplicities in the objective, an implementation error could move the plant into a region
with a very large loss or infeasibility problem.
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Figure 7.3: Multiplicity in the objective for some of the variables in the high-pressure col-
umn.

Why do these multiplicities occur? Let us start with high heat input and reduce it, see
Figure 7.4. This results in a lower pressure in the high-pressure column, and less heat is sup-
plied to the low-pressure column. Then the amount of water in the bottom flow will decrease
in both columns. At a certain point we will get breakthrough of methanol in the bottom
of the low-pressure column. This is accompanied with a steep decrease in temperature in
the low-pressure column. This temperature decrease improves the heat transfer between the
two columns, so that we get more cooling in the high-pressure column. This further reduces
the pressure in the high-pressure column. The effect of lower pressure is that the separation
improves and the amount of water in the bottom flow temporarily increases. But as the heat
load is further decreased the bottom composition of water will decrease again. This also ex-
plains what happens to the bottom flow, since top composition is controlled, it has to change
in the same manner as the bottom composition.

The side stream

We did not take the side stream flow into account, since it was expected to have only a
small effect on the economic objective. It is possible to operate the low-pressure distillation
column without side stream. This would mean that all the ethanol would have to leave the
column in the bottom product. This is undesirable since that would make reuse of water
more difficult. However, since ethanol will accumulate in the lower parts of the low-pressure
column, a small side stream will make it possible to produce purer water. In Figure 7.5 we
have shown how methanol production rate depends on the side stream (with constant heat
load for the high-pressure column). A small side stream gives a small increase in methanol
production rate. If the side stream is below 1 kg/s then there is a steep increase in impurities
in the bottom product, this is unacceptable. We will operate at with a side stream of 2 kg/s,
where water is so pure that it will allow for reuse.
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7.4 Selection of the throughput manipulator

We have assumed that the feed rate (throughput) was given (by upstream production). How-
ever there are a large buffer tank in between the upstream production and our distillation
columns, which gives us some degrees of freedom for short-term adjustment of the feed rate.

Further more there is a maximum throughput in the columns, and a closer look shows
that this is given by maximizing the pressure in the high-pressure column, Figure 7.6. To be
able to maximize the throughput with out changing the control structure, we therefor select
to control this pressure and use it setpoint as a handle for the throughput.

10

©
(4

[bar]
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©
a

36 38 40 42
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Figure 7.6: Pressure as a function of feed rate.

7.5 The control structure

The proposed control structure is shown in Figure 7.7.
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Figure 7.7: The proposed control system.

Some comments on the control system:

e The distillate flows are used for level control and reflux flows are used for composition
control.

e The heat transfer between the columns is maximized and is therefor not available as
a manipulated variable. This explains why Qg p is used for pressure control in the
reboiler in the high-pressure column (the highest pressure). Bpp is used for level
control.

e The flow By p is then closed for temperature control in the low-pressure column.

e The reboiler level in the high-pressure column must then be controlled by the feed
flow. (Actually, this is another reason for choosing the pressure as a throughput ma-
nipulator.)

7.6 Simulations

Closed loop simulations of the proposed control system are shown in Figure 7.8. We have
shown the response in the product composition of methanol in both columns for a step in the
setpoint of the pressure in the high-pressure column. (The plot is scaled such that acceptable
performance is between 41, the scaling factor is 100.)

7.7 Conclusion

In this paper we have studied a heat integrated distillation column. The selection of con-
trolled variables has been the main part of the paper. The selection of controlled variable has
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pressure column.

much in common with normal distillation, but there are some important differences.

The heat integration implies that we have fewer degrees of freedom than normal distil-
lation. However since the bottom composition of the high-pressure column feeds into the
low-pressure column, there are also one less product stream.

We have found that the heat transfer area between the two columns, top compositions
(of valuable products), and pressure in the low-pressure column should be controlled at their
constraints. There is one unconstrained degree of freedom and selecting a temperature in the
lower part of the column as a controlled variable, has good self-optimizing properties.

Some of the other candidates for control, like bottom composition, pressure drop or bot-
tom flow (all in high-pressure column) showed multiplicities in the objective function. These
variables are then poor candidates for self-optimizing control since a small error could easily
yield very poor operation (economically) and infeasibility problems. Two competing effects
can explain these multiplicities as the heat load is decreased.
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Chapter 8

Poles at theorigin in
the Relative Gain Array

Truls Larsson and Sigurd Skogestad

Abstract

This paper shows how it is possible to get poles at the origin in the relative gain array. The source of these
poles can be zeros or poles of the original plant. It is possible that integrators will not cancel out in the RGA,
therefor care must be taken if one wish to follow the approach outlined by Woolverton (1980) and McAvoy
(1998). The work presented here is an argument for using the frequency dependent RGA.
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8.1 Introduction

Bristol (1966) introduced the relative gain array (RGA). It was originally defined as a steady
state interaction measure. Later it has been given a dynamically interpretation, (McAvoy,
1983), which will be used here. The RGA has gained a lot of attention; this work will only
look into how poles at the origin may appear in the RGA.

Woolverton (1980) proposed to use the derivatives of the integrating variables instead of
the gain for computation of the RGA. Later McAvoy (1983) showed that for a specific 3x3
example using the integrating variables or their derivatives are the same. Arkun and Downs
(1990) showed that in some cases, it is possible to factor out the integrators. Since RGA is
independent of scaling the RGA of the derivatives will be the same as for integration output.
Or written with equations

_ GNI _ I 0 GNI
so=[a)-[0 5] %] e
where G y; and G does not contain any integrators. Which gives for the RGA
o I 0 GN[ _ GNI
weaie)-noa([ ) 0] [G])-nea([5]) w2
Even though such a factorization is always possible, it does not imply that the relative gain
of the stable part %NI is non-singular at steady state.
I

In this article we will look into this problem, and we will show that the relative gain
array may contain poles at the origin even for systems without zeros at the origin. That
is, there exists cases where integrators in G will be present in RGA(G). This paper gives
the conditions for this to happen. Briefly the implications of these results are discussed.
(However, the implication of integrators in the relative gain array for controllability or control
structure selection is not discussed.)

8.2 Results

From the definition of the RGA one can derive

1 i+j Gij det Gij

Aij = (1) s (8.3)

Where )\;; is the elements of the RGA, G* denotes the matrix with row ¢ and column j re-
moved. The next theorem gives conditions for the RGA to have poles at the origin.

Theorem 1 If one of the following conditions are true:
1. det G has more zeros at the origin than g;; det G*.

2. g;; det G has more poles in the origin than det G.
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then A;; will have poles in the origin.
Proof: The proof is straight forward by looking at equation 8.3.

For this theorem to be meaningful we will have to show that the conditions given in fact
can be satisfied. The first condition is satisfied if there exist a zero of det G which is not a
zero of g;; or det G¥. Since zeros is a property of the whole plant this is possible, as shown
in the example below.

Example 5 Consider

1
G = |: 1+s 1 :| (84)
L T
This plant has a zero at the origin. The (1, 1) element in the RGA is
Aig = 1t (8.5)
T 5(11 + 10s) '

which contains a pole at the origin.

The second condition can be satisfied in two ways. A pole which is present in g,; or det G*
and not present in det G due to pole zero cancellation, or if there exist poles which are present
in both g;; and det G*/. Below we give one example for of the latter.

Example 6 Consider

0 _[[1 1]
1+1/s 1/s
G= 1 10 = [ (8.6)
TG

This plant has a zero at z = —2, and one pole at the origin. The (1, 1) element in the relative gain for this

plant is
_(s+ 1)2
1= Gy 8.7)

The pole is observable in both outputs and stabilizable with both inputs. So when one output is perfectly
controlled, the pole is also stabilized. A1, is the ratio between the open loop transfer function (between «, and
y1) and the transfer function (between u; and y;) when y5 is perfectly controlled. Only the former will contain
the pole, hence A1; will have a pole at origin.

What if we factor out the integrator, as implied in equation 8.2

o[y e e[ )

At first one may believe that since the factorization is possible, the relative gain will be well behaved at steady
s+1 1

state. This is not the case; [ 1 s+ 1

] has a zero at the origin, which gives a pole in the RGA.

The last example gives valuable insight. It shows how and explains why the pole appears in
the relative gain. It leads us to the next theorem

Theorem 2 The relative gain will contain poles at the origin if the following conditions
are met:
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1. Itis possible to stabilize a pole at the origin, with two different loops (v; —u; or y, —w;
where ¢ # k and j # ). In mathematical terms this means that the pole is observable
in more than one output and that it is controllable with more than one input.

2. There are equal or less numbers of zeros in the origin for the subsystem G% then there
isinG.

Proof: If a pole at the origin is stabilizable with y; — u; then element g;; contains that
pole and no zero at the origin. If the same pole is stabilizable with the pair y, — u; where
i # k and j # [ then element g;; will contain the same pole. Element g, is part of G¥. If
G does not have a zero at the origin then det G¥ will have a pole at the origin. Therefor
gi; det G¥ will have more poles at the origin than det G. If G¥ contains zeros at the origin.
For the poles to appear in the RGA, then these have to be canceled against zeros in G.

At this point we would like to point out that it is not unlikely that this situation can oc-
cur in real system. In Chapter 4 we have shown an example of such a plant. In that plant the
conversion in the reactor depends on the reactor level, which makes it observable in some
compositions, and controllable with other inputs. The resulting RGA has a pole at the origin.

8.3 Conclusion

In this paper we have shown how the relative gain array can have poles at the origin. There
are two sources for these poles which are either zeros or poles of the original plant. The main
point that we would like to stress is that it is not necessary to have zeros at the origin to get a
pole at the origin. We showed that when a pole at the origin is possible to stabilize with two
different loops then the relative gain array has poles at the origin.

The implications of this work is that one should be carefully when one follows the ap-
proach outlined in (Woolverton, 1980), (Arkun and Downs, 1990) and (McAvoy, 1998). A
better approach is to use a frequency dependent RGA.
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Conclusion

9.1 Discussion

The goal of this thesis has been to improve the understanding of plantwide control. By the
term plantwide control it is not meant the tuning and behavior of each of these loops, but
rather the control philosophy of the overall plant with emphasis on the structural decisions.
The starting point for the studies has been a literature review of plantwide control.

Based on the review, we have proposed a plantwide control design procedure. It starts
with a top-down analysis of the control objective, which we assume is possible to formulate
as a constrained optimization problem, and a degree of freedom analysis. After the through-
put manipulator has been chosen, the control system is designed bottom-up, starting with the
fastest loops.

The procedure will result in a hierarchical control system with several control layers. An
issue that has been resolved is if a control layer can introduce new fundamental limitations
for the next control layer that was not present in the original plant. We have shown that if
the lower layer controller is minimum phase, stable and the measurements and setpoints are
available for the next layer, new fundamental limitations can not be introduced. If any of
these criteria are not met then we can introduce new fundamental limitations for the next
control layer.

In the process control community there has been developed some heuristic rules for the
design of control systems. Two of these are related to the recycle flow, (Luyben et al., 1997)
and (Fisher et al., 1988b).

Luyben et al. (1997) has proposed to fix a flow in every liquid recycle loop, as a generic
rule. The basis for this rule is that he wants to avoid to overload the distillation column or to
avoid moving it below its minimum turndown. However as shown in Chapter 4 if it is likely
that the separation section will be overloaded then it will be much more efficient to maxi-
mizing the conversion in the reactor (by maximum holdup) then fixing a flow in the recycle
loop. Further more we have shown that application of his rule can give a control system
with (very) bad self-optimizing properties (large economic losses due to uncertainties and
disturbances). However, letting the reactor level float additional buffer capacity is obtained
which make rejection of some disturbances easier.

Fisher et al. (1988b) were more concerned with gas phase systems. They stated: “keep
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the gas recycle flow constant at its maximum value”, which is not entirely correct. In Chapter
5and 6 we showed that the recycle flow is an “unconstrained degree of freedom” (i.e. the
optimal value of recycle flow is an unconstrained variable and it maximum value does not
coincide with the economic optimum). What they probably meant was to keep equipment,
like recycle compressor, at their constraints. Which is what they have done in the example
in (Fisher et al., 1988b). This is confirmed in our case studies, inputs like control-valves in
the recycle loop, compressor-recycle valve and recycle compressor (if mounted on separate
shaft) where at their constraints at the optimum. The recycle flow-rate can also be affected
“indirectly” (for example by purge flow), and it actually has good self-optimizing properties.

In a chemical processing plant it is very important to avoid build-up of inert. Inert will
accumulate when its mass balance is not satisfied. This can happen if a purge flow is too
small. This does not meant that the inert composition should be controlled, with a proper
sets of controlled variables the inert composition will be self-regulating (e.g. pressure control
using the purge flow). Still it is often assumed that control of inert composition is needed,
but as we have shown in our case studies that it is not true. Inert composition is likely to have
bad self-optimizing properties. Often the optimal inert composition is close to the highest
attainable inert composition, see figure 6.6. Thus a small implementation error can lead to
infeasibilities. Based on (Downs, 1992), Luyben et al. (1998) recommends to make a table
over all the components in order to check how the control system will correct an imbalance
in a chemical component. If one applies the concepts of self-optimizing control, such a table
will not be necessary.

9.2 Directions for future work

In this work we have successfully used the concept of self-optimizing control on several
case studies. With a clear definition of the control objective and a systematic framework
for analysis of the control structure we have been able to question some of the heuristics
proposed in process control community. However, the case studies have also revealed some
of the shortcomings of the procedure.

In our case studies the number of measurement and the degrees of freedom to assign
them to where modest. But when the degrees of freedom that needs to be assigned grows, it
quickly becomes impossible to analyze all the alternatives. Good process understanding can
help at this point, but it may also prevent the engineer from seeing the best solution. A way
to screen among the many alternatives is needed.

One alternative is to use the maximization of the minimum singular value (with proper
scaling), unfortunately the local information is probably not enough information. As can be
seen from some of the figures in this thesis, it is when we are at a distance from the optimum
that we get the large losses. Still this approach should be further studied.

A different alternative could be a mixed-integer-nonlinear programming (MINLP) ap-
proach. The problem formulation and a good solver have to be found. The problem formu-
lation is probably easy, but the solver has to exploit the structure of this problem. Firstly, the
lower bound of a branch is easy to calculate from optimization. Secondly, the optimization
and steady-state solver must be based on a continuation method. The last point may be im-
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portant since infeasibilities are likely to occur. At least toolbox for automating many of the
calculations is needed.

\ery often the objective function turned out to have a flat surface for several of the pos-
sible controlled variables. This does imply that the final choice should be based on other
considerations. There are a least two such very important issues, which has not been proper-
ly addressed: Constraints handling and abnormal situations.

In this thesis all constraints has been treated equally. However, there are differences.
Some constraints are hard if they are violated it would lead to shutdown of the plant and
therefor a large loss (like the constraints on reactor pressure in the Tennessee Eastman plan-
t). Some constraints are “soft”; they may be violated dynamically (like composition in a
distillation column). It is not even given that all the active constraints are measured. For the
unmeasured constraints, the concept of partial control, (Skogestad and Postlethwaite, 1996),
may be suitable.

For the case of hard constraints with a measurement, a back-off in the setpoint for this
controlled variable is needed to avoid violation of the constraint. The size of the back-
off should be as small as possible (i.e. as close to the optimum as possible). However the
required size of the back-off will depend on the control systems ability to minimize variations
in that measurement. In future works, more emphasis should be given to this problem, it may
be wise to use some of the unconstrained degrees of freedom to achieve tighter control of
the constraints. A dynamic analysis will be needed to address this issue properly. A starting
point for future work could be along the lines of Narraway and Perkins (1993), combined
with partial control ideas of Skogestad and Postlethwaite (1996).

A soft constraint may not be as critical, but there may be cases where there is a larger
average cost for fluctuations then there is for steady behavior. Distillation is a good example,
over purification requires more energy than what is saved by under purification. Fewer fluc-
tuations in the composition will save energy. Such behavior is likely to appear frequently,
due to the “law” of decreasing outcome. This dynamic cost is probably much more impor-
tant than the dynamic cost that is given in (Zheng and Mahajannam, 1999). This will be
challenging since a dynamic non-linear analysis is needed.

The most important task of the control system is to avoid a shutdown of the plant. An in-
crease in the regularity of the plant will probably have a much larger effect on the economics
of the plant than optimization. This implies that greater emphasis should be placed on the
control systems ability to tackle abnormal situations. In practice this means that we will have
to accept a larger loss for “the usual” disturbance, to be able to handle “rare” disturbance. It
may even be needed to back-off from the optimum to handle large and “rare” disturbances.

As stated many places in this thesis, the control system is often designed in a hierarchical
manner, i.e. with a base control layer, a supervisory control layer etc. This was touched upon
in Chapter 3 where we looked at the possibility to introduce new fundamental limitations by
improper design of the lower layer. More work should be done on how this structuring should
be and which benefits it is possible to obtain from using a several layers. One such benefit
of a multilayered control system is believed to robustness of the higher layers.

In practice the different control layers have a different sampling time, this implies that
the higher layer reacts slower then the lower layer. Thus the higher layer may not be able
to cancel the effects of the lower layer; hence if the sampling time is locked the lower layer
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may introduce limitations for the higher layer. This effect needs to be studied further.
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