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Abstract

Over the past few decades, many algorithms have been proposed for controller design. In
practice, an engineer needs to address the following issues before the actual controller can
be designed: which variables should be measured, controlled and manipulated, and what
links should be made between them. These decisions are often taken heuristically, which
has an adverse effect on the safe and economic operation of the process. In this thesis,
simple yet theoretically sound tools are developed for partitioning of the measurements
and manipulations for control of complex systems.

The task of controller design is much simplified by pre-stabilizing the system using
a subset of variables. Selecting the subset of variables by minimization of the input
energy required for stabilization reduces the likelihood of otherwise destabilizing input
saturation. The achievable input performance for linear systems is characterized and an
iterative method is presented for variable selection. The convenfieindéraction measure
is generalized for synthesizing a decentralized stabilizing controller using independent
designs. The decentralized controller is designed based on the optimal block diagonal
approximation of the multivariate system.

For the stabilized system, though use of a single large controller is mathematically
attractive, simpler and smaller controllers are often used in practice for ease of maintenance
and design. Connections between closed loop properties and block relative gain are
presented for partitioning the system based on practical issues like reliability and simplified

tuning. It is shown that establishing the existence of a diagonal controller with integral



action for reliable stabilization is NP-hard.

Once the control structure is established, existing methods can be used for controller
design; however, the closed loop performance can deteriorate with time due to uncertain
dynamics and changing operating conditions. Use of online performance monitoring
tools is necessary to identify significant performance degradation and subsequent remedial
steps. The existing methods are inadequate for performance monitoring of decentralized
controllers and a sub-optimal, but explicit solution to the decentralized minimum variance
benchmark problem is proposed.

The tools presented in this thesis can be used individually or synthesized into a

comprehensive design procedure with possible minor extensions.
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Nomenclature

The frequently used symbols in this report are included in the following list. The vectors
are written in lower case bold and matrices in upper case bold. The individual elements of
a matrix are written in lower case of the same symbol as used for the matrix.

Main Notation

Time derivative
it" element of vector;* column of matrix
i row of matrix
i7" element of matrix
Sub-matrix made of rows and columns indexed by satsd;
Matrix with i** row and;** column deleted
p-norm of vector, matrix or transfer matrix
Transpose
Complex conjugate transpose
Complex conjugate transpose of the inverse
()  Hadamard or element-wise product
Partial orderingA - 0 implies A is positive definite
Real part
Imaginary part
det(+) Determinant
tr(-) Trace
diag(-) Matrix formed by direct matrix sum of the elements (blocks)
E[] Expectation operator
()! Factorial,n! =], ¢
UJ(.)  Union of sets
()  Intersection of sets
— Minimal state space realization of transfer matrix
j Imaginary numben,/—1
m; x m; Dimension of the'" diagonal block of the partitioned system
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Ty Number of outputs of a transfer matrix
Ty Number of inputs of a transfer matrix
n, Number of zeros of a transfer matrix
Ny Number of poles of a transfer matrix

P Pole of the transfer matrix
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Zero of the transfer matrix

Laplace variable

Back shift operator

AchievableH, optimal input performance

AchievableH,, optimal input performance

n-dimensional vector of ones

Manipulated variables, inputs

Controlled variables, outputs

Disturbance variables, Exogenous inputs

Input pole direction associated with pgle

Input zero direction associated with zero

Output pole direction associated with pgle

Output zero direction associated with zero

State matrix in the linear state-space realization

Input matrix in the linear state-space realization

Output matrix in the linear state-space realization

Matrix with the direct effect of1 ony in the linear state-space
realization, Scaling matrix, Interactor matrix

Diagonal state matrix with poles as diagonal elements in the
state-space realization

State feedback gain

Observer gain

State transformation matrix

Identity matrix

Solution of state feedback algebraic Riccati equation

Solution of observer algebraic Riccati equation

Compensator

Transfer matrix connecting controlled and manipulated variables
Input minimum phase part &&(s)

Output minimum phase part (s)

Input stable part oG (s)

Output stable part o&(s)

Transfer matrix connecting controlled and disturbance variables
Unstable part ofz(s)

Controller

Blaschke product obtained by input factorization of RHP zeros
Blaschke product obtained by output factorization of RHP zeros
Blaschke product obtained by input factorization of RHP poles
Blaschke product obtained by output factorization of RHP poles
Sensitivity function

Complementary sensitivity function

Closed loop transfer matrix fromto w

Frequency dependent weight for input performance



RHo
Rm)( n
me n

Subspace of rational stable transfer matrices with real coefficients
m x n dimensional space of real numbers
m x n dimensional space of complex numbers

N(a,(.)) Number of clockwise encirclements @f, 0) by image of Nyquist

D contour under (.)

Greek Symbols
n Performance Index
K Euclidian condition number of matrix
1 Structured singular value
I Upper bound on structured singular value obtained by scaling
P Spectral radius
A Eigenvalue
A Minimum eigenvalue
o Singular value
o Maximum singular value
led Minimum singular value
oy Hankel singular value (see Definiti@4)
o Maximum Hankel singular value (see Definiti@r)
Oy Minimum Hankel singular value (see Definiti@w)
w frequency
Aij Relative gain betweep; andu,
A Relative gain array
[Agl;; Block relative gain betweep; andu;
0 Time delay for a SISO transfer matrix
S Time delay for a MIMO transfer matrix
A Uncertainty, perturbation matrix
r Performance Relative Gain Array

Abbreviations

iff

wrt
ARE
BRG
CCD
CSD
FIR
GBDD
LTI
LHP
LHS
MIMO

if and only if

with respect to

Algebraic Riccati equation
Block relative gain

Control configuration design
Control structure design
Finite impulse response
Generalized block diagonal dominance
Linear time invariant

Left half of complex plane
Left hand side

Multi input Multi output



MV Minimum variance

PID Proportional integral derivative
PRGA Performance relative gain array
QBDD Quasi block diagonal dominance
RHP Right half of complex plane
RHS Right hand side

RGA  Relative gain array

SISO  Single input single output

Norms

Induced2-norm: For an x n matrix, A,

[Allz = sup [[Aullz =a(A)

llufl2=1
H> norm: For a stable and strictly proper transfer magifs),

Ie@lk =5 [ T (Gw) G(jw)) d

2r J_ o

H., norm: For a stable transfer matiG(s),
IG(8)lle = sup (G(s)) = supa(G(jw))
Re(s)>0 weR

L., norm: Similar toH., norm, except thaG(s) can be unstable.

Hankel norm: For a stable transfer mat€ixs),

|G (s)||z = 7u(G(s))



Chapter 1

Introduction

1.1 The Case for Decentralized Control

For a multivariate system, it is mathematically attractive to use a centralized controller to
meet the desired objectives of stabilization and performance requirements. In practice, a set
of smaller dimensional controllers, which make their decisions locally, is frequently used.
A control strategy that uses a set of non-interacting controllers is called a decentralized
control strategy. Formally definind.02,

Decentralized controlleris a control system consisting of non-interacting feedback
controllers, which interconnect a set of output measurements/commands with a subset of
manipulated inputs. These subsets should not be used by any other controller.

In general, a centralized controller provides better performance and constraint handling
as compared to the decentralized controllers. On the other hand, in addition to their inherent
simplicity, a decentralized control system exhibit several advantages over a fully centralized
design. In the ideal case, these advantages inclLgjd 02:

1. The individual controller subsystems can be brought in and out of service providing

flexibility of operation in presence of changing control objectives.

2. Due to the localized effect of the individual controllers, the system can be made fault
tolerant with ease, particularly in the case of a sensor or actuator failure.

3. The individual controllers are easier to tune online in presence of changing process
conditions.

4. Simpler models can be used to design and tune the controllers reducing the modelling
requirements.
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X X

Block 1 |y X X

Figure 1.1:Block-wise system partitioning

5. The online computational effort is less than their multivariable counterparts and
implementation is simpler.

For a given system, all of the mentioned advantages may not be realized simultaneously
or may only be realized at the cost of degraded performance. Nevertheless, decentralized
control seems to be the almost exclusive choice for control of large-scale systems.

For power systems, decentralized control is necessitated due to physical distances
between different stations and the enormous cost of establishing a communication network.
In process systems, the use of decentralized controllers is motivated by the difficulty
(and impossibility) of obtaining reliable dynamic models and ease of tuning and design.
Decentralized control is sometimes implicit in non-conventional systems such as the
administrative system of a country, where the provincial governments look after the welfare
of citizens under the supervision of federal government. Decentralized control is also the
preferred choice by nature,g. the secretion of different enzymes and hormones in the
human body is controlled by different sections of the brain.

1.2 Motivation and Scope

Before a decentralized control scheme can be implemented, suitable pairings between the

controlled and the manipulated variables need to be determined. In other words, the system

needs to be partitioned into a number of blocks (see Figube In some cases such as

a platoon of vehicles, the partitioning can be obvious. In the general case, there exist

competing alternatives for partitioning and the choice depends on the design requirements.
Consider the example of an industrial boiler furnaééd],[| where the objective is to

control the temperatures’) by manipulating the gas flow rates)(in the four boilers.
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Figure 1.2:Industrial boiler furnace

For this system, thg,, y, are primarily affected bwyi,, u, andys, y4 by usz, us. When the
system is partitioned agy; — y2,u; — u2), (ys — ya1,us — uy)), a block decentralized
controller can be designed easily to closely match the closed loop performance of the
centralized controllerd3]. If the objective is to instead obtain acceptable closed loop
performance with minimum controller complexity, a fully decentralized controller with
((y1,w1), (y2,u2), (y3,u3), (y4, ug)) partitioning suffices.

The problem of pairing controlled and manipulated variables, or system partitioning is
known as control configuration design (CCD) problem. This thesis aims at developing tools
for solving the CCD problem. At this point, it is fair to question the necessity of seeking
a systematic solution to the CCD problem. After all, decentralized controllers, designed
based on heuristics and process knowledge, have been successfully used in large-scale
process industries for decades.

Due to the increased competitiveness and tighter environmental regulations, the levels
of mass, energy and information integration among process units have increased drastically
over the years. The controllers designed optimally for every unit do not always work well
together. Luyberet al. [79] report that process control lore contains tales of multi-million
dollar plants, that never operated. Thus, the work in this thesis is primarily motivated by
the increased complexity of the systems.

The second reason is pure intellectual curiosity and the drive to make things better.
The heuristics used for partitioning process systems and subsequently designing control
systems are a result of the invaluable experience acquired by the process engineers over the
years through trial and error. A sound mathematical theory for solving the CCD problem
can provide valuable insight into the advantages and possibly unknown disadvantages of
these heuristics closing the gap between theory and pra@&te $imultaneously, these
insights can be used for meeting the desired objectives closely with reduced controller
complexity [86].
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The CCD problem itself is a sub-problem of the more general control structure design
(CSD) problem. In the CSD problem, the tasks of identifying controlled and manipulated
variables from measurements, determining pairings between them and selecting the
controller type are dealt with simultaneously or sequentidl32] 107].

Throughout this thesis, we assume that the sets of controlled and manipulated variables
have already been identified. For process systems, the set of manipulated variables
is easily selected as the valve inputs that can be varied independently, but the choice
of controlled variables is not always obvious. Recently, Skoges98ddroposed the
promising method of self-optimizing control for selection of controlled variables based
on economics. Govatsmarkq] has demonstrated the usefulness of this approach through
industrial-scale case studies. A review of some other methods available for the selection of
the sets of controlled and manipulated variables is availabl&eGid [

Some other assumptions and conventions used in this thesis are in order. It is assumed
that the system can be described by a finite dimensional linear time invariant (LTI) model,
which is available. Considering the difficulty associated with procuring a reliable dynamic
model, parts of this thesis focus on using simple models such as steady state gain model, as
far as possible. With slight abuse of notation, the following terms are used interchangeably:
system and FDLTI model, controlled variables and outputs and, manipulated variables and
inputs. A block diagonal matrix is generally perceived as a matrix with the block sub-
matrices being square. In this thesis, the same term is used, when the individual blocks are
possibly non-square. When the inverse of a matrix or a system is used, it is assumed that it
exists. For simplicity, the same symbol is used for inverse of square and left or right inverse
of non-square matrices and systems. To emphasize the structure of the controller, the
decentralized controller is referred to as the fully decentralized controller for the diagonal
controller and block decentralized controller otherwise.

1.3 Thesis Overview

During the past two decades, the CCD or the pairing problem has drawn a lot of attention
from researchers, particularly in the area of process control. An overview of the available
methods can be found irt0Z and a more detailed review irtQg. With the variety

of methods available, this thesis aims at addressing some of the relevant issues that have
received little attention. Whereas some of the results are extensions and generalizations of
the available results, some new concepts are also introduced. This thesis can be broadly
divided into three parts:
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1. System stabilization using multivariate or decentralized controller (Chaptard3)
2. Pairing selection for the stabilized system (Chaplesnd5)
3. Performance monitoring of decentralized controllers (Chagter

An overview of the individual chapters of the thesis follows.

System stabilization Most (if not all) pairing selection tools are developed under the
assumption that the underlying system is stable. In Chahteve characterize the
achievable input performance of linear systems possibly having time delay operating under
feedback control. Based on these results, a simple iterative method is presented for
selection of a subset of controlled and manipulated variables for pre-stabilizing the system
using a multivariate controller.

In Chapter3, we propose a methodology for synthesizing the stabilizing decentralized
controller using independent designs. The methodology involves a paradigm shift, as the
decentralized controller is designed based on a block diagonal approximation of the system
instead of the block diagonal elements. A numerical solution for finding the optimal block
diagonal approximation through minimization of scaled distance between the system
and the approximation is presented.

Pairing selection Contrary to the SISO pairings, block pairings are still selected based
on heuristics 19, 29]. For systematic selection of block pairings, we study a promising
method,i.e. block relative gain (BRG)§3] in Chapter4. The connections between
BRG and issues like closed loop stability, controllability, block diagonal dominance and
interactions are explored and simple pairing rules are proposed. As an offshoot, we develop
a number of algebraic properties of BRG.

In Chaptel5, we show that the recently proposed necessary and sufficient condgigns [
for assessing integrity of a system, can be equivalently expressed in terms of well known
notions of BRG and Niedrilinski’'s indexp, 87]. These results imply that establishing the
existence of a diagonal controller with integral action such that the system has integrity is
NP-hard #1].

Performance monitoring The responsibilities of a control engineer extend well beyond
ensuring good performance at design stage. Sustained benefits can result from monitoring
the control system performance and proper maintenance when performance degrades.
In Chapter6, we point out the insufficiency of the available minimum variance (MV)
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benchmark ¢9] for performance monitoring of decentralized controllers. We present an
approximate solution to the decentralized MV benchmark problem, where the upper bound
on the output variance is minimized. Though a similar numerical search based method has
recently been availabld 4], the suboptimal solution presented here is explicit and is also
extended for performance monitoring of multi-loop PID controllers.

For the readers convenience, an overview of the relevant concepts from the linear
systems, control and optimization theory is presented in every chapter. Advanced readers
can skip these portions of the thesis without loss of continuity.



Chapter 2

Input Performance Limitations of
Feedback Control

For selecting controlled and manipulated variables to stabilize the system, we
characterize the achievable input performance for linear time invariant (LTI) systems with
and without time delay. Achievable input performance depends primarily on the joint
controllability and observability of unstable poles in bdtth and H., optimal control
frameworks. A simple method is presented for the extended stability problem, where
unstable as well as stable poles close to the imaginary axis of complex plane are moved
to a half complex plane. We draw a number of insights that are useful for selection of
variables for stabilizing layer, as well as process design and formulation of the optimal
controller design problent.

2.1 Introduction

For complex unstable systems, often the requirements of stabilization and performance
satisfaction are separatad. a subset of controlled and manipulated variables is initially
used for stabilization and then another controller is designed for the stabilized system
to satisfy the performance requirements. The question remains: Which controlled and
manipulated variables should be used for stabilization? These variables can be conveniently
selected such that the input or control effort required for stabilization is minimizegBhs [

1This work was performed while the author was visiting Professor Sigurd Skogestad, Norwegian Institute
of Science and Technology, Trondheim, Norway during March-May 2003.

Parts of this chapter were presented at the annual meeting of American Institute of Chemical Engineers,
San Francisco, CA, 2003 and the American Control Conference, Boston, MA, 2804 [

7



8 Chap. 2 Input Performance Limitations of Feedback Control

() the likelihood of input saturation is reduced,;

(i) the disturbing effect of the stabilizing control layer on the stabilized system is
minimized; and

(i) generally output performance is not very important for stabilizing control.

Stabilizing y
Controller
-lug Y,
d—; Unstable > . Stabilized

System — System |
— -
u, Y, -l U, Y,
Performance

Satisfaction

Figure 2.1:Separation of controller design objectives

In Figure 2.1, let the set of controlled variableg, and manipulated variables, be
partitioned asy = [y, y2] andu = [u; u,]. The variables for the stabilizing layey,( u,)
are selected such that the closed loop system is stable and the norm of the transfer matrix
from disturbancesl to u; is minimized. For this purpose, we characterize the achievable
input performance of LTI systems under feedback control in this chapter. Then, the
variables of the stabilizing layer can be selected by simply comparing the input requirement
for stabilization using different subsets of variables. It is pointed out, however, that for any
meaningful comparison, it is necessary to scale the variables of system prior to analysis.
The possible choices for scaling factors include: maximum allowable rarigs} ¢r
variance and the economic penalty associated with variation of individual variables.

In the H, control framework, the problem of control effort minimization is the dual of
the well studied minimum variance or cheap control problé&) 92]. It is known that the
output performance of the system is limited by its unstable zeros and time delay. Similarly,
the unstable poles and time delays pose limitations on the achievable input performance.
In the context of stable systems, some auth64s§0, 102 have considered characterizing
the achievable input performance for disturbance rejection under the assumption of perfect
control. The focus of this chapter is on stabilization and note that the minimal control effort
required for stabilizing stable system is trivially zero.

The broad area of fundamental performance limitations has drawn a lot of interest in the
past two decades. An overview of the available results and some recent developments in
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this area can be found 27, 97, 102 and the references within. Though the focus has
largely been on obtaining bounds on sensitivity and complementary sensitivity functions,
which primarily address output performance issu%, [some researchers have considered
characterizing achievable input performance directly or indirectly.

Glover [43] studied the robust stability of systems in the presence of additive
unstructured uncertainty. With this description of uncertainty, maximizing robust stability
is equivalent to minimizing thé{., norm of transfer matrix from disturbances to inputs.
Clearly, these results are relevant to the problem in the present context, but the disturbance
model and frequency dependent weight are assumed to be minimum phase stable. Havre
and Skogestad[7] relaxed this assumption of minimum phase stable disturbance model
and frequency dependent weight and derived expressions for the lower bound on achievable
input performance. Using a novel approach of pole vectors, the same ault@rs [
have provided exact expressions for rational systems with single unstable pole driven by
measurement noise. Chen al.[26] have studied the optimal regulation problem with
input usage penalized for rational unstable systems driven by input disturbances in the
'H, optimal control framework. These results can be related to the present problem by
appropriate choice of weights.

In this chapter, we characterize the minimal input requirement for stabilization in both of
'H, and’H ., optimal control frameworks. The system is considered to be driven by output
disturbances, where the disturbance model can share unstable poles with the system. This
representation poses no limitations and the case of input disturbances is easily handled by
setting the disturbance model same as the system. We further generalize these results to
systems with input-output time delay. In addition to selection of variables for stabilization,
the results presented here are also useful in process design considering achievable control
performance and optimal controller synthesis problem formulation.

For a specified set of controlled and manipulated variables, the control effort required
for stabilization can be easily calculated using available numerical techniques for optimal
controller design. In addition to the computational expense involved, a limitation of such
a numerical approach is that it does not provide any information regarding the factors
limiting the input performance. These insights are useful for making appropriate design
modifications, when the system cannot be stabilized by constraining the inputs of the
system within their maximal allowable ranges. In some special cases, these insights can
also provide simple analytic methods for selection of variables for stabilizing 1&ger [

The organization of the remaining discussion in this chapter is as follows: key results
from linear systems theory including optimal control are reviewe§i2r?, the problem of
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designing the optimal controller that minimizes input usage for stabilization is formulated
and simplified in§ 2.3, the achievable input performance for univariate and multivariate
systems is characterized in2.4 and § 2.5, respectively; in§ 2.6, we present a simple
method for the extended stability problem, where unstable as well as stable poles close to
the imaginary axis are moved to a half complex plane; we present some insights and an
iterative algorithm to reduce the computational complexity involved in selecting controlled
and manipulated variables for stabilizing controgi.7;, and§ 2.8 concludes this chapter.

2.2 Preliminaries

In this section, we collect some general results from linear systems theory. These results
form the basis for further development in this chapter.

2.2.1 Poles and Zeros

The notions of poles and zeros for univariate systems are generally well understood. For
multivariate systems, the poles and zeros are characterized by their locations as well as
directions. As a consequence, contrary to univariate systems, a multivariate system can
have poles and zeros at the same location with no cancellation if the associated directions
are different. The knowledge of pole and zero directions provides a simple method for
factorization of systems into an all-pass factor and a minimum phase or stable part, as
discussed later. We briefly review the concepts of poles and zeros of multivariate systems,
where the discussion is adapted frose,[107].

For a univariate system; is a zero ofy(s) if g(z;) = 0. This definition of zeros can be
generalized to multivariate systems by noting that at z;, the rank ofg(s) reduces from
1t00.

Definition 2.1 z; € C, i = 1,2---n, are called the zeros d&(s) if the rank of G(z;)
is less than the normal rank €#(s). The normal rank ofG(s) is G(s) evaluated at all

s ¢ {z}[81].

Based on the above definition, it follows thatare the zeros o6 (s) iff there exists
non-zerou.,,y., such that

G(zj)u,, = 0 and G(s)u,, #0 Vs #z
and v:.G(z) = 0 and y..G(s) #0 Vs # 2
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whereu,,,y., are usually normalized to have unit length. Tine andy., are called the

input and output zero directions respectively corresponding to thezzerbhe zeros of

the multivariate system are sometimes called transmission zeros, but are simply referred as
zeros in this thesis. Let the quadruplét, B, C, D) be a minimal state space realization of
G(s) represented a&(s) < (A, B, C,D). The zeros and the associated zero directions

of G(s) are easily determined by solving the following generalized eigenvalue problems:

A_ZiI B W, _ . * * A_ZZI B _
{ C DHuzi}_O’ [V, ny}{ C D}_O

Definition 2.2 p; € C, i = 1,2---n, are called poles ofx(s) if one or more elements of
G (s) fails to be analytic (becomes infinite) in the complex plasie [

With a slight abuse of terminology, the poles®@fs) can be alternatively defined as the
zeros ofG!(s). Then it follows thatp; are the poles ofz(s) iff there exists non-zero
u,,,y,, such that

wGl(p) = 0 and w G l(s) A0 Vs #£p;

Pi

and G (p)y, = 0 and G (s)yp, #0 Vs#pi

whereu,,, y,, are usually normalized to have unit length. Tine andy,, are called the
input and output pole directions respectively corresponding to theypolEor a system
with distinct poles, leG(s) < (P, B, C,D), whereP is a diagonal matrix. Then it can
be shown that

u) = B;/|Bills; Vo = Ci/||Cill2

whereB; and C; denote the*" row and:** column of B and C respectively. When the
system has repeated poles, the expressions for calculating input and output pole directions
are more complex and are available 5]

2.2.2 All Pass Factorization of RHP Poles and Zeros

Definition 2.3 A square transfer matrixG(s) is called all-pass (also called square
paraconjugate unitary rational matrix)#(jw)G*(—jw) = I'forallw € R.

A linear system with RHP poles and zeros can be factored into an all-pass factor and
a minimum phase or stable part. Such a factorization is useful for manipulation and
simplification of expressions arising later in this chapter. The two popular approaches
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for all-pass factorization of linear systems are inner-outer factorization and the use of
Blaschke products. For univariate systems, both these approaches produce identical results.
For multivariate systems, use of Blaschke products provides analytical expressions and is
preferred over inner-outer factorization in which solution of algebraic Riccati equations
(ARESs) is required. The idea of using Blaschke products for factorization of RHP poles and
zeros was introduced by Wadt al. [111] and was used for characterization of achievable
performance by Cher2[l, 22] and Havre §7]. A collection of some of the useful properties
of Blaschke products is available ifdj.

Letz; € C,i = 1---n, be the non-minimum phase or RHP zero<fs). ThenG(s)
can be factored as follows:

2Re(z)

s+ ZzZ

G(s) = G'(s)Bi(s) Bi(s) =1

i, (2.1)

Z1 Tz

whereu., is the input zero direction of;. With this factorizationz; is not a zero ofz!(s).
By repeated application oR(2) on G(s),7 = 1---n, — 1, G(s) can be factored into a
minimum-phase part and an all pass filter as,

G(s) = Gu(9Bals)  Buls) =]] (I - 2Re<zi>ﬁziﬁ;> (2.2)

! S + Ei
i=1

In (2.2), G,,i(s) is minimum phase with the RHP zeros @f,,(s) mirrored across the
imaginary axis and.;(s) is an all pass filter. Note that except the direction associated with
the zero factored firsfy,, differs fromu.,, as it is calculated based @~V (s). The RHP
zeros can be alternatively factored at system’s output as follows:

1

Gs) = BulGu(s) Bl =] (1

1=Ny

B 2Re(zi)y §7*> 2.3)

— ziY z;
S-}-Zi o

WhenG(s) has RHP poles at; € C,i = 1---n,, these poles can also be factored into
a stable part and an all pass filter on the input and output side as follows:
1
2 .
G(s) = Guls)By\(s) Bis) =] (1 . Re(pl)ﬁpiﬁ;) (2.4)

S —DPi

G = BG B -T(1- 2 y5) @)

Y )

2.2.3 Optimal Control

In this chapter, we use a state-space approach for characterization of achievable input
performance. For this purpose, we briefly review the pioneering resultg,omnd H .,
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s AL B B
c: D, O
y u
K

Figure 2.2:Generalized plant for optimal controller design

optimal control due to Doylet al. [34]. Further details can be found in many recently
published textbooks dealing with optimal contreld. [47, 117]). In later sections, we
show how these general results simplify when input performance is maximized.

With reference to Figur.2 let z and w denote the exogenous outputs and inputs
and,y andu be the measured and manipulated variables respectively. The model of the
generalized plant fronw to z has the following form:

x = Ax+B,w+ Bu
y = Cx+ Doyw
z = CZX + D1211 (26)

Assumption 2.1 System 2.6) is assumed to be in the standard foidd]|
(@) (A,B,) is stabilizable andA, C.) is detectable.
(b) (A, B) is stabilizable andA, C) is detectable.
(c) D},Dy; =TIandD} Dy =1
(d) D},C, =0andD;,B, = 0.

In addition, the assumptions thBt;; = 0 andD,, = 0 are implicit in the realization of
the generalized plan2(6). The assumption thdd,, = 0 can be easily satisfied by a linear
fractional transformation on the controll&f(s) [117, pp. 261]. D;; = 0 is necessary
for well-posedness of the tHE, optimal control problem. In general, this assumption
can be relaxed for thé{,, optimal control problem, but this complicates the formulae
substantially. Some additional details on the physical interpretation of Assungiand
transforming the problem to satisfy them can be foundLb?] p. 363].
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It follows from Assumption2.1(a)-(b) that there exisX,, Y, > 0, which solve the
following algebraic Riccati equations (ARES),

A*Xz -+ X2A - XQBB*XQ + CZCZ =0
AY, + Y,A* - Y,C*CY, +B,B;, = 0

Let T., be the closed loop transfer matrix from to z. The unique controller
minimizing || T, (s)||2 is given as 84:

[ A+BF,+L,C | —Ly

Kopt(s) = F2 ‘ 0 (27)
whereF,; = —B*X,, L, = —Y,C* and the optimal cost islfL7],
I; = Iig(lf) 1T (5)1I5 = tr(B;, X2By,) + tr(F2Y2F5) (2.8)

For the minimization of|T.,(s)|l«, let X, Yo > 0 solve the following algebraic
Riccati equations,

A" X 4+ XA — X oo (77 2B,B:, — BB)X,, + C:C, = 0 (2.9)
AY o + YA  — Yo (772CIC, — C*C)Yo + B,B;, = 0 (2.10)

wherey > 0. The existence oX.,Y, > 0 that solve the AREs2.9)- (2.10
is guaranteed, if Assumptio®.1 holds andp(X..Y.) < ~%. A suboptimal controller
achieving||T..,(s)||c < 7 is [34]:

A +77°B,B} Xy + BFy + Zo Lo C | —Zo Lo

o % (2.11)

Ksub(S) =

whereF,, = —B*X, Lo, = =Y, C* andZ, = (I — 7 2p(XY))"!. The optimal
cost is given as
Lo = Inf [T (s) o0 = % (X Vo) (2.12)

2.2.4 Hankel Singular Values and Balanced Realization

It is shown later in this chapter that the achievable input performance of a system primarily
depends on the Hankel singular values of the image of the unstable part of the system. The
concept of Hankel singular values is introduced next.
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Definition 2.4 For a rational stable syste@(s) < (A,B,C,D), let Xy, Yy > 0 solve
the following Lyapunov equations,

AX; +XyA*+BB* = 0 (2.13)
AYy+YyA+C'C = 0 (2.14)

Then, the Hankel singular values 6#(s), oy;(G(s)) are given asoy;(G(s)) =
AA(X Y ) [42, 117,

Note that the Hankel singular values are independent abximeatrix of the state space
realization of the system. This follows as the matrix represents the direct effect of
inputs on outputs, but the Hankel singular values measure the effect of past inputs on future
outputs A2].

The matricesXy and Yy are called the controllability and observability gramians of
the system. If all the poles of the system are controllabje- 0. In this sense, the larger
the eigenvalues oK, are, the more controllable are the modes of the system. Similar
conclusions can be drawn for the observability of modes based on the eigenvaligs of
As o (G(s)) = \/*(XyYy), the Hankel singular values are often referred to as the
measure of the joint controllability and observability of the modes of the system.

It is well known that the state space realization of a system is not uniqueT Lot
a non-singular state transformation matrix. Then(Af, B, C,D) is one realization of
the systemG(s), so is (T 'AT, T 'B,CT,D). One particular realization that is of
immediate interest to us is the balanced realization, as introduced next.

Definition 2.5 For a rational stable syste@(s), the state-space realizatidd(s) «
(A,B,C,D) is called a balanced realization, Xy, Yy > 0 that solve the Lyapunov
equations2.13-(2.14) are diagonal and equai?, 117).

As it turns out that for the balanced realization, the controllability and observability
gramians are equal tdiag(oy;(G(s))), i.e, the matrix containing the Hankel singular
values as its diagonal elements. Any rational stable system admits a balanced realization
and an algorithm for the construction of balanced realization is availabl&lifj.[ The
balanced realization is frequently used in obtaining approximate low order models for a
system with a large number of statdg]

For later development in this chapter, we derive the balanced state-space realization of
the Blaschke produdB;,l(s). For notational simplicity, we consider that the number of
unstable poles;, < 2, which can be easily extended to systems with> 2 by induction.
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A similar method has been used by Ch&#|[earlier for finding the balanced realization of
B.i(s).

Let B, (s) = B,,'B,!(s). Using @.4), the balanced realization & ' (s) is given as
B;l(s) < (A4, B;, C;, D;), where

p’L
A; = pi Bi=—/2Re(p;) f’; Ci=+V2Re(pi) ¥, Di=1 (2.15)

Using .19, the balanced realization & '(s) is given asB3, '(s) < (A,B,C,D),
where

0 A
B — [ B;D, ] _ { —+/2Re(p2) 5’;2 ]
B, —V/2Re(p1) ¥5,

Q
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Q
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2.3 Problem Formulation and Simplification

In this section, we formulate an optimal controller design problem that minimizes input
usage for stabilization. It is shown how the general results on optimal control can be
simplified when only input performance is considered. This simplification in turn enable
us to explicitly characterize the achievable input performance.

Consider the system shown in Figlts3, where all exogenous inputs.g.load change,
measurement noise, set point change, have been collected in the®|dek The closed
loop transfer matrix from disturbances to inputs is given as,

Tuw(s) = W, K(s) (I+ GK(s)) " Gu(s) (2.17)

The objective is to characterize the minimal input usage required for stabilization
expressed in terms of the norm®f,,,(s) as:

I; = [W.K(s) T+ GK(s)) ' Gu(s)|li i=2,00 (2.18)

Assumption 2.2 We make the following assumptions:

(a) G(s) is strictly proper.
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Figure 2.3:Closed loop system for characterization of achievable input performance

Vt<

(b) W, (s) is left invertible and (if unstable) has the same unstable pol€s(ag with
the associated input pole directions.

(c) Gu(s) is right-invertible and (if unstable) has the same unstable pol€s(aswith
the associated output pole directions.

Assumptior2.2(a) is made for notational simplicity and the extension to the general case
is simple (seell7, p.261] for details). The left and right invertibility 3V, (s) andG.,(s)
respectively ensures that the optimal controller design problem is nonsingular.

To illustrate the necessity &V ,(s) andG,(s) having the same unstable poleda&s)
with the associated input and output pole directions respectively, considdvifia) = I
andG,,(s) has a single unstable pofg such thatG_'(p,)y,, = 0. Let{p;} € C"™ be
the unstable poles d&(s) such thatG—'(p;)y,, = 0. For internal stability, the unstable
poles of G(s) andGK(s) are the same and

K_IG_I(pi)ym = 0
I+K'G' () yn = ¥n
GK(p,) (I+GK(p) 'y = n
K(p) (I+GK(p:) vy = G (p)yp =0 (2.19)

It follows from (2.19 that the locations of RHP zeros and output zero directions of
K(s) (I+ GK(s))™" are the same as the locations of the RHP poles and input pole
directions of G(s). Defining the sensitivity function aS(s) = (I+ G(s)K(s)) " and
using results on Blaschke producgs2) and @.5),

KSG,(s) = [KS(s)],,; B:[KS(s)]B,, [Gu(s)] [Gu(s)],,
= [KS(5)],; BpolG(5)]B,, [Gu(5)] [Gu(s)],,

p

If the controller is designed to stabiliZ€S(s), the stability of T, (s) depends on the
stability of B,,[G(s)]B,,}[G.(s)]. Since the Blaschke products can be calculated for any

po
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permutation of poles and zerds,,[G(s)]B,,'|G.(s)] is stable iffp,, = p; andy,,, = y,,

po
for somei. Similar conclusions can be drawn whén,(s) has more than one unstable pole
or whenW,,(s) is also unstable.
With Assumption2.2, Let W, (s) andG,,(s) be factorized as
W,(s) = B, [(Wu(s)] Bo [Wau(s)] [Wa(s)]

po

Gu(s) = [Gu(s)]n Byi' [Gu(s)] Bai [Gu(s)]

sm

where[W,(s)],,, and[G,(s)],,, are the stable minimum-phase partd¥f,(s) andG,,(s)
respectively. Define

G(s) = [Guls)];n G(s) [Wa(s)],n (2.20)
K(s) = [Wu(s)]

whereG (s) is ann, x n, dimensional transfer matrix. It follows fron2(17) that

I = ||B, [W(3)] Bo [Wo(s)] K(s)(I+ GK(s)) ™!
B, [Gu(s)] B.i [Gu(s)] |l i=2,00 (2.21)

By simplifying (2.21),
L = |K(s)(T+ G(s)K(s)) [l i=2,00 (2.22)

We point out that in2.22, B, ![W,(s)] andB,;'(G.,(s)] can be factored out without
jeopardizing the internal stability, only when Assumpti¢h&b)-(c) are satisfied. Now,
T (s)||i» i = 2,00 is minimized by designing an optimal controller f6k(s), where
the following are equivalent: (adK(s) stabilizesG(s), and (b)K(s) stabilizesG(s). In
the remaining discussion, we treé‘\t(s) as the system without loss of generality. These
manipulations further allows us to represent the generalized plant as

x = Ax+Bu
y = Cx+w
Z = u (2.23)

whereG(s) — (A,B,C). Notice that we have transformed a controller design problem
where the closed loop system is driven by disturbances filtered through an arbitrary
disturbance model to an equivalent problem, in which the closed loop system is driven
by measurement noise only. The latter problem is much simpler to solve, as demonstrated
later in this section.
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Figure 2.4:Simplifying transformations on the closed loop system

For the system2.23), let X,, Y, andX.., Y., be the solutions of corresponding AREs
for the H, and theH,, optimal control (se€ 2.2.3. By comparing 2.23 with (2.6),
we notice that for the systen2.23, the corresponding AREs for thig, and ., optimal
controller design are the same. It follows tBét = X.. = X andY, = Y., = Y. This
observation in turn implies that, = F., = F andL, = L., = L.

Let T be a state transformation matrix such tiat' AT = diag(P,, P), whereP, and
P contain all the stable and unstable modes respectively. Rearranging and partitioning the
states of the transformed system

X = T_lATi+T_1Bu:{PS 0}i+[]i3)3s]u
y = CTx+w=[C, C|x+w (2.24)

LetX = T!XT andY = T-'YT solve the corresponding AREs for the transformed
system 2.24). Then, to be non-negative definit€,and’Y must assume the form

S 0 0 o 0 0
lox] v lov]
whereX,Y € C™*™ » ( and it suffices to solve
XP +P*X - XBB*X = 0 (2.25)
YP*+PY -YC'CY = 0 (2.26)
Let G(s) = G(s) + Gy(s) such thatG(s) = U(G(s)) andG,(s) € RH, where
U(G(s)) is the unstable part & (s). The triplet(P, B, C) can be seen as the realization of
Gl(s) and @.295-(2.26) as the corresponding AREs fﬁh(s). Then the achievable input

performance depends only on the unstable part of the system. This is further illustrated by
definingK (s) = K, (s)(I — G5K; (s)) L. With this parametrization K (s),

K(s)(I - GK(s)) ™" = Ki(s)I — GaKi(s)) ™!
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ThusK (s) exactly cancels the stable part of the system. The different transformations used
in this section and their equivalence are shown in Fi@l4e

For the transformed systeri.@4), the state feedback and the output injection matrices
are given as,

=Sl

= FT=[0 F]=[0 -BX | (2.27)

- TL=[0 L] =[0 —-YC'] (2.28)

=

By substituting forX, Y, F andL in (2.8) and @.12), the expressions for achievable input
performance can be simplified as,

I = t(FYF) = tr(L*XL) (2.29)
Io = p2(XY) (2.30)

The equations 4,25 and .26 form the cornerstone for much of the remaining
development in this chapter. In general, fd@s, optimal control, the resulting AREs are
dependent oy and thus need to be solved iteratively. In contrast, the expres®B-(

(2.26 are independent of and can be solved directly. Further note that wh2r2%)

and @.26) are pre- and post-multiplied b} ~! and’Y !, the resulting expressions are
similar to Lyapunov equations. When all the unstable poles of the system are distinct, a
closed form solution ofZ.25-(2.26 can be derived, which is expressed in terms of the
unstable poles and the matriddsandC only.

For a system with distinct unstable poles, we can select the state transformation matrix
T such thatP is diagonal and is given @ = diag(py,--- ,pn,), Re(p;) > 0. Let the
Hermitian matrixM € C"»*"» be defined as

[mi;] = 1/(pi + pj) (2.31)

Lemma 2.1 For a system with distinct poles, 1&, Y > 0 solve the AREsZ.25-(2.26
andM be given by 2.31). Then

X' = ) diag(B;) M diag(B;)" (2.32)

=1

Yo' = ) diag(C))" M diag(C)) (2.33)

Proof: Pre- and post-multiplying(25 by X! gives

PX '+ X 'P* = BB* (2.34)
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Then B3], X! = M o (BB*), whereo is the Hadamard or element-wise product.
Noting thatBB* = > """, B,B;,
X'=> Mo (BB])

i=1

and @.32 follows. Equation 2.33 follows from a dual argument. ]

2.4 SISO systems

In this section, we quantify achievable input performance of SISO systems with and without
time delay. It is assumed that all the unstable poles of the system are distinct. With this
assumption, the expressions for the achievable input performance can be expressed in terms
of the unstable poles and the matrig@sndC only. The general case is considered in the

next section.

2.4.1 Rational Systems

We derive the expressions for achievable input performance for rational SISO systems next.
The usefulness of these expressions is demonstrated using a process design example. These
results also form the basis for derivation of similar expressions for SISO systems with time
delay.

Lemma 2.2 ForM defined by 2.31), letp; # p; foralli,j = 1---n,. ThenM ™" is given
as

_ (0F + )i +95) [ 17 @+ | [ v (25 + b
[M l]ij _ J J H H J k

p; +p; e 0F = pp) )\ et (p — pr)
ki k#j

Lemma2.2is easily verified by evaluatinyIM ! or M—'M. Note for SISO systems,
b= [bz], b= [Cj].

Proposition 2.1 For a rational SISO system(s) with distinct poles, lett/(g(s)) <
(P,b,c) such thaP = diag(p; - - - pn,), Re(p;) > 0. Then

2 biCi b:(C: ’
2 = (diag(bjc]) M diag(bies) M) (2.36)

whereM is defined by 2.31) andq; is the sum of'* column of M~ orq = 1] M~".
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Proof: (1) For .35, substituting forX andY in (2.29 using Lemm&2.1,

I = fYf*=b*XYXb
= 12}01\/1_1 (diag(b)diag(c)) ™" M ' (diag(b*)diag(c*))' M~ 1, (2.37)

Based on Lemma.2,

T (i)
Clz'Z(Z%*‘?%)H%; t=1---n, (2.38)

andM~' = diag(q*)Mdiag(q). By substituting forM~' and1] M~', (2.37) can be
simplified as,

I} = q (diag(b)diag(c)) " diag(q*) M diag(q) (diag(b*)diag(c*))~" q*

The equationZ.35 can be now obtained by simplifying the above expression using the

identity q,q; = |qu|*.

(2) For 2.36),
2 = p(XY) = |A7H(YTIXT)|
By substituting forX ! andY ! using Lemma&2.1

I2 = |\ !(diag(c*) M diag(c) diag(b) M diag(b)*)
~!(diag(b)* diag(c*) M diag(c) diag(b) M)|

~!(diag(b;c;) M diag(bic;) M)

|>/ > I>

|
In the realization//(g(s)) < (P, b, c), wheng(s) has only real unstable poles only,
b* = b andc* = c. In this case,Z.36), can be further simplified as,

Ifo = A (dlagbc, )
Le = |A(diag(bic)M)|

Remark 2.1 The expression foq in (2.38 appears to suggest that in genefal— oo as
p; — p; for somei, j, which is clearly not true. Sindgc; = [§(s)(s — pi)|s=p;» bici — 00,
asp; — p;, which negates the effect ef. But when the system has an RHP zero close
to RHP polesp;c; fails to increase monotonically and stabilization can be difficult. For
example, considey(s) = —2_ Ase¢ — 0, the RHP poles approach the zero. Due

(s—pte)(s—p—e)’
to near cancellation of the unstable pole by the zérd,,, — oo ase — 0.
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Example 2.1 In order to demonstrate the utility of Propositi@il for process design
purposes, consider a rational SISO system with two distinct unstable;pojese R and

a RHP zero:. The location of: can be influenced by process or operating point changes.
The objective is to choosein the range) < z < max(py, p2) such that input usage for
stabilization is minimal. A pure numerical approach requires solving the following nested
optimization problem:

min inf [6(s)(1 + gk(s) "l i =200

Using Propositior2.1, the optimal value of can be characterized explicitly. As— p;,
the joint controllability and observability gf; reduces monotonically increasing the input
requirement. Notice that

b 2 h _ R D
101 = boco =
P1— P2 P2 —p1
Using 2.35 and .39,
2 o— 8(p1 + p2)? [pT(p2 — 2) 4+ P3(p1 — 2)% + p1p2(32% — p1p2)]
? (p1 —2)% + (p2 — 2)?
o Ap1pa(p1 + p2)

2(pr +p2) — [P2(2p2 — 2)2 + P3(2p1 — 2)* + 2p1pa(32% — 2pipa)] ™
The optimal value of z in the randge< z < max(p;, p2) can be obtained by evaluating
the stationary points o(35 and .36,

p1p2(3(p14fp2)i:\/5p?4f5p§%f6p1pz)

2(pt + p3 + 3p1p2)
Ap1pa(p1 + p2)
pi + p5 + 6pips

ZHo ,0pt

ZHoo,sub

2.4.2 Time Delay Systems

Many systems arising in practice contain time delay. These irrational systems cannot
be handled directly in the optimal control framework discussel :12.3 A common
approach for optimal control for such systems is to design the controller based on a rational
approximation €.g. Pade approximation) of the time delay system. In this thesis, we
use this approach and the achievable performance is characterized by letting the order of
approximation approach infinity in the limit.

To extend PropositioR.1to systems with a finite time delay, lgts) be expressed as,

9(s) = g(s)e (2.39)
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whereg is the delay-free part of the system.glf(s) also contains delay, the delay can be
factored as an all-pass factor and tljgs) remains causactg. (2.20)).

Lemma 2.3 ConsiderH(s) < (P,B,C) such thatP = diag(p; - - - ps,), Re(p;) > 0,
p; # pj. LetH;(s) € R'H with no zeros ap;. Then

p

U (H(5) = 30 ——Hi(p)CB; 240)

Proof: Using dyadic expansion & (s),

1 /
H(s) = CzBZ
(s) Z p—
Let /(H,(s)H(s)) < (P,B,C). SinceH,(s) does not cancel RHP poles #(s),
P = P. Now, C,B; = [H,(s)H(s)(s — p;)]s—p, and .40 follows. n
Note that the applicability of Lemm2.3is not limited to the case where all modes of
H(s) are unstable, sindé¢(H, (s)H(s)) = U(H:(s)U(H(s))).

Proposition 2.2 Let the SISO system expressed 39 have distinct unstable poles
and U(j(s)) < (P,b,&) such thatP = diag(p,---p,,), Re(pi)) > 0 andT =
diag(e1 - - - e ). Then

2 2

2 = {|q2\ ]I‘MI‘* [‘q{' } i=1--n, (2.41)
b;C; biex

2 = |AHT*diag(bie )M~ diag(b;é;)M)| (2.42)

whereM is defined by 2.31) andq = 1, M.

Proof: Let f(fs,n) be then' order rational approximation ot=% (e.g. Pade
approximation). For any, if a RHP zero off(fs,n) cancels a RHP pole df(s), the
system is not stabilizable due to presence of hidden unstable modes. Howeves, as,
the magnitude of RHP zeros ¢ffs,n) approaches infinity. Thus, for an FDLTI system
with poles at finite locations, such cancellation of RHP polé&gd§) by an RHP zero of
f(0s,n) does not occur for atk > N for sufficiently largeN.

(1) For 2.41), using @.40), b;c; ~ b;¢; f(0pi,n),n > N and

lan) = [bc}?ﬁi )}M[b*c ﬁ@'; )]/

np  Np

= ZZMZ |q,]~. mii [~ (Opi,n) f 1 (Opj. n) (2.43)
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As lim,_ .. f(Opi,s) = e %. Then, lim, .. f~'(0p;,n) = €% and
lim, oo f71(Opi,n) fH(Op;,n) = €. Noting that except the bilinear term
S~ (0pi,n) f~1(0p;,n), all other terms inZ.43 are independent af, we conclude that
lim,, .., [2(n) exists and is given by2(41).

(2) For @.42, using similar arguments as before and following the proof of
Proposition2.1,

IZ,(n) = |A™"(diag(f(Opi,n)) " diag(b;é;) M diag(f(0p;,n))" diag(b;c;)M)

The eigenvalues are roots of a polynomial equation, whose coefficients are functions
of f~Y(0p;,n). Asn — oo, these coefficients and thus the roots converge. Hence,
lim,, ., I2 (n) exists and is given by2(42). n

Similar to 2.39), for a system with real unstable poles onB.42 can be simplified to

5, = [AH (T diag (bic;) M) |

By differentiating €.41) with respect td,

np  Np

dr2
o :ZZ”ENU e

=1 j5=1

> IIllIlpZI2

Thus,dI,/df > 0 for all 6. Similar conclusions can be drawn by differentiatihg with
respect taf. This shows that for SISO systems, the input usage cannot be decreased by
introducing additional lag in the system. Surprisingly, for MIMO systems, such an intuitive
conclusion does not hold, as is shown later.

Corollary 2.1 Under the same conditions as Proposit®d let g,(s) < (P,T'"'b, &) or
(P,b,&r'!). Thenly(j(s)) = I2(gy(s)) andloe(§(s)) = Lo (gp(s)).

It follows from corollary 2.1 that I, and I, for a time delay system depend on its
unstable projection, which is rational.
Corollary 2.2 For a SISO system with a single real unstable pole

2 _ 8p3 2p0 _ 2p€p6‘

2ore T g

(2.44)
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Corollary 2.2 can be shown to be true by consideriry4(l) and noting that in this
caseb, ¢ are scalars andI = 1 /2p. For delay-free systems, Havre and Skogestsi [
earlier obtained expressions similar £244). Proposition®.1and2.2 can be seen as the
generalizations of the results of avre and Skogesi&ltp SISO systems with multiple
unstable poles and time delay.

Remark 2.2 The time-delay enter2(41)-(2.42) assuming the forme’?: and thus does

not pose any serious limitations on input performance for systems with slow instabilities
and vice versa It follows from Corollary 2.1 that time delay essentially reduces the
controllability (or observability) of poles and the faster the instability, the weaker the
controllability (or observability) of the pole is, as compared to the delay-free system.

2.5 MIMO systems

In this section, we generalize the results of the previous section to MIMO systems. It is
shown that the achievable input performance primarily depends on the joint controllability
and observability of unstable poles of the system. These results can be directly used for
selection of the subset of controlled and manipulated variables for stabilization.

2.5.1 Rational Systems

Similar to SISO systems, the achievable input performance is first characterized for rational
systems. These results are extended to MIMO systems with time delay later in this section.
To obtain expressions fak and /., for MIMO systems, we relat&X andY solving the

AREs (2.9-(2.10 to the Hankel singular values &f(G(s))*. WhenG(s) has distinct
unstable poles, the next lemma also provides an alternate expression for the Hankel singular

~

values of/(G(s))*, which can also be of independent interest.

Lemma 2.4 Let G(s) be a rational system anX,Y > 0 solve the corresponding
AREs 2.295-(2.26. Then,

A

o2 UG()) = M(XTY ) i=1,-m, (2.45)

Further, ifGEs) has distinct unstable poles, &t{G(s)) — (P,B,C), such thatP =
diag(p; - - - pu, ), Re(pi) > 0. Thenog; (U(G(s))*) is given as,

A

omi(U(G(s))") = A

=

[(BB*) o M) ((C*C) o M)] (2.46)

%

wherel/(-) denotes the unstable part anlis defined by 2.31).
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Proof: Pre- and post-multiplying2.34) by T, and T} respectively, wherd'; is a state
transformation matrix,

T,PX 'T; + T: X 'P*T} = T,BB*T}

& PX '+ X'P* = BB* (2.47)
whereP = T,PT;', B = T\B andX = T;*XT;"'. Similarly, by settingC = CT;*
andY = T, YT,

PY'+Y'P = CC (2.48)

Now Y~ andX ! are the controllability and observability gramians of the stable system
U(G(s))* « (—P*, C*,B*) and @.47)-(2.48 are the corresponding Lyapunov equations.
If T, is chosen such thdt-P*, C*, B*) is a balanced realization, théd—! = Y~ ! =
diag(o: (U(G(s))*)) [117 and

o7 UG(s)") = M(XTY ) = NI XY IT)) = M(XT'Y )

WhenG(s) has distinct unstable poles, the alternate expression for the Hankel singular
values of/(G(s))* can be obtained by substituting f3 ' and Y ! in (2.45 using
Lemma2.1 ]

Proposition 2.3 For the rational MIMO systemG(s) having n, unstable poles, let
(—P*, C*, B*) be the balanced realization@{ G (s))*. Then

2 2|Re(Py;)|
2= : 2.49
2 UG (249
Io = o U(G(s))") (2.50)

DefineXy = diag(ox:(U(G(s))*)). Since(—P*, C*, B*) is the balanced realization
of U(G(s))*, using Lemma.4and settingk = Y = &7},
I; = t[(-PSy —SpP")S’]

= (-PI) +tr(-ZP") =)
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where|P;; + P;| = 2|Re(Py)]|.
(2) For .50, based on the expression fhy (2.30 and Lemm&.4

Lo = A 3(X7'Y7Y) = o (U(G(5))")

m

The expressions2(49-(2.50 show thatl, and I, mainly depend omw ; (U/(G(s))*),
which is a measure of joint controllability and observability of the unstable poles.

Glover [43] studied the robust stability of systems in the presence of additive
unstructured uncertainty. With the additive description of uncertainty, maximizing robust
stability is equivalent to minimizing th&{., norm of transfer matrix from disturbances
to inputs. Thus, the results of Glove4d are also applicable to the present case of
minimization of input energy required for stabilization. The expressiorfoas derived
here is as an alternative proof of the similar result of Glové&t,[but is generalized to the
case wheréV,(s) andG,(s) can be minimum phase and share common unstable poles
with the system.

Remark 2.3 In general,H, andH,, norms of a transfer matrix can be arbitrarily apart.
Proposition2.3 shows that when input norm is minimizel;/[oo Is always bounded as

*

2
2—H(Z (5) 5 Z|Re u|< <QZyRe (2.51)

whereP is the state matrix of the balanced realizatiori4iz(s)). The closeness af,
andI, follows from the fact that the related ARE2.25-(2.26) for the H, andH,, cases

are the same. The ratioy = 7 (U(G(s))*)/c;U(G(s))*) is the condition number of
U(G(s))* expressed in terms of Hankel singular values and can be interpreted similar to
the Euclidian condition number. A system that has a large Euclidian condition number
has strong directionality and may be difficult to contrd0®, p.87]. Similarly,xy can be

large due to smal,;(1/(G(s))*) indicating that the input requirement for stabilization is
large. Whenxy = 1, the upper and lower bounds dg/ 72 in (2.51) are the same with

312, =257 |Re(Py)|.

In this chapter, we assumed that the disturbances enter the closed loop system through
output channels. Propositiéh3 can easily be applied to cases, where disturbances enters
through input channels by settifg,,(s) = G(s) (see Figure.5). For minimum phase
systems affected by input disturbances, the expressions for achievable input performance
are much simplified, as earlier shown by Chedral. [26]. The results of Chemet al. [26]
are shown to be a special case of Proposifd@by the next Corollary.
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L

Figure 2.5:Disturbances entering through input channels

Corollary 2.3 With reference to Figur.5, let G(s) be minimum phase, right invertible
and has, unstable poles. Then,

I} =2 Re(p); Io=1 (2.52)
=1

Proof: Let G(s) = G,B,,'(s) such thaiG,(s) is stable. WithG,,(s) = G(s) and using
(2.17),

ITu(s)ll = [IT+KGB,, (5) ' KGB,, (s))]
= [|(I+ KB, (s))"K(s)]

whereK(s) = KG,(s). Let (P, B, C,D) be the balanced realization & (s). Since
B, (s) is all-pass and stabley;;(B,,"(s)) = 1 [42]. Then, using Propositio.3, I, = 1
and 12 = >, 2|Re(P;;)|. The expression fof, follows by noting thatP; = p; (cf.
(2.19). m
The achievable input performance for multivariate systems depends on pole locations as
well as pole directions. To illustrate this, we consider two extreme cases: (1) all the pole

directions are orthogonal and (2) are co-linear with each other.

Corollary 2.4 Let G (s) andG.(s) be rational systems with distinct unstable poles, where

Z/{(Gl(S)) > (P,B1,01>, Z/{(GQ(S)) — (P,BQ,CQ) such thatP = d1ag(p1 .. 'pnp))

Re(p;) > 0. Let|[B]i[l2 = [I[BsJill2, [[Cililla = [[[Calilz forall i = 1---n, and
Y5i(G1(5))ypi(Gi(s)) = 1 and  u,(Gi(s))u,(Gi(s) =1 Vi, j

and  y;i(Ga(s))yp(Ga(s)) = 0 and  up(Gao(s))uy(Ga(s)) =0 Vi #j

Then, I (G1(5)) > 1 (Ga(s)).

Proof: Define the diagonal matricd®; = diag(||[B}]i|l2) = diag(||[B5):||2) andDy =
diag(]|[C1]i]|2) = diag(]|[Csli||2). Based on the alternate expression for Hankel singular
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values .46 andM (2.31),

o (U(Ga(5))*) = A2 [(D[u;(Ga(s))uyy(Ga(s))]yDr) o M)
(Doly;i(Ga(s))ypi(Ga(s))]i;Do) o M)]

Sinceu;,(Ga(s))uy;(Ga(s)) = 0 forall i # j,

opU(Ga(s))) = A? [(D7oM)(Dg 0 M)
[Ddiag(1/(pi + p;))DDodiag(1/(pi + p;)) Do

= o (Dydiag(1/(pi +p))Do) = min [D;'Dg Ji(pi + p) ™

Similarly, it can be shown that;,;, (U (G1(s))*) = ¢ (D;MDy). Using Propositior2.3,
Io(G1) =& (D;'M'Dg') and using Lemma.2,
Ioo(Gl) Z maX[DI_IM_IDél]“’

1
Tp

e . Pi 4 pi)?
> m?x[Dlngl]iz‘(pi —H%)H_E — *;2
e P; — Dy

)

where the first inequality holds since the maximum singular value of a matrix is always
greater than or equal to the individual elements of the matrix. m

In Corollary?2.4, the lengths of the pole vectors are assumed equal to highlight the effect
of angles between the pole directions. In general, the optimal orientation of pole directions
for input performance depends on the unstable pole locations and the Euclidian length
of pole vectors. Intuitively, the input requirement for stabilization is minimized if pole
directions are oriented such that the fastest instability is affected most and so on.

Example 2.2 Consider the following system,

cos(8) sin(B)
sin(8) _cos(3)

0 0
0 0

G(s) = ;o pL,p2 €Rpp < po

S =IO =
[\

For this systemy ,u,» = sin(2(3). The variation of/,, with 3 is shown in Figure2.6.
The input requirement is maximum, when the pole directions are co-limear (°) and
and is approximately times larger than the case, where the pole directions are orthogonal
(6 = 45°). An explanation of this observation is as follows: When the pole directions are
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Figure 2.6:Effect of pole directions o,

co-linear, theB matrix of the state space realization@fs) is singular. The inputs affect
the poles only after being filtered through the singtBamatrix. Though the input itself
can vary in all directions, when filtered throud it is effective only in a few directions
increasing the input usage for stabilization.

2.5.2 Time Delay Systems

For extending Propositio8.2 to MIMO systems, we use a similar method as used for
univariate systemg,e. by using a rational approximation of the time delay system and
then letting the order of approximation approach infinity. We consider systems that can be
expressed as

G(s) = G(s) 0 O(s); O(s) = [e 7] (2.53)

whereG is the delay-free part of the system. A system sucﬁ}as) in (2.53 with delay
associated with individual elements of the transfer matrix, which cannot be separated at
inputs or outputs, is sometimes referred to as a multiple delay system in the literature. It is
pointed out thatZ.53 does not represent the most general case and in practice is satisfied
only when theW, (s) andG,(s) are diagonal. The remaining discussion in this section is
limited to the cases wherg, > n, and similar expressions for, < n, can be obtained

with minor modifications.

Lemma 2.5 ConsideH(s) < (P, B, C) such thal? = diag(p; - - - p,,), Re(p;) > 0. Let
H; (s) € RH. with no zeros ap;. Then

np

U(HL (s) o H(s)) = > —

H, (p, B’ 2.54
25 p, 1(pi) 0 (CiB;) (2.54)
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The proof of Lemm&.5is similar to the proof of Lemma.3and is omitted. We make
the following additional assumption:

Assumption 2.3 Let (G (s)) <« (P,B,C). Then the matriXC,;B)) o ©(p;) has full
columnrank foralk =1---n,.

Proposition 2.4 Consider that the MIMO system expressed By58 has distinct poles
and the system satisfies Assumptia8. Let 4/(G) — (P,B,C) such thatP =
diag(py - - - pn,)s Re(pi) > 0. If G, < (A,,B,, C,), where

A'p = dia‘g<p1]:nu o pannu>’ BP = [Inu T Inu]
C, = [(GB)oOm) (C,B,)oOn,)

Then,l1(G) = I,(G,), I.o(G) = I..(G,).

Proof: Let ©(s) be approximated by an' order rational function as before. As— oo,
using Lemma.5and the same arguments as used in the proof of Propo&ittpn

Np

A 1 ~
UGs)) =) — -(C:B)) o O(p) (2.55)
i=1 v
Due to Assumptior2.3 --0(p;) o (C;B;) = (pily,, L, O(p:) o (C;B;)). Then the
result follows by considering the aggregation of these subsystems. |

It is interesting to note that whe®(s) is unstructured (delays cannot be separated at
inputs or outputs), stabilization of the irrational system wiftunstable poles is equivalent
to stabilizing a rational system with, x n, unstable poles. For systems not satisfying
Assumption2.3, the triplet(A,, B,, C,) is not necessarily a minimal realization. This
assumption can be relaxed for generalization purposes, but this makes the expressions
difficult and complex. A practical case, where Assumptois always violated, occurs
when the delays are associated with the sensors or actuators of the system. Systems with
delay associated with sensors are handled next and the expressions for systems with delay
associated with actuators can be obtained analogously.

Corollary 2.5 Let G(s) = diag(e %*)G(s) andi(G(s)) < (P,B,C) such thatP =
diag(p1 -+ - pn, ), Re(pi) > 0, p; # p;. LetG,(s) < (P, B, C,), where

C, = [ diag(e ®”)Cy - diag(e *"»)C,, |

Then,I1(G(s)) = I(G,(s)) andl.(G(s)) = Io(G,(s)).
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The proof of Corollary2.5 follows by considering 4.55 and noting that(CiB;) o
O(p;) = diag(e~%r:)C;B,. It was shown earlier that for SISO systenis, /., are non-
increasing functions dof, but this does not hold for MIMO systems.

Example 2.3 Consider the systei@(s) = G(s) o O(s), where

02 0|2 3
~ 0O 0511 4 e~ s g2
O e S R G P
5 310 0

Figure 2.7:Variation of I, with a; andas

The variation of/,, with a4, as is shown in Figure2.7, which leads to the counter
intuitive conclusion that the input requirement for stabilization for MIMO systems can
decrease when the delay in some of the elements of the system increasesx\\Whes,
by virtue of Propositior2.4, the unstable projection of the irrational system hasstable
poles @ poles each ab.2 and 0.5). However, whenay = ay = «a, G(s) can be
expressed a6i(s) = G(s)e®s. Then, using Corollar.5, the unstable projection of the
irrational system has only unstable poles. With slight abuse of terminology, the case of
a1 = ag = « can be interpreted as the system havinmstable poles amlunstable zeros
at0.2 and0.5. Thus, whemy; # as, these RHP zeros differ from their nominal values of
0.2 and0.5 and effectively reduce the joint controllability and observability of the unstable
poles. Keepingy; (or ) constant and increasing (or o), these RHP zeros recede away

from the unstable poles reducing the input requirement for stabilization.
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Corollary 2.6 Consider a MIMO systen@(s) that is expressed by2(53 and satisfies
Assumption2.3. If G(s) has a single real unstable pgle

S— P o= — P (2.56)
> i 07 ((CB') 0 O(p)) a((CB") o ©(p))

wherel/(G(s)) < (p, B, C).

Proof: Define G,(s) < (pl,,,I.,,(CB’) o ©(p)). Now, similar to the proof of

Proposition2.4, it can be shown thak,(G(s)) = I,(G,(s)), Io(G(s)) = Io(Gp(s)).
SinceG,(s) has a single pole repeated times,M = (1/2p)[1,, - - - 1,,,]. Using @.46),

oni(Gy(s)) = (1/2p)A*[((CB
= (1/2p)o:[(CB") 0 O(p)] (2.57)

Now, (2.56) is obtained by substitutin@(57) in the expressions fdk, and/,, (2.49-(2.50.
]

For a system that is delay free and has a single unstableMble,1/2p, BB* = || B||3
andC*C = ||C||2. Then, using the alternate expression for Hankel singular vafiéé)
8p? 2p

= (2.58)
IBI?[C]? IBJ[IC]|

I3 =

This expression 4.58 was earlier obtained by Havre and SkogestdsB].|
Propositions2.3 and 2.4 can be seen as the generalization of the results of Havre and
Skogestadd8] to systems with multiple unstable poles and time delay.

2.6 Extended Stability

The optimal controller that minimizes input requirement for stabilization cancels the stable
poles of system (seg2.3) and only unstable poles are moved. Though these stable poles
do not appear in the closed loop transfer matrix from the disturbances to the inputs, they
are still present in other closed loop transfer matrieeg, disturbances to outputs. When

the system has lightly dampened stable poles, the variability of the output may be large.
Further, when the linear model is obtained through linearization of an nonlinear system,
the large variation of the lightly dampened modes can excite some nonlinearities. It is
beneficial tostabilizethe unstable as well as stable poles of the system that are close to
the imaginary axis by moving them further into the left half of the complex plane. In the
literature, this problem is known as tlae-stability problem, where all the modes of the
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closed loop system lie in a half plane satisfyiRg(s) < —« for the given positive scalar
« (see R8] and reference within for details). In this section, we present a simple algorithm
for the a—stability problem with minimization of input usage.
For notational simplicity, we assume that,(s) = W, (s) = I. The algorithm is based
on the following observation:

Observation 2.1 Let [T, (5)]n,,,,, @nd[Tyw(s)]s.. .., represent the closed loop system
from the disturbances to the inputs with thg andH,, optimal controllers implemented
respectively. Then,

(1) The poles of Ty, (s)]3,.,. are given as the unstable poles@fs) mirrored across
the imaginary axis with multiplicity.

(2) A subset of poles OfT,,., ()]
across the imaginary axis.

are given as the unstable poles®fs) mirrored

oco,sub

Proof: (1) When only input performance is considered, the optimal controller cancels the
stable part of the system (s€e.3). Thus, we can consider the system as having only
unstable poles without loss of generality. Kets) — (P, B, C), whereRe()\;(P)) > 0.
Using the expression for optimal controll&.7),

P BF 0 P+BF BF | 0
[T ($)|#z0pe = | LC P+BF+LC | -L | = 0 A+LC|-L
0 F | 0 F F |0

where the second equality is obtained by using a state transformation Matfithe form,
I1I
=[50

Pre-multiplying the AREZ2.25 by X! and rearranging? + BF = —X~'P*X. Then,
(P +BF) = \;(—=P*),i = 1---n,. Similarly post-multiplying the AREZ.26) by Y,
Ai(P +LC) = \(—P*),i=1---n,. The result follows by noting that the eigenvalues of
—P* are at the mirrored locations of the eigenvalue® of

(2) The proof is similar to the case @F ., (s)]#s,_,,, and is omitted. ]

The fact that the controller minimizing input energy mirrors the unstable poles was
earlier established by Kwakernaak and Siva@f] [for the LQG and by Glover43] for
the H,, optimal controller design problem. Kwakernaak and Siva#| [ustified this as

a balance between the gain and decay rate of the inputs. Note that in the ddse of
optimal control, the remaining poles @F ., (s)]#., .., are given as\(P + Z,L.C), where

co,sub
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asy 2 — p(XY)™!, Z,, approaches singularitgf (2.11). Thus, characterization of all
the poles of T, (s)]3.. .., is difficult, but it does not have any effect on the algorithm for
«a—stability, as presented next.

Algorithm 2.1 Consider thaf}(s) Is the generalized systerd.23. The a—stability for
this system can be achieved by following steps:

(a) Translate the imaginary axis by the transformatioa s + «/2.

(b) Design an optimal controller foé(§), that minimizes the input requirement for
stabilization.

(c) Use the inverse transformatién= s — «/2 on T, (5) to get a closed loop system
that isa—stable.

- Optimal 5
s=5—a/2 Controller Design S=s—a/2

NN S T b N A
A . A . Y e

1 1

A ° A ° ° A o A

(@) (b) (€)

B Open loop stable pole ® Open loop unstable pole A Open loop stable pole (unaffected)
Figure 2.8:Simple method forv—stability

When the imaginary axis of the—plane is translated t® + «/2, the stable poles of
the system that satisfige(s) < —«/2 also appear in the RHP of tideplane. The optimal
controller that maximizes input performance reflects the poles in RHPptdne across
the imaginary axis (see Observati@ml) across the imaginary axis. Then, by inverse
transformation to the—plane, the poles of the closed loop system safisfys) < —a.
Using Propositior2.3 the closed loop system satisfy

, "' 2|Re(P;;
| Tuw(s —a/2)|5 = Z_; gl%,(U(’G(i - ()1/’/2))*)

~

ITu(s = a/2)[lo = o UG(s — a/2)))
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where(P, B, C) is the balanced realization 6f(s—«/2). Similar relations can be derived
for a system with time delay using Propositidd; however, expressingT.,(s)|| directly

in terms of||G(s)| and« is difficult. This class of norms are called shifted norms and
have been discussed by Boyd and Bar@th. 5]. Nevertheless, Algorithi2.1 provides

a simplistic way of attainingv—stability using available numerical tools fét, andH.
optimal controller design.

2.7 Selection of Variables for Stabilizing Layer

The results presented earlier in this chapter are useful for selecting a subset of controlled
and manipulated variables for stabilizing the system with minimum input usage. Clearly,
the optimal set of variables can be selected by comparing the achievable input performance
for different alternatives. A limitation of this approach is that it suffers from the curse
of dimensionality, as the number of alternatives show an exponential growth with system
dimensions. In this section, we present an iterative algorithm for finding a suboptimal
solution in finite time.

Further, selection of variables for the stabilizing layer through minimizing input usage is
beneficial, but generally there are also other criteria. For example, the effect of disturbances
on the remaining control problem (see Fig@.&) can be amplified due to closure of the
stabilizing or inner loop making the task of performance satisfaction difficult. We show
that this issue can also be addressed in the framework of input usage minimization.

2.7.1 Choice of Norm

For a rational system with a single unstable pole driven by pure measurement noise, the
optimal subset of the controlled and manipulated variables is independent of the choice
of norm [58]. In the general case, however, the choice of norm can influence the optimal
combination of variables. For example, consider the following system,

G(s) = [ (0.7s —1.2) —(2.25+2.4) |

1
(s —1)(s—2)
where the objective is to choose one of the inputs requiring minimum usage for
stabilization. Use of{, andH,, norms suggests the selectionwgfandw, respectively.
The appropriate norm can be chosen based on the information available regarding the
disturbance characteristiesg. when the disturbances can be considered to be white noise,
use ofH, norm is appropriate. On the other hand, when only bounds on the disturbances
are available?{., norm should be used 5.
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We note that theZ; norm closely addresses the physical constraints of the system
and [L17]

1K (5)S(8)lloo < 1K ()S(5) |,

Thus, use ofH,, norm may be preferred ovétl; norm. If for some combination of
variables|| K (s)S(s)||« > 3, wheres depends on physical constraints on the manipulated
variables, system stabilization without actuator saturation using a linear feedback controller
is not possible.

2.7.2 Reducing Computational Complexity

Consider a rational system with a single unstable pole, where the closed loop system is
driven by measurement noise. For such systdmsand I, depend or|B|| and||C]|| (cf.
(2.58) and the following conclusions can be drawn:

e The optimal set ofn, controlled andn, manipulated variables can be found by
selecting variables with largest entries in BBandC matrices.

e The optimal set ofn, controlled andn,, manipulated variables is always a subset of
the optimal set ofm, + 1) controlled andm,, + 1) manipulated variables.

With this monotonic relationship, the optimal set of variables for stabilization can be
selected througtwn, + n,,) comparisons for &, x n,, dimensional system. Unfortunately,
this attractive result does not hold for systems with multiple unstable poles. Specifically,
consider that the set of controlled and manipulated variables be partitioned into subsets of
equal dimensions ag;, = [y; y» y3] andu = [u; us usz]. Among these subsets, let the
input requirement be minimized by choosing u;. In general, there is no guarantee that
the achievable input performance for the subiget y-|, [u; us] is better than the subset
[y2, ys3], [us us]. This point is further illustrated using the following system:

1
(s —0.5)(s — 1.7) [

G(s) = (=1.7s+0.75) (—s+1.1) —0.3(s+0.1) |

For this systemuy; is the optimal choice fom, = 1 anduy, us is the optimal choice for
m, = 2, when either ofH, or H., horms are minimized. Due to the lack of a monotonic
relationship,Cry, x Cy comparisons are required for optimally selecting controlled
andm,, variables for &, x n,, dimensional system. Solving the variable selection problem
through comparison of all alternatives is computationally intractable, as the number of

alternatives grow exponentially with the system dimensions. To this end, Habjréds
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suggested using the following step-wise approach to obtain a suboptimal solution in finite
time, where the unstable poles are stabilized one at a time:

Algorithm 2.2 For rational systems withV,,(s) = G, (s) =1,

(a) Scale the system variables and obtain a state space realization of the scaled system,
wherel/(G(s)) « (P, B, C) such thal? = diag(p; - - - pn, ), Re(p;) > 0.

(b) To stabilize the first real or pair of complex unstable pole (preferably the fastest
unstable pole), choose the controlled and manipulated variables with largest entries
in the corresponding rows and columns of Bl@andC matrices respectively. Design
a controller to stabilize the chosen unstable pole and close the loop.

(c) Similar to the previous steps, obtain a state space realization for the remaining
control problem and stabilize the second unstable pole. Repeat the procedure until
all unstable poles are stabilized.

This simple method avoids the problem of computational complexity, as in the worst
np

case, maximum oy _,”,(n, + n, — 2¢) comparisons are required; however, it suffers from
the following limitations:

e Algorithm 2.2 yields a decentralized controller designed sequentially and thus the
input usage for stabilization is large as compared to a full block multivariate
controller.

¢ In the worst case, this method requires that+ n. controlled and manipulated
variables be used for a system withreal andn,. pairs of complex unstable poles.

e The algorithm does not handle time delay systems or the case W¥igfe) # I or
Gu(s) # L

We next present an iterative method that does not suffer from the limitations of
Algorithm 2.2 The central idea is to choose one controlled or manipulated variable
at a time. The algorithm provides a reasonable suboptimal solution for the variable
selection problem in finite time, where the computational time increases linearly with
system dimensions and quadratically with the number of variables to be selected. The
case of system stabilization using decentralized controller is handled in the next chapter.

Algorithm 2.3 Prior to variable selection, scale the system variables.
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(a) Select the optimal set consisting dfcontrolled andl manipulated variable that
minimizes input requirement for stabilization by enumerating all possiple n,
alternatives.

(b) Keeping the set of chosen manipulated variables the same, select an additional
controlled variable that minimizes input requirement for stabilization.

(c) Keeping the set of chosen controlled variables the same, select an additional
manipulated variable that minimizes input requirement for stabilization.

(d) Repeat steps (b) and (c) untik, controlled andm, manipulated variables are
selected. Ifm, # m,, skip step (b) or (c) once the required number of variables
are selected.

Algorithm 2.3 can be easily used to handle time delay systems and the cases where
W.(s) # Ior G,(s) # I. Note that whenW,(s) and G,,(s) are not diagonal, the
algorithm requires inversion of different sub-matriceswf, (s) and G,,(s) during every
iteration. For selecting the set ok, controlled andm, manipulated variables for a
n, x n, dimensional system, the Algorith@3 requiresn,n, + S0, ™" (n, — i) +

Z;ﬁl‘mu“(nu — j) number of comparisons. This expression can be simplified as,

nyny + (ny, — 0.5my)(my, — 1) + (n, — 0.5m,,)(m, — 1)

Essentially, starting from the optimal set bfcontrolled andl manipulated variable,
at every step, Algorithn2.3 adds one locally optimal controlled or manipulated variable.
A similar algorithm can be constructed that starts with all variables and eliminates one
controlled or manipulated variable at every step. This alternative algorithm is particularly
useful, whenm, > n,/2 andm, > n, /2.

Example 2.4 We consider the base case of the Tennessee Eastman benchmark
problem [B3]. A linearized model of this process is obtained by numerical differentiation
of the nonlinear model. The model is scaled prior to variable selection using the approach
of Havre b6, Ch.6]. Based on the recommendation of Haws6, [Ch.6], we use only a
subset of controlled variables and avoid using feed streams for stabilization. The resulting
system hagd1 controlled an® manipulated variables and unstable pole3.@f + ;5.08,
0.02 + 50.16, 0.007 andO0.

In Table 2.1, we show the results obtained by applying Algoritt23 for H., norm
minimization, which are compared against the optimal solution obtained by enumeration.
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Exact Solution Suboptimal Solution
My My, Cv MV I Cv MV I
1 1 Y22 U10 0.11 Y22 U10 0.11
1 2 Yo1 Ug, U711 0.077 Yoo U0, U1 0.1047
2 1 Y12, Y21 U190 0.0235 Y12, Y22 U1 0.084
2 2 Y12, Yo1 U10,U11 0.0222 Y12, Y22 U0, U1 0.0783
3 3 Ysi Y12, Y21 Us, Ui, upn  0.0212 Y12, Y21, Y22 Us, U1o, upr  0.0213

Table 2.1: Comparison of the results obtained using Algorittn8 with the optimal
solution for stabilization of Tennessee Eastman process @&singptimal controller

My My, CcVv MV ]22
Y21 U190 0.0068
Y21 U10,U11 0.0059
Y12:Y21 U710 0.0063

Y11.Y21 U10,U11 0.0055

W NN ==
W NN = N =

Y11,Y12,Y21  U5,U10,U11 0.0050

Table 2.2: Alternatives for stabilizing Tennessee Eastman process usngptimal
controller. Due to monotonicity, Algorithr@.3 provides the optimal solution.

The suboptimal solution is reasonably close to the optimal solution, but is obtained
using a fraction of the computational requirement for enumeration. For example, when
m, = m, = 3, a total 0f9240 comparisons are required for enumeration, where as
Algorithm 2.3requires onlyl 20 comparisons.

For H., norm minimization, the lack of the monotonic relationship should be noticed in
Table2.1 In particular, form, = 1, m, = 2, choice ofus, u1; is optimal, but this set does
not containu,o, which is optimal form, = 1,m, = 1. On the contrary, whef{, norm
is minimized, Algorithm2.3 provides the same solution as obtained by enumeration. This
happens as the optimal solution fals norm minimization shows monotonicity, but this is
not true in general. The different alternatives for stabilization of the Tennessee Eastman
process using ak, optimal controller are shown in Tabk2

In generalym,,, m, are not specified beforehand and are decided upon by trading them off
against the achievable input performance. For this case study, the achigf@aldptimal
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input performance using all controlled and manipulated variableg)i®4. Then, based

on the optimal solution obtained by enumeration, usé obntrolled andl manipulated
variables is sufficient. In comparison, a disadvantage of Algori2hdns that is suggests
use of3 controlled and manipulated variables and finding an improved algorithm remains
an open area of research.

2.7.3 Other Criteria

In the previous section, the selection of variables for the stabilizing layer through
minimizing input usage was demonstrated. Though beneficial, this approach can be
insufficient for practical controller design problems as generally there are also other criteria.
One such important criterion is the amplification of effect of disturbances on the remaining
control problem (see Figuiz1) due to closure of the stabilizing loop, which can make the
task of performance satisfaction difficult. We show that this issue can also be addressed in
the framework of input usage minimization.

Consider the set of controlled and manipulated variables be conformably partitioned as

Gii(s)ui(s) + Gia(s)ua(s) + Gui(s)w(s)
G21 (S)ll1<8) + GQQ(S)Uz(S) + GwQ(S)W(S)

y1(s)
ya(s)

where the subset,, u, is used for stabilization. When the stabilizing loop is closed, the
effect of the disturbance on the controlled variables of open loop system is giveflas [

yi(s) = (Gui(s) — GK(s)(T + G2K(5)) " Gua(s)) w(s)
= Gui(s) (I — G1GpK(s)(I+ GQQK(S))_leQ(S)> w(s)

Then, the stabilizing layer amplifies the effect of disturbances on the remaining control
problem, if

IT— G (s)G12K(s) (I + G22K(5)) ' Goa(s)]loo > 1

During the selection of controlled and manipulated variables, it is beneficial to take this
effect of disturbance amplification into account. The stabilizing controller can be designed
such that the input usage for stabilization is traded off against the disturbance amplification
effect. For this purpose, we note that

IT = Goi(5)G 12K (s) (I + G22K(5)) ™' Gua(5) |
<1+ [|Gp1(5)G12K(8) (I + GooK(s)) ' Gua(8)]oc
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Thus, it suffices to minimizes(G,1(s)G1K(s)(I + GoK(s)) 'Gua(s)) at the
desired frequencies. In general, we can miniMi& ,(s)G1(s)G K (s)(I +
G2K(5)) 1 Gua(s)| s, WhereW,,(s) is a frequency dependent weight. This requirement
combined with minimization of input usage for stabilization results in a multi-objective
optimization problem and a popular approach is to instead solve the following optimization
problem

u(8)

[Ww(s)G ;19(5)(}12 K(s)(I+ G2K(s)) " Gua(s) (2.59)

min
K(s)

This problem is the same as the general input usage minimization problem considered

earlier in this chapter, except the special choice of frequency dependent weights. Thus, the
controlled and manipulated variables can be selected as discussed in the previous section
with minor modification. FofH, norm minimization, similar expression a&.%9 can be

used.

2.8 Chapter Summary

In this chapter, we used a state space framework to obtain analytic expressions for
achievable input performance for SISO and MIMO systems with and without time delay.

Regarding the factors affecting achievable input performance, the following general

conclusions are drawn:

1. The input performance primarily depends on the joint controllability and
observability of unstable poles.

2. In the H.-control framework, there are no limitations on achievable input
performance for minimum phase systems, when the closed loop system is driven by
input disturbances. In thE,-control framework, the achievable input performance
for this class of systems is limited only by the location and number of unstable poles.

3. Time delay poses no serious limitation on the achievable input performance for a
system with slow instabilities andce versa

4. The input performance of a MIMO system, where the delays cannot be separated at
the inputs or outputs, can be much worse as compared to a system with delays that
can be factored at the inputs or outputs.
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5. In contrast to SISO systems, the input requirement for stabilization may decrease
for MIMO systems with an increase in time delay in some elements of the transfer
matrix relating controlled and manipulated variables.

Based on the observation that the optimal controller mirrors the unstable poles across
the imaginary axis, a simple method is proposed to handlevthgtability problem. In
the context of process control, this method is useful for controller design using available
numerical tools for systems with a subset of poles on or near the imaginary axis frequently
arising due to holdup of utilities and raw materials.

It is demonstrated that except for systems with a single unstable pole, the optimal subset
of controlled and manipulated variables that minimizes input requirement for stabilization
depends on the choice of norm. In the general case, the choice of norm depends on the
available information regarding disturbance characteristics, but ugé,ohorm can be
preferred to address the actuator saturation issue. We also presented some insights to reduce
the computational complexity of the variable selection problem and handle criteria other
than input performance maximization in a unified framework.

2.9 Further Reading on Performance Limitations

The area of fundamental limitations of feedback control can be dated back to Blode [

In his seminal work, Bode showed that for stable systems with more than one pole-zero
excess, the integral of logarithmic magnitude of the sensitivity function over all frequencies
is always zero. With a finite bandwidth limitation, this result implies the unavoidable trade-
off between different performance objectives. Bode’s result has been extended to open loop
unstable systems by Freudenberg and Lo88 [The same authors have also developed

a Poisson-type integral to quantify the limitations imposed by the unstable zeros on the
sensitivity integral. The classical Bode sensitivity and Poisson-type integrals have been
extended to multivariate systems by Ch&d][ The importance of the Bode sensitivity
integral for some real-life controller design problems is discussed by St@4h [

Note that the Bode sensitivity or Poisson integrals always hold, irrespective of the
optimal controller design criteria. A similar set of constraints, known as analyticity
or interpolation constraints, were introduced by Zamé45. The interpolation
constraints show that for a system with unstable poles and zeros, peaks in sensitivity and
complementary sensitivity functions are inevitall®?, 115. Havre and SkogestadT]
have used these interpolation constraints to quantify limitations imposed by RHP poles and
zeros on the lower bounds on several important closed loop transfer matrices. 22hen [
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has presented improved achievable bounds on the sensitivity and complementary sensitivity
functions through the use of these constraints combined with Nevanlinna-Pick interpolation
theory [].

Over the years, a number of results have been obtained for a related class of problems,
where the achievable performance is quantified assuming a particular performance
criterion. One of the most studied problems is the singular or cheap control problem.
For discrete time systems, Peng and Kinna®®9 have provided an explicit solution and
the achievable performance is characterized by Qiu and Davéstin Recently, Yuz and
Goodwin [L14] presented an approximate solution to the decentralized minimum variance
control, which is also studied later in this thesis. The presented list of references on
performance limitations is far from complete. The reader is encouraged to refer to the
books P, 97, 107 and the recently published special issue on performance limitations by
IEEE Transactions on Automatic Contr@1].






Chapter 3

p-Interaction Measure for Unstable
Systems

The requirement that the block diagonal part of the system should have the same
unstable poles as the system limits the practical applicability of conventicimaéraction
measure (-IM) [49] to stable systems. This limitation can be overcome by designing the
decentralized controller based on a block diagonal approximation that is different from
the block diagonal elements, but has the same number of unstable poles as the system. By
expressing the-IM in terms of the transfer matrix between the disturbances and inputs, we
show that the block diagonal approximation can be sub-optimally selected by minimizing
the scaled’, distance between the system and the approximation. We present a numerical
method for choosing the block diagonal approximation and a simple method for designing
the decentralized controller based on the approximation.

3.1 Introduction

The last chapter presented results on system stabilization using minimal control action. In
this chapter, we consider the system stabilization using a decentralized controller. Over the
years, three different approaches have evolved for decentralized controller design:

a) Simultaneous design using parametric search methdlde decentralized controller
is chosen to have a fixed structueed. PID controller) with unknown parameters.

1A part of this work was performed while the author was visiting Professor Sigurd Skogestad, Norwegian
Institute of Science and Technology, Trondheim, Norway during March-May 2003.
The central idea of this chapter was presented at the American Control Conference, Boston, MA4R004 [

47
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The optimal value of these parameters is found by minimizing the appropriate norm

of the closed loop system using direct or indirect search based methods. Though
useful, this approach results in optimization problems that are not usually convex

and can be highly complicated even for simple systers [

b) Sequential designThe controllers are designed sequentially using a lexicographical
ordering of the individual controllers. The lowest level controller is designed first and
the loop is closed. The next controller is designed based on the partially closed loop
system. The resulting performance strongly depends on the ordering of the loops and
often atrial and error approach is required to obtain acceptable perfornGhéd]|

c) Independent designThe individual controllers are designed independently of each
other based on a block diagonal approximation that is usually taken as the block
diagonal elements of the system. Then, the decentralized controller design problem
reduces to design of a number of small dimensional full multivariable controllers.
When the interactions are small, such a controller also stabilizes the closed loop
system with minimal loss of performance in comparison to the design lags5J1].

This approach always results in suboptimal performance because the tuning of other
controllers is neglected.

In this work, we focus on the independent design approach. Although sub-optimal,
the controller design is much simpler as compared to other techniques. Furthermore, this
approach easily handles the cases in which only the bounds on (possibly time-varying)
off-diagonal elements of the system are availabBi.|

Grosdidier and Morari49] proposed the use gf interaction measureg:({IM) to assess
the feasibility of system stabilization through independent designs of individual loops.
This approach yields sufficient conditions to ensure that the decentralized controller that
stabilizes the block diagonal part of the system also stabilizes the system itself. The
problem of decentralized controller synthesis through independent designs has also been
studied by Limbeer 18] and Ohtaet al. [88], who used the concepts of generalized
block diagonal dominance and quasi block diagonal dominance respectively. The use of
u—IM is less conservative than these approaches because the controller structure is taken
into account. A connection between these methods based on dominange-dvids
established in the next chapter.

The conventionak-IM requires that the system and its block diagonal part have the same
right half plane (RHP) poles. Grosdidier and Mora9] pointed out that this condition is
not satisfied by most of the systems encountered in practice, limiting the applicability of
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1-IM to open loop stable systems. Samyudtal. [96] have criticized theu-IM for this
limitation and have instead proposed a method basedgap metric L1d. In this chapter,
we present a modifieg-IM that easily handles unstable systems. The decentralized
controller is designed based on a block diagonal approximation that is different from the
block diagonal elements, but has the same number of unstable poles as the system.

Clearly, the number of block diagonal systems with the required number of unstable
poles is infinite and the success of the modifietM approach strongly depends on the
choice of an appropriate approximation. We express;th# in terms of the closed
loop transfer matrix between disturbances and system input (or controller output). This
alternate representation shows that the block diagonal approximation can be reasonably
selected by minimizing the scaled,, distance between the system and the approximation.
The problem of finding a structured approximation of a full multivariate system has
earlier been considered by Li and Zhoii7], but no numerical methods for solving the
approximation problem are provided. In this chapter, we present a numerical approach,
where the approximation problem is first solved at a set of chosen frequencies followed by
a parametric identification method.

Similar to the conventionagk-IM method, the stabilizing decentralized controller can
be synthesized using a loop shaping approach based on the block diagonal approximation.
An advantage of alternate representation:dM used here is that controller design can
be much simplified using the results of last chapter. Although the focus of this chapter
is on finding stabilizing decentralized controllers, we show that the stabilizing controller
inherently minimizes an upper bound on the input requirement for stabilization. The results
presented here can also be extended to handle (robust) performance issues directly using
the results of Skogestad and MorakDf].

The organization of this chapter is as follows: some useful results from robust control
theory and optimization are presented;i.2; the available results gi-IM are reviewed
and its limitation is pointed out iff 3.3, the alternate representation@iM is presented
and upper bounds on closed loop performance are derivgd.th in § 3.5we consider the
problem of selecting the optimal block diagonal approximation; the simplified controller
design is presented §3.6; in § 3.7, a numerical example is presented to demonstrate the
utility of proposed approach followed by chapter summary ;8.
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3.2 Preliminaries

In this section, we review the useful concepts of structured singular value, model order
reduction and optimization using linear matrix inequalities. These results are used
extensively during the remaining development in this chapter.

3.2.1 Structured Singular Value

Most of the problems encountered in robust control theory can be reduced to guaranteeing
that for some characteristic transfer mafiik(s), I — M(jw)A(jw) remains nonsingular
for all w for all allowable values ofA(jw) € C?*P. A practical and mathematically
convenient way of representing the set of allowaé¢s) is as a norm bounded set,
e.d, 7(A(jw)) < 1 for all w. With this representation, the smallest norm of the
destabilizing perturbatiod (jw) is given asl/a(M(jw)). Then, it follows thatdet(I —
M(jw)A(jw)) # 0 for all allowable perturbations, iffM(s)||« < 1.

In the above discussion, allowable perturbations include all matrikégv) with
d(A(jw)) < 1forall w. In practice, many problems arise, wheMs) has a structure,
i.e. some entries ofA(s) are identically zero. Then, the conditigiM (s)||.. < 1 is
only sufficient (and highly restrictive) for ensuring thétt(I — M(jw)A(jw)) # 0 for
all allowable perturbations. This motivates the use of the structured singular value, which
explicitly accounts for the structure of the perturbations.

Definition 3.1 Let the setA € CP*? be defined as
A = {diag(A;) : A; € CP*% 5(A) < 1}

The structured singular value &f € C7*? is given as 39,

1
min{a(A) : A € A, det(I— AA) =0}

pa(A) =

unless ncA € A makes(I — AA) singular, in which casga (A) = 0.

The ua(A) represent2—norm of the smallest structured perturbation that makes
I — AA singular, where the subscrigk is used to explicitly denote the structure. Braatz
et al.[14, 15] and Fu B9] have shown that in the general case, the determination of the exact
value or an approximate bound gns not computationally tractable; however this is not a
serious limitation as a tight upper bound prior complex structured perturbations can be
readily computedd5]. For notational simplicity, consider the perturbation set consisting
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of square matrices and |& be set of matrices that commute with all elementhobr
DA = ADforall A € A,D € D. Then,
pa(A) < inf 6(DAD™) (3.2)

~ DeD

In this thesis, we denote the upper bound givend§)(asiia(.). The upper bound given

by (3.1) is tight for complex perturbations and the equality holds, if the number of blocks
in A is less thant. WhenA has4 or more blocks with no block being a repeated scalar,
the ratio ofua (.) andfia(.) for the worst known example 85 and is close td for most
cases I17]. A collection of many useful properties of the structured singular value can
be found in L02 117]. One particularly useful property of the structured singular value,
which is used later in this chapter is:

(| g o)) = vean®) 3.2)

whereA = diag(A, As) andA;, A, are full complex matriceslpQ.

3.2.2 Optimal Hankel Norm Approximation

For practical controller design and system identification, use of low order controllers or
models is preferred because of online implementation issues. Imposing an order constraint
directly on the controller design or identification algorithms usually makes the problem
non-convex and difficult to solve. To avoid this difficulty, we can first solve the unrestricted
problem (wrt the controller or model order) and then reduce the order of the solution using
efficient techniques. In this subsection, we discuss such an order reduction techaigue,
Hankel norm approximation approach.
Let G(s) be a stable, square and rational transfer matrix having erd&he objective
is to find a reduced order stable transfer ma€i(s) having order: such that
G*(s) = arg min [|G(s) — G"(s)||u

Gk (s)
where||.|| denotes the Hankel norm. This problem has been studied by many researchers
and a complete solution is given by Glovég], who showed that

Cmin Gs) =GRy = min [[G(s) = GE(s) = F(s) | (3.3)
GF(s)ERHoo GF(s),F*(—s)ERHoo
= ourr1(G(s)) (3.4)

whereo ;.11 (.) denotes thék + 1) Hankel singular value. A complete characterization
of all solutions that achieve the lowest approximation er@#)(is available in the
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original paper by Glover42] and many standard optimal control textbooks. Note that
the requirement thax(s) be square is not restrictive and is easily satisfied by padding
extra zero columns or rows on the non-square). When the order of the approximation
kis zero,G’“(s) Is a constant matrix and thu8.8) is equivalent to finding an anti-stable
approximation of a stable system. In this case, the Hankel norm approximation problem is
alternatively known as the Nehari extension probl&i.[

For the block diagonal approximation problem discussed later in the chapter, we require
thatG (s) with n, unstable poles be approximated(fii?(s) with k£ unstable poles such that
G (s) — G¥(s)]| is minimized. Next, we show that this problem can also be solved as a
Hankel norm approximation problem.

Let G(s) = Gi(s) + Ga(s) such thatGj(—s), Ga(s) € RH.. Without loss of
generality, we can parameterigh, (s) asG*(s) = G#(s) + Ga(s), which provides

1G(s) = G*(5) oo = G1(5) = GF(8)]loo = IGF(—5) — (GF(5))"[lsc
The optimal value fotG*(s))* € RH.. is found by solving ¢f. (3.3)),

.\, . in IGT(=s) = (G}(5))" = F(s)l|oc
(GY ()", F*(—s)ERHoo
Then, the optimal value d*(s) is given asG*(s) = G¥(s) + F*(—s) + G4(s). Since
F*(—s) and G,(s) are stableG*(s) is the £, optimal reduced order approximation of
G(s) with k unstable poles.

3.2.3 Linear Matrix Inequalities

Many control theoretic problems require solving an optimization problem that does not
admit an analytic solution. Solving these problems numerically strongly depends on
whether the optimization problem is convex and if not, how closely it can be approximated
by an equivalent convex problem. Linear matrix inequalities (LMIs) represent a class of
such convex constraints and are represented as follows,

F(x) =Fo+ Y xF; =0 (3.5)
=1
wherex € R” represents the decision variable dnde R"*™ are symmetric matrices. In
(3.9, > is the partial ordering symbol arfd(x) - 0 implies thatF(x) is positive definite.
The past decade has seen a rapid growth in the use of LMIs for solving control problems
because many non-linear optimization problems can be represented as LMIs that are affine
in the decision variables.
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In this chapter, we use LMIs as the primary computational tool for solving relevant
optimization problems. To fully appreciate the importance of LMIs, consider the problem
of calculatingia(.). Due to the presence of the inverse term3nl), the optimization
problem is difficult to solve in its present form; however, it can be transformed into an
equivalent convex optimization problem. There exdtg D such thafia (A) < ~ iff

(DAD H)*(DAD™') < 41 for some D €D
& A'D'DA < 4?D*D  for some D €D
& A*PA < ~*P  for some P=D'D,P>~0,PcD (3.6)

For a giveny, (3.6) is affine in the decision variablB. Thus the minimal value of
can be found using a bisection search method;an@) = inf~ such that 8.6) holds.

The class of problems having a form similar 886) are known as generalized eigenvalue
problems. A collection of many other control problems that can be reduced to the LMI
form is available in 10].

Naturally, not every optimization problem can be reduced to LMIs. A more general class
of matrix inequality problems is that which involves the product of two decision variables.
These inequalities are known as bilinear matrix inequalities (BMIs) and have the following
general form,

F(X7 y) = Fo + inFz + i yJGZ + i ixiyjHij =0 (37)
i=1 j=1

i=1 j=1
whereF;, G;, H;; > 0 for all 7, andy € R". These BMIs are much more difficult to
solve than LMIs and are known to be computationally intractabl&] When one of the
decision variables in37) is fixed, the relation becomes an LMI. Then, the BNl can

be sub-optimally solved by iteratively by fixing one of th@andy at a time. This simplistic
often provides satisfactory solution to the BMI. A survey of other techniques for solving
BMIs can be found in108 and its references.

3.3 pu-Interaction Measure

In this section, we briefly review the available results;otM [49], point to its limitation

and suggest a modification to overcome the same. Throughout this chapter, we assume
that the system does not contain any decentralized fixed mddef [The absence of
decentralized fixed modes is both necessary and sufficient for existence of a decentralized
stabilizing controller but only necessary, when individual loops of the decentralized
controller are designed independently of each other.
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Figure 3.1:Closed loop system

With reference to Figur8.1, let the systenG(s) be partitioned asz(s) = Guq(s) +
G(s) such that

e Gy,(s) contains the block-diagonal elements@®fs) and

e Gy,(s) andG(s) have the same number of RHP poles.

Define the transfer matricds(s) andTy,(s) as,

de(S) = deKbd(S) (I + deKbd(S))il (38)
E(s) = (G(5) — Gu(s)) Gy (5) (3.9)
where K,,(s) is the block diagonal controller. Ty;(s) can be interpreted as the
complementary sensitivity function i&;(s) were zero, andt(s) as the multiplicative
uncertainty inGy(s). Let Ky(s) be designed such thal,,(s) is stable. The central

question remains: DoeK,,(s) also stabilizeG(s)? This issue has been addressed by
Grosdidier and Morari49], who proposed the use pfIM for this purpose.

Lemma 3.1 Assume thatG(s) and G,(s) have same number of RHP poles dhgl(s)
is stable. Thefl'(s) = GKyy(s) (I+ GKyy(s)) " is stable iff the following conditions
hold [49]
det(I+ ETy(s)) # 0 (3.10)
N(0,det(I+ETy(s))) = 0 (3.11)

whereN («, .) denotes the winding numbek1( or the number of clockwise encirclements
of the point(«a, 0) by the image of NyquisD contour under (.).

Proof: The return difference transfer function fi@Ys) can be written as,
(I + GKbd(S)) = (I + deKbd(S> + G]Kbd(S))

- (I + GIKbd(S)(I + deKbd(3>>_1) (I + deKbd(S))
= (I+ET(s)) (I + GoaKea(s)) (3.12)
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Since for rational systems (), g2(s), N(«, g192(8)) = N(cv, g1(s)) + N(«, go(s)) (see
e.g.[110Q), using the alternate expression for the return difference transfer fun&ib),(

N(0,det(I+ GKyqa(s))) = N (0,det(I + ETp4(s)))
+ N(O, det(I + deKbd(S))) (313)

Since G(s) hasn, unstable poles, it follows from the multivariate Nyquist stability
criterion [LOZ] that T(s) is stable iff

det(I+ G(s)Kpi(s)) # 0
N(0,det(I+ G(s)Kpa(s))) = —ny,
Further, sinceél',4(s) is stable by assumption,

det(I + de(S)Kbd(S)> 7& 0
N(O, det(I + de(S)Kbd(S))) = Ny

The necessity and sufficiency 08.00-(3.11) follows using above expressions and
(3.13. |
Lemma3.1was originally proven by Grosdidier and Moraid], except the requirement
that .10 must hold. This is a minor technical requirement to ensure that the image of
det(I+ Ty E(s)) does not pass through the origin of the complex plane. Lefdfmrms
the basis for a more important result, as presented next.

Theorem 3.1 Let G(s) and Gy,(s) have same number of unstable poles. Kif;(s)
stabilizesG,4(s), thenK,,(s) also stabilize€z(s), if

7 (Tha(jw)) < pna (E(jw))  VYweR (3.14)

whereA has the same block structure@s;(s) andTy,(s), E(s) are defined by3.8) and
(3.9 respectively.

Proof: The sufficiency of 8.14) for closed loop stability is proven by contradiction. Let
N(0,det(I + ETy,(s))) > 0 and let the image ofet(I + ETy,(s)) intersect the negative
real axis of complex plane at the frequengy Then there exists &, || < 1 such that

det(I + BEde(jwo)) =0
Similarly, let there exists a frequency such that

det(I + Ede(jwl)) =0
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Combining these two conditions, we notice thEfs) is unstable iff there exists a
B, 16] < 1 such thatdet(I + SET,(jw)) = 0 for somew € R. It follows from
the definition of the structured singular value that the norm of smallest perturbation that
destabilize€(jw) is given ass (3 Ty(jw)). When .14 holds, a3, |3| < 1 such that
det(I + SET4(jw)) = 0 for somew € R does not exist and the closed loop system is
stable. u

Theorem3.1was proven by Grosdider and Mora#9 under the requirement that the
unstable poles df(s) andG,,(s) be identical. Itis clear from Lemnfaland the proof of
Theorem3.1that the number of unstable poles@fs) andGy,(s) being equal suffices. In
either case, design &, (s) solely based owx,(s) is equivalent to designing individual
loops independently. The equatidi14) is known as the:.-IM. This powerful result allows
the designer to impose restrictions on individual controllers, but still be designed solely
based or,,(s) such that closed loop stability is ensured.

As pointed by Grosdidier and Morad ] that in practice G(s) andGy(s) as defined
above have same number of RHP poles only for open loop stable systems limiting the
applicability of u-IM. It is noted that this limitation only arises &$,,(s) is chosen as the
block diagonal elements @k (s) and is easily overcome by relaxing this requirement. The
decentralized controller can be designed base@giis) that is different from the block
diagonal elements but has the same number of RHP polég @s This point is further
illustrated using the following simple system:

B 1 (s4+0.5) 0.5
GO =G| 9s-3) (s+1) (3.15)
Since all the minors of orddrhave(s — 1)(s — 2) as denominator and
_ (s+05)(s+1)—059s—3)  s*—3s+2 1
det(G(s)) = (s — 1)2(s — 2)2 (s —1)2(s—2)2  (s—1)(s—2)

the system .15 has two unstable poles atand2 [81]. Let G,4(s) be chosen as the
diagonal elements d&(s). In this case,
(s +0.5)(s+1)
(s —1)*(s —2)

Due to absence of pole-zero cancellati@h,;(s) has poles at the same locations as
G(s), but repeated twice and the assumptionefiM are violated. Consider thdd,,(s)
is chosen as,

det(de(s)) =

1
Gpa(s) = (Sfoq)fl (s) 0
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wherea;, as > 0 and fi(s), fo(s) are arbitrary stable transfer matrices. With this choice,
the assumption tha,;(s) andG(s) have same unstable poles is easily satisfied. Note that
for an arbitrary choice of;, ay > 0, the diagonal blocks df;(s) are not necessarily zero.

A similar approach can be used for partitioning any arbitrary system.

Remark 3.1 The approach for choosinG,,, as illustrated above, still holds when some

of the RHP poles of the system do not appear in any of its block diagonal elements. It is
pointed out however that in this case, it may be very difficult to design a block diagonal
controllerK,, to satisfy theu—IM condition, as the corresponding diagonal blocks will
have large element-wise uncertainties associated with them (LU0, if the diagonal
block is0).

Though the generalization used in choostig(s) extends the practical applicability of
1—IM to unstable systems, the generalization introduces an additional degree of freedom.
Clearly, whether the.—IM condition (3.14) is satisfied depends on the choice(®f;(s),
which is dealt with in subsequent sections.

3.4 Alternate Representation ofu-IM

For a givenG,,(s), a loop shaping approach can be used to ¥hgd(s) for closed loop
stability. In the present cas€s,;(s) can also be treated as a free parameter with the
requirement of having the same number of unstable pol€s(as

The task of jointly finding the paifG,,(s), Kyq(s)) such that the closed loop system
is stable, is very difficult. We note ir8(14), both (T (jw)) and pa(E(jw)) depend
on Gy (jw), but E(jw) is independent of the controller. Then, a convenient (and not
optimal) approach is to fin€x,,(s) such thatua (E(jw)) is minimized and then design
the decentralized controlled based on it to satisfy;iH& condition; however,E(s) in
not an affine function ofG,,(s). We next show that this difficulty can be overcome by
representing:-IM alternately in terms of transfer matrix between the disturbances and the
inputs.

Proposition 3.1 Let G(s) be partitioned a6 (s) = Gy(s) + G;(s) such thaiG,,(s) and
G(s) have the same number of RHP poles. Defigs) = (I + GpKypa(s))™!. Then
Ka(s) stabilizingGyq(s) also stabilizess (s) if

7 (KpaSpa(jw)) < ua'(Gr(jw)) VYw€R (3.16)

whereA has the same structure @s,(s).
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Proof: Note that
det(I 4+ ETyy(s)) = det(I + G;(5)KpaSpa(s))

Now the sufficiency of .16 is shown by using Lemma3.1 and following the proof of
Theorem3.1 u

Since the RHS of3.16 is affine in Gy,(s), it can be sub-optimally selected by
minimizing ua (G;(jw)). This approach is suboptimal as the LHS 8f1(f) also depends
on Gyy(s). For a particular choice d&,(s) that optimally minimizesia (G, (jw)), there
may not exist any controller satisfyin§.(6. This issue is further discussed later in this
chapter.

Remark 3.2 Since both of 8.14 and @.16 are sufficient but not necessary conditions
for closed loop stability, some stabilizing controller may fail to satisfyl4 and 3.16
simultaneously. Note thatt(I+E(s)Tpi(s)) = det(I+E(s)W ! (s)W(s)Tp(s)). Then,

a sufficient condition for closed loop stability is thatW Ty, (jw)) < px (EW(jw))

for all w € R [49]. From the discussion if§ 2.3 it follows that we can selecW (s)

to have the unstable poles and pole direction&sgags). Clearly, the allowable class of

W (s) includesG,,(s) itself. Then 8.16) can be seen as a special case of the generalized
inequality @.14). Similarly, (3.14 can be shown to be a special case of the generalized
inequality 3.16) using similar arguments.

The modifiedu—IM condition (3.16) is derived by treatind<,;S;q(s) as uncertainty in
G;(s). A slightly weaker version of3.16) can be derived by instead considering the robust
stabilization ofG,(s) and using the results of Glovet3], which are useful for analyzing
robust stability in presence of unstructured perturbations. In the present context, such an
exercise is redundant but can provide insight into the conservatism or more precisely lack
of conservatism ofi—IM.

Since Gy(s) and G(s) have the same RHP pole¥,,(s) stabilizing Gy,(s) also
stabilizesG(s) if [43]

6(Kdebd(jw)) < (7_1(G1(jw)) Yw (317)
Since stability is scaling invariant, the closed loop system is stable if

7(Dr(w)KpiSp(jw)Dy' (w)) < 7(Dy(w)G(jw)Dy' (W) Vw (3.18)
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whereD/(w) andDg(w) are frequency dependent scaling matrices. Dgfw), Dg(w)
be restricted to the set

DR = {dlag(d] : Imj), dj S R} (319)

where the dimensions of individual blocks o&,(s) is m; x m;. Since
Dy (w)KpaSpa(jw)D7' (w) = KpiSpa(jw), the conservatism of3(18 is reduced by
choosingD,(w), Dr(w) to maximize the RHS 0f3.18 at every frequency. Then the
sufficient condition for the stability of closed loop system is

7(KpiSpa(jw)) < sup (D (w)Gr(jw)Dy' (w)) < ix'(Gr(jw)) Vw (3.20)

Dy (w)eDy,
Dpr(w)eDR

Theoretically, 8.20 is slightly more conservative thar3.06. However, from
computational point of view, they are equivalent as, in practice, only the upper and lower
bounds on are computable.

[Grlloc <€

Be

Figure 3.2:Physical interpretation of reducing conservatism through

Remark 3.3 Most of the available interaction measures other tha#tM, e.g. [78, 8§,
provide a condition that is equivalent t8.17). Sinced(G;(jw)) > pa(G;(jw)) >
ua(Gr(jw)) for all w, (3.17) is more conservative thar8.0 and @.16. We can also
interpret this result on physical grounds as follows: An uncertainty @8t (jw)) < e(w)
defines an open ball in the complex plane, denote®.asIn this case, the controller
needs to stabilize all systems that lie witip to guarantee thaf(s) is also stabilized.
When B, is optimally scaled at every frequency, the dimensions of this perturbation set

are shrunk in all directions, except the direction connecting the nominal néagéjw)



60 Chap. 3 p-Interaction Measure for Unstable Systems

andG(jw). The optimal scaling reduces the number of additional systems that need to be
stabilized to guarantee th@l(s) is also stabilized and hence the reduction in conservatism
(see Figures.2).

Remark 3.4 Compared to the necessary and sufficient conditions provided by Léxima
the conditions provided by Theore3riland Propositio.1are sufficient only. To illustrate
this point, consider a controlld,,(s) that violates 8.14) or (3.16), but the closed loop
system is stable. Then, there exists some other contii§ligfs) such that (Kpyq(jw) (I +
GpKpa(jw))™) = 0(KpaSpe(jw)) for somew € R and Kyy(s)(I + GpaKpa(s)) ™ is
unstable. We can also interpré&.16 as a sufficient condition for robust stabilization of
Gua(s). Similar as before, consider that a controller violated§), but the closed loop
system is stable. Then, there exi€ts(s) such thafia (G (jw)) = jia(G;(jw)) for some

w € R and the closed loop system is unstable wi&sis) is replaced byG;(s). Thus,
the conservativeness pfIM arises as the apparent uncertainty set is much larger than the
true uncertainty set, which consists of a single elementG,(s). The strength ofi-IM

is that when 8.14) or (3.16) hold, any decentralized controller that stabilifeg,(s) also
stabilizesG(s).

Proposition3.1 provides a sufficient condition to assess whethkgy designed for
G4, can stabilize the closed loop system; however, it provides no information regarding
the closed loop performance. Grosdidier and Mordf] [pointed out, satisfying:-IM
condition guarantees closed loop stability, but the performance can be arbitrarily poor. In
the next proposition, we show that when téM condition (3.16 is satisfied, an upper
bound on closed loop input performance is always minimized.

Proposition 3.2 Assume thatG(s) and G,(s) have the same number of RHP poles and
(3.20 holds. Then,
1

pa(KpS(jw)) < T (KogSie) — fia (G (o)) Vw (3.21)

whereA has the same structure Gs,.
Proof: UsingG (s) = Gya(s) + G(s),

(T+ GKpa(5)) Ky () = Ky (s) + Gals) + Gi(s)
= (I + deKbd(S))Kb_dl (S) + G[(S) (322)
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Let D, (w) € D, andDg(w) € Dg, whereD, andDy, are defined by3.19. Then,
using @.22 and singular value inequalitie63, 107,

o (Dr(w)S™Kyy (jw)Df' (w)) = ¢ (D1(w)Sp Ky (jw)DE' (w))

— 7 (DL(w)Gi(jw)DR' (w))

Consider thaD; (w), Dr(w) are chosen to maximize(D . (w)G;(jw)D3' (w)). Since

D ()8 Ky (jw)Dy' (w) = 8, Ky (jw),
o (Dr(w)ST'K,, (jw)Dy' (w)) = o (S, Ky (jw)) — a(Gi(jw))  (3.23)
With this choice ;' (KuS(jw)) > o (D (w)S™'K;; (jw)D%' (w)) and
pa (KpaS(jw 0 (S Ky (jw)) — a(Gr(jw))

) =
1
na(KuS(jw) < = (KeaSea(jw)) — ia(Gi(jw))

)
(

u

Generally, the nominal performance of the closed loop system is measured in terms of
7(KpeS(jw)) instead ofua (KyS(jw)). The corollary below shows that the information
regardings (K,;S(jw)) can be readily extracted from3.Q1).

Corollary 3.1 Let all the conditions of Propositio8.2 hold andD(w) € D;, Dr(w) €
Dp, be chosen to maximize (D, (w)G;(jw)D%' (w)) Then
_ , k(D (w))
0 (KpS(jw)) < - = ——Vw e R 3.24
ST < G, Suljw) — ia (G (G0) 824
whereA has same structure &%, andx denotes the Euclidean condition number.

Proof: Using 3.23,

5(D1(w)a(Dy! (@)e (ST K (jw) = ¢ (Sp Kot (jw)) — ia(Gi(jw)) Ve (3.25)

Sinces (D' (w)) = 6(D;'(w)) by constructions (D ,(w))a(D5' (w)) = k(D (w)).
With this observation, 3.24 can be obtained by rearrangin8.25 as the proof of
Proposition3.2 n

Comparing 8.25 with (3.20, we notice that when the decentralized controller stabilizes
the closed loop system, an upper bound on the closed loop input performance is always
minimized. The bound on the closed loop performar&e5) is very loose in general.
When the performance requirements are specified in terms of a frequency dependent
weight, it can be very difficult to satisfy these requirements by minimizing the upper bound.
Nevertheless, maximization 6f ! (K;;S;q(jw)) — fia (G (jw)) is beneficial to maximize
the robustness of the closed loop system for unmodelled dynamics that can be represented
as an additive uncertainty §].




62 Chap. 3 p-Interaction Measure for Unstable Systems

3.5 Block Diagonal Approximation

In this section, we consider the problem of finding an optimal block diagonal approximation
Gya(s) for the given systen@(s) such thatua (G(jw) — Gyg(jw)) is minimized. Since
only ia(.) is computable in practice, the block diagotal;(s) can be chosen by solving,

min & (D (w)(G(jw) — Gu(jw))Dg' (w)) (3.26)

Gpa(jw)

s.t. DL(u)) €Dy, DR(w) € Dgr

whereD,, andDy, are given by 8.19 and the number of unstable pole®f;(s) andG(s)
IS same.

Intuitively, a suboptimal solution to the optimization proble26 can be obtained
by simply reducing the order of the block diagonal elementsGgk). In fact, for
systems decomposed irttlocks, the solution obtained by order reduction of the diagonal
elements is optimal. This result is proven next by showing that the diagonal blocks
optimally approximate a complex matrix partitioned irtdlocks, which may also be of
independent interest.

Proposition 3.3 Consider a complex matriA € CP*? be partitioned as,

A Ap
A_ =
{ Ay Ay }

Then,Ay; = diag(Aq1, Age) minimizesua (A — Ayy), whereA,; andA have the same
structure asliag(A;1, Agy) and

1251 /LA(A - Abd) - 5’(A12)5'(A21) (327)

Proof: Using the identity for structured singular valud.3), it follows that ua (A —
diag(Aq1,A2)) = /(A12)(As). Then, it suffices to show that for alA,,;, the
minimum achievable value ¢fa (A — A,,) is given by 3.27).
Let A,y = diag(A;1 + B1, Asy + By). SinceA has two complex blocks,
ILLA(A - Abd) = inf 5'(DL(A - Abd)Dél)

D;eD;, DreDRr
d
(Bt
= d
d1,da€R ﬁAm B,

Let U be a unitary matrix that permutes the off-diagonal block®ef A — A,;)D}' to
diagonal blocks angice versa Without loss of generality, we can choage= 1 [117].
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Since the largest singular value of a matrix is larger than or equal to largest singular value
of the sub-matrices of the matrigJ],

7(DL(A — Ayy)DRY) 7(DL(A — Ayy)DR'U)
max(&(dglAm), 5’(d2A21)) Vdg eR
max (|dy"| 5(Ar2),|d2| 7(A21)) Vdy,dy € R

(A12)0(Ag)

AVARNAY/

v

The result follows by noting that the RHS of the above expression is independent of the
scaling matrices. n

Note that Propositio8.3says nothing about the uniqueness of the optimal solution. For
(A — Ay,) partitioned and permuted as done in the proof of Proposgi8ifil17, p. 218],

pa(A — Apg) < max(o(Arz), 6(As)) + Va(B1)a(Bs)

If B, = 0anda(A2) = 5(Ay;), the upper bound opa (A — Ay,) is the same as the
lower bound. This shows that there exists an infinite numb&-.,aind thus block diagonal
matrices which achieve the lower bound.

60 60
50 M 50t B
40 A e M 40 [— T
N 30 N N 1 N 30t L
20 1 20+
10 q 10+
0 0
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
Ydiag—Vsub Ydiag— Vsub
Vdiag Vdiag
(a) Unrestricted case (b) Diagonally dominant matrices

Figure 3.3: Relative difference between approximation errors using diagonal elements
(74iag) @and locally optimal solutiomy,;) for 3 x 3 complex matrices

Unfortunately, Propositiod.3 does not hold for matrices partitioned into more tt2an
blocks. For such cases, we may still hope that the diagonal blocks will be nearly optimal
for the approximation problem. To verify the extent of sub-optimality of using diagonal
blocks as a nearly optimal solution for the approximation probl&pi) 3 x 3 complex
matrices are generated randomly. The real and imaginary parts of the individual elements
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of the matrices lie betweett100. For comparison purposes, the locally optimal solution

is calculated using the method discussed in the next subsection. Bigfagshows that

the relative difference between the approximation errors using diagonal elements and the
(locally) optimal solution can be as high 825. When the class of random matrices is
limited to the diagonally dominant matrices, surprisingly the same upper bound still holds
(see Figured.3(b). Thus, we conclude that the solution obtained by simply reducing the
order of the diagonal blocks is restrictive and present an algorithm that provides a locally
optimal solution for the optimization probler3.@6).

Algorithm 3.1 For a given systertx(s) with n,, unstable poles, a locally optimal solution
to the block diagonal approximation problem is obtained by the following steps:

1. Solve the optimization problen3(26) at a set of chosen frequencies to yi€lg, ;..

2. Solve a parametric optimization problem to fitl,(s) that has at least, unstable
poles and minimizes the worst case error bet\/\@g(p(jw) andGyg o,

3. If Gyy(s) has more tham,, unstable poles, the order @,,(s) is reduced ton,
through optimal Hankel norm approximation to ge,(s).

The role of these steps becomes clear by noting,

1a(Gjw) — Gea(jw)) < pa(G(jw) — Guajw)
+ 6(de,jw — C—‘rbd(jW)) + 6(de(jw) — de(jw)) (328)

It follows from (3.28) that every step in the proposed method minimizes the contribution
of one of terms on RHS 0f3(28 to the total approximation error. The order reduction
through Hankel norm approximation was discussed B2.2and is not repeated. The
other steps of the proposed method are discussed next.

3.5.1 Frequency Wise Approximation

The first step of the proposed method for finding the optimal block diagonal approximation
consists of minimizing3.26 at a set of chosen frequencies. The (possibly non-uniformly
spaced) set of frequencies can be selected based @(jw)), i.e, a larger number of
frequencies can be chosen around the peak$@{jw)). In the remaining discussion, the
frequency argument of the scaling matrices is dropped for notational convenience. Using
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similar arguments as used in calculatjng) (3.6),

7(DL(G(jw) — Gpajw)DR') v (3.29)
& D (G(jw) — Goajw) DiDL(G(jw) — Gpajuw) Dy 7’1 (3.30)
& (G(jw) — Gpaj) PL(G(jw) — Guajw) = 7V*Pr (3.31)

IN

IA

whereP;, = D;D; € Dy, Pr = D3Dgr € Dg andP, Pr > 0. Note that unlike 8.6),
(3.3)) is not affine in the decision variables; however, a locally optimal solution can be
found using an iterative approach. Using the Schur complement ledh43.30 can be
equivalently expressed as,

—1 D% (G(jw) — Gpa,jw) D7,

. _ <0 3.32
D (G(jw) — Gy ) D 1 = (3.32)

Note that for fixedD,, D, (3.32 is an LMI in G4 ... Now, a locally optimal solution
for the frequency wise approximation problem can be found by using the following iterative
algorithm for the set of chosen frequencies:

Algorithm 3.2 Select a set of frequenci¢s; }, i = 1---n, and evaluat&(jw;). Choose
convergence toleraneceand initial DY € Dy, D% € Dy (e.g. DY = D} = I), where
Dy, Dy are given by 8.19. Seti = 1.

1. Solve the convex optimization probler8.82 for G}, ;, by settingD, = D' and
Dy = D', Let the locally optimal approximation error hé.

2. Solve @.3]) for P}, P}; using a bisection search method by fixi6g,, ., asGj, .-
Let the locally optimal approximation error bé. SetD} = (P%)%5, D%, = (P%,)%5
and:; =7 + 1.

3. Repeat stepsand2 until [y — 447 < e.

Unlike a general BMI problem, the sequence of solutions obtained using Algo8itdm
is guaranteed to converge. Lgt 72, vi™ be a sequence of the approximation errors. For
convergence, we only need to show that> v, > "1, Since the individual optimization
problems to be solved in stepsand2 of Algorithm 3.2 are convex, these steps are jointly
convex if there always exisB; , P}, such thaty; = 74 andG,/, such thatj = v}

Since 3.29 < (3.32,

% =D} (G(jw) — Giy ) (DR )
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With Gy, = Giy .0 P = Py = 1is a feasible solution for331). As (3.3]) is
convex, the solutio®; = P% = I can be seen as the worst case solution, which achieves
74 = ~i. Now, note that

(DL(G(je) — GifL)(Df) ™) = DL G(jw) (D) ! — Gl

As ngdw is a feasible solution for3(32), which achievesi™ = ~, the convergence to
local optima is proven.

An equally importantissue is that of quality of the solution obtained using Algor&t2m
Since the approximation problem has multiple local minima and the converged solution
depends on the initial value, Algorithf®.2 can converge to a minima that is worse
than using the diagonal blocks. This difficulty is overcome by repladfgw) by
G(jw) — diag(Gy;(jw)) in Algorithm 3.2and usingG;", + diag(Gi;(jw)) as the locally
optimal solution, wher&;;" | is the solution obtained using the modified algorithm.

Using the same arguments as used for convergence of the sequence of solutions obtained
using Algorithma3.2, it follows that the modified algorithm always obtains a solution that is
at least as good as using the diagonal blocks. Note that repléting) — diag(G;;(jw))
can bias the algorithm to converge to a local minima close to diagonal blocks. We
use a simple approach, where the problem is solved twice Sig) and (G(jw) —
diag(Gy;(jw))) and select the better solution. It is possible to obtain an improved solution
using the available branch and bound methdd|, but this approach is not pursued here
with the view of keeping computational requirement low and is a potential area for future
research.

3.5.2 ParametricL., Optimal Identification

In this section, we discuss finding a rational transfer function that explains the frequency
response data obtained using Algoritl@2 The objective is to find the rational transfer
matrix Gyq(s) that best approximates the irrational function and has at least as many
unstable poles a&(s). It would be ideal to directly find,,(s) that has the same number
of unstable poles a&(s), but the optimization problem becomes very involved when the
number of unstable poles is fixed. In any ca€g,(s) can be obtained as the optimal
Hankel norm approximation dﬁbd(s) as discussed if13.2.2

Traditionally, the model identification problem consists of minimizing the least square
error or theH, norm of Gy, — de(jwi). In the present case, however, it is more
appropriate to instead minimize the worst case error oLtheorm of Gy je,, — de(jwi)
(cf. (3.289). In arelated context, Helmiclet al.[60] formulated the problem of identifying
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H., optimal model from frequency response data for discrete time systems. The same
authors have extended their approach to continuous time syste614 thrjough a bilinear
transformation. The two-step approach of Helmiekial. [60] consists of fitting the
frequency response data with finite impulse response (FIR) models followed by Hankel
norm approximation, which is similar to the last two steps of the method proposed here.
Over the past few years, a number of different approaches have appeared in the literature
and the current state of the art’Af,, optimal identification can be found i24)].

In this chapter, we parameterize the class of models using transfer functions as compared
to the FIR models used by Helmickt al.[61]. An advantage of using the transfer function
parametrization is that low order models can be identified directly in the continuous
time domain, the disadvantage being that unlike the FIR parametrization, no worst case
error bounds are available. Nevertheless, practical experience (particul&@ty morm
minimization case) suggests that transfer function parametrization works very well. For
simplicity, G4(s) is identified element by element, whe@,,(s)];; is parameterized as:

-1
A 8™+ Q18"+ rars + ag
Y

Goals)ly = ) — m<n

b(s)  bps" 4+ b, 18" 14 -bis+ by

In the remaining discussion, we drop the requirement (HBat(s) has at least as
many poles a$,,(s), as it is easily satisfied by choosing the order of the denominator
polynomials sufficiently large. Then, the parameteys- - a,,, by - - - b,,, are obtained by
solving,
a(jws)
b(jwr)

Note that the objective function i83(33 is nonlinear, but can be equivalently represented
as|b(jwr)| " Ha(jwr) — b(jwr) [God,ju, Ji;]- NOW, we can instead minimize

min
ag-+am,bo-+-bn

— [de,jwk]ij ]{I =1--. ny (333)

la(jwr) — b(jwi) [Gbd,juy Jij| =
\/Re(a(jfwc) — b(jwi) [Gd,juoy i) + Im(a(jwr) — b(jwr) [God,ju Jij)?

which is easily represented as an LMI problem as follows:

. 2 2
min +
A Qm,bo-+-bn ER T2

subject to  —77 < Re (a(jwi) — b(Gwr)[Grajw)ij) < 71
—75 < TIm (a(jwr) = b(jwr)[GrajuJis) <75 k=1---n, (3.34)

As w, — oo, the magnitude of the polynomialg jwy), b(jwy) becomes unbounded.
Thus, the formulation 3.34) inherently emphasizes minimization of,~, at high
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frequencies. The following iterative approach can be used, which does not suffers from

this limitation:
aéi)~~~a%ﬁég~-'bﬁf)ell% it

subject to =6V (jwr)| < Re (a® (jwr) — b9 (jwr) [Giajun)is) < 27100 ()|
=16 ()| < Tm (a9 (k) — b (i) [Giajen)is) < 231670 (Geon )|
b, =1 (3.35)

whereb— (jw;,) denotes the identifieldpolynomial from the previous iteration. 18.35),

the additional constrairit, = 1 is imposed for numerical stability and in general, fixing
any one of the unknown parameters suffices. InZheoptimal identification literature,
methods similar t03.34) and @.35 are known as Levi's and Sanathanan and Koerner’s
method respectively90]. The sequence of solutions obtained by solving optimization
problem .35 is not guaranteed to converge, but reasonable solution can be obtained using
a few iterations.

3.6 Controller Design

With the availability ofG,,(s) using Algorithm3.1, the controller design for the modified
u-IM is similar to the conventional:-IM method. A loop shaping approach can be
used to find the stabilizing decentralized controller; however, finding a controller using
this method to satisfy3.16 can be difficult. In this section, we show that with the
alternate representation of thelM conditions in terms ofK;;Sy4(s), finding Kyy(s) to
satisfy 8.16) reduces to solving a weightéd,, controller design problem fd&,4(s).

Proposition 3.4 Consider thatG(s) andG,(s) haven, unstable poles. Let the minimum
phase and stable transfer matiixs) be chosen such thatv(jw)| = ux'(G;(jw))
for all w. There exists a block diagonal controllKr,,(s) such thato (Ky;Syq(jw)) <
pA (Gr(jw)) for all w € R iff

o5 U Ga(s))") < 1 (3.36)
wherel{(.) denotes the unstable part.
Proof: (Sufficiency) Let us defineK,y(s) = w(s)Kpa(s) andGpa(s) = w(s)Kpa(s).
Then, using PropositioR.3, there exists &,4(s) such that,

inf ||WKdebd(S)||oo = ~inf ||Kbd(3)(:[+é‘bded(s))_lnoo
Kpa(s) Kypa(s)

= gy U Ga(s))")
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If (3.36) holds, there exists K;,(s) such that

|wKpaSpa(s)]|eo < 1 (3.37)
& 0 (WKpSp(jw)) < 1 Vw
& 7(KpSpa(jw)) < |w(jw)|™ Vw
& 0(KpSn(jw)) < pa(Gi(jw)) Yo

where the last inequality holds as(jw)| = ua(G;(jw)) for all w.

(Necessity) We show the necessity 8136 by contradiction. Consider tha3.36) does
not hold, but there exists K(s) such thatz (Ky;Spa(jw)) < pa'(Gr(jw)) Vw. By
reversing the series of inequalities used for sufficied€y;(s) must satisfy 8.37). The
o7 U Gyy(s))*) denotes the least achievable valuelfer(s)K;iSya(s) ||« for all LTI
controllers. Then||wK;;Sy(s)||- being less than, despites ;' (U (w™ Gyq(s))*) being
equal to or greater thahis a contradiction and the necessity 8f36) follows. n

In Propositior3.4, we assumed that(s) is stable and minimum phase. In generals)
can have RHP zeros and RHP poles at same the locati@®,dAs). Allowing w(s) to
be unstable or non-minimum phase provides no advantage, as following the discussion in
§ 2.3 we can simply replace(s) by its minimum and stable partiB8.36). On relaxing this
assumption, howevety(s) that achievesw(jw)| = ux'(G(jw)) becomes non-unique,
where the different instances of s) are related by a unitary transformation.

Proposition3.4 effectively reduces the task of finding a block decentralized controller
to satisfy u-IM condition (3.16 to finding the minimum phase and stahlés) such
that |w(jw)| = px'(Gr(jw)) and @.36) holds. When 3.36) is satisfied, the standard
H~, optimal control design techniques can be used to find the stabilizing decentralized
controller.

Remark 3.5 In practice, it can be difficult to findw(s) that satisfies|w(jw)| =
pA (Gr(jw)) for all w € R. This difficulty can be overcome by recognizing that any
w(s) that lower boundga (G (jw)) at all frequencies, if3.36) holds,

7(KuiSea(jw)) < lw(jw)|™' = 6(KpSw(jw)) < pa'(Gi(jw))

Thus, for a givenG,,(s) the existence of a decentralized stabilized controller can be
established by verifying3.36 with w(s) that lower boundsia (G;(jw)).
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0.5

Locally optimal solution

o Using diagonal elements
0.45 - = = Frequency wise minimization |

0.15

Figure 3.4:Efficiency of proposed method for optimal block diagonal approximation

3.7 Numerical Example

In this section, we demonstrate the efficiency of AlgoritBrhfor obtaining optimal block
diagonal approximation and the controller design method discussed in the previous sections
using a simple example.

Consider the following system:

0 0 0|1 B f]
2 0 06 1 6
0 3 0|6 B 1
0 0 —4|1 04 04
1 B B 1]0 0 0
By 1 B 06/0 0 0
8 B 1 06/0 0 0

A set of equally spaced frequencies in the rabgel 0 is chosen and the locally optimal
diagonal approximation is obtained using the following steps:

o O O

3 51 = 05, ﬁg =0.1

e Algorithm 3.2 is used for frequency-wise minimization. The algorithm achied/es
decimal digits of accuracy as compared to the locally optimal soluti@ntarations.

o We fit 4" or lower order models for the frequency data using the formulaBo3g(
with 2 iterations.

e The identified model has unstable poles, which is reduced to a model with
unstable poles using the Hankel norm approximation method discuss&dar?
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AN (G (w))

7 ([Gpa(jw)]11) |
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7 ([Gpa(jw)]22)

il 5([Gpa(je)]33) |
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W

Figure 3.5:Validation of modifiedu-IM for stabilizing decentralized controller designed
using independent designs

The G;%(s), as obtained following these steps, is given as:

diag( —0.0025%42.225+3.421  —0.010455?+2.045+5.98 —0.0157552+1.8425+4.98>
5242.92s—3.96  ’ s24+2.53s—9.69 s24+1.77s—8.99

For comparison purposes, we also calculate the sub-optimal soI(Itﬁtfﬁ*i(s) by
reducing the order of diagonal elements@f In this case) Hankel singular values of

the stable part oG‘Zfﬁg(s) are negligible, which are removed to get a reduced order model

given as:

diag( 2.0755+3.272  1.335+3.896  —0.0065>+1.2555+3.533 >
7429654167 $242.06s—7.7627 s°+1.4225—10.31

To show the advantage of AlgorithrA.1 over using diagonal elements;*“
pa(G(jw) — Gt (jw)) andy%e9 = pa (G (jw) — GE9(jw)) are compared in Figur@4.
The relative difference between™ and v is (.23 at the zero frequency, which
monotonically reduces t0.13 for w = 10. This significant reduction in the approximation
error is useful for finding the stabilizing controller easily. Fig3d also shows that the
~v*“* closely matches the approximation error obtained using frequency wise minimization.
Thus, (at least for this example), the conservativeness in using the two-step approach for
identifying a model, with same number of unstable poles as the system, is minimal.

Next, we consider the controller design part. For the locally optimal diagonal
approximation, the following weight approximates (G;(jw)) closely,

(s) 0.107s2 + 2.12s + 10.54
wis) =
s2 4+ 2.06s + 7.762
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Using this w(s), oy U(w'G{¥(s))*) = 1.06 > 1 and standardH,, optimal
controller design technique is used to find a decentralized stabilizing controller. The
plots of u'(G;(jw)) and ¢([Gpa(jw))ii), i = 1,2,3 are shown in Figures.5 where
pA (Gr(jw)) > &([Gpa(jw))is), as expected. On the other hand, for the suboptimal
solution obtained using the diagonal elementg(U/(w " (s)GL*(s5))*) = 0.524 < 1.

Then, the conservativeness of using the diagonal elements to find a suboptimal solution is
emphasized.

3.8 Chapter Summary

In this chapter, we extended the practical applicability;ofM to unstable systems.

The decentralized controller is designed based on a block diagonal approximation that is
different from the block diagonal elements, but has same number of unstable poles as the
system. By expressing thelM in terms of transfer matrix from disturbances to inputs, it

is shown that:

e The block diagonal approximation can be (sub-optimally) chosen by minimizing the
scaled’, distance between the system and the approximation.

e The task of designing the controller based on the block diagonal approximation can
be reduced to solving a weightéd,, optimal controller design problem.

e The decentralized stabilizing controller inherently minimizes an upper bound on the
input requirement for stabilization, but the bound is very loose.

We have shown that when the system is partitioned ihtocks, the optimal block
diagonal approximation can be obtained by order reduction of diagonal blocks. For
the general case, a step-wise numerical approach is presented for finding the locally
optimal solution to the block diagonal approximation problem. The proposed approach
involves solving the approximation problem at a set of frequencies followet byptimal
identification.

One promising approach for identifying low order continuous models from frequency
response data is to use the Nevanlinna-Pick interpolation thé&pryThe interpolation
theory parameterizes all rational stable functions that can pass through the given set of
(adjusted) complex valued data. This method has been used byethefn25] for H.,
optimal identification and can easily be extended to4dhecase. The present difficulties
in using this approach are (i) the order of the model is the same as the number of data
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points; and more importantly, (i) due to an over-emphasis on the given set of frequencies,
the interpolating function shows inter-sample oscillations.

The primary limitation of choosing the block diagonal approximation by minimizing the
scaled’,, distance is that the properties of the approximant are not taken into account. As
shown in this chapter, whether the stabilizing controller can be easily found depends on
the minimum Hankel singular value of the approximation. A better approach is to use a
multi-objective optimization framework, where tife, distance between the system and
the approximation is minimized and simultaneously the minimum Hankel singular of the
approximation is maximized. This non-trivial problem is a topic for future work.






Chapter 4

Block Relative Gain: Properties and
Pairing Rules

Block relative gain (BRG) is a useful method for finding suitable pairings for block decen-
tralized control. In this chapter, we present some new algebraic properties of BRG and
establish its relation with closed loop stability, controllability, block diagonal dominance
and interactions. We show that the common conjecture that a system is weakly interacting,
if BRG is close to the Identity matrix, is not true. Based on these insights, simple rules for
pairing of variables are proposed. We also extend the known method for calculating RGA
for interacting systems to BR&.

4.1 Introduction

Decentralized controllers are widely used in the process industries due to their simplicity.
The performance of a fully decentralized controller can be poor in presence of severe
process interactions. In such situations, the use of full multivariable controller is an
attractive alternative. On the other hand, decentralized controllers are easier to design,
tune and can be made fault-tolerant more easily as compared to full multivariable
controllers [L8]. An alternative to either fully decentralized or a full multivariable controller

is the use of block decentralized controller, which has a structure in between the two
extremes. Block decentralized controllers balance the high performance given by full
multivariable controllers and the easier implementation and maintenance associated with

1This work has been published in Industrial Engineering & Chemistry Rese&2chrid a shorter version
in the proceedings of ADCHEM 2003, Hong Kong, P.R. Chifg [

75
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fully decentralized controllers. The use of block decentralized controllers can be further
justified by the fact that in most industrial processes, the interactions are limited in scope
and do not include the full scope of the plant. Thus, these processes are most suitably
controlled in eblock-wiseashion. Since the number of such blocks and block decentralized
alternatives increases rapidly with system size, controller design for every alternative is
impractical at design stage. Thus, effective tools are required to get an estimate of closed
loop properties without designing the actual controller. In this chapter, we present results
concerning such a todlg., Block relative gain (BRG)§3].

The BRG generalizes the concept of the relative gain array (RGAJ¢ block pairings.

Itis a powerful technique for input-output controllability analysis and screening alternatives
quickly for block decentralized control at the design stage. The development of the BRG is
based on the assumption of perfect cortréirkun [3] has argued that rigorous closed loop
stability and performance analysis is not possible under this assumption and has suggested
the use of the dynamic block relative gain. The BRG has also been extended to handle
non-square93] and non-linear 2] cases. However, the applicability of these extensions

of the BRG is limited due to their dependence upon controller tuning and their extensive
computational requirements. These approaches are not considered here and the discussion
is limited to square, linear time invariant (LTI) and stable systems, unless otherwise stated.

During the past few decades, the RGA has been studied extensielgd, 71, 113
and its properties are well understood, but the BRG has largely been overlooked. Some
researchers2p, 85 have found relations between the BRG and Euclidian condition
number. It is shown that generally, a system is difficult to control, if the maximum
singular value of BRG is large. Chegt al. [23] have further considered the role of
the BRG in robustness analysis. Despite these studies, contrary to the RGA, BRG has
not gained widespread popularity and block pairings are selected primarily based on
heuristics 19, 29]. The use of heuristics can be attributed to lack of a study showing that
similar to the RGA, information regarding closed loop properties can be obtained using
BRG. This motivates the present work.

In this chapter, we present some novel algebraic properties of BRG. We establish the
connection between BRG and closed loop properties like stability, controllability, block
diagonal dominance and interactions. Manousiouthakil. [83] have claimed that a
system isweaklyinteracting, if BRG is close to the Identity matrix and have proposed
a pairing algorithm based on this statement. We show that this claim is incorrect. Further, a
system can have large interactions despite BRG being exactly the ldentity matrix. It should

2perfect control is achieved, when the outpyft) is equal to the reference(t) vt > 0 [102.
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be emphasized, however, that if the singular values of BRG are very different from unity,
the closed loop system has large interactions. Based on these insights, simple rules for
variable pairing are proposed. Simultaneously, we present a note on calculation of BRG,
when the system contains integrating elements.

Grosdidieret al. [51] pointed out that modelling uncertainties and changing operating
conditions make it very difficult to develop reliable dynamic models for chemical processes
and often, only steady state gain information is available. With this motivation, we focus
on extracting useful feedback properties from gain information, though most of the results
presented are directly generalizable to higher frequencies.

The organization of this chapter is as follows. 42, we revisit the development of
BRG and cite the limitations of existing pairing rules;i#.3, we present some algebraic
properties of BRG; the main results of this chapter are containgélénhwhere it is shown
that BRG can be used to assess some desired closed loop propertidss, ialternate
pairing rules are proposed and illustrative examples are presentgt6inve consider the
case, when the system matrix contains integrating elemenganconcludes this chapter.

4.2 Preliminaries

In this section, we introduce the concepts of relative gain and BRG. We present the BRG
based pairing rules due to Manousiouthal®8] [and point to their limitations.

As before, the transfer function matrix relating outputs and inputs of the system is
represented a&(s) in this chapter. The steady state gain matrix is represent€g(@s
or simply G € R"*". The objective is to decompose the original system into a séf of
non-overlapping square subsystems such Bate R™ <™ i =1,2--- M, > . m; = n.
G;; € R™>*mi represents thej®" block of G or the block gain betweep; andu;. The
pair (y;, u;) denotes the variables related @y; (s).

Definition 4.1 Relative gair[17] for variable pairing §;, u;) is defined as the ratio of two
gains representing first the process gain in an isolated loop and second, the apparent process
gain in the same loop when all other control loops are closed,

>‘ij = Gij [G<O)71]ji
AG) =[] = G(0)oG(O)™"
whereo is the Hadamard product ar@l(0)~7 is transpose of the inverse 6f(0). A(G)

is called RGA. Manousiouthakist al. [83] extended the concept of the RGA to BRG for
synthesizing block decentralized controllers.
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Definition 4.2 Block relative gain83] for variable pairing {1, u;) is defined as the ratio
of the open loop block gain and apparent block gain in the same loop when all other control
loops are closed,

[Ag(s)l11 = Gu(s)[G™(s)ln (4.1)
whereG; (s) is them; x m; transfer function matrixyn; < n, relating the firstn, inputs
and outputs ofz and[G~!(s)]; is the corresponding block & (s).

Precisely, 4.1) represents the expression for left-BRG. Similarly, right-BRG can be
calculated a$G!(s)]11G11(s). Since the left and right-BRG share common properties,
consideration of right-BRG is omitted from this discussion.

4.2.1 BRG Reuvisited

Let the LTI systemy(s) = G(s)u(s) + d(s) be conformably partitioned such th@t; (s)
is anm; x m, transfer function matrix,

yv1(s) = Gii(s)ui(s) + Gia(s)ua(s) + d(s)
va(s) = Gai(s)ui(s) + Gaa(s)ua(s) + d(s) (4.2)

When {y2, uz) is perfectly controlled and(s) = 0O, at steady statey(, u;) are related
through the Schur complement G, in G [102,

y1=Gnuy; Gy =Gy — G12G521G21 (4.3)

In (4.3), it is assumed that the subsyst€m, is nonsingular, though it is not necessary
for existence of the BRG, as is shown later. For partitioned matr&gs|G '], = G}
Now, the steady state block relative gain between;) can be defined as,

[Agly, = GulG ' (4.4)

Similarly, G can also be partitioned intt/ diagonal and conformal off-diagonal blocks,
such thailG;; € R™>*™i:j=1,2--- M. Then,

[AB]Z@' = Gii[G_l]ii (4.5)

Manousiouthakiset al. [83] have suggested choosing the pairings such that the
eigenvalues of all the corresponding BRGs are close to 1. This pairing rule is based on the
conjecture that a systemuseaklyinteracting, if the BRG is close to the Identity matrix, and
is similar to the pairing rules for RGA prevalent then. Now, it is well known that pairing on
RGA elements close to 1 can lead to pairings with significant interactions. Since relative
gains are a special case of BRG, the utility of this rule is also limited for choosing block
pairings.
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4.3 Algebraic Properties

In this section, we present some new properties of the BRG and alternative proof of
a previously known property. Some of the properties are used to establish some more
important properties of BRG in later sections, while others are of purely algebraic interest.

Property 4.1 The individual elements ofAg];; € R™>™, [, can be alternatively
computed as the weighted sum of RGA elements as,

Bij = Z %)\jk (4.6)

=1 Jik
Proof: From @.4),
fy (1) ggpdet(G7F)
det(QG)
whereG7* is systemG with j** row andk™ column deleted. Yu and Luyben]3 have
shown that,

Gij = (4.7)

_1)itk jk .

(—=1)7"*det(G") _ Ajk (4.8)
det(G) 9jk

Now, (4.6) can be obtained by substituting.8) into (4.7). |

A special case 0f4.6) is seen for diagonal elements (&3], (i = j), [83)]

my
Bii = Z ik
k=1

This property can be helpful in reducing computational load, when the BRG is to be
calculated for different decompositions of large systems.

It is known that the row and column sum of the RGA is equal td7].[ In order to
extend this property to BRG, we defifeas the ensemble of the;-dimensional ordered
index sets chosen from the firstnatural numbers. For example, for= 3 andm; = 2,

7 has the following elements1, 2), (1, 3) and(2, 3). Given a matrixA, everyp,q € Z,
define a submatrix, denoted as,,, made up of rows and columns Af indexed byp and
q respectively.

Property 4.2 Letp,q C Z. Theny, C y, u, C uand[Az(G,,)]11 is the BRG between
y, andu,. Then,

Z [Ap(Gy)ly, = o "

qCT

Mmoo M YpcT
n myl(n —my)!



80 Chap. 4 Block Relative Gain: Properties and Pairing Rules

Proof: Since[As(G,y)|11 = GG, for anyp, ¢ C Z, summation over aly C 7
yields

Z [AB(qu)]n = Z GPQ[G_I]QP = Z ka[G_l]kp

qCT qCT
By construction, the cardinality of the d¢ltq for all ¢ € Z is (m4 -n!)/(m4!- (n—m4)!),
where the sd) ¢ contains the first natural numbers repeatéat, - n!)/(n-m4!- (n—mq)!)
times. Now the result follows by noting that,

Sq
_ my n!
GG Yy = ————— -1,
kz:; i G e n myl(n —my)!
|
A similar result can be obtained by summing right-BRG overpatt 7 and for any
g C Z. Aninteresting property of BRG is seen for the case wignr= my = - - - my; = m.

Thenm is an exact divisor ofi. Let ¢; be defined as
i={aCTlafg=0 Ug={12n}} Vij=1Mi#;
Then the following relation holds,

Z [Ap(Gpg)] =1 VpC T

q;CT

Essentiallyg;’s partition the input set into smaller sets of equal dimension.rkoet 1,
this result reduces to the known result for RGA.

Property 4.3 Let the gain matrix,G be scaled a$s* = S;GS,. S; = diag(s;;) and

S, = diag(sy), ¢ = 1---n, are output and input scaling matrices respectively and are
real. If S; andS, are partitioned such th&;, = diag(S11, S12), Se = diag(Ss;, So2) and
S11,521 € R™>*™ "then B3],

[A%]y, = Su [AB]y; ST (4.9)

Proof: Using @.6) and noting tha#\;; is independent of scalind f],

mi mi

s S1iGikS 51:9i 1

= M/\jk - E (819t g = sufij— (4.10)
—1 (51j95x52k) 1 (s159;%) S1j

Recognizing tha8 ;' = diag{1/s11,1/s12---1/51,,}, the equivalence o#4(9) and @.10
can be shown. n
Based on4.9) and @.10, the following observations are made:
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(i) B;; is independent of input scaling, but dependent on output scaling.
(i) [Agliis independent of scaling gAz];;, forall i, j =1,2--- M, j # 1.

(iii) If all outputs are scaled by the same scalar, thgn= 3;;. This can be shown by
Settingsn = S12 = *** = S1m in (41()

(iv) The diagonal elements of BRB;;, (i = j), are independent of scaling.

In the development of the BRG, it was assumed gt is non-singular. The next
property shows that the existence [@#z];; does not depend on the fulfillment of this
assumption.

Property 4.4 If G is non-singular an@x;; is singular, thenA z;; exists and is singular.

Proof: SinceG is non-singular by assumptiofs—! and thug§G—!],; exists. Thus[Az];
exists, but is rank deficient due to rank deficiency®f (cf. (4.5)). m

Example 4.1 Consider the gain matriée decomposed intd x 2 and1 x 1 blocks,

1 2 1.5
1.6 —0.6
G = 12 4 ; [AB]H = < 1.6 —06 > ) [AB]22:O
31 5 ' '

Clearly, the firs2 x 2 block of G is singular. For((y:-yz2,u1-us), (ys,u3)) pairings,[A g1
exists, but is singular.

Property 4.5 For some specified partitioning of the system,

(i) G being block triangular implies that the correspondjAg); = I,,,, for all i =
1---M.

(i) [Agli =1, foralli=1---M does notimply thaG is block triangular.

Proof: (i) For block triangular matrice§G~'|;; = [Gy]~!. Then, using4.5), [Ag]; =
GGyt =1,..

(i) When only SISO pairings are used, the BRGs are the same as the diagonal elements
of RGA and the converse is proved trivially. To show that it is true for any arbitrary
partitioning, it would suffice to construct an example showing thafl;; can be the Identity
matrix for all : even whenG is not block triangular. Let the system be partitioned in
accordance to4(2). Using @.3) and @.4),

Al = [I - G15G5, Gy G !
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If one of the pairs{G,, G, G2 G} and{G 2G5, G2 G} lie in null space of each
other,[A |11 is the Identity matrix. In either casé€z;, is singular. Similarly, if one of

the pairs {Gy; , G;'G12G5,' } and{G,, G} , G12G,,'} lie in null space of each other,
[Ag]2e is the Identity matrix. Then(.,; is singular. Clearly, it is not required that one

or both of G, andG,; be zero matrices o0& be block triangular fofAgl];; = I,,, and

[Ag]2e = 1,,,,. Similar arguments can be used to reach this conclusion, when the system is
to be partitioned into any arbitrary number of blocks. n

Example 4.2 Consider the system

0.2 2 25 1.1
1.5 04 25 1.1
1.3 —-1.6 05 1
-13 1.6 2 0.1

G —

For a2 x 2 and2 x 2 decomposition ofG, [Ag];; and[A gl are equal to the Identity
matrix, despite the system not being block triangular. Note that in this example, both the
off-diagonal blocks are singular.

If G is block triangular, then the system is one-way interacting. In this case, the
stability of the individual loops implies the stability of the overall system. Propédy
shows that this cannot be inferred directly from BRG. In the context of SISO pairings,
this property relates to the diagonal elements of RGA only. Some researelgeidpvd
and Skogestadop] (also see 102, Theorem 10.3]), have claimed that RGA being the
Identity matrix implies that the system is triangular or can be permuted to the triangular
form. By means of a counterexample, Johnson and Shapijohlave shown that for
G € R™" n > 4, this is not true. Whereas the example 1i][is purely mathematical,
Braatzet al. [12] found that the RGA can be arbitrary close to the Identity matrix for real
industrial processes, which are neither triangular or can be permuted to the triangular form.

Property 4.6 If the rows and columns of the gain matr& are permuted such thai?
= P,;GP,, whereP; andP, are permutation matrices, and furtherPif andP, can be

partitioned as,
_ | Pu 0 | Pa O
N R

then BRG for the permuted system is,

[A%]n =Pn [AB]H Pfll (4.11)
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Proof: See B3]. |

It should be noted thdA%;],, and[Ag],, are equivalent from a variable pairing point
of view, as either of these represent the block gain between the same set of inputs and
outputs. Then, we may naturally seek the the total numbdrstihct block decentralized
alternatives for a given system. This issue is addressed next by using the concept of
partition functions, but before that a formal definition of partition function is necessary.

Definition 4.3 A partition of a positive integer. is a finite non-increasing sequence of
positive integersy, ¢s, - - - ¢, such thaty . ¢, = n. The partition functionp(n) is the
number of possible partitions af[2].

Essentiallyp(n) represents the number of ways of writingis sum of smaller integers,
where the order of the addends is not considered significant. In the present cpfitgxt,
represents the number of ways of block partitioning the given system.

Property 4.7 The number of distinct block decentralized alternativ¥éy) for a square
system is given by,

N(n)=>_ o Z Mps =N (4.12)

i=1 11j l(m]Z) aJZ

whereq; is the number of occurrences pin the sequencém,, msy - - - mas}.

Proof: For any given decomposition, the total number of ways, in whicutputs anch
inputs can be permuted ig x n! = (n!)%. Considering that permutation within a block
gives rise to equivalent BRGs, the total number of distinct permutations decreases to,

() S

Let there exist, j such thatn; = m;, i,j < M. Then, the cases where the same set
of outputs and inputs are assigneditoor j* block are the same. Let, represent the
number of occurrences gfin the sequencém,, msy - --my,}. Thus, the total number of
distinct alternatives is given as,

HJ 1( j. ka—n (4.13)

Now, p(n) represents the total number of such possible decompositions (including the
fully centralized case). Thus, an expressionfgmn) is realized by summing4(13 over
p(n). n
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Figure 4.1:Closed loop system with integral action controller

Note that the above expression f¥(n) also includes théully centralizedcase. For the
fully decentralizedcase;n; = 1 for all j, a; = nanda; = 0 for all j > 1. Therefore the
number of alternatives is simply! (cf. (4.13). Development of an analytical expression
for N(n) explicitly in terms ofrn is beyond the scope of this thesi§(n) for some typical
values ofn is presented in Tabk.1 By evaluatingV (n) for different values ofi, n < 40,
the following empirical relation can be obtained,

N(n) ~ n!'?? (4.14)
n  P(n) n! N(n)
3 3 6 16
4 5 24 131
5 7 120 1496
6 11 720 22482
8 22 40320 9934563
10 42 3628800 9.08521(°
15 176 1.307%10'? 2.5273<10'®

Table 4.1:N(n) for some typical values of

In many practical situations, the maximum number of blocks or the maximum dimension
of individual blocks is constrained. Such cases can be handled using the concept of
restricted partitions. Andrew&] provides a detailed discussion of partition theory.

4.4 Closed Loop Properties

Throughout this section, we assume that the controller has integral action to give
asymptotically zero tracking error. Then, the controll€f;(s), can be expressed as
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(ki - Ln,/5)Cii(s), ki > 0 (see Figuret.d). Itis further assumed thdi(s) = G(s)C(s)
is stable and proper. The primary objective is to relate BRG with some desired closed loop
properties including the following,

Definition 4.4 The systemG(s) is called to possedgstegrity [18, 30], if there exists a
controllerK (s) with integral action such thd(s) stabilizesG (s) for all K(s) € K;(s),
where

Ki(s) = {K(s) = eK | e € {0, 1}}

Definition 4.5 The systenG(s) is calledblock decentralized integral controllab{elock-
DIC), if there exists a controlleK (s) with integral action such thd (s) stabilizesG(s)
for all K(s) € Kp(s), where

Kp(s) = {K = diag(e;Ln,,)K | ¢ € [0, 1], i =1,2,--- , M}

A system that possess integrity remains stable with integral action in every output
channel, when any combination of loops is taken out of service. It is assumed that a
controller that fails is immediately taken out of service, the corresponding entries in the
block diagonal controller matrix are replaced by zero. The gain of the individual loops of
a block-DIC system can be reduced independently of each other (or taken out of service)
without introducing instability in the system. Note that Block-DIC is the block version of
decentralized integral controllability (DIC)8], known for fully decentralized controllers.

4.4.1 Stability

In this section, we consider the stability of the closed loop system operating under nominal
conditions, with one or more loops open and in the presence of actuator failure. For fully
decentralized control, it is well known that a system does not possess integrity, if one or
more associated relative gains are negative. Grosdidier and Mb8hhdve extended this
result to block pairings.

Lemma 4.1 LetH(s) = GC(s) be arational proper system. With reference to Figufe
assume thaty, = ky--- = ky = k. Then, H(s) is closed loop stable only if
det(H(0)) > 0 [51].

Theorem 4.1 Let H(s)GC(s) be a proper system. Het([Ag(0)];) < 0, for somei,
1=1,2--- M, then at least one of the following is trugd],

1. The closed loop system is unstable.
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2. The closed loop system is unstablei%doop is removed.
3. Thei'* loop considered in isolation with other loops is unstable.

Proof: Using @.5) and Schur complement lemmaést([A5(0)];;) can be expanded as,

 det(Guy(0))det(GH(0))  det(G(0)Car(0))det (G (0)Ci(0))
det([Az(0)):) = det(G(0)) = det(G(0)C(0))

(4.15)

whereG%(0) is the systemG(0) with all the rows and columns corresponding to ffe
loop deleted. The second equality follows sinke(C(0)) = det(Cy;(0))det(C¥(0)).
det([Ap(0)];;) < 0 implies that at least one of the terms # 15 is negative. Then, the
conclusions can be drawn using Lemha. n

If the individual loops are stable, then the stability of the closed loop system and the
reduced system with one of the loops removed is assessed using Theodein It is
generalized to the case when any combination of loops are open by the following corollary.

Corollary 4.1 Letp be a subset of integers chosen from the fifsintegers. Then(z,,(0)
is a submatrix consisting of blocks 6f(0) indexed byp andy,, € y. For a rational proper
systemH(s), if det([As(G,,(0))]11) < 0, then at least one of the following is unstable:

1. the closed loop system or
2. the reduced system with the loops indexedbgmoved g, left uncontrolled) or

3. the reduced system with only the loops indexeglayosed (onlyy, controlled).

Though useful, when used alone, Theordm can be inadequate in some cases.
Consider the individual loops to be stable, but the closed loop system and the reduced
system withi*" loop removed to be unstable. In this cadet([Az(0)];) > 0 despite
the system not having integrity. This difficulty can be overcome by using Thedréim
conjunction with generalized Niederlinski index (NI).

Theorem 4.2 Let H(s)GC(s) be rational and proper. Assume that the individual loops
are stable and have vanishing tracking error. Then the closed loop system is stable only
if, [49]
NI — Mdet(G(O))
[TiZ; det(Gi:(0))

>0; det(Gyu(0)) #£0 Vi=1,2---M (4.16)
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It follows from earlier discussion that a system has integrity ontieif([A5(0)];;) > 0
foralli =1,2--- M andNI > 0. Similar to loop failure sensitivity, an equally important
issue is that of actuator failure sensitivity. A system is cajiédactuator failure sensitive
(j-AFS), if the nominal system is stable but becomes unstable if‘thactuator and
sensor are remove&]]. Then using Lemmd.1, a system ig—AFS if det(G//C’7) < 0.
Note that for SISO pairings, actuator failure sensitivity and loop failure sensitivity are
equivalent. For block pairings, BRG can be used to assess the actuator failure sensitivity of
the system. We assume that the variables of the system are reordered suich thatm,
or the ' actuator lies in the first block of the partitioned system. ThHéh,(0)]/ is the
loop gain with;j*" sensor ang*" actuator removed.

Corollary 4.2 Let the rational proper systeli(s) and its individual loops be nominally
stable. Assume thatet([Az(G(0))]1;) > 0. Then, if det([Ap(G%7(0))]11) < 0 or
NI(G77(0)) < 0, at least one of the following is—AFS: (i) the closed loop system or
(i) the loop itself.

Proof: Similar to 4.15), det([Az(G?7(0))]11) can be expanded as,

det([G11(0)7[Cr1 (0)]7)det (G}, (0)C}4 (0))

det([Ap(G7(0))]11) = det(G77(0)CI/(0))

Since the nominal system and its individual loops are stablelat{@A 5(G(0))]11) > 0,
the reduced system with first loop removed is stale, det(G},(0)C},(0)) > 0.
Similarly,

NI(G‘”(O)) — det(G”(O))C”(()))
det([G11(0)[9[C11(0)]37) [T, det(Gi(0))Cii (0))

Since the individual loops are stablq,f\i2 det(G;i(0))Cy;(0)) > 0. Now, the conclusions
can be drawn using Lemmal n

Remark 4.1 Chiu and Arkun B0] have shown that the system has integrity only if both
BRG and NI, calculated for every possible combination of loops, are positive. For the
same purposes,ddgblom (9] has also discussed a method based on the concept of Partial
Relative Gains. Since the possible number of combinations of loops increases rapidly with
system size, use of these methods (and Coroflaycan be computationally expensive for
systems beyond moderate dimensions. This issue is further discussed in the next chapter.
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Remark 4.2 The similarity between Theorem.1 and IMC-filter stability criteria is
noteworthy. Garcia and Moraré{)] have shown that a sufficient condition for stability
of a model inverse-based controller with a diagonal first order exponential filter is given by,

Re{\;(G(0)G(0) ™M)} >0; j=1,2---n (4.17)

where G(s) is the nominal model of the systef. Since,G;;(0) = [Ap(0)]; Gy (0),
[Ap(0)];;' can be seen as multiplicative uncertainty in tH& loop arising due to
closure of all other loops. Based om.{7), the i"* loop can be stabilized if
Re{);(Gii(0)Gi;(0)™H)} = Re{);([A5(0)]s)} > 0. Thus, a necessary (but not
sufficient) condition for individual loop stability idet([A(0)];;) > 0, which is similar

to Theoremd.1 However, interpretation of BRG as multiplicative uncertainty is justified
only if the effect of hidden feedback loops is small, which is not generally true.

4.4.2 Input Output Controllability

It is well known that right half plane (RHP) zeros close to the origin pose a limitation on
the achievable output performance of the closed loop system. It is also possiltle;that
considered in isolation, contains RHP zeros. The zerds;gfs) can limit the achievable
output performance, when the individual loops are designed independently. Skogestad
and Hovd p5] have shown that the frequency dependent RGA can be used to detect the
presence of RHP zeros (Theorem 1 in their paper). The applicability of their result is
limited to the individual elements arfd — 1) x (n — 1) dimensional subsystems 6¥(s).

The next proposition complements their result for subsystems having different dimensions.

Proposition 4.1 Consider a stable transfer function mati@(s) and its partition in
accordance to4(2). Then[Ag(s)];; would be anm; x m; transfer function matrix. If
there existsn;, 2 < m; < n — 2, such thatlet([Ag(joo)]11) is nonzero, finite and has a
different sign fromdet([A(0)]11) , then at least one of the following is true,

(a) The subsystertx,; has a RHP zero.

(b) The subsystert,, has a RHP zero.

Proof: For a given partitioning of the systen2, < m; < n — 2, consider that
lim_, o det([Ap(s)]11) is nonzero and finite. If the signs dét([A(0)]11) andlim,_, ;o
det([Ap(s)]11) are different, then there exists a frequency, w, > 0, such that
det([Ap(jwo)l11) = 0.
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The equality,det([Ag(s)]11) = 0, is satisfied, iff one or both oflet(G;(jw,)) and
det(G!(jw,)) are zero. Nowdet(G;(jw,)) being zero implies the presence of a RHP
zero inGy; (s) at that frequency.

If det(G1}' (jw,)) = 0, thenG ;] (s) contains an RHP zero ar{d;; (s) contains an RHP
pole at that frequency. Due to stability assumptions, an RHP pd&& ifs) ats = jw, can
arise only due to an RHP zero (g, (s) ats = jw,. m

This result is equally valid, ifn;, = 1 orn — 1. Then,G;;(s) or Gy (s) are single
elements ofG(s). In this case, if the condition imposed by Propositbhis satisfied, one
or both of G, (s) andGay(s) will contain RHP zero. The BRG is input scaling independent
(see Propertyl.3). Thus, if an input channel ofx(s) contains an RHP zero, the signs
of det([Ap(jo0)]11) anddet([Ap(0)]11) will remain unchanged. The change of sign of
det([Ap(s)]11) is only a sufficient, but not a necessary condition for the presence of RHP
zeros in the subsystems Gf(s).

Corollary 4.3 Consider that,,(s) contains a RHP zero. If all loops b (s), ui(s))
are closed, then the open loop subsystenis), u; (s)) or G;(s) contains a RHP pole.

If a RHP pole appears in thg{(s), u;(s)) loop due to closure of all other loops, any small
disturbance in that open loop can destabilize the system. In practice, however, the gain of
the loop would remain finite due to presence of physical constraints.

Propositiond.1excludes the case in which any of the subsystems contain a zero at origin,
(s = 0). Should a subsystem contain a zero at the origin, it would be extremely difficult
to control the system. The relation between zeros at origin and the steady state BRG is
established in the next corollary.

Corollary 4.4 Ifthere existsn,, {m; = 1,--- ,n—1}, such thatlet([A5(0)];;) = 0, then
one or both of the subsysten(s;; (s) andGyz(s) contain a zero or a zero at the origin.

Either of these conditions is highly undesirable because it makes the system
uncontrollable. The system may also contain zeros close to the origin in the open LHP.
The presence of such poorly damped zeros also affect the system’s controllability. In such
cases, the gain of the individual loops increases considerably with closure of all other loops.

The gain of a multivariate system depends on the input direction. Let the gain of
(y1(s),u1(s)) be ||G11(0)v]a, ||v]2 = 1. Similarly, let the apparent gain of this loop,
when all other loops are closed P&, (0)w||2, [|[w]|2 = 1.
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Proposition 4.2 The worst case gain mismatch between (0) andG;(0) is bounded as
follows,

> [G11(0)v |2
o([AB(0)],,) < ﬁ@%m (4.18)
1 |G 11(0)wlla
a([AB(0)],) filz=t 1G11(0)v |2 (4.19)
Proof: For (4.18),
o GOV aGulo)
M=t |G (0) w2 (G (0)) (G11(0))a(G11°(0))
> o([Ap(0)]y,)
For 4.19,
1Gu(O)wl.  a(Gu(0)  _ - 1 _ 1
M GuOvE: — a(Gu()  (GnOGO) 2 oA O
1
= 2[R0,
n

Proposition4.2 suggests that if at least one of the following conditiach§A 5(0)],,) > 1
anda([A5(0)],,) < 1, is satisfied, then the gain 9f (s) —u; (s) loop changes considerably

due to closure of all other loops. #([A(0)],,) ~ 1 anda([Ag(0)],,) ~ 1, the change

in gain may still be large, ast(18 and @.19 are lower bounds on the worst case gain
mismatch with one of the loops open. This affirms our earlier assertion that if the BRG is
far from the ldentity matrix, the system has large interactions, but the converse is not true.
This is further discussed if%.4.4

4.4.3 Block Diagonal Dominance

When the system is block diagonal or triangular, the individual controllers can be tuned
independently of each other (Prope#typ); however, most real systems do not lie in this
class. Independent tuning of individual controllers to give stable closed loop response is
still possible, if the effect ofi; ony; is large compared to the effect af, (: # j). The
concept of block diagonal dominance can be used to assess this property of the partitioned
system.
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Definition 4.6 A matrix Z is generalized row block diagonal dominafbr a given
partitioning if there exists € R, x > 0 such that 78],
M
1 Z:' 17 x> > 1 Zg | x5 i=1,2,- M
j=1j#i

Generalized column block dominance is defined similarlyk tfan be chosen as’, then
Z is called row (column) block dominant. | is generalized block diagonal dominant
(GBDD), there exists a scaling matrix of the fod = diag(x;1,,,), ¢ = 1,2--- M such
thatXZX ! is block diagonal dominantg].

Limbeer [78] has shown that ifI,, + GK(s)) is GBDD for all s, then the stability
of individual loops implies the stability of the closed loop system. When the controller
contains integral actior,, + (1/s)H(s) ~ (1/s)H(s) at low frequenciesg5]. At these
frequencies, the diagonal dominance(bf + (1/s)H(s)) can be assessed from diagonal
dominance oH(s). In addition, if a system is GBDD at steady state, it is also block-DIC,
as shown next. Herg,is an ordered subset of integers chosen within thé & - - - M/}
andZ is the ensemble of all possibis. Then,G,,(0) is a submatrix consisting of blocks
of G(0) indexed byp.

Lemma 4.2 Let H(s) be a proper system and the matilix € R™" be defined as
D = diag(d;1,,,), d; > 0. Then,G(s) is block-DIC, iff there exists a block diagonal
matrix C(0) such that

Re{);([DH(0)],,)} >0 VjVpeZ

Proof: Campo and Morari 18] have shown that a similar condition is necessary and
sufficient for a system to be DIC. This lemma can be shown to be true following their
proof. u

Proposition 4.3 Let H(s) be a proper stable systemHf(0) is block diagonally dominant,
thenG (s) is block-DIC.

Proof: With reference to Figurd.1, let G;;(s)K;;(s) = (ki/s - L,,)Hyi(s). Thei™ loop

will be stable iff any of the characteristic loci ¢k;/s)H;;(s) does not encircle the point
(—1/k;,0), ass traverses the Nyquist D-contour. SinEE;(s) is stable by assumption,
such an encirclement can occur only due to the pole at the origin. Grosdidié51]
have shown that als — 0, the j* characteristic loci does not cross the negative real axis
if Re{)\j(Hii(O))} >0; 7=1,2---m,.
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For a block diagonal dominant system, the total number of encirclements are same as the
sum of encirclements by individual loopsd). Then ,Re{\;(H(0))} > 0; j=1,2---n,
if

Re{\;(H;(0)} >0; Vj=1,2---my, Vi=1,2---M (4.20)

Note thatH,,,(0) is block diagonal dominant due to block diagonal dominancH (f)
for all p € Z. ThenRe{\;([DH(0)],,)} > 0 for all p € T and the system is block-DIC,
if (4.20 is satisfied. For a block diagonal dominant systefi2@ can always be satisfied
by choosingC;;(0) = G;;'(0), where the invertibility ofG ;' (0) is guaranteed by block
diagonal dominance. n

In order to verify the generalized block diagonal dominancHg{0), knowledge of the
compensator matrixC;;(0) is required, which can be limiting for practical purposes. We
show that whetheH;;(0) is GBDD, can be assessed using BRG, which is independent of
the compensator matrix. Though the following results are valid for any matrix norms, we
use the induced-norm due to their frequent use in the process control literature.

Lemma 4.3 Let Z be GBDD. ThenT§],

) Vi

Qi

o([27'),) = o([Z7]

Proposition 4.4 The systenH(s) is GBDD only if

Ji

Proof: This proposition is proved using the following logical identity:Af=- B, then not
B = not A. If H(0) is a block diagonal dominant matrix

a(H;(0)) > f: o(H;;(0))

Then, using Lemmé.3,
a(Hy;(0))a([HT(0)],,) > ‘iﬁ(ﬂz’j(o)ﬁ([ﬂl(oﬂﬂ)
L0 [0, > > ol [0,

5(G#(0) [GTH0)],) > D 6(Gy(0) [GH0)] ) (4.22)



Sec. 4.4 Closed Loop Properties 93

Consider that multiplication ofx(0) with G=1(0),

560 [60], - I,
3(Ga(0) [GTHO)] )+ Y a(Gy(0)[GTH(0)],) > 1

J=1j#i

Then, using the definition of BRGA(5) and @.22), H(0) is block diagonal dominant
only if 7([Ap(0)];) > 0.5 Vi = 1,2--- M. Since BRG is independent of scaling of the
form X = diag(x;1,,,) (see property.3), (4.22) is necessary for the system to be GBDD.
m

Ohtaet al. [88] have pointed out that in many cases, GBDD can be a very conservative
test for block diagonal dominance and have instead suggested the use of quasi-block
diagonal dominance (QBDD). They have shown thatljf + GK(s)) is QBDD for all
s, then the stability of individual loops implies the stability of the closed loop system. In
the following discussion, QBDD is defined formally and it is shown that the condition
7([Ap(0)];) > 0.5foralli =1,2--- M is necessary for a system to be QBDD.

Definition 4.7 A matrix Z is quasi-block diagonal dominarfor a given partitioning if
there existx € RM such that,
M
xi> Y | ZyZat | x5 i=1,2 , M; Z; #0

=15

Corollary 4.5 The systenH(s) is QBDD only if5([A5(0)];;) > 0.5foralli =1,2--- M.

Proof: At low frequencies,(I, + (1/s)H(s)) ~ (1/s)H(s). Then,H;;(0)H;'(0) =
G;;(0)G;;'(0). When the compensator matrix is choserCas= G;;'(0),i = 1,2--- M,
GBDD and QBDD are equivalent (by definition). Then, using Proposiiegh H(0) is
QBDD only if 6([Ap(0)];) > 0.5, foralli = 1,2--- M. ]
Let E(s) = (H(s)Hp(s)™' — I,) = (G(5)Gpa(s)™! — 1,,), whereHy,(s) and Gyy(s)
are matrices containing the block diagonal elementbl6f) and G(s) respectively (see
Figure4.2). Ohtaet al. [88] have shown that if thd(s) is QBDD, there exists a norm
such that] XE(s)X™! ||< 1, whereX is the scaling matrix, defined as before. Lete

the set defined as
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Then, with the choice of inducetl-norm, the following relation holds,

pa(E(s)) < inf 6(XE(s)X™!) a(A)<1

XeXx

where ua(.) is the structured singular value. The structureffcan be chosen to be
the same as that d&,,(s), since everyX € X commutes withA, i.e. XA = AX.
Then (with the choice of inducezi-norm), the systent(s) is QBDD or GBDD only if
ua(E(0)) < 1. Note that this condition is also sufficient for block diagonal dominance of
the system at steady state.

In a related context, Grosdidier and MoratB] definedua (E(s)) as theu-IM to assess
the closenesof G(s) and G,4(s). They have shown that ifia (E(0)) > 1, a block
diagonal controller with integral action cannot be designed for the given system. For fully
decentralized control, Braatz ] has shown that a system is DIC ik (E(0)) < 1. This
result can be easily extended to the block decentralized controllers. Whereas a pairing
alternative that satisfies theinteraction condition is guaranteed to have some attractive
properties, the computational load for the calculatiop @f large [L5, 39]. Noting that for
all X € X, X;;[Ap(0)):X;' = [Ap(0)]: (see Property.3), the following useful result is
obtained:

Corollary 4.6 For a proper syster@(s), ua(E(s)) < 1onlyif ([Ag(0)];;) > 0.5 for all
i=1,2---M.

For fully decentralized control, the necessary conditig\ 5(0)];;) > 0.5 reduces to
Xii > 0.5foralli =1,2--- M. Grosdidier and Morar49] have shown this result to be true
for 2 x 2 systems and Corolla.6 can be seen as generalization of this result to systems
with higher dimensions and block decentralized controllers. Corofl&gan be used for
pre-screening the alternatives for pairings, reducing the computational load significantly.

4.4.4 Closed Loop Interactions

In Figure4.2, if G(s) = Gyy(s), the system is triviallynon-interacting In this section, such

a system is referred to as ateal system. When the controller contains integral action, at
low frequencies, the sensitivity functions of the actual and the ideal systems are related
as [102,

S(s) de(S)F(S)
S(s) = (I.+G(s)K(s))™
de(S) = (In + de(S)K(S))_l

Q
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Figure 4.2:Decomposition of system into block diagonal and off-block diagonal elements

wherel'(s) = Gyq(s)G~'(s) is the Performance Relative Gain Array (PRGAY]. T'(s)

can be interpreted as a filter that amplifies and rotates the exogenous signals. This action
prevents the actual system from behaving as the ideal systemI'(s¢tbe expressed
through its singular value decomposition Bés) = U(s)X(s)VZ(s). Then,

T'(s)vi(s) = oi(s)u(s), YVi=1,2---n

wherea;(s) is thei" singular value anah;(s) andv;(s) are the corresponding left and
right singular vectors, calculated at a particular frequency. Grosdiéi#ghps argued that

the exogenous signals oriented in the direction of singular vectors associated Ii(t))

most adversely affect the closed loop performance. Then, for minimization of worst case
performance loss, we may require thél'(s)) be minimum in the desired frequency range.
Similarly, a necessary condition for interactions to be minimum is #hdi(s)) ~ 1, for

all: = 1,2,---nin the desired frequency range. If this happens, then at every frequency,
I'(s) is close to a unitary matrix; however,

mac{o([Ap(s)]a)} < o(0(s) i =12, M (4.23)

Therefore, ifo ([Ap(0)];) > 1, foralli = 1,2,--- M, thena(T'(0)) > 1. When[A5(0)];;

— 1, theno,([Ap(0)];) = 1, foralli = 1,2,---M,j = 1,2,---m;. Then, ¢.23
suggests that(I'(0)) can still be large, despite the BRG being precisely the Identity matrix.
Based on these observations and Proposdi@ we conclude that the system has large
interactions, ifa([Ag(0)];) > 1 anda([Ag(0)];) < 1 or in other wordsBRG is very
different from Identitybut the converse is not true. Thus, use of the PRGA is necessary for
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drawing any conclusions regarding closed loop interactions. In some cases, this measure
can be conservative, as it does not take the directional informatiSg), @fito account.

Remark 4.3 The requirement that;(I'(s)) ~ 1 for low interactions is equivalent to
minimization of ) . |0;(I'(s)) — 1|]. In most of cases, it is seen that, |o;(I'(s)) — 1| ~
a(T'(s)). Let the norm of exogenous signals be bounded from above by 1. Then for the
feedback to be effective, we require thaiS(s)) < 1 in the desired frequency range,
which is lower bounded by (Sy4(s))a(I'(s)) at low frequencies. Thewm,(S(s)) < 1 only

if a(Spa(s))a(L'(s)) < 1ora(I+ Gp(s)K(s)) > a(I'(s)). This inequality can be easily
satisfied by choosing a controller with low gairvifI'(s)) is small. Large controller gains
may present operational difficulties in presence of input constraints.

4.5 Alternate Pairing Rules

In earlier sections, it was shown that useful information regarding many closed loop
properties can be extracted using the BRG. In this section, we summarize those results
in the form of pairing rules.

Pairing Rule 1 Avoid pairing on variables, witkdet([A5(0)];;) < 0 for somei or NI < 0,
otherwise the system does not have integrity (See Theotehds2 and Corollary4.4).

Pairing Rule 2 Prefer pairing on variables for whicha(E(0)) < 1. Alternatives
satisfying this condition are decoupled at low frequencies and a block decentralized
controller with integral action can be designed easily (§4el.3. The associated
computational load can be reduced by pre-screening alternatives such({that0))];;

> (.5 for all i (See Propositiod.4and Corollary4.6).

Pairing Rule 3 Prefer pairing on variables for which(0) = ). |;(T'(0)) — 1] is small.
If J(0) is small, then the systemgeaklyinteracting and vice versa, at least at steady state
(Sees4.4.4.

These rules are based on gain information only and may suggest inferior pairings
for systems containing large time delays. In such cases, if a reliable dynamic model
is available, then ensuring that(s) = ). |o;(I'(s)) — 1| is small up to the crossover
frequency is helpful. In addition,

Pairing Rule 4 Avoid pairing on variables with different signs alet([A5(0)];;) and
det([Ap(joo)]is). If the signs are different, then thi& loop or the remaining subsystem
contains an RHP zero (See Propositibt).
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Remark 4.4 Since BRG and PRGA are output scaling dependent, so are their singular

values. Therefore, prior to pairing selection, specification of a suitable scaling of the system
matrix is necessary to avoid ambiguity. Some possible approaches are to normalize the
system matrix such thalty;||. < 1 or |y;| < 1.

Remark 4.5 These pairing rules equally hold for fully decentralized control structures.
For many problemsy . |0;(I'(0)) — 1] is small, if the diagonal elements of RGA elements
are close to 1. Thus, Bristol’s rule of pairing on RGA elements close to 1 is implicit here,
but, in general, it is neither necessary nor sufficient for the system to be weakly interacting.

Remark 4.6 Often, . |0;(I'(0)) — 1| approaches zero monotonically as the controller
structure approaches tliglly centralizedcase. In such cases, a balance should be made
between the closed loop performance and the controller complexity. If a more complex
controller structure shows no significant performance improvement, then the simpler
structure (closer to thieilly decentralizectase) should be preferred.

4.5.1 Numerical Examples

Example 4.3 Consider thel x 4 ALSTOM gasifier systemd2]. The gasifier is described
by three linearized state space model8©f order at100%, 50% and0% load conditions.
Prior to pairing selection, the system is scaled. The scaling procedure and the scaled gain
matrices are given in the AppendixA.

Various alternatives are screened at different load conditions. The analysis suggests that
(1-2—4,1-3-4),(3—2))%is the only alternative, which satisfies Ruleand? at all
load conditions. Sincga (E(0)) < 1 for this alternative, the blocks are decoupled at low
frequencies and a controller with integral action can be designed easily.

This system has also been analyzed by Chin and M8pdt 100% load conditions,
where they have suggested the usg§vf-3—4,2—-3—4), (2—1)). This alternative satisfies
Rulesl and2 at100% load conditions, but the relative gain of the pairii2g- 1) is negative
at 0% load conditions. This shows that this alternative will lose integrity under varying
operating conditions. Though Chin and Mun@&9] have scaled the system differently, it
has no effect on the conclusions, sirke([A s];) is independent of scaling.

Example 4.4 In most of the case studies, we have found steady state analysis to be
sufficient, but in some cases it may suggest inferior pairings, as shown here. Alatigi and

3(1—2—4,1-3—4),(3—2)) represent$(y, — ya — ya,u1 — uz — u4), (y3,uz)) variable pairing.
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((1-2-4,1-2-4),(3-3))

5, | 0 (iw) - 11

L L L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 4.3:) . |0;(T'(jw)) — 1] for Column/Stripper Distillation system

Luyben [1] considered the following column/stripper distillation system,

4.09e—1-3s —6.36e 123 —0.25¢ 145 —0.49e 65

(335+1)(8.35+1) (31.65+1)(20s+1) (21s+1) (225+1)2

—4.17e=5s 6.93¢—1.02s —0.05¢— 6 1.53e—3-8s

2

G(s) _ (455+1) (44.65+1) (34.55+1) (48s+1)
1.73e—18s 5.11e—12s 4.61e—1.01s —5.49¢ 155

(135+1)2 (13.35+1)2 (18.55+1) (155+1)

—11.2¢—2:6s 14(1084—1)6_0‘023 0.1e—0-05s 4.49¢—0-65

(435+1)(6.55+1) (455+1)(17.452+35+1) (31.65+1)(5s+1) (485+1)(6.35+1)

The alternatives are screened using the suggested pairing rules and all the alternatives
satisfying Rulesl and2 are summarized in Tablk.2 Based on steady state analysis, it
might seem thaf(1 — 2 — 4,1 — 2 — 4), (3 — 3)) is the best structure, but its performance
deteriorates considerably at higher frequencies. FiguBeshows) . |o;(I'(s)) — 1| as
a function of frequency for different structures. At moderate frequencids, 3 —

4,1 — 3 — 4),(2 — 2)) gives improved performance as compared to other alternatives
and thus its use is recommended. It should be noted that no viable alternative exists for
2 x 2/2 x 2 decomposition of the system. Block decentralized structures close to the fully
centralized case need not always be better than simpler structures as previously pointed out
by Manousiouthakigt al.[83].

4.6 Note on Integrating Systems

The RGA, as originally defined by BristolL]], is applicable to only open loop stable
processes. Arkun and Downg] have shown that it is still possible to use the RGA, when
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Pairing min , (7([Ap(0)]i)) pa(E(0) >, |o:(T(0)) — 1]
(1-4,1-4),(2,2),(3,3) 1.19 0.96 16.59
(1-2-4,1-2-4),(3-3) 1.19 0.53 5.65
(1-3-4,1-3-4),(2-2) 0.92 0.94 11.52

Table 4.2:Alternatives for decentralized control of Column/Stripper Distillation system

the system contains integrating elements in one or more input or output channels. In such
cases, the RGA is calculated by replacing the elements containing the integrators by their
derivatives. Here, we investigate the applicability of this approach for the BRG.

Case I:Consider the case, when one or more input channels (colum@$sj contain
integrator. Then, the system matrix can be partitioned into non-integrading(t)) and
integrating G;(s)) blocks as,

G(s) = [ Gwi(s) LGi(s) ] = [ Gals) Gl(s)}{é 101} (4.24)

If the second block in4.24) is treated as a scaling matrix, thehs;(0)]; = [As(0)]:
(Property4.3(i)). In this case, it would be possible to select block pairings such that the
individual blocks contain both integrating and non-integrating elements.

Case Il: Now, consider the case, when one or more output channels (roW 9)
contain integrators. Partitioning the system matrix as before,

cor= e | = Lo [ G| 29

Here, any meaningful results can be obtained only if all the outputs containing
integrators are paired together (Propeti¥(iii)) or if paired separately, only SISO pairing
is used for them (Proper#.3(ii)). No block pairing should contain both non-integrating
and integrating elements.

4.7 Chapter Summary

In this chapter, we revisited the established concept of block relative gain (BRG). The main
contributions of this chapter include

(i) Extension of algebraic properties known for RGA to BRG.

(i) Connection between the BRG and measures of block diagonal dominance, in
particular Grosdidier’s: interaction measurelp] (sees4.4.3.
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(i) Correction and restatement of the common conjecture that a systeveakly
interacting, if BRG is close to ldentity (s&€d4.4.4).

Most of the results presented are based on steady state gain information only and are
useful for controllability analysis and pairing selection. It is also shown that in some cases,
steady state analysis may suggest inferior pairings. However, practical considerations
justify its use, as in many cases, the only reliable information available at design stage
is the steady state gain. Block decentralized controllers allow the designer to exploit a
broader class of control structures that are not restricted to the two extremes of complete
decentralization and complete centralizatiBf][ The pairing rules proposed in this paper
will be helpful in bridging the gap between theory and practice of selection of block

pairings.

4.A Scaled Gain Matrices for ALSTOM Gasifier System

The system is scaled such thag|| < 1 at all load conditions. The scaling matrix

X is chosen such thin = maX{H[Glgo%(O)]iHQ, |’[G50%(0)]i||27 H[G(ﬁ%(O)]Jb}, where
[G100%(0)]; is the i'" row of the gain matrix atl00% load conditions. ThenX =
diag(8.58 x 10°,5.21 x 10*,1.55 x 10%, 164.64) and the scaled gain matrices are obtained

asG*(0) = X1G(0).

0.0385 —0.0427 0.0444 —0.0474
G (0) = —0.1115 —-0.0297 0.0770 —0.0142
100% 0.0327  0.8630  0.0477  0.5019
0.0088  0.1284 —0.1101 —0.2834

0.0975 —0.0381 0.0269 —0.1130
s —0.2096 —0.0500 0.1563 —0.0211
s0(0) = 0.0506  0.6923  0.0295  0.4200

0.0359  0.1804 —0.1641 —0.3967

0.7938  0.1451 —0.4361 —0.3983
s —-0.7641 —0.1810 0.6161 —0.0606
0%(0) = 0.0958  0.3855 —0.0301 0.2536

0.3119  0.3666 —0.4841 —-0.7307



Chapter 5

Integrity of Systems under
Decentralized Integral Control

A multivariate system has integrity if the block decentralized controller with integral action
maintains closed loop stability in presence of possible controller failures. In this chapter,
we show that the recently proposed necessary and sufficient condBi@rier{ the system

to possess integrity can be equivalently expressed in terms of well-known notions of block
relative gain (BRG)83] and Niederlinski index (N1)87]. These results imply that the con-
ditions based on BRG and NI, traditionally believed to be only necessary, are actually both
necessary and sufficient. Itis also shown that in general, establishing the existence of a fully
decentralized controller with integral action such that the system has integrity is NP-hard.

5.1 Introduction

This chapter deals with reliable stabilization of stable linear systems using a decentralized
controller with integral action in every channel. A system is said to possess integrity, if
the closed loop stability is maintained with integral action in every output channel, when
any combination of the individual controllers fails (see Definitibd). It is assumed that

a controller that fails is immediately taken out of service, the corresponding entries

in the block diagonal controller matrix are replaced by zero. Some researchers have
considered the problem of checking whether the closed loop system is reliably stable for a
given controller (seel3] for a review). The focus of this work is on deriving controller-
independent conditions which can establish the existence or non-existence of a controller
such that the system possess integrity.

101
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With its practical implications, the problem of integrity against possible controller
failures has been studied widely by researchers, particularly in the area of process control.
For fully decentralized control, a well-known result that relates reliable stability with
relative gain array (RGA)17] is provided by Grosdidieet. al.[51]. It is shown that a
system has integrity only if all the corresponding relative gains of the steady state gain
matrix are positive. Similar to fully decentralized control, a system with specified block
pairings has integrity only if the determinant of all the corresponding block relative gains
(BRG) [83] of the steady state gain matrix are positi&®][ Grosdidier and Morari49
generalized the concept of Niedrelinski index (NI) to block pairings to derive similar
necessary conditions. Chiu and ArkudQ] have further suggested that the necessary
conditions based on BRG and NI be evaluated for all principal block sub-matrices of
the system. These necessary conditions based on BRG and NI are useful for eliminating
alternatives for input-output pairings, as discussed in the previous chapter. Itis not apparent
whether the system with the pairings chosen based on these necessary conditions, will have
integrity.

Recently, Gindes and Kabulig2] presented necessary and sufficient conditions for
assessing integrity of the system partitioned idtor less blocks. In this chapter, we
show when the individual blocks are square, these conditions can be alternatively expressed
in terms of BRG and NI. In general, these conditions do not guarantee that the block
decentralized controller will have no unstable poles other than the origin, as is assumed
in the derivation of necessary conditions based on NI and BRG. When the controllers are
allowed to have any number of unstable poles, the alternative representation implies that the
conditions based on BRG and NI, traditionally believed to be only necessary, are actually
both necessary and sufficient. Since the expressions presentdthbg$and Kabuliq2)]
become increasingly complex with the number of blocks, an additional advantage of the
alternative representation is that the extension to the general case, where the system is
partitioned into any number of blocks, is relatively simple.

For fully decentralized control, we also show that the necessary and sufficient conditions
due to Gindes and Kabulig2] are satisfied iff a matrix, which depends on the system’s
steady state gain, is/-matrix. This observation suggests that establishing the existence
of a fully decentralized controller with integral action such that the system has integrity is
NP-hard unless P = NRH].
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5.2 Necessary and Sufficient Conditions

In this section, we present the necessary and sufficient conditions duénde& and
Kabuli [52] such that theG(s) possess integrity. The discussion is limited to the case,
whereG(s) is partitioned intoM non-overlapping square subsystems such @at0) €
Rmexmis g = 1,2,--- M, > .m; = n. The block diagonal controller with integral
action K(s) is expressed a$l/s)C(s), where C(s) = diag(Cy(s)) and Cy(s) has
same dimensions &S;;(s) (see Figuret.1). For notational conveniencé&;(0) is simply
represented &&.

To present the necessary and sufficient conditions for integrii ©f), we need the
following additional notation. Fof =2,--- ,M,i=1,--- ,j — 1, define

Xij - ij - GJZG,;lGU (51)
WhenM > 3,fork=1,--- M —2,{,m=k+1,--- M, # m,
Y5, = G — GGy G (5.2)

andforr=3---M,q=1,--- ,v—2,r=q+1,--- ,v—1,

Z:q = Xqv - Yng;rlng (53)
WhenM = 4, define
W =2}, — (Yl — YLX5 Yh)(Zh) (Ve — YLX5YY) (5.4)
Theorem 5.1 Let G;; be nonsingular forall = 1,--- , M. There exists a block diagonal

controller with integral action such thét(s) has integrity, if p2]

det(X;;G;') >0 (5.5)
forallj=2,--- M,i=1,---,7—1andwhenM > 3

det(Z?,G,)) > 0 (5.6)
foralv=3,--- M,q=1,--- ,v—2,r=q+1,--- ;v —1and whenM =4

det(WG}) >0 (5.7)

Further, if anyM —1 controllers are strictly proper, or whé&,;; or G;;, j = 2,--- , M,i =
1,---,j — 1 are strictly proper or when any of these transfer matrices have real blocking
zeros [L09, (5.5-(5.7) are also necessary.
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The proof of Theorenb.1 is quite long and requires elements from the coprime
factorization theory109. As the proof provides no additional insight, the interested reader
is referred to $2] for the proof of Theorenb.1. Some remarks that are relevant to the the
scope of this thesis are in order.

e The requirement tha&G;; be nonsingular for ali = 1,---, M is necessary for
existence of a controller with integral action such that the individual loops are stable.
Consider thatG;; be singular for someé = 1,--- , M. Then, the loop transfer

function G;K; = (1/s)G;;C; contains a hidden mode. Thus, the stabilization of
thei'" loop is not possible an€k(s) does not have integrity.

e Whereas the off-diagonal blocks Gf(s) are not strictly proper or have real blocking
zeros in general, the controllers can always be designed to be strictly proper. When
all controllers are strictly propers(95)-(5.7) are both necessary and sufficient for
existence of a block diagonal controller with integral action such tét) has
integrity. We recall that a similar assumption is made during the derivation the
necessary conditions based on BRG and NI (see Thectelrd.?2).

¢ When the sufficient conditionss(5)-(5.7) are satisfied, existence of a controller with
integral action is guaranteed such the system has integrity. This controller, however,
may have additional unstable poles other than at the origin of the complex plane. The
existence of pure integral action controllers is guaranteed, when the more restrictive
conditions:X;;G ;' > 0, Z%, G, >~ 0 andWG,;' - 0, hold for all indices defined
earlier.

e For fully decentralized controlX;;G;;' -~ 0, 22, G, ~ 0 andWG}/ > 0is

equivalent to $.5-(5.7). In this case, when5(5)-(5.7) hold, existence of a pure
integral action controller is guaranteed such B&t) has integrity.

Gundes and Kabulig2] have also presented a controller design method suchGhat
has integrity, when the sufficient conditiols; G ' > 0, 2%, G, -~ 0andWG,/ - 0
hold for all indices defined earlier. Generally, the positive-definiteness is defined only for
symmetric matrices. B;XUG;jl = 0, we imply that the symmetric part O(Z-jGj*jl, le.
X;;G;;' + (X;;G;')" is positive-definite.
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5.3 Simplified Representation

In this section, we show that the conditions in Theofefcan be equivalently represented

in terms of BRG and NI. For this purpose, we require evaluation of BRG and NI on the
principal block sub-matrices d&. We definey as the ordered subset of fitdf integers
consisting of at least elements an@ as the ensemble of all sugh For example, when
M=2,V={(1,2)}andM =3, ¥ = {(1,2),(1,3),(2,3),(1,2,3)}.

Lemma 5.1 Let G;; be nonsingular forall = 1,--- , M. Then,
_ det(G{i R0 '})
det(X,;;G ! I LA 5.8
¢ ( I ) det(Gu)det(G”) ( )
det(G )
det(Z2,G,)) - det(X,, Gl Caaid bt 5.9
€ ( rq vv) € ( q rr) det(qu)det(GTT)det(Gw) ( )
det(G
det(WG)) - det(Z3; Gy ) - det(X 120Gy ) = _det(&) (5.10)

[T, det(Gy:)
wherej = 2,--- M,s = 1,---,75—1andv = 3,--- M,q = 1,--- ,v — 2,r =
g+1,---,v—1.

Proof: SinceG,; is nonsingular foralf = 1,--- , M, using 6.1,
det(XUG;) = det(I — GﬂG;lGUG]El)

_ I GGy

— det ( o ) det ( G L )
det(Giiy ig))
det(G;;)det(G;;)
where the second equality follows using Schur complement Lemma. The pro&9)pf (
(5.10 require repeated use of Schur complement Lemma and are omitted for the sake of

brevity. |
Proposition 5.1 Let G;; be nonsingular for alf = 1,--- , M. Then, the following are
equivalent:

(1) det(X;Gj') >0 Vj=2,--- Mi=1,---,j—1

oL

et(Z. G, ) >0 Yu=3,--- Mqg=1,-,v-2r=q+1,---,v—1

q

(
(
et(WG,}) >0
(
(

»
Z =

I(Gyy) >0 VpeW (5.11)
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where| - | denotes the cardinality of the set

Proof: We show thatl) < (2) and(2) < (3), which implies(1) < (2) < (3).
((1) & (2)) Using 6.8), det(X;;G;') > 0 iff

det(Gyi gy ijy)

(det(Go)det(Gy)) 0

forall j = 2,--- M,i = 1,---,j— 1. WhenM > 3, the ordered se{r, ¢} is a
subset of{i, j}. Then,det(X,.G,;}) > 0forallv =3,--- M,g=1,---,0—2,r =
q+1,---,v—1.Using 6.9, det(Z},G,,) > 0, iff

det(Ggrv} {grv})
(det(Gg)det(G,, )det(Gry))

>0

foralv=3,--- M,gq=1,--- ,v—2,r=q+1,--- ,v — 1. Similarly, whenM = 4,
det(WG}') > 0, iff
det(G)
([Ti, det(G))
The necessity and sufficiency d.(1) follows by combining all these arguments and
noting that? = {i, 7} J{q,r, v}.
((2) < (3)), Using 6.8),

det(G iy ig))
NI G L. .. = : : 7
(Gightigy) det(Gy;)det(Gy;)

= det([Ap(Gyigy gigy)]iu) Vi, g < M,i#j

Then,NI(G i j1.,51) > 0, iff det([Ap(Gyijyqigy)]a) > 0foralli,j < M,i# j. When,
M > 3,using 6.9,

det(Giny figihy)
det(Gy;)det(G,;)det(Gyy)
det(Gyijnyfigky)  det(Gyigygigy)
det(Gkk)det(G{,7]}7{z,]}) det(G“)det(Gﬂ)
NI(G iy 4i.9)) - oy

= — VZ,],]{TSM,Z%]#IC

det([AB(Gijiky i) kk)
Since NI(G{Z,]},{z,]}) > 0 for all Z,] < M,Z §£ j, NI<G{i,j,k},{i,j,k}) > 0, iff
det([Ap(Gyijry.igny)]i) > 0foralli, j,k < M.,i # j # k. When,M = 4, using 6.10
and similar arguments as above,

~ NUGijay gigisr)
NI(G) = det([Ap(G)]w)

NG ik} figiky)
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SinceNI(Gy; j k) (ijky) > 0, NI(G) > 0iff det([Ap(G)]w) > 0foralld,j,k < M,i#
j#kC={1,--- ,M}/{i,j, k}. Now, the necessity and sufficiency & 12 follows by
combining all these arguments. n

To check whetherq.11) or (5.12 hold, one needs to calculate NI or BRG for all principal
sub-matrices o& that can be formed by combining elements of the diagonal blocks and the
corresponding off-diagonal blocks. A similar method was earlier considered by Chiu and
Arkun [30], where 6.11) and 6.12 were shown to be necessary under the assumptions
that G (s)C(s) is strictly proper andC(s) is stable.

Proposition5.1 implies that 6.5-(5.7) are satisfied iff $.11) or (5.12 hold. Then,
similar to Theorenb.1, (5.11) and 6.12) are both necessary and sufficient, wh@(s)
is restricted to be strictly proper. As pointed out earlier, satisfying<{(5.7) is equivalent
to satisfyingX;;G' > 0, Z%, G, = 0 andWG,; > 0 for fully decentralized control.
Thus, the existence of a stalll¥s) is guaranteed such thé&t(s) has integrity for fully
decentralized control, but in general, there may not exist a st@bi¢ such thatG(s)
has integrity, even wherb(11) or (5.12 hold. It is worth pointing out the requirement
that C(s) be stable is restrictive, as noted by Campo and MotEsj, [but is practically
relevant. Derivation of necessary and sufficient conditionsd¢s) to possess integrity
such that tha€(s) is stable remains an issue for future work.

As M increases, the expressions presented limdes and Kabuli§2] become
increasingly complexdf. (5.9-(5.7)). On the other hand, the extension to the general case
is simple (by induction), when the conditions are expressed in terms of BRG or NI. In this
chapter, we have only dealt with the case, wh@tgare square. The results ofi@des and
Kabuli [52] also hold when the individual blocks are possibly non-square with every loop
having more inputs than outputs for integral action. In this case, the conditions remain the
same, except(1)-(5.4) need to be modified to accommodate the right inverses of different
non-square sub-matrices Gf. Similar to the proofs of Lemm&.1and Propositiorb.1, it
can be shown thab(5)-(5.7) holds for non-square blocks, iff

det([GG] Jyy) >0 Vo € (5.13)

whereG,, = diag(G;;) andt denotes some right inverse. Note t@GZd can be treated
as the generalized Neidrilinski index, where the individual blocks are non-sgifire [

To verify whether .11) holds, NI needs to be evaluated exa@ly — (M + 1) times,
whereas verification of 512 requires that BRG be evaluated many more times. This
ambiguity is explained by noting that evaluation of BRG for all principal block sub-
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matrices ofG is not necessary. For example, whgh= 3,

det([Ap(G)];;)det([AB(Gky ik} )]ii)
det([Ap(G)]rx)

= det([AB(Gyijy ijy)]i)

Thus, if all the terms on the LHS of the above expression are positive,
det([As(Gyijy..01))i) is always positive. The task of finding the setdf — (M + 1)
non-redundant BRGs requires some book-keeping. In this sense, the usSd Dfig
advantageous over the use 6f1(2.

5.4 Computational Complexity

In this section, we present some results on computational complexity for establishing the
existence of a block diagonal controller such t@4ts) has integrity. It is shown that this
problem is NP-hard, unless P = NR1]. We introduce the useful notion g?-matrices,
which form the basis of the proof for NP-hardness.

Definition 5.1 A matrix A € R™*" is called aP-matrix, if all the principal minors oA
are positive §3].

Lemma 5.2 Let G,; be a non-singular matrix consisting of the diagonal elements.of
Then, 6.5)-(5.7) are satisfied for all the indices defined in Theorgry iff GG, is a
P-matrix.

Proof: It follows from Propositiorb.1that 6.5)-(5.7) are satisfied for all the indices defined
in Theorem5.1iff (5.11) holds. Note thaNI(G,) = det([GG;}]y,) for all » € ¥ and
GG, }]i = 1foralli =1,--- M. Then,NI(Gy,) > 0forall v € ¥, iff GG, is
P-matrix. u

Proposition 5.2 Let G,4 be a non-singular matrix consisting of the diagonal elements of
G. If the controllerK(s) is restricted to be strictly proper, the problem of establishing the
existence of a diagonal controller such tats) has integrity is NP-hard, unless P = NP.

Proof: When the controlleK(s) is restricted to be strictly proper add < 4, satisfying
(5.5-(5.7) for all the indices defined in TheoreBl is necessary and sufficient for the
problem of establishing the existence of a diagonal controller sucl@zf@gthas integrity.
Similar conditions can be derived using Proposiohand induction, whei/ is arbitrary.
Lemma5.2 shows that these conditions hold G, is P-matrix or det([GG;,'|,y)
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for all » € W. Note that the transformation 06.6)-(5.7) to det([GG,,],y) for all
1 € W requires only elementary operations and can be completed in polynomial time.
The result follows by noting that verifying whether a given matrisPisnatrix is co-NP-
complete B1]. n

As pointed out earlier, for fully decentralized control, satisfyibghb)-(5.7) guarantees
the existence of a pure integral action controller such th&t) has integrity. In this
case, the problem of establishing the existence of a diagonal controller sudf (that
has integrity remains NP-hard, when the controllers are further restricted to have poles at
origin only. Similar conclusions can also be drawn usiBdl® for the case, when the
individual blocks ofG are non-square, but have a single output only.

The NP-hardness of the integrity problem suggests that/ascreases, there exists
systems, whose integrity cannot be verified in polynomial time. For particular instances of
the problem, it may still be possible to establish the existence of the diagonal controller such
thatG (s) has integrity in polynomial time. The time complexity of an algorithm evaluating
all the principal minors of the given real matrix is approximatélyn32"). Tsatsomeros
and Li [105 have presented a recursive algorithm that reduces the time complexity to
O(2"). Recently, Rump95] has proposed an algorithm, whose time complexity is not
necessarily exponential, but can be exponential in the worst case. Rtk applied
this algorithm to a test set of parameterized matrices, whose membership in the class of
P-matrices is known beforehand for the given value of the parameter. It is shown that the
algorithm can successfully verify whether these matrices having dimensiongp<@00
are’P-matrices in polynomial time.

When the controller is block decentralized, one only needs to check the positiveness

of minors of the sub-matrices d&G;; that can be formed by combining elements
of different blocks and the corresponding off-block diagonal elements. In this case, if
det([GGy}]yy) > 0 forall ¢ € ¥, we call GG, a block’P-matrix in the spirit of P-
matrices. It is conjectured that under the same conditions as Propdsi@aestablishing
the existence of the block diagonal controller such tBé&t) has integrity is also NP-hard.
The algorithm of Tsatsomeros and id9 is based on Schur complement lemma and is
easily extended for verifying blocR-matrices. It is not clear at present, if it is possible to
use the algorithm of Rum®p] for block matrices. We next present a sufficient condition
for verifying whetherGG,, is aP- or block P-matrix.

Proposition 5.3 Let G,q = diag(Gy;), whereG;; € R™>*™i ¢ = 1,--- M and Gy, is
non-singular. Defin& = (G—de)Gb‘dl. Then,G’Gb_dl is block P-matrix wrt the structure
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of Gy, if det(I 4+ 0.5E) # 0 and
pa(I+0.5E)'E) < 2 (5.14)

whereA = {diag(é; - 1,,),0; € C,|6;| < 1,i=1,--- , M}.

Proof: Note thatGG,,! = I+E. Define,A, = {diag(¢;-1,,,),; = {0,1},i =1,--- , M}.
Then,GG;, is a blockP-matrix iff,

detI+EA,) >0 VA, €A, (5.15)

Further, definingA, = {diag(e; - I,,),&; € C,|e| < 1,4 = 1,--- , M} and noting that
A C Ay, (5.19 holds if,

det(I+EAy) >0 VA, € A,

The determinant is a continuous function over convex sets. Thukt(l + EA,)
changes sign over the sAl,, there exists SOomA, € A, such thatdet (I + EAQ) = 0.
Since,A; C Ay, (5.19 holds if,

det(I+EA,) # 0 VA, €A,
& ua(E) < 1 (5.16)

The inequality $.16) is conservative a§, —I € A,. To reduce conservativeneskl|
13, foreveryA € A, A, € A, , defineA, = 0.5(I+ A). Then,

det(I+EA;) = det(I+0.5E + 0.5EA)
= det(I + 0.5E)det(I + 0.5(I 4 0.5E)'EA)

When 6.14) holds,det(I + 0.5(I+ 0.5E)""EA) does not change sign over the getand
GG, is blockP-matrix wrt the structure 06,. m

The sub-matrices of positive-definite are also positive-defir. [ Thus, when
GG,;; = 0, GG,;; is P and thus blockP-matrix. Propositiorb.3is less conservative than
this sufficient condition, as the controller structure is taken into account. Propdsien
still conservative, ad\ is a strict subset oA. A practical approach is to check %.(14)
holds and if not, use the algorithm of Tsatsomeros andLDH] for block decentralized
control or Rump 95] for fully decentralized control.
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5.5 Chapter Summary

In this chapter, we presented the necessary and sufficient conditions dumdessand
Kabuli [52] for establishing the existence of a decentralized controller such that the system
partitioned into4 or less blocks has integrity. It is shown that these conditions can be
alternately represented in terms of block relative gain (BRG) and Niedrilinski index (NI).
The following results are shown using the alternate representation:

e The conditions due to hdes and Kabulig2] can be easily generalized to the case,
when the system is partitioned into arbitrary number of blocks.

e When the controller is allowed to have unstable poles other than at the origin, the
conditions based on BRG and NI, traditionally believed to be only necessary, are
in fact both necessary and sufficient. For fully decentralized control, the additional
assumption of the controller having unstable poles other than at origin is not required.

e The problem of establishing the existence of the diagonal controller such that the
system has integrity is equivalent to verifying whether a given real matrixfs a
matrix, which is co-NP-complete.

Though the integrity problem for fully decentralized control is shown to be NP-hard,
it may be possible to solve particular instances of this problem using the algorithm of
Rump P5]. It is conjectured that the integrity problem for block decentralized control
is also NP-hard. A (conservative) sufficient condition is proposed for establishing the
existence of the block diagonal controller such that the system has integrity. Future work
will focus on extending the algorithm of Rumg@®4] to the block P-matrix case and
determination of necessary and sufficient conditions for integrity, when the controller is
restricted to have poles only at the origin.






Chapter 6

Decentralized Minimum Variance
Benchmark

This chapter deals with performance assessment of decentralized controllers using
the minimum variance (MV) benchmark. The available MV benchmarks do not take
the structure of the controller into account and can give overly optimistic estimates of
achievable performance, when applied to systems under decentralized control. We propose
an approximate solution to this problem obtained by explicitly solving simple linear matrix
equations. As a special case of this general result, we also present an upper bound on the
achievable performance for systems under multi-loop PID control. These results are useful
for assessing the feasibility of significant performance improvement by re-tuning of the
decentralized controller and input-output pairing selection

6.1 Introduction

In the control literature, it is common to represent a non-linear, time-varying process by a
LTI model and design a controller based on this. In the presence of changing operating
conditions and disturbance dynamics, the closed loop performance of the controller
designed based on this approximation may deteriorate over time. Sustained benefits can
be reaped by monitoring the performance and taking appropriate corrective actions, in the
case of large deviations from the designed performance.

Poor controller tuning is one of the primary reasons for performance deterioration of

A preliminary version of this chapter was presented &t &®nference of Canadian Society of Chemical
Engineers, Hamilton, ON, 2003
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industrial controllers. It is important to assess the feasibility of significant performance
improvement, before the task of controller tuning is undertaken. This purpose is well served
by the minimum variance (MV) benchmark, where the controller objective is defined in
terms of output variance. The MV benchmark represents the theoretical lower bound on
the achievable output variance. The output variance can be reduced by controller tuning,
when the actual variance differs significantly from the MV benchmark; otherwise, different
approaches should be considemd. the use of feedforward controller or additional
manipulated variables.

The idea of MV control was introduced liystrbm [5]. It was shown that the time series
representation of the closed loop expression from the disturbances to the outputs can be
partitioned into controller invariant and controller dependent parts. The MV control law is
found by setting the controller dependent part to zero and the variance contribution of the
controller invariant part represents the lower bound on the achievable performance (defined
in terms of variability of outputs).

Harris [53] showed that witha priori knowledge of time delay, MV benchmark can
be estimated using routine closed loop operating data and established it as a tool for
performance monitoring of SISO systems. This approach is further extended to MIMO
systems by Harrist al.[54] and Huanget al.[70]. Qin [91] and Harriset al. [55] provide
comprehensive reviews of MV based and other performance assessment tools.

Though useful, the available MV benchmark shows limitations, when applied to systems
using (block) decentralized or multi-loop control. The conventional approaches towards
performance assessment of such controllers include:

e Loop by loop analysis
e Use of the MV benchmark for full multivariate controllers

The MV benchmark fails to take the process interactions into account, when applied
in a loop-wise fashion; whereas, the full multivariable benchmark assumes more degrees
of freedom for performance improvement than are available in the actual controller. In
either case, the bound on the achievable output variance is loose and can be overly
optimistic. In many cases, it may lead the practicing engineer to search for the non-existent
decentralized controller to match the performance of the MV benchmark. The gap between
the benchmark and achievable performance further increases when the decentralized
controller is restricted to be of reduced complexiyg. proportional integral derivative
(PID) controller [/5. Thus, a decentralized MV benchmark is required, which takes
the controller structure into account. These arguments are further illustrated using the
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following example adapted from Huang and Shéa#{;|

Example 6.1 Considery(t) = G(¢ ')u(t) + G, (¢ ')a(t), whereq' is the backshift
operatora(t) is Gaussian noise with unit variance and

q? 2q* 2 1
1041 1-05¢¢ 1-09¢F 1-03¢7¢T
G = q q G, = q q
q? q? 1 2
1-0.1g L 1-02q1 1-04qg L 1-0.5¢ 1

The objective is to assess the performance of a multi-loop controller of the #brm
k = 0.17. Under closed loop controlE[tr(y(¢)y(¢)T] = 23.65, where E[.] is the
expectation operator. The MV benchmark for full multivariate controller4i$, but no
k or a dynamic compensator could be found that matches this benchmark closely. As
shown later, the given controller structure inherently limits the achievable performance and
the controller0.171 is nearly optimal for the given controller structure.

An explicit solution to the decentralized MV control problem has great theoretical
and practical value, but is equally difficult to realize. The primary difficulty lies
in enforcing the decentralized structure on the controller, as this yields a non-convex
optimization problem03. Yuz and Goodwin 114 have suggested a two-step approach
for determining an upper bound on the achievable output variance using a decentralized
controller:

e A decentralized controller is designed based on only the diagonal elements of the
system.

e The controller is redesigned to compensate for the ignored off-diagonal elements
using an approximation of the sensitivity function.

Though the initial design based on the diagonal elements accommodates the controller
structure, the controller redesign step requires some care and numerical search. Further,
the utility of the method in its present form is limited to step disturbances only.

In this paper, we take a fundamentally different approach to derive an approximate
solution for the decentralized MV control problem. The controller structure is posed as a
constraint on the optimization problem and a suboptimal solution is obtained by explicitly
solving the linear matrix equations defining the stationary point. As a special case, we
present an upper bound on the achievable output variance for systems under multi-loop PID
control. The results presented here do not require controller redesighdr numerical
search T5]; however the simplicity of the result comes at the cost of sub-optimality. These
results are useful for various purposes:
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1. Performance assessment of existing decentralized or multi-loop controllers.
2. Selection of input-output pairings based on achievable decentralized performance.

3. Providing a good initial guess for non-convex parameter search methods.

6.2 Interactor Matrices

Before proceeding with the main development, we present the useful concept of interactor
matrices introduced ir6H).

Definition 6.1 For everyn; x n, proper, rational polynomial transfer matri(¢—'),
there is a unique, non-singular, x n, lower triangular polynomial matrifd(q), such that

ID(q)| = ¢" and }5]

lim D(¢)G(g™") = lim G(¢~!) = G(0) (6.1)

q*1—>0 qflﬁo

whereG (0) is a full rank constant matrixa]. The matrixD(q) is called theinteractor
matrix.

For univariate systems, the MV benchmark primarily depends on the time delay
associated witlG(¢—!) [5]. This time delay can also be interpreted as the non-invertible
part of the transfer matrix, as its inverse is non-causal. Similarly, the multivariate system
G(q™ ") can be factored a€i(g~') = D~ '(¢"")G(¢") such thatG(¢~!) andD (¢ 1)
contain the invertible and non-invertible partg®fq ') respectively. The interactor matrix
generalizes the time delay for univariate systems to the multivariate 6&jsard can be
written as,

D(q) = Do(q)¢* + Di(q)g* " + - Da_1(q)g

whered denotes the order of the interactor matrix.

WhenD(q) assumes the for(q) = ¢I, D(q) is called a simple interactor matrix.
Similarly, an interactor matrix with the fornb(q) = diag(¢®,--- ,¢%) is called a
diagonal interactor matrixD(gq) with no special structure is called a general interactor
matrix.

The lower triangular form is only one of the possible realizations of the interactor
matrices. In general, the interactor matrix can also be upper triangular or a full matrix.
One realization of the interactor matrix that is of immediate interest to us, is Wienis
unitary.
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Definition 6.2 For a rational proper, transfer mati@(q—') having full rank, let theD(q)
satisfying 6.1) also satisfieD? (¢~!)D(q) = I. Then,D(q) is called aunitary interactor
matrix [89)].

The unitary interactor matrix is non-unique, but two unitary interactor matrices are
related by transformation through a unitary mat@®][ The unitary interactor matrix is
useful for deriving the MV control law, when every output are given equal importance.
Huang and Shat6B] have introduced the concept of weighted unitary matrices to handle
the cases, where individual outputs have different importance in the control objective.

6.3 Problem Formulation

K@™) G.(a%

Ky(a®) S N
Kzz(q_l) U(t)

KMM(q_l """""""""""""""""

Figure 6.1:Separation of interactor matrix

Consider the system shown in Figuéel, where K(¢!) = diag(K;(q™')), i =
1,---,M. The objective is to find a controller such that the variancey(f) or
Eltr(y(t)y(t)T] is minimized. We make the following simplifying assumptions:

1. G(¢7') and G, (¢~ ') are stable, causal transfer matrices, contain no zeros outside
the unit circle and are square having dimensiensn.

2. a(t) is a random noise sequence with unit variance @ftd is stationary up to its
second moment.

The assumption thak(¢~!) andG,,(¢~') are square is made for notational simplicity
and can easily be relaxed for generalization purposes. VWhgrontains zeros outside
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the unit circle, these zeros can be factored through an all pass factor factorization without
affecting the noise spectrund9]. Further, there is no loss of generality in assuming that
the system is affected by noise having unit variance. Whe&x(t)a” (t)] # 1, the noise
model can always be scaled to satisfy this assumption.

Next, we formulate the optimization problem that can be solved to obtain the solution to
the decentralized MV control problem. In the remaining discussion, the argumerdad
t are dropped for ease of representation. Let the system shown in Biguye expressed
as

y = D 'Gu+G,a
or Diy = ¢ ?Gu+ Ggua (6.2)
whereD; = ¢ ‘D, G, = D,G,, andd is the order or number of non-zero impulse
response matrices @. Using Diophantine’s identityG, = F + ¢ R andu = —Ky for
regulatory control,
D,y = —¢ ‘GKy + (F + ¢ ’R)a (6.3)
Using 6.2, a = G;'(D,y — q—dGu). With simple algebraic manipulation®.8) can
be simplified as,
D,y = Fa+ ¢ %RG,' — FG,'GK)y (6.4)

SinceEtr(y(t)y(t)T)] = Eltr(D,y(t)y(t)'DT)] [69, Lemma 4.3.1] and is controller
invariant, the second term i%.4) can be set to zero to obtain the full multivariable MV
control law. When the controller has structural constraints, this may not be possible since
K has fewer degrees of freedom than the full multivariable controller.

LetA = RG,', B=FG,'G andL = A — BK. Then using§.4),

y = (D —q¢ L) 'Fa
= (I-¢'DI'L)"'DIFa

When the spectral radius ®7 L(e’) is less thanl for all w = [0, 27] or the closed

loop system is stable, the series expansiofief ¢-“D?YL)~! is convergent. Thus,

y = <Z(qu1TL)i> DiFa (6.5)
=0
SinceFE[a(t)a’ (t + 7)] = 0 for all 7 # 0 andD; is a unitary transfer matrix,
Eltr(yy")] = |DiF|;+ |DLDYF|+ -
= |F+ |LD{F[3 + - (6.6)
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The higher order terms on the RHS 6f¢) are non-linear ifK. An approximate solution
to the decentralized MV control problem is obtained by ignoring these terms and finding
the stationary point of LD F||2 wrt block diagonaK. The resulting equations using this
approach require an iterative procedure to be solved and in order to avoid this difficulty, we
use the following result:

Lemma 6.1 Let X, Y be stable transfer matrices. Then,

IXYZ < IXIEIYI5

Proof:
1 27 ) )
IXY|5 = — tr(XY (e 7)Y X" (/) dw
21 J,
1 [ ,
- 5% ;ai(XY(e 7)) dw
< 1 2W52(Y(ej”))iaz(X(ejw))dw
- 2 J, — !
2 j 1 R 2 ]
< sup o“(Y(e —/ o (X(e™¥))dw
S (Y(e™))5 i ; (X(e™))
< IXIEIYIE
u
Using 6.6) and Lemm&b.1,
Eltr(yy™)] < [FI3 + ILIZIFIS + - (6.7)

With this simplification, the decentralized controller that provides an overestimate of the
achievable output variance is obtained by solving the following optimization problem

: 2
min L3

s.t. 1y, —J)oK=0 (6.8)

wherel,,, is a matrix of ones and is the Hadamard productl is a matrix representing
the controller structure and is defined as

; {1 if Kij #0 6.9)
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6.4 Decentralized MV Benchmark

In this section, an explicit solution to the optimization proble@8)is provided. For these
purposes, we present the following result, which involves finding the stationary point of a
scalar wrt a structured matrix. This result can also be of independent interest.

Lemma 6.2 LetY = X"MX — N”X. Then,

Oftr(Y)]
0X

=(M+M")X -N (6.10)

Proof: Let z; be thej* column of the Identity matrix. Using the chain rule

tr(Y)] o <8XT

3%5

T MX + (X'M — N7) gjz >
= tr (22 MX) + tr (X"M — N")zz])
= tr (2 MXz;) +tr (2] (X"M — N7")z;)
= (MX),, + (XM -N")

ji
= (MX), + (M'X), — Ny

ij
Note that 6.10 is a compact representation of the last expression. n

Proposition 6.1 LetY = X"MX — N7X, whereX is a block diagonal matrix. Then, the
stationary point ofr(Y) wrt X is found by solving

Jo[(M+M")]X = JoN (6.11)
wherelJ is defined similar t0§.9).

Proof: LetX = diag(Xi1, -, Xu). Then,

M

=1
Using lemmab.2, the stationary point ofr(Y') wrt X,; is found by solving

Otr(Y)]
0Xi;

= (My; + M) X —N; =0

The result follows by considering the last expression fof tgether. ]
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6.4.1 Simple Interactor Matrix

If the system has a simple interactor matribxe. D = ¢ ¢ -1, thenA = RG},
B = FG;lé, whereG,, = F + ¢ “R.. Using Parseval’s equality,

JLIE = > tr(Li L) (6.12)

whereLL = A — BK as before and.; is thei’* impulse response matrix &f defined as

Li=A; — Z i B,K, (6.13)

j=0 k=0
Then, the decentralized MV control law is obtained by finding the stationary point of
|L||3 wrt K, & = 1,2...00 subject to the structural constraint on the controller. For
numerical reasons, however, it is necessary to approxihai® andK by finite impulse
response models having ordafr. Using Lemma6.1, the stationary point is found by

solving,
o|L]3

N—k
K, > B,,TLM] =0 (6.14)
=0

To simplify notation in the further treatment, we define the following linear operator,

Definition 6.3 Let X, Y be defined such thalim(X) = dim(Y};) for all 7, j. Then, the
block-wise Kronecker-Hadamard produstdefined as,

XOY11 XOY12
X@Y: XOYgl XOY22

A rearrangement ofg(.14) gives,
[Jo (BLBx)] Ke =J 0 (BA¢) (6.15)

where A and K¢ contain the impulse response matricesAoind K respectively, and
By is a lower block triangular Hankel matrix. The-, K- andBy are defined as

Ac = [AT AT AT . K%]T
B, 0 0o -
B, By o --- 0
By = ) . . ) . (6.16)

By By, -+ --- Byg
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When[J @ (B;By)] is invertible, the suboptimal decentralized MV controller is given
as,

Ko = [Jo (BLBy)] ' [Jo (BLAL)] (6.17)

Remark 6.1 Since J always has full rank, rank deficiency oBLBy makes
[J @ (Bf;By)] singular. This happens when someRyfs are singular. For a system with
simple interactor matrixB = FG_'G has no infinite zeros and this is nonsingular for
all .

The earlier developments in this section are summarized by the following result:

Proposition 6.2 Consider the systen6(2) with a simple interactor matrix. DefinA =
RG;!, B = FG;!G. Then, a suboptimal solution to finding a decentralized controller
that minimizesE|[tr(yy”)] is given by 6.17).

Let y,..q be the output of the closed loop system under the optimal decentralized MV
control law. Then, a decentralized performance index is defined as

E[tr(YmvaYea)] (6.18)
Eftr(yy™)]
The full multivariable performance indey,,, is defined similarly, wherey,., < 7,.04-
Ideally,0 < n,,.« < 1, butwhen evaluated based on the suboptimal decentralized controller
given by 6.17), n,.,¢ may exceed. In any case, a value of,,4 close to zero always
indicates poor performance.
In certain special cases, the decentralized controller giver6ly)(is optimal. For
example, whed = 1,,,,, (6.17) reduces to the optimal full multivariable MV control law.
Similarly, whenN = T or the system is affected by white noi$€; = 0, which is optimal.

Nhmod =

Remark 6.2 WhenF commutes withK, use of Lemmd.1to simplify (6.6) to (6.7) is not
required. In this case, better estimates)f, are obtained by redefining = RG_'F,
B = FG_'GF and using PropositioB.2 as before.

Example 6.2 We revisit examplé.1. The variation ofy,,, andn,,.q with & is shown in
Figure6.2 Fork = 0.17, e ~ 0.82, which is large compared tg,,, ~ 0.6. This
justifies our earlier remark that the decentralized structure puts an inherent limitation on
the achievable performance for this system and no significant performance improvement is
possible by controller re-tuning.
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Figure 6.2:Comparison of,,,, (0) andn,,.q (+) for Example6.2 The controller structure
limits the achievable output performance.

Proposition6.2 can also be used for input-output pairing selection. For this system, the
upper bound on achievable output performance for pairing on the diagonal and off-diagonal
elements i98.99 and16.02 respectively. Based on this criterion, the latter alternative may
be preferred.

6.4.2 General Interactor Matrix

When the system has a general interactor maiBixs non-invertible due to presence of
infinite zeros (see Remafk1) and some modifications are required. et be the unitary
interaction matrix o8 andB = DzB. Then

ILI = |lA-Dy'BK]j3
= |DpA - BK|; = |A - BK|

The suboptimal decentralized controller is obtained by following the same steps as
before:
- -1 R
Ko = [J 2 (BEBH)] [J 2 (BEACH (6.19)
whereA ., By, are defined similar to§(16).
Proposition 6.3 Consider the systen6(2) with a general interactor matrix. Defink =
D3RG, B = D3FG,'G, whereDjy is the unitary interactor matrix &G 'G. Then,

a suboptimal solution to finding a decentralized controller that minimizgs(yy”)] is
given by 6.19.
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Figure 6.3:Comparison ofy,,, (0) andn,,.q (+) for Example6.3. The controller structure
poses no serious limitations.

In the previous example, controller structure posed significant limitations on the
achievable performance. This is not always the case, as shown below:

Example 6.3 Consider the following system adapted from Huang and S68jh [

q_1 Klgq_Q 1 —0.6
1-0.4q-1 1-0.1¢71 1-0.5¢1 1-0.5¢1
G — 0.4q 0.1q G, = 0.5q 0.5q
0.3¢} g2 0.5 1
1-0.1¢71 1-0.8¢71 1-0.5¢—1 1-0.5¢—1

where the variablé(;, controls the extent of interaction among the variables. The objective
is to compare the performance of the following controller for different valuds,of

0.5—0.2¢~! 0

_ 1-0.5¢—1
K= 0 0.25—0.2¢~ !

(1-0.5¢g=1)(140.5¢—1)

The 1,04, 1y fOr various K, are shown in Figuré.3. For each value of(;,, there
exists a decentralized controller that closely matches the performance of the optimal full
multivariable controller. Hence, the controller structure poses no serious limitation on
the achievable performance for this system. This further illustrates that large interactions
do not necessarily limit the performance of decentralized controllers compared to the full
multivariable controllers.

6.5 Achievable PID Performance

The suboptimal decentralized controller is expressed in terms of its impulse response
matrices. By restricting the order of the controller or settlig = 0 for all £ > p,
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controllers with reduced complexity can be obtained. In this section, this approach is used
to find an overestimate on achievable output variance using multi-loop PID controllers,
which are expressed as,
I, ., 1

Kpip = K;Ciq = ZC
whereA = 1 — ¢~'. By consideringl /A as a part ofG and minimizing||L||3 wrt C,
an overestimate of the achievable PID performance can be derived. Then Prop@siions
and6.3 can be used by limiting the column dimensionsAof, By to 3n. To ensure that
the assumption of stability ofx is satisfied, the integrator can be moved just inside the
unit circle without affecting the result significantly. In general, controllers with reduced
complexity having ordep can be obtained by limiting the column dimensionsAqf, By
to pn.

Example 6.4 Consider the following system taken from Ko and Edgad],[
q 1—-0.2¢"!
108 T 1= 03¢ (1 +04¢ (1 =05 1)"

Clearly the results presented earlier also hold for SISO systems. Based on these results,
the achievable output variances under MV and PI control dreshowing that the control
structure poses no limitations. However, when the disturbance model contains an additional
integrator, the achievable output variances under MV and PI contrdl1la9& and 17.86
respectively. The achievable performances differ by more fitéh revealing the effect
of controller structure on achievable performance. Note that for both these cases, the
achievable Pl performance is close to the results obtained by Ko and Etgamwho
used numerical search.

Y

6.6 Limitations

The results presented in this paper require that the system’s model be fully known. This can
be very demanding for online performance monitoring of industrial systems, especially in
presence of changing operating conditions. The requirement of knowledge of the system’s
model can be partially relaxed by estimati@g, using regular operating data, as suggested
by Ko and Edgar 5. Example6.3 shows that the controller structure does not always
limit the achievable performance. The identification@®fshould only be undertaken if
large differences are seen between the actual output variance and MV benchmark for full
multivariable controllers.
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The suboptimal controller is expressed in terms of its impulse response matrices, whose
determination is computationally inexpensive. Starting from a low value, the controller
order can be gradually increased until convergence, but convergence can be extremely
slow in some cases. This difficulty is overcome by recognizing {Ha;b (BEBH)} is
a sparse Toeplitz matrix and using available computationally efficient meteagdBrent
et al.[16]) for its inversion.

The decentralized MV control law is based on an approximation of the closed loop
expression and thus stability is not guaranteed. A possible approach to overcome this
limitation is to reduce the gain of the decentralized controller until stability is achieved,
however, such an approach increases the sub-optimality of the results.

6.7 Chapter Summary

For performance assessment purposes, ignoring the controller structure can lead to
incorrect conclusions regarding significant performance improvement through controller
tuning. In this chapter, we presented an approximate solution to the decentralized minimum
variance control problem, which provides an overestimate of the achievable output variance
without numerical search. The proposed method can easily handle the case of multi-loop
PID controllers. The primary limitation of the proposed method is that complete knowledge
of the system’s model is required and some recommendations are provided to partially
overcome this limitation.



Chapter 7

Conclusions and Future Work

7.1 Thesis Conclusions

In this thesis, we developed tools for handling different aspects of the control configuration
design (CCD) problem. The major contributions are listed below:

e The achievable input performance is characterized for FDLTI systems possibly

In

having time delay in thé{, andH,, optimal control frameworks.

A method for finding a stabilizing decentralized controller through independent
designs is presented. This method extends the practical applicability gi-the
interaction measure to unstable systems.

The problem of finding an optimal block diagonal approximation of a multivariate
system is introduced and a numerical solution is proposed.

Many new algebraic properties of block relative gain (BRG) are developed. The
connection between BRG and important closed loop properties is explored and some
common conjectures are corrected.

The problem of establishing existence of diagonal controller such that the system has
integrity against controller failure is shown to be NP-hard.

A suboptimal, yet explicit solution to the decentralized minimum variance
benchmark problem is proposed.

many cases, the CCD problem can be reasonably solved using the tools presented

in this thesis alone or with possible minor extensions. For example, reliable decentralized
controller can be designed for open loop stable systems using the results of Chapters

127
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In the context of the CCD problem, the results on Decentralized MV benchmark are useful
for screening of pairing alternatives with achievable output performance as a criterion.

We have not handled the important issue of model uncertainty explicitly. Note that
minimization of input energy required for stabilization provides the maximally robust
controller for norm bounded additive uncertainy8]. The results of Chapte3 can also
be easily extended for handling robust stability and performance issues using the approach
available in L0]]. It must be acknowledged; however, that solving the CCD or control
structure design problem for general time-varying non-linear systems remains an open
challenge and this thesis can be seen as a positive step in that direction.

7.2 Directions for Future Work

We pointed out some potential directions for generalizing and improving upon the results
presented in this thesis in the summaries of the individual chapters. Some other relevant
issues are discussed below with the hope that solving these problems will move us closer
towards finding a general solution for the CSD problem.

e The characterization of achievable performance has received increasing interest from
researchers, but the effect of controller structure on the achievable performance
remains unclear. The results of Zames and Bensoudd&hdan be seen as a good
starting point in this direction.

e Itis likely that the optimal solution to the block diagonal approximation problem is
not unique. An analytical solution is necessary to characterize all possible solutions.
To this end, it is useful to approach tike,, optimal block diagonal approximation
problem for stable systems using the results of Gletel. [44].

e In some cases, it may not be possible to find a stabilizing decentralized controller
through independent designs. This difficulty can be partially overcome by extending
the ideas presented in Chap8dior sequential design of decentralized controller for
unstable systems.

e The requirement that a model be available hinders the online implementation of the
decentralized minimum variance benchmark. It would be extremely useful, if exact
or approximate methods can be derived, where this stringent requirement can be
relaxed.
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e There are no practical tools available (other than numerical simulation) for directly
handling the non-linear behavior of the process systems. An indirect approach
is to approximate the system as a nominal model with an associated uncertainty
description 11], but the involved computational complexity is limiting.






Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

I. M. Alatigi and W. L. Luyben. Control of a complex sidestream column/stripper
distillation configurationlnd. Eng. Chem. Process Des. D&b(3):762—767, 1986.

A. E. Andrews. Encyclopedia of Mathematics and its Applications: The Theory of
Partitions Addison-Wesley Publishing Company, Workingham, UK, 1976.

Y. Arkun. Dynamic block relative gain and its connection with the performance and
stability of decentralized control structurestl. J. of Contro| 46(4):1187-1193,
1987.

Y. Arkun and J. Downs. A general method to calculate input-output gains and the
relative gain array for integrating processe€omputers Chem. Engngl4(10):
1101-1110, 1990.

K. J. Astrom. Introduction to Stochastic Control Theonacademic Press, London,
1970.

J. A. Ball, I. Gohberg, and L. Rodmaimterpolation of Rational Matrix Functions
Operator Theory: Advances and Applications. Bitkser Verlag, Basel, Germany,
1990.

J. Bao, J. F. Forbes, and P. J. McLellan. Robust multiloop PID controller design:
A successive semidefinite programming approdod. Eng. Chem. Res38:3407—
3419, 1999.

H. W. Bode. Network Analysis and Feedback Amplifier Desigdan Nostrand,
Princeton, NJ, 1945.

S. Boyd and C. Barratiinear Controller Design - Limits of Performanc®@rentice
Hall, 1991. Available athttp://www.stanford.edu/ ~boyd/Icdbook/
lcdbook.html

131


http://www.stanford.edu/~boyd/lcdbook/lcdbook.html
http://www.stanford.edu/~boyd/lcdbook/lcdbook.html

132 Bibliography

[10] S.Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnaimear Matrix Inequalities in
System and Control Thear§glAM, Philadelphia, 1994.

[11] R. D. Braatz. Robust loopshaping for Process ContrdPh.d., California School
of Technology, Pasadena, CA, May 1993. Availableh&p://www.cds.
caltech.edu/reports/index.cgi?year=1993

[12] R. D. Braatz, J. H. Lee, and M. Morari. Screening plant designs and control
structures for uncertain systentSomputers Chem. Engg0:463—-468, 1996.

[13] R. D. Braatz, M. Morari, and S. Skogestad. Robust reliable decentralized control.
In American Control Conferencgolume 3, pages 3384—-3388, Baltimore, MD, July
1994,

[14] R. D. Braatz and E. L. Russell. Robustness margin computation for large scale
systems Computers Chem. Eng@3:1021-1030, 1999.

[15] R. D. Braatz, P. M. Young, J. C. Doyle, and M. Morari. Computational complexity
of i calculation.IEEE Trans. Automat. Confr39(5):1000-1002, 1994.

[16] R. P. Brent, F. G. Gustavson, and D. Y. Yun. Fast solution of Toeplitz systems
of equations and computation of Raabproximants.J. of Algorithms 1:259-295,
1980.

[17] E. H. Bristol. On a new measure of interaction for multivariable process control.
IEEE Trans. Automat. Confrl1:133-134, 1966.

[18] P. J. Campo and M. Morari. Achievable closed loop properties of systems under
decentralized control: Conditions involving the steady state gdlBEE Trans.
Automat. Contr.39(5):932-943, 1994.

[19] J. J. Castro and F. J. Doyle. Plantwide control of the fiber line in a pulp hmidl.
Eng. Chem. Res41:1310-1320, 2002.

[20] J. Chen. Relations between block relative gain and Euclidean condition number.
IEEE Trans. Automat. Confr37(1):127-129, 1992.

[21] J. Chen. Sensitivity integral relations and design tradeoffs in linear multivariable
feedback controllEEE Trans. Automat. Conf40(10):1700-1716, 1995.


http://www.cds.caltech.edu/reports/index.cgi?year=1993
http://www.cds.caltech.edu/reports/index.cgi?year=1993

Bibliography 133

[22] J. Chen. Logarithmic integrals, interpolation bounds and performance limitations in
MIMO feedback systemdEEE Trans. Automat. Cont#45(6):1098-1115, 2000.

[23] J. Chen, J. S. Freudenberg, and C. N. Nett. The role of the condition number and the
relative gain array in robustness analy#sitomatica 30(6):1029-1035, 1994.

[24] J. Chen and G. GuWControl-Oriented System Identification: A, Approach John
Wiley & Sons, Mississauga, ON, Canada, 2000.

[25] J. Chen, G. Gu, and C. N. Nett. Worst case identification of continuous time systems
via interpolation.Automatica 30(12):1825-1837, 1994.

[26] J. Chen, S. Hara, and G. Chen. Best tracking and regulation performance under
control effort constraint: Two parameter controller cadEEE Trans. Automat.
Contr, 48(8), 2003.

[27] J. Chen and R. H. Middleton. New development and applications in performance
limitations of feedback systemtEEE Trans. Automat. Conf48(8), 2003.

[28] M. Chilai and P. Gahinet.H, design with pole placement constraints: An LMI
approachlEEE Trans. Automat. Conj41(3):358—-367, 1993.

[29] C. S. Chin and N. Munro. The analysis and control of the ALSTOM gasifier
benchmark problemProceedings of XV IFAC World Congress, Barcelona, Spain
2002.

[30] M. S. Chiu and Y. Arkun. Decentralized control structure selection based on integrity
considerationsind. Eng. Chem. Re29(3):369-373, 1990.

[31] G. E. Coxson. The P-matrix problem is co-NP-completeMathematical
Programming 64:173-178, 1994.

[32] R. Dixon, A. W. Pike, and M. S. Donne. The ALSTOM benchmark challenge on
gasifier control. Proc. Instn. Mech. Engrs, Part |, Journal of Systems and Control
Engineering 214(16):389-394, 2000.

[33] J. J. Downs and E. F. Vogel. A plant-wide industrial process control problem.
Computers Chem. Engnd.7:245-255, 1993.



134 Bibliography

[34] J. C. Doyle, K. Glover, P. Khargonekar, and B. Francis. State-space solutions to
standardH, and’H,, control problems.IEEE Trans. Automat. Confr34(8):831—
847, 1989.

[35] J. C. Doyle, J. E. Wall, and G. Stein. Performance and robustness analysis for
structured uncertainty?roceedings of IEEE Conf. on Decision and Contt$82.

[36] A. S. Foss. Critique of chemical process control the@d\CHE J, 19(2):209-214,
1973.

[37] B. A. Francis.A Course inH,, Control Theory Springer-Verlag, New York, 1987.

[38] J. S. Freudenberg and D. P. Looze. Right half plane zeros and poles and design
tradeoffs in feedback systemEEE Trans. Automat. Conf30:555-565, June 1985.

[39] M. Fu. The real structured singular value is hardly approximabEEE Trans.
Automat. Contr.42(9):1286-1288, 1997.

[40] C. E. Garcia and M. Morari. Internal model control 2. Design procedure for
multivariate systemdnd. Eng. Chem. Process Des. D&4(2):472—-484, 1985.

[41] M. R. Garey and D. S. JohnsonComputers and Intractability: A guide to NP-
completenessV. H. Freeman and Company, New York, 1983.

[42] K. Glover. All optimal hankel-norm approximations of linear multivariable systems
and their£> bounds.Int. J. of Contro] 39(6):1115-1193, 1984.

[43] K. Glover. Robust stabilization of linear multivariable systems: Relations to
approximation.nt. J. of Contro 43(3):741-766, 1986.

[44] K. Glover, D. J. N. Limbeer, and Y. S. Hung. A structured approximation problem
with applications to weighted model reductidBEE Trans. Automat. Conti37(4):
447-465, 1992.

[45] G. C. Goodwin and K. Sin.Adaptive Filtering Prediction and ControlPrentice-
Hall, Englewood Cliffs, 1984.

[46] M. S. Govatsmark.Integrated Optimization and ControlPhD thesis, Norwegian
Institute of Science and Technology, Trondheim, Norway, September 2003.

[47] M. Green and D. J. N. Limebedrinear Robust ControlPrentice-Hall, New Jersey,
1995.



Bibliography 135

[48] P. Grosdidier. Analysis of interaction direction with the singular value
decompositionComputers Chem. Engnd.4(6):687—689, 1990.

[49] P. Grosdidier and M. Morari. Interaction measures for systems under decentralized
control. Automatica 22(3):309-319, 1986.

[50] P. Grosdidier and M. Morari. A computer aided methodology for the design of
decentralized controller€Comput. Chem. Engndl1(4):423-433, 1987.

[51] P. Grosdidier, M. Morari, and B. R. Holt. Closed-loop properties from steady-state
gain information.Ind. Eng. Chem. Fundan4:221-235, 1985.

[52] A. N. Gundes and M. G. Kabuli. Reliable decentralized-integral action controller
design.IEEE Trans. Automat. Con#6(2):296-301, 2001.

[53] T.J. Harris. Assessment of control loop performart€an. J. of Chem. Engngs7:
856-861, 1989.

[54] T. J. Harris, F. Boudreau, and J. F. Macgregor. Performance assessment of
multivariable feedback controller&wtomatica 32(11):1505-1518, 1996.

[55] T. J. Harris, C. T. Seppala, and L. D. Desborough. A review of performance
monitoring and assessment techniques for univariate and multivariate control
systems.J. Proc. Contro} 9:1-17, 1999.

[56] K. Havre. Studies on Controllability analysis and Control Structure DesighD
thesis, Norwegian University of Science and Technology, Trondheim, Norway,
January 1998. Available alttp://www.nt.ntnu.no/users/skoge/
publications/thesis/1998/havre/

[57] K. Havre and S. Skogestad. Achievable performance of multivariable systems with
unstable zeros and poldsitl. J. of Contro| 74:1131-1139, 2001.

[58] K. Havre and S. Skogestad. Selection of variables for stabilizing control using pole
vectors.|IEEE Trans. Automat. Cont48(8):1393-1398, 2003.

[59] K. E. Haggblom. Partial relative gain: A new tool for control structure selection,
1997. Presented at AICHE annual meeting, Los Angeles, Availabletat
Ilwww.abo.fi/fak/ktf/rt/papers/aic97kh1.pdf


http://www.nt.ntnu.no/users/skoge/publications/thesis/1998/havre/
http://www.nt.ntnu.no/users/skoge/publications/thesis/1998/havre/
http://www.abo.fi/fak/ktf/rt/papers/aic97kh1.pdf
http://www.abo.fi/fak/ktf/rt/papers/aic97kh1.pdf

136 Bibliography

[60] A. J. Helmicki, C. A. Jacobson, and C. N. Nett. Control oriented system
identification: A worst-case/deterministic approacly,. IEEE Trans. Automat.
Contr, 36(10):1163-1176, 1991.

[61] A. J. Helmicki, C. A. Jacobson, and C. N. Nett. Worst-case/deterministic approach
in H,.: The continuous-time casdEEE Trans. Automat. Confr37(5):604—-610,
1992.

[62] R. A. Horn and C. R. JohnsonMatrix Analysis Cambridge University Press,
Cambridge, UK, 1985.

[63] R. A. Horn and C. R. Johnsorilopics in Matrix Analysis Cambridge University
Press, Cambridge, UK, 1991.

[64] M. Hovd, D. L. Ma, and R. D. Braatz. On the computation of disturbance rejection
measuresind. Eng. Chem. Res42:2183-2188, 2003.

[65] M. Hovd and S. Skogestad. Simple frequency dependent tools for control system
analysis.Automatica 28:989-996, 1992.

[66] M. Hovd and S. Skogestad. Improved independent design of robust decentralized
controllers.J. Process Contrgl3:43-51, 1993.

[67] M. Hovd and S. Skogestad. Sequential design of decentralized controllers.
Automatica 30(10):1601-1607, 1994.

[68] B. Huang and S. L. Shah. The role of the unitary interactor matrix in the explicit
solution of the singular LQ output feedback control problefsutomatica 33(11):
2071-2075, 1997.

[69] B. Huang and S. L. ShalPerformance Assessment of Control Loops: Theory and
Applications Springer-Verlag, London, 1999.

[70] B. Huang, S. L. Shah, and E. K. Kwok. Good, bad or optimal? Performance
assessment of multivariate process@stomatica 33(6):1175-1183, 1997.

[71] C. R. Johnson and H. M. Shapiro. Mathematical aspects of the relative gain array
(Ao A-T). SIAM J. Alg. Dis. Meth.7(4):627—644, 1986.

[72] V. Kariwala, J. F. Forbes, and E. S. Meadows. Block relative gain: Properties and
pairing rules.Ind. Eng. Chem. Res42(20):4564—-4574, 2003.



Bibliography 137

[73] V. Kariwala, J. F. Forbes, and E. S. Meadows. Closed loop properties and block
relative gain. In7"" International Symposium on Advanced Control of Chemical
ProcessesHong Kong, P.R. China, January 2004. Availablehtp://www.
ualberta.ca/dept/chemeng/control/reports.html

[74] V. Kariwala, S. Skogestad, J. F. Forbes, and E. S. Meadows. Input performance
limitations of feedback control. IPAmerican Control ConferengeBoston,
MA, July 2004. Available ahttp://www.ualberta.ca/dept/chemeng/
control/reports.html

[75] B. Ko and T. F. Edgar. Assessment of acheivable Pl performance for linear processes
with dead time. ImMmerican Control Conferenc®hiladelphia, PA, 1998.

[76] H. Kwaakernaak and R. SivarLinear Optimal Control SystemsJohn Wiley &
Sons, Inc., New York, 1972.

[77] L. Li and K. Zhou. An approximation approach to decentralizég control.
In Proceedings of4* World Congress on Intelligent Control and Automation
Shanghai, China, June 2002.

[78] D. J. N. Limbeer. The application of generalized diagonal dominance to linear
system stability theoryint. J. of Contro) 36(2):185-212, 1982.

[79] W. L. Luyben, B. Tyreus, and M. L. LuyberRlantwide Process ControMcGraw-
Hill, 1998.

[80] D. L. Ma, J. G. VanAntwerp, M. Hovd, and R. D. Braatz. Quantifying the potential
benefits of constrained control for a large scale systitf. Proceedings - Control
Theory and Application149:423-432, 2002.

[81] A. G. J. MacFarlane and N. Karcanias. Poles and zeros of linear multivariable
systems: A survey of algebraic, geometric and complex variable theoti. J.
Control, 24:33-74, 1976.

[82] V. Manousiouthakis and M. Nikolaou. Analysis of decentralized control structures
for non-linear systemsAIChE J, 35(4):549-558, 1989.

[83] V. Manousiouthakis, R. Savage, and Y. Arkun. Synthesis of decentralized process
control structures using the concept of block relative gaMChE J, 32(6):991—
1003, 1986.


http://www.ualberta.ca/dept/chemeng/control/reports.html
http://www.ualberta.ca/dept/chemeng/control/reports.html
http://www.ualberta.ca/dept/chemeng/control/reports.html
http://www.ualberta.ca/dept/chemeng/control/reports.html

138 Bibliography

[84] D. Q. Mayne. The design of linear multivariable systemaitomatica 9(3):201—
207, 1973.

[85] C. N. Nett and V. Manousiouthakis. Euclidean condition and block relative gain:
Connections, conjectures and clarificationEEE Trans. Automat. Contr32(5):
405-407, 1987.

[86] C. N. Nett and K. D. Minto. A quantitative approach for selection and partitioning
of measurements and manipulations for control of complex systems, June 1989.
Presented aamerican Control Conferenc®@ittsburgh, Pennsylvania.

[87] A. Niederlinski. A heuristic approach to the design of linear multivariate interacting
control systemsAutomatica 7:691-701, 1971.

[88] Y. Ohta, D. D. Siljek, and T. Matsumoto. Decentralized control using quasi-block
diagonal dominance of transfer function matrichsSEE Trans. Automat. Contr31
(5):420-429, 1986.

[89] Y. Peng and M. Kinnaert. Explicit solution to the singular LQ regulation problem.
IEEE Trans. Automat. Confr37(5):633—636, 1992.

[90] R. Pintleton, P. Guillaume, Y. Rolaine, J. Shouckens, and H. Van hamme. Parametric
identification of transfer functions in the frequency domain - A surVei£E Trans.
Automat. Contr.39(11):2245-2260, 1994.

[91] S.J. Qin. Controller performance monitoring - A review and assessi@entputers
Chem. Engng23:173-186, 1998.

[92] L. Qiu and E. J. Davison. Performance limitations of non-minimum phase systems
in the servomechanism problerutomatica 29(2):337-349, 1993.

[93] D. E. Reevesand Y. Arkun. Interaction measures for nonsquare decentralized control
structures AICHE J, 35(4):603—-613, 1989.

[94] H. H. RosenbrockComputer-Aided Control System Desigkcademic Press, New
York, 1974.

[95] S. M. Rump. On P-matrices.inear Algebra and Application863:237-250, 2003.

[96] Y. Samyudia, P. L. Lee, and I. T. Cameron. A new approach to decentralized control
design.Chem. Eng. Sci50(11):1695-1706, 1995.



Bibliography 139

[97] M. M. Seron, J. H. Braslavsky, and G. C. GoodwiRundamental Limitations in
Filtering and Control Springer-Verlag, London, 1997.

[98] D. D. Siljek. Decentralized control and computations: Status and prospgedgev.
Control, 20:131-141, 1996.

[99] S. Skogestad. Plantwide control: The search for the self-optimizing control
structure.J. Proc. Contro) 10:487-507, 2000.

[100] S. Skogestad and M. Morari. Some new properties of the structured singular value.
IEEE Trans. Automat. Confr33(12):1151-1154, 1988.

[101] S. Skogestad and M. Morari. Robust performance of decentralized control systems
by independent designdutomatica 25(1):119-125, 1989.

[102] S. Skogestad and |. Postlethwaitilultivariable Feedback Control: Analysis and
design John Wiley & Sons, Chichester, UK, 1996.

[103] D. D. Sourlas and V. Manousiouthakis. Best achievable decentralized performance.
IEEE Trans. Automat. Conf40(11):1858-1871, 1995.

[104] G. Stein. Respect the unstabléEEE Control systems Magazin23(4):12-15,
20003.

[105] M. J. Tsatsomeros and L. Li. A recursive test for P-matrid@d., 40(2):410-414,
2000.

[106] M. Van de wal. Control structure design for dynamic systems: A review.
Technical Report WFW-94-084, Eindhoven University of Technology, Eidnhoven,
Netherlands, September 1994.

[107] M. Van de Wal and B. de Jager. A review of methods for input/output selection.
Automatica 37:487-510, 2001.

[108] J. G. VanAntwerp and R. D. Braatz. A tutorial on linear and bilinear matrix
inequalities.J. Proc. Contr, 10:363-385, 2000.

[109] M. Vidyasagar. Control Systems Synthesis: A Factorization Approa8eries in
signal processing, optimization and control. MIT Press, Cambridge, MA, 1985.

[110] G. Vinnicombe.Uncertainty and FeedbackNorld Scientific, London, 1999.



140 Bibliography

[111] J. E. Wall, J. C. Doyle, and C. A. Harvey. Tradeoffs in design of multivariate
feedback systems. Proceedings of 8" Annual Allerton Conf. on Communication,
Control and Computingpages 725-735, October 1980.

[112] S. Wang and E. J. Davison. On the stabilization of decentralized control systems.
IEEE Trans. Automat. Conr18(5):473-478, 1973.

[113] C. C. Yuand W. L. Luyben. Robustness with respect to integral contrallalititly.
Eng. Chem. Res26:1043-1045, 1987.

[114] J.1. Yuz and G. C. Goodwin. Loop performance assessment for decentralized control
of stable linear system&uropean J. of Control9:116-130, 2003.

[115] G. Zames. Feedback and optimal sensitivity: Model reference transformations,
multiplicative seminorms, and approximate invers&E Trans. Automat. Conir.
26(2):301-320, 1981.

[116] G. Zames and D. Bensoussan. Multivariable feedback, sensitivity, and decentralized
control. IEEE Trans. Automat. Conf28(11):1030-1035, 1983.

[117] K. Zhou and J. C. DoyleEssentials of Robust ControPrentice Hall, New Jersey,
1998.



	1 Introduction
	1.1 The Case for Decentralized Control
	1.2 Motivation and Scope
	1.3 Thesis Overview

	2 Input Performance Limitations of Feedback Control
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Poles and Zeros
	2.2.2 All Pass Factorization of RHP Poles and Zeros
	2.2.3 Optimal Control
	2.2.4 Hankel Singular Values and Balanced Realization

	2.3 Problem Formulation and Simplification
	2.4 SISO systems
	2.4.1 Rational Systems
	2.4.2 Time Delay Systems

	2.5 MIMO systems
	2.5.1 Rational Systems
	2.5.2 Time Delay Systems

	2.6 Extended Stability
	2.7 Selection of Variables for Stabilizing Layer
	2.7.1 Choice of Norm
	2.7.2 Reducing Computational Complexity
	2.7.3 Other Criteria

	2.8 Chapter Summary
	2.9 Further Reading on Performance Limitations

	3 -Interaction Measure for Unstable Systems
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Structured Singular Value
	3.2.2 Optimal Hankel Norm Approximation
	3.2.3 Linear Matrix Inequalities

	3.3 -Interaction Measure
	3.4 Alternate Representation of -IM
	3.5 Block Diagonal Approximation
	3.5.1 Frequency Wise Approximation
	3.5.2 Parametric L Optimal Identification

	3.6 Controller Design
	3.7 Numerical Example
	3.8 Chapter Summary

	4 Block Relative Gain: Properties and Pairing Rules
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 BRG Revisited

	4.3 Algebraic Properties
	4.4 Closed Loop Properties
	4.4.1 Stability
	4.4.2 Input Output Controllability
	4.4.3 Block Diagonal Dominance
	4.4.4 Closed Loop Interactions

	4.5 Alternate Pairing Rules
	4.5.1 Numerical Examples

	4.6 Note on Integrating Systems
	4.7 Chapter Summary
	4.A Scaled Gain Matrices for ALSTOM Gasifier System

	5 Integrity of Systems under Decentralized Integral Control
	5.1 Introduction
	5.2 Necessary and Sufficient Conditions
	5.3 Simplified Representation
	5.4 Computational Complexity
	5.5 Chapter Summary

	6 Decentralized Minimum Variance Benchmark
	6.1 Introduction
	6.2 Interactor Matrices
	6.3 Problem Formulation
	6.4 Decentralized MV Benchmark
	6.4.1 Simple Interactor Matrix
	6.4.2 General Interactor Matrix

	6.5 Achievable PID Performance
	6.6 Limitations
	6.7 Chapter Summary

	7 Conclusions and Future Work
	7.1 Thesis Conclusions
	7.2 Directions for Future Work

	Bibliography

