
University of Alberta

Library Release Form

Name of Author: Vinay Kariwala

Title of Thesis: Multi-loop Controller Synthesis and Performance Analysis

Degree: Doctor of Philosophy

Year this Degree Granted: 2004

Permission is hereby granted to the University of Alberta Library to reproduce copies of this
thesis and to lend or sell such copies for private, scholarly or scientific research purposes
only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

. . . . . . . . . . . . . . . . . .
Vinay Kariwala
CME 536
University of Alberta
Edmonton, AB
Canada, T6G 2G6

Date: . . . . . . . . .



I simply picked a bunch of flowers
and added nothing

but the thread that binds them

-Michel De Montaigne, French writer (1533-1592)



University of Alberta

MULTI -LOOP CONTROLLER SYNTHESIS AND PERFORMANCEANALYSIS

by

Vinay Kariwala

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree ofDoctor of Philosophy.

in

Process Control

Department of Chemical and Materials Engineering

Edmonton, Alberta
Fall 2004



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitledMulti-loop Controller Synthesis
and Performance Analysissubmitted by Vinay Kariwala in partial fulfillment of the
requirements for the degree ofDoctor of Philosophy in Process Control.

. . . . . . . . . . . . . . . . . .

Dr. J. Fraser Forbes

. . . . . . . . . . . . . . . . . .

Dr. Edward S. Meadows

. . . . . . . . . . . . . . . . . .

Dr. Horacio J. Marquez

. . . . . . . . . . . . . . . . . .

Dr. Sirish L. Shah

. . . . . . . . . . . . . . . . . .

Dr. Richard D. Braatz

Date: . . . . . . . . .



To my family
&

Fraser Forbes, my Ph.D. thesis supervisor





Abstract

Over the past few decades, many algorithms have been proposed for controller design. In

practice, an engineer needs to address the following issues before the actual controller can

be designed: which variables should be measured, controlled and manipulated, and what

links should be made between them. These decisions are often taken heuristically, which

has an adverse effect on the safe and economic operation of the process. In this thesis,

simple yet theoretically sound tools are developed for partitioning of the measurements

and manipulations for control of complex systems.

The task of controller design is much simplified by pre-stabilizing the system using

a subset of variables. Selecting the subset of variables by minimization of the input

energy required for stabilization reduces the likelihood of otherwise destabilizing input

saturation. The achievable input performance for linear systems is characterized and an

iterative method is presented for variable selection. The conventionalµ-interaction measure

is generalized for synthesizing a decentralized stabilizing controller using independent

designs. The decentralized controller is designed based on the optimal block diagonal

approximation of the multivariate system.

For the stabilized system, though use of a single large controller is mathematically

attractive, simpler and smaller controllers are often used in practice for ease of maintenance

and design. Connections between closed loop properties and block relative gain are

presented for partitioning the system based on practical issues like reliability and simplified

tuning. It is shown that establishing the existence of a diagonal controller with integral



action for reliable stabilization is NP-hard.

Once the control structure is established, existing methods can be used for controller

design; however, the closed loop performance can deteriorate with time due to uncertain

dynamics and changing operating conditions. Use of online performance monitoring

tools is necessary to identify significant performance degradation and subsequent remedial

steps. The existing methods are inadequate for performance monitoring of decentralized

controllers and a sub-optimal, but explicit solution to the decentralized minimum variance

benchmark problem is proposed.

The tools presented in this thesis can be used individually or synthesized into a

comprehensive design procedure with possible minor extensions.
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Nomenclature

The frequently used symbols in this report are included in the following list. The vectors

are written in lower case bold and matrices in upper case bold. The individual elements of

a matrix are written in lower case of the same symbol as used for the matrix.

Main Notation

˙(·) Time derivative
(·)i ith element of vector,ith column of matrix
(·)′i ith row of matrix
(·)ij ijth element of matrix

Sub-matrix made of rows and columns indexed by setsi andj
(·)ij Matrix with ith row andjth column deleted
‖·‖p p-norm of vector, matrix or transfer matrix
(·)T Transpose
(·)∗ Complex conjugate transpose
(·)−∗ Complex conjugate transpose of the inverse
(·) ◦ (·) Hadamard or element-wise product
(·) Â (·) Partial ordering,A Â 0 impliesA is positive definite
Re(·) Real part
Im(·) Imaginary part
det(·) Determinant
tr(·) Trace
diag(·) Matrix formed by direct matrix sum of the elements (blocks)
E[·] Expectation operator
(·)! Factorial,n! =

∏n
i=1 i

(·) ⋃
(.) Union of sets

(·) ⋂
(·) Intersection of sets

↔ Minimal state space realization of transfer matrix
j Imaginary number,

√−1
mi ×mj Dimension of theith diagonal block of the partitioned system
ny Number of outputs of a transfer matrix
nu Number of inputs of a transfer matrix
nz Number of zeros of a transfer matrix
np Number of poles of a transfer matrix
p Pole of the transfer matrix



z Zero of the transfer matrix
s Laplace variable
q−1 Back shift operator
I2 AchievableH2 optimal input performance
I∞ AchievableH∞ optimal input performance
1n n-dimensional vector of ones
u Manipulated variables, inputs
y Controlled variables, outputs
w Disturbance variables, Exogenous inputs
up Input pole direction associated with polep
uz Input zero direction associated with zeroz
yp Output pole direction associated with polep
yz Output zero direction associated with zeroz
A State matrix in the linear state-space realization
B Input matrix in the linear state-space realization
C Output matrix in the linear state-space realization
D Matrix with the direct effect ofu ony in the linear state-space

realization, Scaling matrix, Interactor matrix
P Diagonal state matrix with poles as diagonal elements in the

state-space realization
F State feedback gain
L Observer gain
T State transformation matrix
I Identity matrix
X Solution of state feedback algebraic Riccati equation
Y Solution of observer algebraic Riccati equation
C(s) Compensator
G(s) Transfer matrix connecting controlled and manipulated variables
Gmi(s) Input minimum phase part ofG(s)
Gmo(s) Output minimum phase part ofG(s)
Gsi(s) Input stable part ofG(s)
Gso(s) Output stable part ofG(s)
Gw(s) Transfer matrix connecting controlled and disturbance variables
U(G(s)) Unstable part ofG(s)
K(s) Controller
Bzi(s) Blaschke product obtained by input factorization of RHP zeros
Bzo(s) Blaschke product obtained by output factorization of RHP zeros
Bpi(s) Blaschke product obtained by input factorization of RHP poles
Bpo(s) Blaschke product obtained by output factorization of RHP poles
S(s) Sensitivity function
T(s) Complementary sensitivity function
Tzw(s) Closed loop transfer matrix fromz to w
Wu(s) Frequency dependent weight for input performance



RH∞ Subspace of rational stable transfer matrices with real coefficients
Rm×n m× n dimensional space of real numbers
Cm×n m× n dimensional space of complex numbers
N(α, (.)) Number of clockwise encirclements of(α, 0) by image of Nyquist

D contour under (.)

Greek Symbols

η Performance Index
κ Euclidian condition number of matrix
µ Structured singular value
µ̄ Upper bound on structured singular value obtained by scaling
ρ Spectral radius
λ Eigenvalue
λ Minimum eigenvalue
σ Singular value
σ̄ Maximum singular value
σ Minimum singular value
σH Hankel singular value (see Definition2.4)
σ̄H Maximum Hankel singular value (see Definition2.4)
σH Minimum Hankel singular value (see Definition2.4)
ω frequency
λij Relative gain betweenyi anduj

Λ Relative gain array
[ΛB]ij Block relative gain betweenyi anduj

θ Time delay for a SISO transfer matrix
Θ Time delay for a MIMO transfer matrix
∆ Uncertainty, perturbation matrix
Γ Performance Relative Gain Array

Abbreviations

iff if and only if
wrt with respect to
ARE Algebraic Riccati equation
BRG Block relative gain
CCD Control configuration design
CSD Control structure design
FIR Finite impulse response
GBDD Generalized block diagonal dominance
LTI Linear time invariant
LHP Left half of complex plane
LHS Left hand side
MIMO Multi input Multi output



MV Minimum variance
PID Proportional integral derivative
PRGA Performance relative gain array
QBDD Quasi block diagonal dominance
RHP Right half of complex plane
RHS Right hand side
RGA Relative gain array
SISO Single input single output

Norms

Induced2-norm: For am× n matrix,A,

‖A‖2 = sup
‖u‖2=1

‖Au‖2 = σ̄(A)

H2 norm: For a stable and strictly proper transfer matrixG(s),

‖G(s)‖2 =
1

2π

∫ ∞

−∞
tr (G(jω)∗G(jω)) dω

H∞ norm: For a stable transfer matrixG(s),

‖G(s)‖∞ = sup
Re(s)>0

σ̄(G(s)) = sup
ω∈R

σ̄(G(jω))

L∞ norm: Similar toH∞ norm, except thatG(s) can be unstable.

Hankel norm: For a stable transfer matrixG(s),

‖G(s)‖H = σ̄H(G(s))



Chapter 1

Introduction

1.1 The Case for Decentralized Control

For a multivariate system, it is mathematically attractive to use a centralized controller to

meet the desired objectives of stabilization and performance requirements. In practice, a set

of smaller dimensional controllers, which make their decisions locally, is frequently used.

A control strategy that uses a set of non-interacting controllers is called a decentralized

control strategy. Formally defining [102],

Decentralized controlleris a control system consisting of non-interacting feedback

controllers, which interconnect a set of output measurements/commands with a subset of

manipulated inputs. These subsets should not be used by any other controller.

In general, a centralized controller provides better performance and constraint handling

as compared to the decentralized controllers. On the other hand, in addition to their inherent

simplicity, a decentralized control system exhibit several advantages over a fully centralized

design. In the ideal case, these advantages include [18, 102]:

1. The individual controller subsystems can be brought in and out of service providing

flexibility of operation in presence of changing control objectives.

2. Due to the localized effect of the individual controllers, the system can be made fault

tolerant with ease, particularly in the case of a sensor or actuator failure.

3. The individual controllers are easier to tune online in presence of changing process

conditions.

4. Simpler models can be used to design and tune the controllers reducing the modelling

requirements.

1
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Figure 1.1:Block-wise system partitioning

5. The online computational effort is less than their multivariable counterparts and

implementation is simpler.

For a given system, all of the mentioned advantages may not be realized simultaneously

or may only be realized at the cost of degraded performance. Nevertheless, decentralized

control seems to be the almost exclusive choice for control of large-scale systems.

For power systems, decentralized control is necessitated due to physical distances

between different stations and the enormous cost of establishing a communication network.

In process systems, the use of decentralized controllers is motivated by the difficulty

(and impossibility) of obtaining reliable dynamic models and ease of tuning and design.

Decentralized control is sometimes implicit in non-conventional systems such as the

administrative system of a country, where the provincial governments look after the welfare

of citizens under the supervision of federal government. Decentralized control is also the

preferred choice by nature,e.g. the secretion of different enzymes and hormones in the

human body is controlled by different sections of the brain.

1.2 Motivation and Scope

Before a decentralized control scheme can be implemented, suitable pairings between the

controlled and the manipulated variables need to be determined. In other words, the system

needs to be partitioned into a number of blocks (see Figure1.1). In some cases such as

a platoon of vehicles, the partitioning can be obvious. In the general case, there exist

competing alternatives for partitioning and the choice depends on the design requirements.

Consider the example of an industrial boiler furnace [94], where the objective is to

control the temperatures (y) by manipulating the gas flow rates (u) in the four boilers.
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y1 y2 y3 y4

u1 u2 u3 u4

Figure 1.2:Industrial boiler furnace

For this system, they1,y2 are primarily affected byu1,u2 andy3,y4 by u3,u4. When the

system is partitioned as((y1 − y2,u1 − u2), (y3 − y4,u3 − u4)), a block decentralized

controller can be designed easily to closely match the closed loop performance of the

centralized controller [83]. If the objective is to instead obtain acceptable closed loop

performance with minimum controller complexity, a fully decentralized controller with

((y1,u1), (y2,u2), (y3,u3), (y4,u4)) partitioning suffices.

The problem of pairing controlled and manipulated variables, or system partitioning is

known as control configuration design (CCD) problem. This thesis aims at developing tools

for solving the CCD problem. At this point, it is fair to question the necessity of seeking

a systematic solution to the CCD problem. After all, decentralized controllers, designed

based on heuristics and process knowledge, have been successfully used in large-scale

process industries for decades.

Due to the increased competitiveness and tighter environmental regulations, the levels

of mass, energy and information integration among process units have increased drastically

over the years. The controllers designed optimally for every unit do not always work well

together. Luybenet al. [79] report that process control lore contains tales of multi-million

dollar plants, that never operated. Thus, the work in this thesis is primarily motivated by

the increased complexity of the systems.

The second reason is pure intellectual curiosity and the drive to make things better.

The heuristics used for partitioning process systems and subsequently designing control

systems are a result of the invaluable experience acquired by the process engineers over the

years through trial and error. A sound mathematical theory for solving the CCD problem

can provide valuable insight into the advantages and possibly unknown disadvantages of

these heuristics closing the gap between theory and practice [36]. Simultaneously, these

insights can be used for meeting the desired objectives closely with reduced controller

complexity [86].
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The CCD problem itself is a sub-problem of the more general control structure design

(CSD) problem. In the CSD problem, the tasks of identifying controlled and manipulated

variables from measurements, determining pairings between them and selecting the

controller type are dealt with simultaneously or sequentially [102, 107].

Throughout this thesis, we assume that the sets of controlled and manipulated variables

have already been identified. For process systems, the set of manipulated variables

is easily selected as the valve inputs that can be varied independently, but the choice

of controlled variables is not always obvious. Recently, Skogestad [99] proposed the

promising method of self-optimizing control for selection of controlled variables based

on economics. Govatsmark [46] has demonstrated the usefulness of this approach through

industrial-scale case studies. A review of some other methods available for the selection of

the sets of controlled and manipulated variables is available in [107].

Some other assumptions and conventions used in this thesis are in order. It is assumed

that the system can be described by a finite dimensional linear time invariant (LTI) model,

which is available. Considering the difficulty associated with procuring a reliable dynamic

model, parts of this thesis focus on using simple models such as steady state gain model, as

far as possible. With slight abuse of notation, the following terms are used interchangeably:

system and FDLTI model, controlled variables and outputs and, manipulated variables and

inputs. A block diagonal matrix is generally perceived as a matrix with the block sub-

matrices being square. In this thesis, the same term is used, when the individual blocks are

possibly non-square. When the inverse of a matrix or a system is used, it is assumed that it

exists. For simplicity, the same symbol is used for inverse of square and left or right inverse

of non-square matrices and systems. To emphasize the structure of the controller, the

decentralized controller is referred to as the fully decentralized controller for the diagonal

controller and block decentralized controller otherwise.

1.3 Thesis Overview

During the past two decades, the CCD or the pairing problem has drawn a lot of attention

from researchers, particularly in the area of process control. An overview of the available

methods can be found in [102] and a more detailed review in [106]. With the variety

of methods available, this thesis aims at addressing some of the relevant issues that have

received little attention. Whereas some of the results are extensions and generalizations of

the available results, some new concepts are also introduced. This thesis can be broadly

divided into three parts:
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1. System stabilization using multivariate or decentralized controller (Chapters2 and3)

2. Pairing selection for the stabilized system (Chapters4 and5)

3. Performance monitoring of decentralized controllers (Chapter6)

An overview of the individual chapters of the thesis follows.

System stabilization Most (if not all) pairing selection tools are developed under the

assumption that the underlying system is stable. In Chapter2, we characterize the

achievable input performance of linear systems possibly having time delay operating under

feedback control. Based on these results, a simple iterative method is presented for

selection of a subset of controlled and manipulated variables for pre-stabilizing the system

using a multivariate controller.

In Chapter3, we propose a methodology for synthesizing the stabilizing decentralized

controller using independent designs. The methodology involves a paradigm shift, as the

decentralized controller is designed based on a block diagonal approximation of the system

instead of the block diagonal elements. A numerical solution for finding the optimal block

diagonal approximation through minimization of scaledL∞ distance between the system

and the approximation is presented.

Pairing selection Contrary to the SISO pairings, block pairings are still selected based

on heuristics [19, 29]. For systematic selection of block pairings, we study a promising

method, i.e. block relative gain (BRG) [83] in Chapter4. The connections between

BRG and issues like closed loop stability, controllability, block diagonal dominance and

interactions are explored and simple pairing rules are proposed. As an offshoot, we develop

a number of algebraic properties of BRG.

In Chapter5, we show that the recently proposed necessary and sufficient conditions [52]

for assessing integrity of a system, can be equivalently expressed in terms of well known

notions of BRG and Niedrilinski’s index [49, 87]. These results imply that establishing the

existence of a diagonal controller with integral action such that the system has integrity is

NP-hard [41].

Performance monitoring The responsibilities of a control engineer extend well beyond

ensuring good performance at design stage. Sustained benefits can result from monitoring

the control system performance and proper maintenance when performance degrades.

In Chapter6, we point out the insufficiency of the available minimum variance (MV)
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benchmark [69] for performance monitoring of decentralized controllers. We present an

approximate solution to the decentralized MV benchmark problem, where the upper bound

on the output variance is minimized. Though a similar numerical search based method has

recently been available [114], the suboptimal solution presented here is explicit and is also

extended for performance monitoring of multi-loop PID controllers.

For the readers convenience, an overview of the relevant concepts from the linear

systems, control and optimization theory is presented in every chapter. Advanced readers

can skip these portions of the thesis without loss of continuity.



Chapter 2

Input Performance Limitations of
Feedback Control

For selecting controlled and manipulated variables to stabilize the system, we

characterize the achievable input performance for linear time invariant (LTI) systems with

and without time delay. Achievable input performance depends primarily on the joint

controllability and observability of unstable poles in bothH2 andH∞ optimal control

frameworks. A simple method is presented for the extended stability problem, where

unstable as well as stable poles close to the imaginary axis of complex plane are moved

to a half complex plane. We draw a number of insights that are useful for selection of

variables for stabilizing layer, as well as process design and formulation of the optimal

controller design problem.1

2.1 Introduction

For complex unstable systems, often the requirements of stabilization and performance

satisfaction are separated,i.e. a subset of controlled and manipulated variables is initially

used for stabilization and then another controller is designed for the stabilized system

to satisfy the performance requirements. The question remains: Which controlled and

manipulated variables should be used for stabilization? These variables can be conveniently

selected such that the input or control effort required for stabilization is minimized as [58]:

1This work was performed while the author was visiting Professor Sigurd Skogestad, Norwegian Institute
of Science and Technology, Trondheim, Norway during March-May 2003.

Parts of this chapter were presented at the annual meeting of American Institute of Chemical Engineers,
San Francisco, CA, 2003 and the American Control Conference, Boston, MA, 2004 [74].

7
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(i) the likelihood of input saturation is reduced;

(ii) the disturbing effect of the stabilizing control layer on the stabilized system is

minimized; and

(iii) generally output performance is not very important for stabilizing control.

Stabilizing
Controller

u1

Unstable
System

u2

d

y1

y2

-

d

u2 y2
Performance
Satisfaction

Stabilized
System

-

Figure 2.1:Separation of controller design objectives

In Figure 2.1, let the set of controlled variables,y and manipulated variables,u be

partitioned as,y = [y1 y2] andu = [u1 u2]. The variables for the stabilizing layer (y1,u1)

are selected such that the closed loop system is stable and the norm of the transfer matrix

from disturbancesd to u1 is minimized. For this purpose, we characterize the achievable

input performance of LTI systems under feedback control in this chapter. Then, the

variables of the stabilizing layer can be selected by simply comparing the input requirement

for stabilization using different subsets of variables. It is pointed out, however, that for any

meaningful comparison, it is necessary to scale the variables of system prior to analysis.

The possible choices for scaling factors include: maximum allowable ranges [102] or

variance and the economic penalty associated with variation of individual variables.

In theH2 control framework, the problem of control effort minimization is the dual of

the well studied minimum variance or cheap control problem [69, 92]. It is known that the

output performance of the system is limited by its unstable zeros and time delay. Similarly,

the unstable poles and time delays pose limitations on the achievable input performance.

In the context of stable systems, some authors [64, 80, 102] have considered characterizing

the achievable input performance for disturbance rejection under the assumption of perfect

control. The focus of this chapter is on stabilization and note that the minimal control effort

required for stabilizing stable system is trivially zero.

The broad area of fundamental performance limitations has drawn a lot of interest in the

past two decades. An overview of the available results and some recent developments in
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this area can be found in [27, 97, 102] and the references within. Though the focus has

largely been on obtaining bounds on sensitivity and complementary sensitivity functions,

which primarily address output performance issues [22], some researchers have considered

characterizing achievable input performance directly or indirectly.

Glover [43] studied the robust stability of systems in the presence of additive

unstructured uncertainty. With this description of uncertainty, maximizing robust stability

is equivalent to minimizing theH∞ norm of transfer matrix from disturbances to inputs.

Clearly, these results are relevant to the problem in the present context, but the disturbance

model and frequency dependent weight are assumed to be minimum phase stable. Havre

and Skogestad [57] relaxed this assumption of minimum phase stable disturbance model

and frequency dependent weight and derived expressions for the lower bound on achievable

input performance. Using a novel approach of pole vectors, the same authors [58]

have provided exact expressions for rational systems with single unstable pole driven by

measurement noise. Chenet. al. [26] have studied the optimal regulation problem with

input usage penalized for rational unstable systems driven by input disturbances in the

H2 optimal control framework. These results can be related to the present problem by

appropriate choice of weights.

In this chapter, we characterize the minimal input requirement for stabilization in both of

H2 andH∞ optimal control frameworks. The system is considered to be driven by output

disturbances, where the disturbance model can share unstable poles with the system. This

representation poses no limitations and the case of input disturbances is easily handled by

setting the disturbance model same as the system. We further generalize these results to

systems with input-output time delay. In addition to selection of variables for stabilization,

the results presented here are also useful in process design considering achievable control

performance and optimal controller synthesis problem formulation.

For a specified set of controlled and manipulated variables, the control effort required

for stabilization can be easily calculated using available numerical techniques for optimal

controller design. In addition to the computational expense involved, a limitation of such

a numerical approach is that it does not provide any information regarding the factors

limiting the input performance. These insights are useful for making appropriate design

modifications, when the system cannot be stabilized by constraining the inputs of the

system within their maximal allowable ranges. In some special cases, these insights can

also provide simple analytic methods for selection of variables for stabilizing layer [58].

The organization of the remaining discussion in this chapter is as follows: key results

from linear systems theory including optimal control are reviewed in§ 2.2; the problem of
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designing the optimal controller that minimizes input usage for stabilization is formulated

and simplified in§ 2.3; the achievable input performance for univariate and multivariate

systems is characterized in§ 2.4 and § 2.5, respectively; in§ 2.6, we present a simple

method for the extended stability problem, where unstable as well as stable poles close to

the imaginary axis are moved to a half complex plane; we present some insights and an

iterative algorithm to reduce the computational complexity involved in selecting controlled

and manipulated variables for stabilizing control in§ 2.7; and§ 2.8concludes this chapter.

2.2 Preliminaries

In this section, we collect some general results from linear systems theory. These results

form the basis for further development in this chapter.

2.2.1 Poles and Zeros

The notions of poles and zeros for univariate systems are generally well understood. For

multivariate systems, the poles and zeros are characterized by their locations as well as

directions. As a consequence, contrary to univariate systems, a multivariate system can

have poles and zeros at the same location with no cancellation if the associated directions

are different. The knowledge of pole and zero directions provides a simple method for

factorization of systems into an all-pass factor and a minimum phase or stable part, as

discussed later. We briefly review the concepts of poles and zeros of multivariate systems,

where the discussion is adapted from [56, 102].

For a univariate system,zi is a zero ofg(s) if g(zi) = 0. This definition of zeros can be

generalized to multivariate systems by noting that ats = zi, the rank ofg(s) reduces from

1 to 0.

Definition 2.1 zi ∈ C, i = 1, 2 · · ·nz are called the zeros ofG(s) if the rank ofG(zi)

is less than the normal rank ofG(s). The normal rank ofG(s) is G(s) evaluated at all

s /∈ {zi} [81].

Based on the above definition, it follows thatzi are the zeros ofG(s) iff there exists

non-zerouzi
,yzi

such that

G(zi)uzi
= 0 and G(s)uzi

6= 0 ∀s 6= zi

and y∗zi
G(zi) = 0 and y∗zi

G(s) 6= 0 ∀s 6= zi
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whereuzi
,yzi

are usually normalized to have unit length. Theuzi
andyzi

are called the

input and output zero directions respectively corresponding to the zerozi. The zeros of

the multivariate system are sometimes called transmission zeros, but are simply referred as

zeros in this thesis. Let the quadruplet(A,B,C,D) be a minimal state space realization of

G(s) represented asG(s) ↔ (A,B,C,D). The zeros and the associated zero directions

of G(s) are easily determined by solving the following generalized eigenvalue problems:
[

A− ziI B
C D

] [
wzi

uzi

]
= 0;

[
v∗zi

y∗zi

] [
A− ziI B

C D

]
= 0

Definition 2.2 pi ∈ C, i = 1, 2 · · ·np are called poles ofG(s) if one or more elements of

G(s) fails to be analytic (becomes infinite) in the complex plane [8].

With a slight abuse of terminology, the poles ofG(s) can be alternatively defined as the

zeros ofG−1(s). Then it follows thatpi are the poles ofG(s) iff there exists non-zero

upi
,ypi

such that

u∗pi
G−1(pi) = 0 and u∗pi

G−1(s) 6= 0 ∀s 6= pi

and G−1(pi)ypi
= 0 and G−1(s)ypi

6= 0 ∀s 6= pi

whereupi
,ypi

are usually normalized to have unit length. Theupi
andypi

are called the

input and output pole directions respectively corresponding to the polepi. For a system

with distinct poles, letG(s) ↔ (P,B,C,D), whereP is a diagonal matrix. Then it can

be shown that

uT
pi

= B
′
i/‖B

′
i‖2; ypi

= Ci/‖Ci‖2

whereB
′
i andCi denote theith row andith column ofB andC respectively. When the

system has repeated poles, the expressions for calculating input and output pole directions

are more complex and are available in [56].

2.2.2 All Pass Factorization of RHP Poles and Zeros

Definition 2.3 A square transfer matrixG(s) is called all-pass (also called square

paraconjugate unitary rational matrix) ifG(jω)G∗(−jω) = I for all ω ∈ R.

A linear system with RHP poles and zeros can be factored into an all-pass factor and

a minimum phase or stable part. Such a factorization is useful for manipulation and

simplification of expressions arising later in this chapter. The two popular approaches
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for all-pass factorization of linear systems are inner-outer factorization and the use of

Blaschke products. For univariate systems, both these approaches produce identical results.

For multivariate systems, use of Blaschke products provides analytical expressions and is

preferred over inner-outer factorization in which solution of algebraic Riccati equations

(AREs) is required. The idea of using Blaschke products for factorization of RHP poles and

zeros was introduced by Wallet al. [111] and was used for characterization of achievable

performance by Chen [21, 22] and Havre [57]. A collection of some of the useful properties

of Blaschke products is available in [56].

Let zi ∈ C, i = 1 · · ·nz be the non-minimum phase or RHP zeros ofG(s). ThenG(s)

can be factored as follows:

G(s) = G1(s)B1(s) B1(s) = I− 2Re(z1)

s + z̄1

ûz1û
∗
z1

(2.1)

whereûz1 is the input zero direction ofz1. With this factorization,z1 is not a zero ofG1(s).

By repeated application of (2.1) on Gi(s), i = 1 · · ·nz − 1, G(s) can be factored into a

minimum-phase part and an all pass filter as,

G(s) = Gmi(s)Bzi(s) Bzi(s) =
nz∏
i=1

(
I− 2Re(zi)

s + z̄i

ûzi
û∗zi

)
(2.2)

In (2.2), Gmi(s) is minimum phase with the RHP zeros ofGm(s) mirrored across the

imaginary axis andBzi(s) is an all pass filter. Note that except the direction associated with

the zero factored first,̂uzi
differs fromuzi

, as it is calculated based onG(i−1)(s). The RHP

zeros can be alternatively factored at system’s output as follows:

G(s) = Bzo(s)Gmo(s) Bzo(s) =
1∏

i=nz

(
I− 2Re(zi)

s + z̄i

ŷzi
ŷ∗zi

)
(2.3)

WhenG(s) has RHP poles atpi ∈ C, i = 1 · · ·np, these poles can also be factored into

a stable part and an all pass filter on the input and output side as follows:

G(s) = Gsi(s)B−1
pi (s) B−1

pi (s) =
1∏

i=np

(
I− 2Re(pi)

s− pi

ûpi
û∗pi

)
(2.4)

G(s) = B−1
po (s)Gso(s) B−1

po (s) =

np∏
i=1

(
I− 2Re(pi)

s− pi

ŷpi
ŷ∗pi

)
(2.5)

2.2.3 Optimal Control

In this chapter, we use a state-space approach for characterization of achievable input

performance. For this purpose, we briefly review the pioneering results onH2 andH∞
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K

wz

uy

A      Bw     B

 Cz      0      D12

C      D21    0

Figure 2.2:Generalized plant for optimal controller design

optimal control due to Doyleet al. [34]. Further details can be found in many recently

published textbooks dealing with optimal control (e.g. [47, 117]). In later sections, we

show how these general results simplify when input performance is maximized.

With reference to Figure2.2, let z and w denote the exogenous outputs and inputs

and,y andu be the measured and manipulated variables respectively. The model of the

generalized plant fromw to z has the following form:

ẋ = Ax + Bww + Bu

y = Cx + D21w

z = Czx + D12u (2.6)

Assumption 2.1 System (2.6) is assumed to be in the standard form [34]:

(a) (A,Bw) is stabilizable and(A,Cz) is detectable.

(b) (A,B) is stabilizable and(A,C) is detectable.

(c) D∗
12D12 = I andD∗

21D21 = I.

(d) D∗
12Cz = 0 andD∗

21Bw = 0.

In addition, the assumptions thatD11 = 0 andD22 = 0 are implicit in the realization of

the generalized plant (2.6). The assumption thatD22 = 0 can be easily satisfied by a linear

fractional transformation on the controllerK(s) [117, pp. 261]. D11 = 0 is necessary

for well-posedness of the theH2 optimal control problem. In general, this assumption

can be relaxed for theH∞ optimal control problem, but this complicates the formulae

substantially. Some additional details on the physical interpretation of Assumption2.1and

transforming the problem to satisfy them can be found in [102, p. 363].
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It follows from Assumption2.1(a)-(b) that there existX2,Y2 º 0, which solve the

following algebraic Riccati equations (AREs),

A∗X2 + X2A−X2BB∗X2 + C∗
zCz = 0

AY2 + Y2A
∗ −Y2C

∗CY2 + BwB∗
w = 0

Let Tzw be the closed loop transfer matrix fromw to z. The unique controller

minimizing‖Tzw(s)‖2 is given as [34]:

Kopt(s) =

[
A + BF2 + L2C −L2

F2 0

]
(2.7)

whereF2 = −B∗X2, L2 = −Y2C
∗ and the optimal cost is [117],

I2
2 = inf

K(s)
‖Tzw(s)‖2

2 = tr(B∗
wX2Bw) + tr(F2Y2F

∗
2) (2.8)

For the minimization of‖Tzw(s)‖∞, let X∞,Y∞ º 0 solve the following algebraic

Riccati equations,

A∗X∞ + X∞A−X∞(γ−2BwB∗
w −BB∗)X∞ + C∗

zCz = 0 (2.9)

AY∞ + Y∞A∗ −Y∞(γ−2C∗
zCz −C∗C)Y∞ + BwB∗

w = 0 (2.10)

where γ > 0. The existence ofX∞,Y∞ º 0 that solve the AREs (2.9)- (2.10)

is guaranteed, if Assumption2.1 holds andρ(X∞Y∞) < γ2. A suboptimal controller

achieving‖Tzw(s)‖∞ < γ is [34]:

Ksub(s) =

[
A + γ−2BwB∗

wX∞ + BF∞ + Z∞L∞C −Z∞L∞
F∞ 0

]
(2.11)

whereF∞ = −B∗X∞, L∞ = −Y∞C∗ andZ∞ = (I − γ−2ρ(X∞Y∞))−1. The optimal

cost is given as

I∞ = inf
K(s)

‖Tzw(s)‖∞ = ρ
1
2 (X∞Y∞) (2.12)

2.2.4 Hankel Singular Values and Balanced Realization

It is shown later in this chapter that the achievable input performance of a system primarily

depends on the Hankel singular values of the image of the unstable part of the system. The

concept of Hankel singular values is introduced next.
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Definition 2.4 For a rational stable systemG(s) ↔ (A,B,C,D), let XH ,YH º 0 solve

the following Lyapunov equations,

AXH + XHA∗ + BB∗ = 0 (2.13)

A∗YH + YHA + C∗C = 0 (2.14)

Then, the Hankel singular values ofG(s), σHi(G(s)) are given asσHi(G(s)) =

λ
1/2
i (XHYH) [42, 117].

Note that the Hankel singular values are independent of theD matrix of the state space

realization of the system. This follows as theD matrix represents the direct effect of

inputs on outputs, but the Hankel singular values measure the effect of past inputs on future

outputs [42].

The matricesXH andYH are called the controllability and observability gramians of

the system. If all the poles of the system are controllableXH Â 0. In this sense, the larger

the eigenvalues ofXH are, the more controllable are the modes of the system. Similar

conclusions can be drawn for the observability of modes based on the eigenvalues ofYH .

As σHi(G(s)) = λ
1/2
i (XHYH), the Hankel singular values are often referred to as the

measure of the joint controllability and observability of the modes of the system.

It is well known that the state space realization of a system is not unique. LetT be

a non-singular state transformation matrix. Then, if(A,B,C,D) is one realization of

the systemG(s), so is (T−1AT,T−1B,CT,D). One particular realization that is of

immediate interest to us is the balanced realization, as introduced next.

Definition 2.5 For a rational stable systemG(s), the state-space realizationG(s) ↔
(A,B,C,D) is called a balanced realization, ifXH ,YH º 0 that solve the Lyapunov

equations (2.13)-(2.14) are diagonal and equal [42, 117].

As it turns out that for the balanced realization, the controllability and observability

gramians are equal todiag(σHi(G(s))), i.e., the matrix containing the Hankel singular

values as its diagonal elements. Any rational stable system admits a balanced realization

and an algorithm for the construction of balanced realization is available in [117]. The

balanced realization is frequently used in obtaining approximate low order models for a

system with a large number of states [42].

For later development in this chapter, we derive the balanced state-space realization of

the Blaschke productB−1
po (s). For notational simplicity, we consider that the number of

unstable poles,np ≤ 2, which can be easily extended to systems withnp > 2 by induction.
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A similar method has been used by Chen [22] earlier for finding the balanced realization of

Bzi(s).

Let B−1
po (s) = B−1

p2
B−1

p1
(s). Using (2.4), the balanced realization ofB−1

pi
(s) is given as

B−1
pi

(s) ↔ (Ai,Bi,Ci,Di), where

Ai = pi Bi = −
√

2Re(pi) ŷ∗pi
Ci =

√
2Re(pi) ŷpi

Di = I (2.15)

Using (2.15), the balanced realization ofB−1
po (s) is given asB−1

po (s) ↔ (A,B,C,D),

where

A =

[
A2 B2C1

0 A1

]
=

[
p2 2

√
Re(p1)Re(p2) ŷ∗p2

ŷp1

0 p1

]

B =

[
B2D1

B1

]
=

[ −
√

2Re(p2) ŷ∗p2

−
√

2Re(p1) ŷ∗p1

]

C =
[

C2 D2C1

]
=

[ √
2Re(p2) ŷp2

√
2Re(p1) ŷp1

]

D = D2D1 = I (2.16)

2.3 Problem Formulation and Simplification

In this section, we formulate an optimal controller design problem that minimizes input

usage for stabilization. It is shown how the general results on optimal control can be

simplified when only input performance is considered. This simplification in turn enable

us to explicitly characterize the achievable input performance.

Consider the system shown in Figure2.3, where all exogenous inputs,e.g. load change,

measurement noise, set point change, have been collected in the blockGw(s). The closed

loop transfer matrix from disturbances to inputs is given as,

Tuw(s) = WuK(s) (I + GK(s))−1 Gw(s) (2.17)

The objective is to characterize the minimal input usage required for stabilization

expressed in terms of the norm ofTuw(s) as:

Ii = ‖WuK(s) (I + GK(s))−1 Gw(s)‖i i = 2,∞ (2.18)

Assumption 2.2 We make the following assumptions:

(a) G(s) is strictly proper.
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Figure 2.3:Closed loop system for characterization of achievable input performance

(b) Wu(s) is left invertible and (if unstable) has the same unstable poles asG(s) with

the associated input pole directions.

(c) Gw(s) is right-invertible and (if unstable) has the same unstable poles asG(s) with

the associated output pole directions.

Assumption2.2(a) is made for notational simplicity and the extension to the general case

is simple (see [117, p.261] for details). The left and right invertibility ofWu(s) andGw(s)

respectively ensures that the optimal controller design problem is nonsingular.

To illustrate the necessity ofWu(s) andGw(s) having the same unstable poles asG(s)

with the associated input and output pole directions respectively, consider thatWu(s) = I

andGw(s) has a single unstable polepw such thatG−1
w (pw)ypw = 0. Let {pi} ∈ Cnp be

the unstable poles ofG(s) such thatG−1(pi)ypi
= 0. For internal stability, the unstable

poles ofG(s) andGK(s) are the same and

K−1G−1(pi)ypi
= 0

(
I + K−1G−1(pi)

)
ypi

= ypi

GK(pi) (I + GK(pi))
−1 ypi

= ypi

K(pi) (I + GK(pi))
−1 ypi

= G−1(pi)ypi
= 0 (2.19)

It follows from (2.19) that the locations of RHP zeros and output zero directions of

K(s) (I + GK(s))−1 are the same as the locations of the RHP poles and input pole

directions ofG(s). Defining the sensitivity function asS(s) = (I + G(s)K(s))−1 and

using results on Blaschke products (2.2) and (2.5),

KSGw(s) = [KS(s)]mi Bzi[KS(s)]B−1
po [Gw(s)] [Gw(s)]so

= [KS(s)]mi Bpo[G(s)]B−1
po [Gw(s)] [Gw(s)]so

If the controller is designed to stabilizeKS(s), the stability ofTuw(s) depends on the

stability ofBpo[G(s)]B−1
po [Gw(s)]. Since the Blaschke products can be calculated for any
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permutation of poles and zeros,Bpo[G(s)]B−1
po [Gw(s)] is stable iffpw = pi andypw = ypi

for somei. Similar conclusions can be drawn whenGw(s) has more than one unstable pole

or whenWu(s) is also unstable.

With Assumption2.2, Let Wu(s) andGw(s) be factorized as

Wu(s) = B−1
po [Wu(s)]Bzo [Wu(s)] [Wu(s)]sm

Gw(s) = [Gw(s)]sm B−1
pi [Gw(s)]Bzi [Gw(s)]

where[Wu(s)]sm and[Gw(s)]sm are the stable minimum-phase parts ofWu(s) andGw(s)

respectively. Define

Ĝ(s) = [Gw(s)]−1
sm G(s) [Wu(s)]

−1
sm (2.20)

K̂(s) = [Wu(s)]sm K(s) [Gw(s)]sm

whereĜ(s) is anny × nu dimensional transfer matrix. It follows from (2.17) that

Ii = ‖B−1
po [Wu(s)]Bzo [Wu(s)] K̂(s)(I + ĜK̂(s))−1·

B−1
pi [Gw(s)]Bzi [Gw(s)] ‖i i = 2,∞ (2.21)

By simplifying (2.21),

Ii = ‖K̂(s)(I + Ĝ(s)K̂(s))−1‖i i = 2,∞ (2.22)

We point out that in (2.22), B−1
po [Wu(s)] andB−1

pi [Gw(s)] can be factored out without

jeopardizing the internal stability, only when Assumptions2.2(b)-(c) are satisfied. Now,

‖Tuw(s)‖i, i = 2,∞ is minimized by designing an optimal controller for̂G(s), where

the following are equivalent: (a)̂K(s) stabilizesĜ(s), and (b)K(s) stabilizesG(s). In

the remaining discussion, we treatĜ(s) as the system without loss of generality. These

manipulations further allows us to represent the generalized plant as

˙̂x = Âx̂ + B̂u

y = Ĉx̂ + w

z = u (2.23)

whereĜ(s) ↔ (Â, B̂, Ĉ). Notice that we have transformed a controller design problem

where the closed loop system is driven by disturbances filtered through an arbitrary

disturbance model to an equivalent problem, in which the closed loop system is driven

by measurement noise only. The latter problem is much simpler to solve, as demonstrated

later in this section.
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Figure 2.4:Simplifying transformations on the closed loop system

For the system (2.23), let X̂2, Ŷ2 andX̂∞, Ŷ∞ be the solutions of corresponding AREs

for theH2 and theH∞ optimal control (see§ 2.2.3). By comparing (2.23) with (2.6),

we notice that for the system (2.23), the corresponding AREs for theH2 andH∞ optimal

controller design are the same. It follows thatX̂2 = X̂∞ = X̂ andŶ2 = Ŷ∞ = Ŷ. This

observation in turn implies that̂F2 = F̂∞ = F̂ andL̂2 = L̂∞ = L̂.

Let T be a state transformation matrix such thatT−1ÂT = diag(Ps,P), wherePs and

P contain all the stable and unstable modes respectively. Rearranging and partitioning the

states of the transformed system

˙̃x = T−1ÂTx̃ + T−1B̂u =

[
Ps 0
0 P

]
x̃ +

[
Bs

B

]
u

y = ĈTx̃ + w =
[

Cs C
]
x̃ + w (2.24)

Let X̃ = T−1X̂T andỸ = T−1ŶT solve the corresponding AREs for the transformed

system (2.24). Then, to be non-negative definite,X̃ andỸ must assume the form

X̃ =

[
0 0
0 X

]
Ỹ =

[
0 0
0 Y

]

whereX,Y ∈ Cnp×np Â 0 and it suffices to solve

XP + P∗X−XBB∗X = 0 (2.25)

YP∗ + PY −YC∗CY = 0 (2.26)

Let Ĝ(s) = Ĝ1(s) + Ĝ2(s) such thatĜ1(s) = U(Ĝ(s)) andĜ2(s) ∈ RH∞, where

U(Ĝ(s)) is the unstable part of̂G(s). The triplet(P,B,C) can be seen as the realization of

Ĝ1(s) and (2.25)-(2.26) as the corresponding AREs for̂G1(s). Then the achievable input

performance depends only on the unstable part of the system. This is further illustrated by

definingK̂(s) = K̂1(s)(I− Ĝ2K̂1(s))
−1. With this parametrization of̂K(s),

K̂(s)(I− ĜK̂(s))−1 = K̂1(s)(I− Ĝ2K̂1(s))
−1
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ThusK̂(s) exactly cancels the stable part of the system. The different transformations used

in this section and their equivalence are shown in Figure2.4.

For the transformed system (2.24), the state feedback and the output injection matrices

are given as,

F̃ = F̂T =
[

0 F
]

=
[

0 −B∗X
]

(2.27)

L̃ = T∗L̂ =
[

0 L
]′

=
[

0 −YC∗ ]′
(2.28)

By substituting forX̃, Ỹ, F̃ andL̃ in (2.8) and (2.12), the expressions for achievable input

performance can be simplified as,

I2
2 = tr(FYF∗) = tr(L∗XL) (2.29)

I∞ = ρ
1
2 (XY) (2.30)

The equations (2.25) and (2.26) form the cornerstone for much of the remaining

development in this chapter. In general, forH∞ optimal control, the resulting AREs are

dependent onγ and thus need to be solved iteratively. In contrast, the expressions (2.25)-

(2.26) are independent ofγ and can be solved directly. Further note that when (2.25)

and (2.26) are pre- and post-multiplied byX−1 andY−1, the resulting expressions are

similar to Lyapunov equations. When all the unstable poles of the system are distinct, a

closed form solution of (2.25)-(2.26) can be derived, which is expressed in terms of the

unstable poles and the matricesB andC only.

For a system with distinct unstable poles, we can select the state transformation matrix

T such thatP is diagonal and is given asP = diag(p1, · · · , pnp), Re(pi) > 0. Let the

Hermitian matrixM ∈ Cnp×np be defined as

[mij] = 1/(pi + p∗j) (2.31)

Lemma 2.1 For a system with distinct poles, letX,Y Â 0 solve the AREs (2.25)-(2.26)

andM be given by (2.31). Then

X−1 =
nu∑
i=1

diag(Bi) M diag(Bi)
∗ (2.32)

Y−1 =

ny∑
j=1

diag(C
′
j)
∗ M diag(C

′
j) (2.33)

Proof: Pre- and post-multiplying (2.25) by X−1 gives

PX−1 + X−1P∗ = BB∗ (2.34)
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Then [63], X−1 = M ◦ (BB∗), where◦ is the Hadamard or element-wise product.

Noting thatBB∗ =
∑nu

i=1 BiB
∗
i ,

X−1 =
nu∑
i=1

M ◦ (BiB
∗
i )

and (2.32) follows. Equation (2.33) follows from a dual argument.

2.4 SISO systems

In this section, we quantify achievable input performance of SISO systems with and without

time delay. It is assumed that all the unstable poles of the system are distinct. With this

assumption, the expressions for the achievable input performance can be expressed in terms

of the unstable poles and the matricesB andC only. The general case is considered in the

next section.

2.4.1 Rational Systems

We derive the expressions for achievable input performance for rational SISO systems next.

The usefulness of these expressions is demonstrated using a process design example. These

results also form the basis for derivation of similar expressions for SISO systems with time

delay.

Lemma 2.2 ForM defined by (2.31), letpi 6= pj for all i, j = 1 · · ·np. ThenM−1 is given

as

[M−1]ij =
(p∗i + pi)(pj + p∗j)

p∗i + pj




np∏
k=1
k 6=i

(p∗i + pk)

(p∗i − p∗k)







np∏
k=1
k 6=j

(pj + p∗k)
(pj − pk)




Lemma2.2 is easily verified by evaluatingMM−1 or M−1M. Note for SISO systems,

b = [bi], b = [cj].

Proposition 2.1 For a rational SISO systemg(s) with distinct poles, letU(g(s)) ↔
(P,b, c) such thatP = diag(p1 · · · pnp), Re(pi) > 0. Then

I2
2 =

[ |qi|2
bici

]
M

[ |qi|2
b∗i c

∗
i

]T

(2.35)

I2
∞ = |λ−1(diag(b∗i c

∗
i ) M diag(bici) M)| (2.36)

whereM is defined by (2.31) andqi is the sum ofith column ofM−1 or q = 1T
np

M−1.
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Proof: (1) For (2.35), substituting forX andY in (2.29) using Lemma2.1,

I2
2 = fYf∗ = b∗XYXb

= 1T
np

M−1 (diag(b)diag(c))−1 M−1(diag(b∗)diag(c∗))−1 M−1 1np (2.37)

Based on Lemma2.2,

qi = (pi + p∗i )
np∏
k=1
k 6=i

(pi + p∗k)
(pi − pk)

; i = 1 · · ·np (2.38)

andM−1 = diag(q∗)Mdiag(q). By substituting forM−1 and1T
np

M−1, (2.37) can be

simplified as,

I2
2 = q (diag(b)diag(c))−1 diag(q∗) M diag(q) (diag(b∗)diag(c∗))−1 q∗

The equation (2.35) can be now obtained by simplifying the above expression using the

identityqiq
∗
i = |qi|2.

(2) For (2.36),

I2
∞ = ρ(XY) =

∣∣λ−1(Y−1X−1)
∣∣

By substituting forX−1 andY−1 using Lemma2.1

I2
∞ =

∣∣λ−1(diag(c∗) M diag(c) diag(b) M diag(b)∗)
∣∣

=
∣∣λ−1(diag(b)∗ diag(c∗) M diag(c) diag(b) M)

∣∣
=

∣∣λ−1(diag(b∗i c
∗
i ) M diag(bici) M)

∣∣

In the realization,U(g(s)) ↔ (P,b, c), wheng(s) has only real unstable poles only,

b∗ = b andc∗ = c. In this case, (2.36), can be further simplified as,

I2
∞ = λ−1

(
(diag(bici)M)2 )

I∞ =
∣∣λ−1(diag(bici)M)

∣∣

Remark 2.1 The expression forq in (2.38) appears to suggest that in general,I2 →∞ as

pi → pj for somei, j, which is clearly not true. Sincebici = [ĝ(s)(s− pi)]s=pi
, bici →∞,

aspi → pj, which negates the effect ofq. But when the system has an RHP zero close

to RHP poles,bici fails to increase monotonically and stabilization can be difficult. For

example, consider̂g(s) = (s−p)
(s−p+ε)(s−p−ε)

. As ε → 0, the RHP poles approach the zero. Due

to near cancellation of the unstable pole by the zero,I2, I∞ →∞ asε → 0.
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Example 2.1 In order to demonstrate the utility of Proposition2.1 for process design

purposes, consider a rational SISO system with two distinct unstable polesp1, p2 ∈ R and

a RHP zeroz. The location ofz can be influenced by process or operating point changes.

The objective is to choosez in the range0 < z ≤ max(p1, p2) such that input usage for

stabilization is minimal. A pure numerical approach requires solving the following nested

optimization problem:

min
z

inf
k(s)

‖k(s)(1 + gk(s))−1‖i i = 2,∞

Using Proposition2.1, the optimal value ofz can be characterized explicitly. Asz → pi,

the joint controllability and observability ofpi reduces monotonically increasing the input

requirement. Notice that

b1c1 =
z − p1

p1 − p2

b2c2 =
z − p2

p2 − p1

Using (2.35) and (2.39),

I2
2 =

8(p1 + p2)
3 [p2

1(p2 − z)2 + p2
2(p1 − z)2 + p1p2(3z

2 − p1p2)]

(p1 − z)2 + (p2 − z)2

I∞ =
4p1p2(p1 + p2)

z(p1 + p2)− [p2
1(2p2 − z)2 + p2

2(2p1 − z)2 + 2p1p2(3z2 − 2p1p2)]
0.5

The optimal value of z in the range0 < z ≤ max(p1, p2) can be obtained by evaluating

the stationary points of (2.35) and (2.36),

zH2,opt =
p1p2

(
3(p1 + p2)±

√
5p2

1 + 5p2
2 + 6p1p2

)

2(p2
1 + p2

2 + 3p1p2)

zH∞,sub =
4p1p2(p1 + p2)

p2
1 + p2

2 + 6p1p2

2.4.2 Time Delay Systems

Many systems arising in practice contain time delay. These irrational systems cannot

be handled directly in the optimal control framework discussed in§ 2.2.3. A common

approach for optimal control for such systems is to design the controller based on a rational

approximation (e.g. Páde approximation) of the time delay system. In this thesis, we

use this approach and the achievable performance is characterized by letting the order of

approximation approach infinity in the limit.

To extend Proposition2.1to systems with a finite time delay, letĝ(s) be expressed as,

ĝ(s) = g̃(s)e−θs (2.39)
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whereg̃ is the delay-free part of the system. Ifgw(s) also contains delay, the delay can be

factored as an all-pass factor and thusĝ(s) remains causal (cf. (2.20)).

Lemma 2.3 ConsiderH(s) ↔ (P,B,C) such thatP = diag(p1 · · · pnp), Re(pi) > 0,

pi 6= pj. Let H1(s) ∈ RH∞ with no zeros atpi. Then

U(H1(s)H(s)) =

np∑
i=1

1

s− pi

H1(pi)CiB
′
i (2.40)

Proof: Using dyadic expansion ofH(s),

H(s) =

np∑
i=1

1

s− pi

CiB
′
i

Let U(H1(s)H(s)) ↔ (P̃, B̃, C̃). SinceH1(s) does not cancel RHP poles ofH(s),

P̃ = P. Now, C̃iB̃
′
i = [H1(s)H(s)(s− pi)]s=pi

and (2.40) follows.

Note that the applicability of Lemma2.3 is not limited to the case where all modes of

H(s) are unstable, sinceU(H1(s)H(s)) = U(H1(s)U(H(s))).

Proposition 2.2 Let the SISO system expressed by (2.39) have distinct unstable poles

and U(g̃(s)) ↔ (P, b̃, c̃) such thatP = diag(p1 · · · pnp), Re(pi) > 0 and Γ =

diag(eθp1 · · · eθpnp ). Then

I2
2 =

[ |qi|2
b̃ic̃i

]
ΓMΓ∗

[ |qi|2
b̃∗i c̃

∗
i

]′
i = 1 · · ·np (2.41)

I2
∞ = |λ−1(Γ−∗diag(b̃∗i c̃

∗
i )MΓ−1diag(b̃ic̃i)M)| (2.42)

whereM is defined by (2.31) andq = 1
′
np

M−1.

Proof: Let f(θs, n) be the nth order rational approximation ofe−θs (e.g. Páde

approximation). For anyn, if a RHP zero off(θs, n) cancels a RHP pole of̃G(s), the

system is not stabilizable due to presence of hidden unstable modes. However, asn →∞,

the magnitude of RHP zeros off(θs, n) approaches infinity. Thus, for an FDLTI system

with poles at finite locations, such cancellation of RHP pole ofG̃(s) by an RHP zero of

f(θs, n) does not occur for alln ≥ N for sufficiently largeN .

(1) For (2.41), using (2.40), bici ≈ b̃ic̃if(θpi, n), n ≥ N and

I2
2 (n) =

[ |qi|2
b̃ic̃if(θpi, n)

]
M

[ |qi|2
b̃∗i c̃

∗
i f(θpi, n)

]′

=

np∑
i=1

np∑
j=1

|qi|2
b̃ic̃i

|qj|2
b̃j c̃j

mijf
−1(θpi, n)f−1(θpj, n) (2.43)
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As limn→∞ f(θpi, s) = e−θs. Then, limn→∞ f−1(θpi, n) = eθpi and

limn→∞ f−1(θpi, n)f−1(θpj, n) = eθpieθpj . Noting that except the bilinear term

f−1(θpi, n)f−1(θpj, n), all other terms in (2.43) are independent ofn, we conclude that

limn→∞ I2
2 (n) exists and is given by (2.41).

(2) For (2.42), using similar arguments as before and following the proof of

Proposition2.1,

I2
∞(n) =

∣∣∣λ−1(diag(f(θpi, n))−∗ diag(b̃∗i c̃
∗
i ) M diag(f(θpi, n))−1 diag(b̃ic̃i)M)

∣∣∣

The eigenvalues are roots of a polynomial equation, whose coefficients are functions

of f−1(θpi, n). As n → ∞, these coefficients and thus the roots converge. Hence,

limn→∞ I2
∞(n) exists and is given by (2.42).

Similar to (2.39), for a system with real unstable poles only, (2.42) can be simplified to

I2
∞ =

∣∣λ−1(Γ−1diag(bici)M)
∣∣

By differentiating (2.41) with respect toθ,

dI2
2

dθ
=

np∑
i=1

np∑
j=1

pipj
|qi|2
b̃ic̃i

|qj|2
b̃j c̃j

mije
piθepjθ

≥ min
i

p2
i I

2
2

Thus,dI2/dθ > 0 for all θ. Similar conclusions can be drawn by differentiatingI∞ with

respect toθ. This shows that for SISO systems, the input usage cannot be decreased by

introducing additional lag in the system. Surprisingly, for MIMO systems, such an intuitive

conclusion does not hold, as is shown later.

Corollary 2.1 Under the same conditions as Proposition2.2, let gp(s) ↔ (P,Γ−1b̃, c̃) or

(P, b̃, c̃Γ−1). ThenI2(ĝ(s)) = I2(gp(s)) andI∞(ĝ(s)) = I∞(gp(s)).

It follows from corollary 2.1 that I2 and I∞ for a time delay system depend on its

unstable projection, which is rational.

Corollary 2.2 For a SISO system with a single real unstable polep,

I2
2 =

8p3e2pθ

b̃2c̃2
I∞ =

2pepθ

|b̃c̃| (2.44)
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Corollary 2.2 can be shown to be true by considering (2.41) and noting that in this

caseb̃, c̃ are scalars andM = 1/2p. For delay-free systems, Havre and Skogestad [58]

earlier obtained expressions similar to (2.44). Propositions2.1 and2.2 can be seen as the

generalizations of the results of avre and Skogestad [58] to SISO systems with multiple

unstable poles and time delay.

Remark 2.2 The time-delay enters (2.41)-(2.42) assuming the formeθpi and thus does

not pose any serious limitations on input performance for systems with slow instabilities

and vice versa. It follows from Corollary 2.1 that time delay essentially reduces the

controllability (or observability) of poles and the faster the instability, the weaker the

controllability (or observability) of the pole is, as compared to the delay-free system.

2.5 MIMO systems

In this section, we generalize the results of the previous section to MIMO systems. It is

shown that the achievable input performance primarily depends on the joint controllability

and observability of unstable poles of the system. These results can be directly used for

selection of the subset of controlled and manipulated variables for stabilization.

2.5.1 Rational Systems

Similar to SISO systems, the achievable input performance is first characterized for rational

systems. These results are extended to MIMO systems with time delay later in this section.

To obtain expressions forI2 andI∞ for MIMO systems, we relateX andY solving the

AREs (2.9)-(2.10) to the Hankel singular values ofU(Ĝ(s))∗. WhenĜ(s) has distinct

unstable poles, the next lemma also provides an alternate expression for the Hankel singular

values ofU(Ĝ(s))∗, which can also be of independent interest.

Lemma 2.4 Let Ĝ(s) be a rational system andX,Y Â 0 solve the corresponding

AREs (2.25)-(2.26). Then,

σ2
Hi(U(Ĝ(s))∗) = λi(X

−1Y−1) i = 1, · · ·np (2.45)

Further, if ˆG(s) has distinct unstable poles, letU(Ĝ(s)) ↔ (P,B,C), such thatP =

diag(p1 · · · pnp), Re(pi) > 0. ThenσHi(U(Ĝ(s))∗) is given as,

σHi(U(Ĝ(s))∗) = λ
1
2
i

[(
(BB∗) ◦M

)(
(C∗C) ◦M

)]
(2.46)

whereU(·) denotes the unstable part andM is defined by (2.31).
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Proof: Pre- and post-multiplying (2.34) by T1 andT∗
1 respectively, whereT1 is a state

transformation matrix,

T1PX−1T∗
1 + T1X

−1P∗T∗
1 = T1BB∗T∗

1

⇔ P̄X̄−1 + X̄−1P̄∗ = B̄B̄∗ (2.47)

whereP̄ = T1PT−1
1 , B̄ = T1B andX̄ = T−∗

1 XT−1
1 . Similarly, by settingC̄ = CT−1

1

andȲ = T1YT∗
1,

P̄∗Ȳ−1 + Ȳ−1P̄ = C̄∗C̄ (2.48)

Now Ȳ−1 andX̄−1 are the controllability and observability gramians of the stable system

U(Ĝ(s))∗ ↔ (−P̄∗, C̄∗, B̄∗) and (2.47)-(2.48) are the corresponding Lyapunov equations.

If T1 is chosen such that(−P̄∗, C̄∗, B̄∗) is a balanced realization, then̄X−1 = Ȳ−1 =

diag(σHi(U(Ĝ(s))∗)) [117] and

σ2
Hi(U(Ĝ(s))∗) = λi(X̄

−1Ȳ−1) = λi(T
−∗
1 X−1Y−1T∗

1) = λi(X
−1Y−1)

WhenĜ(s) has distinct unstable poles, the alternate expression for the Hankel singular

values ofU(Ĝ(s))∗ can be obtained by substituting forX−1 and Y−1 in (2.45) using

Lemma2.1.

Proposition 2.3 For the rational MIMO systemĜ(s) having np unstable poles, let

(−P̄∗, C̄∗, B̄∗) be the balanced realization ofU(Ĝ(s))∗. Then

I2
2 =

np∑
i=1

2|Re(P̄ii)|
σ2

Hi(U(Ĝ(s))∗)
(2.49)

I∞ = σ−1
H (U(Ĝ(s))∗) (2.50)

Proof: (1) For (2.49), based on the expression forI2
2 (2.29),

I2
2 = tr(B∗XYXB) = tr(B̄∗X̄ȲX̄B̄) = tr(B̄B̄∗X̄ȲX̄)

DefineΣH = diag(σHi(U(Ĝ(s))∗)). Since(−P̄∗, C̄∗, B̄∗) is the balanced realization

of U(Ĝ(s))∗, using Lemma2.4and settingX̄ = Ȳ = Σ−1
H ,

I2
2 = tr

[
(−P̄ΣH − ΣHP̄∗)Σ−3

H

]

= tr(−P̄Σ−2
H ) + tr(−Σ−2

H P̄∗) =

np∑
i=1

|P̄ii + P̄∗
ii|

σ2
Hi(U(Ĝ(s))∗)



28 Chap. 2 Input Performance Limitations of Feedback Control

where|P̄ii + P̄∗
ii| = 2|Re(P̄ii)|.

(2) For (2.50), based on the expression forI∞ (2.30) and Lemma2.4

I∞ = λ−
1
2 (X−1Y−1) = σ−1

H (U(Ĝ(s))∗)

The expressions (2.49)-(2.50) show thatI2 andI∞ mainly depend onσHi(U(Ĝ(s))∗),

which is a measure of joint controllability and observability of the unstable poles.

Glover [43] studied the robust stability of systems in the presence of additive

unstructured uncertainty. With the additive description of uncertainty, maximizing robust

stability is equivalent to minimizing theH∞ norm of transfer matrix from disturbances

to inputs. Thus, the results of Glover [43] are also applicable to the present case of

minimization of input energy required for stabilization. The expression forI∞ as derived

here is as an alternative proof of the similar result of Glover [43], but is generalized to the

case whereWu(s) andGw(s) can be minimum phase and share common unstable poles

with the system.

Remark 2.3 In general,H2 andH∞ norms of a transfer matrix can be arbitrarily apart.

Proposition2.3shows that when input norm is minimized,I2/I∞ is always bounded as

2
σ2

H(U(Ĝ(s))∗)

σ̄2
H(U(Ĝ(s))∗)

np∑
i=1

|Re(P̄ii)| ≤ I2
2

I2∞
≤ 2

np∑
i=1

|Re(P̄ii)| (2.51)

whereP̄ is the state matrix of the balanced realization ofU(Ĝ(s)). The closeness ofI2

andI∞ follows from the fact that the related AREs (2.25)-(2.26) for theH2 andH∞ cases

are the same. The ratioκH = σ̄H(U(Ĝ(s))∗)/σH(U(Ĝ(s))∗) is the condition number of

U(Ĝ(s))∗ expressed in terms of Hankel singular values and can be interpreted similar to

the Euclidian condition number. A system that has a large Euclidian condition number

has strong directionality and may be difficult to control [102, p.87]. Similarly,κH can be

large due to smallσH(U(Ĝ(s))∗) indicating that the input requirement for stabilization is

large. WhenκH = 1, the upper and lower bounds onI2
2/I2

∞ in (2.51) are the same with

I2
2/I

2
∞ = 2

∑np

i=1 |Re(P̄ii)|.

In this chapter, we assumed that the disturbances enter the closed loop system through

output channels. Proposition2.3can easily be applied to cases, where disturbances enters

through input channels by settingGw(s) = G(s) (see Figure2.5). For minimum phase

systems affected by input disturbances, the expressions for achievable input performance

are much simplified, as earlier shown by Chenet al. [26]. The results of Chenet al. [26]

are shown to be a special case of Proposition2.3by the next Corollary.
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Figure 2.5:Disturbances entering through input channels

Corollary 2.3 With reference to Figure2.5, let G(s) be minimum phase, right invertible

and hasnp unstable poles. Then,

I2
2 = 2

np∑
i=1

Re(pi); I∞ = 1 (2.52)

Proof: Let G(s) = GsB−1
po (s) such thatGs(s) is stable. WithGw(s) = G(s) and using

(2.17),

‖Tuw(s)‖ = ‖(I + KGsB−1
po (s))−1KGsB−1

po (s))‖
= ‖(I + K̂B−1

po (s))−1K̂(s)‖

whereK̂(s) = KGs(s). Let (P̄, B̄, C̄, D̄) be the balanced realization ofB−∗po (s). Since

B−∗po (s) is all-pass and stable,σHi(B−∗po (s)) = 1 [42]. Then, using Proposition2.3, I∞ = 1

and I2
2 =

∑np

i=1 2|Re(P̄ii)|. The expression forI2 follows by noting thatP̄ii = pi (cf.

(2.16)).

The achievable input performance for multivariate systems depends on pole locations as

well as pole directions. To illustrate this, we consider two extreme cases: (1) all the pole

directions are orthogonal and (2) are co-linear with each other.

Corollary 2.4 LetG1(s) andG2(s) be rational systems with distinct unstable poles, where

U(G1(s)) ↔ (P,B1,C1), U(G2(s)) ↔ (P,B2,C2) such thatP = diag(p1 · · · pnp),

Re(pi) > 0. Let ‖[B′
1]i‖2 = ‖[B′

2]i‖2, ‖[C1]i‖2 = ‖[C2]i‖2 for all i = 1 · · ·np and

y∗pi(G1(s))ypj(G1(s)) = 1 and u∗pi(G1(s))upj(G1(s)) = 1 ∀i, j
and y∗pi(G2(s))ypj(G2(s)) = 0 and u∗pi(G2(s))upj(G2(s)) = 0 ∀i 6= j

Then,I∞(G1(s)) ≥ I∞(G2(s)).

Proof: Define the diagonal matricesDI = diag(‖[B′
1]i‖2) = diag(‖[B′

2]i‖2) andDO =

diag(‖[C1]i‖2) = diag(‖[C2]i‖2). Based on the alternate expression for Hankel singular
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values (2.46) andM (2.31),

σH(U(G2(s))
∗) = λ

1
2

[
((DI [u

∗
pi(G2(s))upj(G2(s))]ijDI) ◦M)

((DO[y∗pi(G2(s))ypj(G2(s))]ijDO) ◦M)
]

Sinceu∗pi(G2(s))upj(G2(s)) = 0 for all i 6= j,

σH(U(G2(s))
∗) = λ

1
2

[
(D2

I ◦M)(D2
O ◦M)

]

= λ
1
2 [DIdiag(1/(pi + p∗i ))DIDOdiag(1/(pi + p∗i ))DO]

= σ (DIdiag(1/(pi + p∗i ))DO) = min
i

[D−1
I D−1

O ]ii(pi + p∗i )
−1

Similarly, it can be shown that,σH(U(G1(s))
∗) = σ (DIMDO). Using Proposition2.3,

I∞(G1) = σ̄
(
D−1

I M−1D−1
O

)
and using Lemma2.2,

I∞(G1) ≥ max
i

[D−1
I M−1D−1

O ]ii

≥ max
i

[D−1
I D−1

O ]ii(p
∗
i + pi)

np∏
k=1
k 6=i

(p∗i + pk)
2

(p∗i − p∗k)
2

≥ max
i

[D−1
I D−1

O ]ii(p
∗
i + pi) = I∞(G2)

where the first inequality holds since the maximum singular value of a matrix is always

greater than or equal to the individual elements of the matrix.

In Corollary2.4, the lengths of the pole vectors are assumed equal to highlight the effect

of angles between the pole directions. In general, the optimal orientation of pole directions

for input performance depends on the unstable pole locations and the Euclidian length

of pole vectors. Intuitively, the input requirement for stabilization is minimized if pole

directions are oriented such that the fastest instability is affected most and so on.

Example 2.2 Consider the following system,

G(s) =




1 0 cos(β) sin(β)
0 2 sin(β) cos(β)
1 0 0 0
0 1 0 0


 ; p1, p2 ∈ R, p1 < p2

For this system,u∗p,1up,2 = sin(2β). The variation ofI∞ with β is shown in Figure2.6.

The input requirement is maximum, when the pole directions are co-linear (β = 0◦) and

and is approximately4 times larger than the case, where the pole directions are orthogonal

(β = 45◦). An explanation of this observation is as follows: When the pole directions are
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Figure 2.6:Effect of pole directions onI∞

co-linear, theB matrix of the state space realization ofG(s) is singular. The inputs affect

the poles only after being filtered through the singularB matrix. Though the input itself

can vary in all directions, when filtered throughB, it is effective only in a few directions

increasing the input usage for stabilization.

2.5.2 Time Delay Systems

For extending Proposition2.2 to MIMO systems, we use a similar method as used for

univariate systems,i.e. by using a rational approximation of the time delay system and

then letting the order of approximation approach infinity. We consider systems that can be

expressed as

Ĝ(s) = G̃(s) ◦Θ(s); Θ(s) =
[
e−θijs

]
(2.53)

whereG̃ is the delay-free part of the system. A system such asĜ(s) in (2.53) with delay

associated with individual elements of the transfer matrix, which cannot be separated at

inputs or outputs, is sometimes referred to as a multiple delay system in the literature. It is

pointed out that (2.53) does not represent the most general case and in practice is satisfied

only when theWu(s) andGw(s) are diagonal. The remaining discussion in this section is

limited to the cases whereny ≥ nu and similar expressions forny < nu can be obtained

with minor modifications.

Lemma 2.5 ConsiderH(s) ↔ (P,B,C) such thatP = diag(p1 · · · pnp), Re(pi) > 0. Let

H1(s) ∈ RH∞ with no zeros atpi. Then

U(H1(s) ◦H(s)) =

np∑
i=1

1

s− pi

H1(pi) ◦ (CiB
′
i) (2.54)
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The proof of Lemma2.5 is similar to the proof of Lemma2.3and is omitted. We make

the following additional assumption:

Assumption 2.3 Let U(G̃(s)) ↔ (P, B̃, C̃). Then the matrix(C̃iB̃
′
i) ◦ Θ(pi) has full

column rank for alli = 1 · · ·np.

Proposition 2.4 Consider that the MIMO system expressed by (2.53) has distinct poles

and the system satisfies Assumption2.3. Let U(G̃) ↔ (P, B̃, C̃) such thatP =

diag(p1 · · · pnp), Re(pi) > 0. If Gp ↔ (Ap,Bp,Cp), where

Ap = diag(p1Inu · · · pnpInu); Bp = [Inu · · · Inu ]
′

Cp =
[
(C̃1B̃

′
1) ◦Θ(p1) · · · (C̃npB̃

′
np

) ◦Θ(pnp)
]

Then,I2(Ĝ) = I2(Gp), I∞(Ĝ) = I∞(Gp).

Proof: Let Θ(s) be approximated by annth order rational function as before. Asn →∞,

using Lemma2.5and the same arguments as used in the proof of Proposition2.2,

U(Ĝ(s)) =

np∑
i=1

1

s− pi

(C̃iB̃
′
i) ◦Θ(pi) (2.55)

Due to Assumption2.3, 1
s−pi

Θ(pi) ◦ (CiB
′
i) ↔ (piInu , Inu ,Θ(pi) ◦ (CiB

′
i)). Then the

result follows by considering the aggregation of these subsystems.

It is interesting to note that whenΘ(s) is unstructured (delays cannot be separated at

inputs or outputs), stabilization of the irrational system withnp unstable poles is equivalent

to stabilizing a rational system withnp × nu unstable poles. For systems not satisfying

Assumption2.3, the triplet (Ap,Bp,Cp) is not necessarily a minimal realization. This

assumption can be relaxed for generalization purposes, but this makes the expressions

difficult and complex. A practical case, where Assumption2.3 is always violated, occurs

when the delays are associated with the sensors or actuators of the system. Systems with

delay associated with sensors are handled next and the expressions for systems with delay

associated with actuators can be obtained analogously.

Corollary 2.5 Let Ĝ(s) = diag(e−θis)G̃(s) andU(G̃(s)) ↔ (P, B̃, C̃) such thatP =

diag(p1 · · · pnp), Re(pi) > 0, pi 6= pj. Let Gp(s) ↔ (P, B̃,Cp), where

Cp =
[

diag(e−θip1)C̃1 · · · diag(e−θipnp )C̃np

]

Then,I2(Ĝ(s)) = I2(Gp(s)) andI∞(Ĝ(s)) = I∞(Gp(s)).
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The proof of Corollary2.5 follows by considering (2.55) and noting that(C̃iB̃
′
i) ◦

Θ(pi) = diag(e−θipi)C̃iB̃
′
i. It was shown earlier that for SISO systems,I2, I∞ are non-

increasing functions ofθ, but this does not hold for MIMO systems.

Example 2.3 Consider the systemG(s) = G̃(s) ◦Θ(s), where

G̃(s) =




0.2 0 2 3
0 0.5 1 4
3 2 0 0
5 3 0 0


 ; Θ(s) =

[
e−α1s e−α2s

e−α2s e−α1s

]
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Figure 2.7:Variation ofI∞ with α1 andα2

The variation ofI∞ with α1, α2 is shown in Figure2.7, which leads to the counter

intuitive conclusion that the input requirement for stabilization for MIMO systems can

decrease when the delay in some of the elements of the system increases. Whenα1 6= α2,

by virtue of Proposition2.4, the unstable projection of the irrational system has4 unstable

poles (2 poles each at0.2 and 0.5). However, whenα1 = α2 = α, G(s) can be

expressed asG(s) = G̃(s)eαs. Then, using Corollary2.5, the unstable projection of the

irrational system has only2 unstable poles. With slight abuse of terminology, the case of

α1 = α2 = α can be interpreted as the system having4 unstable poles and2 unstable zeros

at 0.2 and0.5. Thus, whenα1 6= α2, these RHP zeros differ from their nominal values of

0.2 and0.5 and effectively reduce the joint controllability and observability of the unstable

poles. Keepingα1 (or α2) constant and increasingα2 (or α1), these RHP zeros recede away

from the unstable poles reducing the input requirement for stabilization.
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Corollary 2.6 Consider a MIMO system̂G(s) that is expressed by (2.53) and satisfies

Assumption2.3. If Ĝ(s) has a single real unstable polep,

I2
2 =

8p3

∑nu

i=1 σ2
i ((C̃B̃′) ◦Θ(p))

I∞ =
2p

σ((C̃B̃′) ◦Θ(p))
(2.56)

whereU(G̃(s)) ↔ (p, B̃, C̃).

Proof: Define Gp(s) ↔ (pInu , Inu , (C̃B̃
′
) ◦ Θ(p)). Now, similar to the proof of

Proposition2.4, it can be shown thatI2(Ĝ(s)) = I2(Gp(s)), I∞(Ĝ(s)) = I∞(Gp(s)).

SinceGp(s) has a single pole repeatednu times,M = (1/2p)[1nu · · ·1nu ]. Using (2.46),

σHi(Gp(s)
∗) = (1/2p)λ

1/2
i

[
((C̃B̃

′
) ◦Θ(p))∗((C̃B̃

′
) ◦Θ(p))

]

= (1/2p)σi

[
(C̃B̃

′
) ◦Θ(p)

]
(2.57)

Now, (2.56) is obtained by substituting (2.57) in the expressions forI2 andI∞ (2.49)-(2.50).

For a system that is delay free and has a single unstable pole,M = 1/2p, BB∗ = ‖B‖2
2

andC∗C = ‖C‖2
2. Then, using the alternate expression for Hankel singular values (2.46),

I2
2 =

8p3

‖B‖2‖C‖2
I∞ =

2p

‖B‖‖C‖ (2.58)

This expression (2.58) was earlier obtained by Havre and Skogestad [58].

Propositions2.3 and 2.4 can be seen as the generalization of the results of Havre and

Skogestad [58] to systems with multiple unstable poles and time delay.

2.6 Extended Stability

The optimal controller that minimizes input requirement for stabilization cancels the stable

poles of system (see§ 2.3) and only unstable poles are moved. Though these stable poles

do not appear in the closed loop transfer matrix from the disturbances to the inputs, they

are still present in other closed loop transfer matrices,e.g. disturbances to outputs. When

the system has lightly dampened stable poles, the variability of the output may be large.

Further, when the linear model is obtained through linearization of an nonlinear system,

the large variation of the lightly dampened modes can excite some nonlinearities. It is

beneficial tostabilizethe unstable as well as stable poles of the system that are close to

the imaginary axis by moving them further into the left half of the complex plane. In the

literature, this problem is known as theα−stability problem, where all the modes of the
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closed loop system lie in a half plane satisfyingRe(s) < −α for the given positive scalar

α (see [28] and reference within for details). In this section, we present a simple algorithm

for theα−stability problem with minimization of input usage.

For notational simplicity, we assume thatGw(s) = Wu(s) = I. The algorithm is based

on the following observation:

Observation 2.1 Let [Tuw(s)]H2,opt and [Tuw(s)]H∞,sub
represent the closed loop system

from the disturbances to the inputs with theH2 andH∞ optimal controllers implemented

respectively. Then,

(1) The poles of[Tuw(s)]H2,opt are given as the unstable poles ofG(s) mirrored across

the imaginary axis with multiplicity2.

(2) A subset of poles of[Tuw(s)]H∞,sub
are given as the unstable poles ofG(s) mirrored

across the imaginary axis.

Proof: (1) When only input performance is considered, the optimal controller cancels the

stable part of the system (see§ 2.3). Thus, we can consider the system as having only

unstable poles without loss of generality. LetG(s) ↔ (P,B,C), whereRe(λi(P)) > 0.

Using the expression for optimal controller (2.7),

[Tuw(s)]H2,opt =




P BF 0
LC P + BF + LC −L
0 F 0


 =




P + BF BF 0
0 A + LC −L
F F 0




where the second equality is obtained by using a state transformation matrixT of the form,

T =

[
I I
I 0

]

Pre-multiplying the ARE (2.25) by X−1 and rearranging,P+BF = −X−1P∗X. Then,

λi(P + BF) = λi(−P∗), i = 1 · · ·np. Similarly post-multiplying the ARE (2.26) by Y−1,

λi(P + LC) = λi(−P∗), i = 1 · · ·np. The result follows by noting that the eigenvalues of

−P∗ are at the mirrored locations of the eigenvalues ofP.

(2) The proof is similar to the case of[Tuw(s)]H2,opt and is omitted.

The fact that the controller minimizing input energy mirrors the unstable poles was

earlier established by Kwakernaak and Sivan [76] for the LQG and by Glover [43] for

theH∞ optimal controller design problem. Kwakernaak and Sivan [76] justified this as

a balance between the gain and decay rate of the inputs. Note that in the case ofH∞
optimal control, the remaining poles of[Tuw(s)]H∞,sub

are given asλ(P + Z∞LC), where
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asγ−2 → ρ(XY)−1, Z∞ approaches singularity (cf. (2.11)). Thus, characterization of all

the poles of[Tuw(s)]H∞,sub
is difficult, but it does not have any effect on the algorithm for

α−stability, as presented next.

Algorithm 2.1 Consider that̂G(s) is the generalized system (2.23). Theα−stability for

this system can be achieved by following steps:

(a) Translate the imaginary axis by the transformations = s̃ + α/2.

(b) Design an optimal controller for̂G(s̃), that minimizes the input requirement for

stabilization.

(c) Use the inverse transformatioñs = s − α/2 on Tuw(s̃) to get a closed loop system

that isα−stable.

Optimal 
Controller Design

(a) (b) (c)

Open loop stable pole Open loop unstable pole Open loop stable pole (unaffected) 

Figure 2.8:Simple method forα−stability

When the imaginary axis of thes−plane is translated tõs + α/2, the stable poles of

the system that satisfyRe(s) < −α/2 also appear in the RHP of thẽs-plane. The optimal

controller that maximizes input performance reflects the poles in RHP ofs̃-plane across

the imaginary axis (see Observation2.1) across the imaginary axis. Then, by inverse

transformation to thes−plane, the poles of the closed loop system satisfyRe(s) < −α.

Using Proposition2.3, the closed loop system satisfy

‖Tuw(s− α/2)‖2
2 =

np∑
i=1

2|Re(P̄ii)|
σ2

Hi(U(Ĝ(s− α/2))∗)

‖Tuw(s− α/2)‖∞ = σ−1
H (U(Ĝ(s− α/2))∗)
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where(P̄, B̄, C̄) is the balanced realization of̂G(s−α/2). Similar relations can be derived

for a system with time delay using Proposition2.4; however, expressing‖Tuw(s)‖ directly

in terms of‖Ĝ(s)‖ andα is difficult. This class of norms are called shifted norms and

have been discussed by Boyd and Barratt [9, Ch. 5]. Nevertheless, Algorithm2.1provides

a simplistic way of attainingα−stability using available numerical tools forH2 andH∞
optimal controller design.

2.7 Selection of Variables for Stabilizing Layer

The results presented earlier in this chapter are useful for selecting a subset of controlled

and manipulated variables for stabilizing the system with minimum input usage. Clearly,

the optimal set of variables can be selected by comparing the achievable input performance

for different alternatives. A limitation of this approach is that it suffers from the curse

of dimensionality, as the number of alternatives show an exponential growth with system

dimensions. In this section, we present an iterative algorithm for finding a suboptimal

solution in finite time.

Further, selection of variables for the stabilizing layer through minimizing input usage is

beneficial, but generally there are also other criteria. For example, the effect of disturbances

on the remaining control problem (see Figure2.1) can be amplified due to closure of the

stabilizing or inner loop making the task of performance satisfaction difficult. We show

that this issue can also be addressed in the framework of input usage minimization.

2.7.1 Choice of Norm

For a rational system with a single unstable pole driven by pure measurement noise, the

optimal subset of the controlled and manipulated variables is independent of the choice

of norm [58]. In the general case, however, the choice of norm can influence the optimal

combination of variables. For example, consider the following system,

Ĝ(s) =
1

(s− 1)(s− 2)

[
(0.7s− 1.2) −(2.2s + 2.4)

]

where the objective is to choose one of the inputs requiring minimum usage for

stabilization. Use ofH2 andH∞ norms suggests the selection ofu2 andu1 respectively.

The appropriate norm can be chosen based on the information available regarding the

disturbance characteristics,e.g.when the disturbances can be considered to be white noise,

use ofH2 norm is appropriate. On the other hand, when only bounds on the disturbances

are available,H∞ norm should be used [115].
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We note that theL1 norm closely addresses the physical constraints of the system

and [117]

‖K̂(s)Ŝ(s)‖∞ ≤ ‖K̂(s)Ŝ(s)‖L1

Thus, use ofH∞ norm may be preferred overH2 norm. If for some combination of

variables,‖K̂(s)Ŝ(s)‖∞ > β, whereβ depends on physical constraints on the manipulated

variables, system stabilization without actuator saturation using a linear feedback controller

is not possible.

2.7.2 Reducing Computational Complexity

Consider a rational system with a single unstable pole, where the closed loop system is

driven by measurement noise. For such systems,I∞ andI2 depend on‖B‖ and‖C‖ (cf.

(2.58)) and the following conclusions can be drawn:

• The optimal set ofmy controlled andmu manipulated variables can be found by

selecting variables with largest entries in theB andC matrices.

• The optimal set ofmy controlled andmu manipulated variables is always a subset of

the optimal set of(my + 1) controlled and(mu + 1) manipulated variables.

With this monotonic relationship, the optimal set of variables for stabilization can be

selected through(ny + nu) comparisons for any × nu dimensional system. Unfortunately,

this attractive result does not hold for systems with multiple unstable poles. Specifically,

consider that the set of controlled and manipulated variables be partitioned into subsets of

equal dimensions as,y = [y1 y2 y3] andu = [u1 u2 u3]. Among these subsets, let the

input requirement be minimized by choosingy1,u1. In general, there is no guarantee that

the achievable input performance for the subset[y1, y2], [u1 u2] is better than the subset

[y2, y3], [u2 u3]. This point is further illustrated using the following system:

G(s) =
1

(s− 0.5)(s− 1.7)

[
(−1.7s + 0.75) (−s + 1.1) −0.3(s + 0.1)

]

For this system,u3 is the optimal choice formu = 1 andu1, u2 is the optimal choice for

mu = 2, when either ofH2 orH∞ norms are minimized. Due to the lack of a monotonic

relationship,Cny
my × Cnu

mu
comparisons are required for optimally selectingmy controlled

andmu variables for any×nu dimensional system. Solving the variable selection problem

through comparison of all alternatives is computationally intractable, as the number of

alternatives grow exponentially with the system dimensions. To this end, Havre [56] has
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suggested using the following step-wise approach to obtain a suboptimal solution in finite

time, where the unstable poles are stabilized one at a time:

Algorithm 2.2 For rational systems withWu(s) = Gw(s) = I,

(a) Scale the system variables and obtain a state space realization of the scaled system,

whereU(G(s)) ↔ (P,B,C) such thatP = diag(p1 · · · pnp), Re(pi) > 0.

(b) To stabilize the first real or pair of complex unstable pole (preferably the fastest

unstable pole), choose the controlled and manipulated variables with largest entries

in the corresponding rows and columns of theB andC matrices respectively. Design

a controller to stabilize the chosen unstable pole and close the loop.

(c) Similar to the previous steps, obtain a state space realization for the remaining

control problem and stabilize the second unstable pole. Repeat the procedure until

all unstable poles are stabilized.

This simple method avoids the problem of computational complexity, as in the worst

case, maximum of
∑np

i=0(ny + nu − 2i) comparisons are required; however, it suffers from

the following limitations:

• Algorithm 2.2 yields a decentralized controller designed sequentially and thus the

input usage for stabilization is large as compared to a full block multivariate

controller.

• In the worst case, this method requires thatnr + nc controlled and manipulated

variables be used for a system withnr real andnc pairs of complex unstable poles.

• The algorithm does not handle time delay systems or the case whereWu(s) 6= I or

Gw(s) 6= I.

We next present an iterative method that does not suffer from the limitations of

Algorithm 2.2. The central idea is to choose one controlled or manipulated variable

at a time. The algorithm provides a reasonable suboptimal solution for the variable

selection problem in finite time, where the computational time increases linearly with

system dimensions and quadratically with the number of variables to be selected. The

case of system stabilization using decentralized controller is handled in the next chapter.

Algorithm 2.3 Prior to variable selection, scale the system variables.
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(a) Select the optimal set consisting of1 controlled and1 manipulated variable that

minimizes input requirement for stabilization by enumerating all possibleny × nu

alternatives.

(b) Keeping the set of chosen manipulated variables the same, select an additional

controlled variable that minimizes input requirement for stabilization.

(c) Keeping the set of chosen controlled variables the same, select an additional

manipulated variable that minimizes input requirement for stabilization.

(d) Repeat steps (b) and (c) untilmy controlled andmu manipulated variables are

selected. Ifmy 6= mu, skip step (b) or (c) once the required number of variables

are selected.

Algorithm 2.3 can be easily used to handle time delay systems and the cases where

Wu(s) 6= I or Gw(s) 6= I. Note that whenWu(s) and Gw(s) are not diagonal, the

algorithm requires inversion of different sub-matrices ofWu(s) andGw(s) during every

iteration. For selecting the set ofmy controlled andmu manipulated variables for a

ny × nu dimensional system, the Algorithm2.3 requiresnynu +
∑ny−my+1

i=1 (ny − i) +∑nu−mu+1
j=1 (nu − j) number of comparisons. This expression can be simplified as,

nynu + (ny − 0.5my)(my − 1) + (nu − 0.5mu)(mu − 1)

Essentially, starting from the optimal set of1 controlled and1 manipulated variable,

at every step, Algorithm2.3 adds one locally optimal controlled or manipulated variable.

A similar algorithm can be constructed that starts with all variables and eliminates one

controlled or manipulated variable at every step. This alternative algorithm is particularly

useful, whenmy > ny/2 andmu > nu/2.

Example 2.4 We consider the base case of the Tennessee Eastman benchmark

problem [33]. A linearized model of this process is obtained by numerical differentiation

of the nonlinear model. The model is scaled prior to variable selection using the approach

of Havre [56, Ch.6]. Based on the recommendation of Havre [56, Ch.6], we use only a

subset of controlled variables and avoid using feed streams for stabilization. The resulting

system has11 controlled and8 manipulated variables and unstable poles at3.07 ± j5.08,

0.02± j0.16, 0.007 and0.

In Table 2.1, we show the results obtained by applying Algorithm2.3 for H∞ norm

minimization, which are compared against the optimal solution obtained by enumeration.
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Exact Solution Suboptimal Solution

my mu CV MV I∞ CV MV I∞

1 1 y22 u10 0.11 y22 u10 0.11

1 2 y21 u8,u11 0.077 y22 u10, u11 0.1047

2 1 y12, y21 u10 0.0235 y12, y22 u10 0.084

2 2 y12, y21 u10,u11 0.0222 y12, y22 u10, u11 0.0783

3 3 y8, y12, y21 u5, u10, u11 0.0212 y12, y21, y22 u5, u10, u11 0.0213

Table 2.1: Comparison of the results obtained using Algorithm2.3 with the optimal
solution for stabilization of Tennessee Eastman process usingH∞ optimal controller

my mu CV MV I2
2

1 1 y21 u10 0.0068

1 2 y21 u10,u11 0.0059

2 1 y12,y21 u10 0.0063

2 2 y11,y21 u10,u11 0.0055

3 3 y11,y12,y21 u5,u10,u11 0.0050

Table 2.2: Alternatives for stabilizing Tennessee Eastman process usingH2 optimal
controller. Due to monotonicity, Algorithm2.3provides the optimal solution.

The suboptimal solution is reasonably close to the optimal solution, but is obtained

using a fraction of the computational requirement for enumeration. For example, when

my = mu = 3, a total of 9240 comparisons are required for enumeration, where as

Algorithm 2.3requires only120 comparisons.

ForH∞ norm minimization, the lack of the monotonic relationship should be noticed in

Table2.1. In particular, formy = 1,mu = 2, choice ofu8, u11 is optimal, but this set does

not containu10, which is optimal formy = 1,mu = 1. On the contrary, whenH2 norm

is minimized, Algorithm2.3provides the same solution as obtained by enumeration. This

happens as the optimal solution forH2 norm minimization shows monotonicity, but this is

not true in general. The different alternatives for stabilization of the Tennessee Eastman

process using anH2 optimal controller are shown in Table2.2.

In general,my,mu are not specified beforehand and are decided upon by trading them off

against the achievable input performance. For this case study, the achievableH∞ optimal
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input performance using all controlled and manipulated variables is0.0194. Then, based

on the optimal solution obtained by enumeration, use of2 controlled and1 manipulated

variables is sufficient. In comparison, a disadvantage of Algorithm2.3 is that is suggests

use of3 controlled and3 manipulated variables and finding an improved algorithm remains

an open area of research.

2.7.3 Other Criteria

In the previous section, the selection of variables for the stabilizing layer through

minimizing input usage was demonstrated. Though beneficial, this approach can be

insufficient for practical controller design problems as generally there are also other criteria.

One such important criterion is the amplification of effect of disturbances on the remaining

control problem (see Figure2.1) due to closure of the stabilizing loop, which can make the

task of performance satisfaction difficult. We show that this issue can also be addressed in

the framework of input usage minimization.

Consider the set of controlled and manipulated variables be conformably partitioned as

y1(s) = G11(s)u1(s) + G12(s)u2(s) + Gw1(s)w(s)

y2(s) = G21(s)u1(s) + G22(s)u2(s) + Gw2(s)w(s)

where the subsety2,u2 is used for stabilization. When the stabilizing loop is closed, the

effect of the disturbance on the controlled variables of open loop system is given as [56],

y1(s) =
(
Gw1(s)−G12K(s)(I + G22K(s))−1Gw2(s)

)
w(s)

= Gw1(s)
(
I−G−1

w1G12K(s)(I + G22K(s))−1Gw2(s)
)
w(s)

Then, the stabilizing layer amplifies the effect of disturbances on the remaining control

problem, if

‖I−G−1
w1(s)G12K(s)(I + G22K(s))−1Gw2(s)‖∞ > 1

During the selection of controlled and manipulated variables, it is beneficial to take this

effect of disturbance amplification into account. The stabilizing controller can be designed

such that the input usage for stabilization is traded off against the disturbance amplification

effect. For this purpose, we note that

‖I−G−1
w1(s)G12K(s)(I + G22K(s))−1Gw2(s)‖∞

≤ 1 + ‖G−1
w1(s)G12K(s)(I + G22K(s))−1Gw2(s)‖∞
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Thus, it suffices to minimizeσ̄(G−1
w1(s)G12K(s)(I + G22K(s))−1Gw2(s)) at the

desired frequencies. In general, we can minimize‖Ww(s)G−1
w1(s)G12K(s)(I +

G22K(s))−1Gw2(s)‖∞, whereWw(s) is a frequency dependent weight. This requirement

combined with minimization of input usage for stabilization results in a multi-objective

optimization problem and a popular approach is to instead solve the following optimization

problem

min
K(s)

∥∥∥∥
[

Wu(s)
Ww(s)G−1

w1(s)G12

]
K(s)(I + G22K(s))−1Gw2(s)

∥∥∥∥
∞

(2.59)

This problem is the same as the general input usage minimization problem considered

earlier in this chapter, except the special choice of frequency dependent weights. Thus, the

controlled and manipulated variables can be selected as discussed in the previous section

with minor modification. ForH2 norm minimization, similar expression as (2.59) can be

used.

2.8 Chapter Summary

In this chapter, we used a state space framework to obtain analytic expressions for

achievable input performance for SISO and MIMO systems with and without time delay.

Regarding the factors affecting achievable input performance, the following general

conclusions are drawn:

1. The input performance primarily depends on the joint controllability and

observability of unstable poles.

2. In the H∞-control framework, there are no limitations on achievable input

performance for minimum phase systems, when the closed loop system is driven by

input disturbances. In theH2-control framework, the achievable input performance

for this class of systems is limited only by the location and number of unstable poles.

3. Time delay poses no serious limitation on the achievable input performance for a

system with slow instabilities andvice versa.

4. The input performance of a MIMO system, where the delays cannot be separated at

the inputs or outputs, can be much worse as compared to a system with delays that

can be factored at the inputs or outputs.
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5. In contrast to SISO systems, the input requirement for stabilization may decrease

for MIMO systems with an increase in time delay in some elements of the transfer

matrix relating controlled and manipulated variables.

Based on the observation that the optimal controller mirrors the unstable poles across

the imaginary axis, a simple method is proposed to handle theα−stability problem. In

the context of process control, this method is useful for controller design using available

numerical tools for systems with a subset of poles on or near the imaginary axis frequently

arising due to holdup of utilities and raw materials.

It is demonstrated that except for systems with a single unstable pole, the optimal subset

of controlled and manipulated variables that minimizes input requirement for stabilization

depends on the choice of norm. In the general case, the choice of norm depends on the

available information regarding disturbance characteristics, but use ofH∞ norm can be

preferred to address the actuator saturation issue. We also presented some insights to reduce

the computational complexity of the variable selection problem and handle criteria other

than input performance maximization in a unified framework.

2.9 Further Reading on Performance Limitations

The area of fundamental limitations of feedback control can be dated back to Bode [8].

In his seminal work, Bode showed that for stable systems with more than one pole-zero

excess, the integral of logarithmic magnitude of the sensitivity function over all frequencies

is always zero. With a finite bandwidth limitation, this result implies the unavoidable trade-

off between different performance objectives. Bode’s result has been extended to open loop

unstable systems by Freudenberg and Looze [38]. The same authors have also developed

a Poisson-type integral to quantify the limitations imposed by the unstable zeros on the

sensitivity integral. The classical Bode sensitivity and Poisson-type integrals have been

extended to multivariate systems by Chen [21]. The importance of the Bode sensitivity

integral for some real-life controller design problems is discussed by Stein [104].

Note that the Bode sensitivity or Poisson integrals always hold, irrespective of the

optimal controller design criteria. A similar set of constraints, known as analyticity

or interpolation constraints, were introduced by Zames [115]. The interpolation

constraints show that for a system with unstable poles and zeros, peaks in sensitivity and

complementary sensitivity functions are inevitable [102, 115]. Havre and Skogestad [57]

have used these interpolation constraints to quantify limitations imposed by RHP poles and

zeros on the lower bounds on several important closed loop transfer matrices. Chen [22]
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has presented improved achievable bounds on the sensitivity and complementary sensitivity

functions through the use of these constraints combined with Nevanlinna-Pick interpolation

theory [6].

Over the years, a number of results have been obtained for a related class of problems,

where the achievable performance is quantified assuming a particular performance

criterion. One of the most studied problems is the singular or cheap control problem.

For discrete time systems, Peng and Kinnaert [89] have provided an explicit solution and

the achievable performance is characterized by Qiu and Davison [92]. Recently, Yuz and

Goodwin [114] presented an approximate solution to the decentralized minimum variance

control, which is also studied later in this thesis. The presented list of references on

performance limitations is far from complete. The reader is encouraged to refer to the

books [9, 97, 102] and the recently published special issue on performance limitations by

IEEE Transactions on Automatic Control [27].





Chapter 3

µ-Interaction Measure for Unstable
Systems

The requirement that the block diagonal part of the system should have the same

unstable poles as the system limits the practical applicability of conventionalµ-interaction

measure (µ-IM) [ 49] to stable systems. This limitation can be overcome by designing the

decentralized controller based on a block diagonal approximation that is different from

the block diagonal elements, but has the same number of unstable poles as the system. By

expressing theµ-IM in terms of the transfer matrix between the disturbances and inputs, we

show that the block diagonal approximation can be sub-optimally selected by minimizing

the scaledL∞ distance between the system and the approximation. We present a numerical

method for choosing the block diagonal approximation and a simple method for designing

the decentralized controller based on the approximation.1

3.1 Introduction

The last chapter presented results on system stabilization using minimal control action. In

this chapter, we consider the system stabilization using a decentralized controller. Over the

years, three different approaches have evolved for decentralized controller design:

a) Simultaneous design using parametric search methods: The decentralized controller

is chosen to have a fixed structure (e.g. PID controller) with unknown parameters.

1A part of this work was performed while the author was visiting Professor Sigurd Skogestad, Norwegian
Institute of Science and Technology, Trondheim, Norway during March-May 2003.

The central idea of this chapter was presented at the American Control Conference, Boston, MA, 2004 [74].

47
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The optimal value of these parameters is found by minimizing the appropriate norm

of the closed loop system using direct or indirect search based methods. Though

useful, this approach results in optimization problems that are not usually convex

and can be highly complicated even for simple systems [7].

b) Sequential design: The controllers are designed sequentially using a lexicographical

ordering of the individual controllers. The lowest level controller is designed first and

the loop is closed. The next controller is designed based on the partially closed loop

system. The resulting performance strongly depends on the ordering of the loops and

often a trial and error approach is required to obtain acceptable performance [67, 84].

c) Independent design: The individual controllers are designed independently of each

other based on a block diagonal approximation that is usually taken as the block

diagonal elements of the system. Then, the decentralized controller design problem

reduces to design of a number of small dimensional full multivariable controllers.

When the interactions are small, such a controller also stabilizes the closed loop

system with minimal loss of performance in comparison to the design basis [66, 101].

This approach always results in suboptimal performance because the tuning of other

controllers is neglected.

In this work, we focus on the independent design approach. Although sub-optimal,

the controller design is much simpler as compared to other techniques. Furthermore, this

approach easily handles the cases in which only the bounds on (possibly time-varying)

off-diagonal elements of the system are available [98].

Grosdidier and Morari [49] proposed the use ofµ interaction measure (µ-IM) to assess

the feasibility of system stabilization through independent designs of individual loops.

This approach yields sufficient conditions to ensure that the decentralized controller that

stabilizes the block diagonal part of the system also stabilizes the system itself. The

problem of decentralized controller synthesis through independent designs has also been

studied by Limbeer [78] and Ohtaet al. [88], who used the concepts of generalized

block diagonal dominance and quasi block diagonal dominance respectively. The use of

µ−IM is less conservative than these approaches because the controller structure is taken

into account. A connection between these methods based on dominance andµ−IM is

established in the next chapter.

The conventionalµ-IM requires that the system and its block diagonal part have the same

right half plane (RHP) poles. Grosdidier and Morari [49] pointed out that this condition is

not satisfied by most of the systems encountered in practice, limiting the applicability of



Sec. 3.1 Introduction 49

µ-IM to open loop stable systems. Samyudiaet al. [96] have criticized theµ-IM for this

limitation and have instead proposed a method based onν-gap metric [110]. In this chapter,

we present a modifiedµ-IM that easily handles unstable systems. The decentralized

controller is designed based on a block diagonal approximation that is different from the

block diagonal elements, but has the same number of unstable poles as the system.

Clearly, the number of block diagonal systems with the required number of unstable

poles is infinite and the success of the modifiedµ-IM approach strongly depends on the

choice of an appropriate approximation. We express theµ-IM in terms of the closed

loop transfer matrix between disturbances and system input (or controller output). This

alternate representation shows that the block diagonal approximation can be reasonably

selected by minimizing the scaledL∞ distance between the system and the approximation.

The problem of finding a structured approximation of a full multivariate system has

earlier been considered by Li and Zhou [77], but no numerical methods for solving the

approximation problem are provided. In this chapter, we present a numerical approach,

where the approximation problem is first solved at a set of chosen frequencies followed by

a parametric identification method.

Similar to the conventionalµ-IM method, the stabilizing decentralized controller can

be synthesized using a loop shaping approach based on the block diagonal approximation.

An advantage of alternate representation ofµ-IM used here is that controller design can

be much simplified using the results of last chapter. Although the focus of this chapter

is on finding stabilizing decentralized controllers, we show that the stabilizing controller

inherently minimizes an upper bound on the input requirement for stabilization. The results

presented here can also be extended to handle (robust) performance issues directly using

the results of Skogestad and Morari [101].

The organization of this chapter is as follows: some useful results from robust control

theory and optimization are presented in§ 3.2; the available results ofµ-IM are reviewed

and its limitation is pointed out in§ 3.3; the alternate representation ofµ-IM is presented

and upper bounds on closed loop performance are derived in§ 3.4; in § 3.5we consider the

problem of selecting the optimal block diagonal approximation; the simplified controller

design is presented in§ 3.6; in § 3.7, a numerical example is presented to demonstrate the

utility of proposed approach followed by chapter summary in§ 3.8.
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3.2 Preliminaries

In this section, we review the useful concepts of structured singular value, model order

reduction and optimization using linear matrix inequalities. These results are used

extensively during the remaining development in this chapter.

3.2.1 Structured Singular Value

Most of the problems encountered in robust control theory can be reduced to guaranteeing

that for some characteristic transfer matrixM(s), I −M(jω)∆(jω) remains nonsingular

for all ω for all allowable values of∆(jω) ∈ Cq×p. A practical and mathematically

convenient way of representing the set of allowable∆(s) is as a norm bounded set,

e.g., σ̄(∆(jω)) ≤ 1 for all ω. With this representation, the smallest norm of the

destabilizing perturbation∆(jω) is given as1/σ̄(M(jω)). Then, it follows thatdet(I −
M(jω)∆(jω)) 6= 0 for all allowable perturbations, iff‖M(s)‖∞ < 1.

In the above discussion, allowable perturbations include all matrices∆(jω) with

σ̄(∆(jω)) ≤ 1 for all ω. In practice, many problems arise, where∆(s) has a structure,

i.e. some entries of∆(s) are identically zero. Then, the condition‖M(s)‖∞ < 1 is

only sufficient (and highly restrictive) for ensuring thatdet(I − M(jω)∆(jω)) 6= 0 for

all allowable perturbations. This motivates the use of the structured singular value, which

explicitly accounts for the structure of the perturbations.

Definition 3.1 Let the set∆ ∈ Cp×q be defined as

∆ = {diag(∆i) : ∆i ∈ Cpi×qi , σ̄(∆) ≤ 1}

The structured singular value ofA ∈ Cq×p is given as [35],

µ∆(A) =
1

min{σ̄(∆̃) : ∆̃ ∈ ∆, det(I−A∆̃) = 0}

unless no∆̃ ∈ ∆ makes(I−A∆̃) singular, in which caseµ∆(A) = 0.

The µ∆(A) represents2−norm of the smallest structured perturbation that makes

I −A∆̃ singular, where the subscript∆ is used to explicitly denote the structure. Braatz

et al.[14, 15] and Fu [39] have shown that in the general case, the determination of the exact

value or an approximate bound onµ is not computationally tractable; however this is not a

serious limitation as a tight upper bound onµ for complex structured perturbations can be

readily computed [35]. For notational simplicity, consider the perturbation set consisting
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of square matrices and letD be set of matrices that commute with all elements of∆ or

D∆̃ = ∆̃D for all ∆̃ ∈ ∆,D ∈ D. Then,

µ∆(A) ≤ inf
D∈D

σ̄(DAD−1) (3.1)

In this thesis, we denote the upper bound given by (3.1) asµ̄∆(.). The upper bound given

by (3.1) is tight for complex perturbations and the equality holds, if the number of blocks

in ∆ is less than4. When∆ has4 or more blocks with no block being a repeated scalar,

the ratio ofµ∆(.) andµ̄∆(.) for the worst known example is0.85 and is close to1 for most

cases [117]. A collection of many useful properties of the structured singular value can

be found in [102, 117]. One particularly useful property of the structured singular value,

which is used later in this chapter is:

µ∆

([
0 A
B 0

])
=

√
σ̄(A)σ̄(B) (3.2)

where∆ = diag(∆1,∆2) and∆1,∆2 are full complex matrices [100].

3.2.2 Optimal Hankel Norm Approximation

For practical controller design and system identification, use of low order controllers or

models is preferred because of online implementation issues. Imposing an order constraint

directly on the controller design or identification algorithms usually makes the problem

non-convex and difficult to solve. To avoid this difficulty, we can first solve the unrestricted

problem (wrt the controller or model order) and then reduce the order of the solution using

efficient techniques. In this subsection, we discuss such an order reduction technique,i.e.,

Hankel norm approximation approach.

Let G(s) be a stable, square and rational transfer matrix having ordern. The objective

is to find a reduced order stable transfer matrixĜk(s) having orderk such that

Ĝk(s) = arg min
Ĝk(s)

‖G(s)− Ĝk(s)‖H

where‖.‖H denotes the Hankel norm. This problem has been studied by many researchers

and a complete solution is given by Glover [42], who showed that

min
Ĝk(s)∈RH∞

‖G(s)− Ĝk(s)‖H = min
Ĝk(s),F∗(−s)∈RH∞

‖G(s)− Ĝk(s)− F(s)‖∞(3.3)

= σH,k+1(G(s)) (3.4)

whereσH,k+1(.) denotes the(k + 1)th Hankel singular value. A complete characterization

of all solutions that achieve the lowest approximation error (3.4) is available in the
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original paper by Glover [42] and many standard optimal control textbooks. Note that

the requirement thatG(s) be square is not restrictive and is easily satisfied by padding

extra zero columns or rows on the non-squareG(s). When the order of the approximation

k is zero,Ĝk(s) is a constant matrix and thus (3.3) is equivalent to finding an anti-stable

approximation of a stable system. In this case, the Hankel norm approximation problem is

alternatively known as the Nehari extension problem [37].

For the block diagonal approximation problem discussed later in the chapter, we require

thatG(s) with np unstable poles be approximated byĜk(s) with k unstable poles such that

‖G(s)− Ĝk(s)‖∞ is minimized. Next, we show that this problem can also be solved as a

Hankel norm approximation problem.

Let G(s) = G1(s) + G2(s) such thatG∗
1(−s),G2(s) ∈ RH∞. Without loss of

generality, we can parameterizêGk(s) asĜk(s) = Ĝk
1(s) + G2(s), which provides

‖G(s)− Ĝk(s)‖∞ = ‖G1(s)− Ĝk
1(s)‖∞ = ‖G∗

1(−s)− (Ĝk
1(s))

∗‖∞
The optimal value for(Ĝk

1(s))
∗ ∈ RH∞ is found by solving (cf. (3.3)),

min
(Ĝk

1(s))∗,F∗(−s)∈RH∞
‖G∗

1(−s)− (Ĝk
1(s))

∗ − F(s)‖∞

Then, the optimal value of̂Gk(s) is given asĜk(s) = Ĝk
1(s) + F∗(−s) + G2(s). Since

F∗(−s) andG2(s) are stable,Ĝk(s) is theL∞ optimal reduced order approximation of

G(s) with k unstable poles.

3.2.3 Linear Matrix Inequalities

Many control theoretic problems require solving an optimization problem that does not

admit an analytic solution. Solving these problems numerically strongly depends on

whether the optimization problem is convex and if not, how closely it can be approximated

by an equivalent convex problem. Linear matrix inequalities (LMIs) represent a class of

such convex constraints and are represented as follows,

F(x) = F0 +
n∑

i=1

xiFi Â 0 (3.5)

wherex ∈ Rn represents the decision variable andFi ∈ Rn×n are symmetric matrices. In

(3.5),Â is the partial ordering symbol andF(x) Â 0 implies thatF(x) is positive definite.

The past decade has seen a rapid growth in the use of LMIs for solving control problems

because many non-linear optimization problems can be represented as LMIs that are affine

in the decision variables.
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In this chapter, we use LMIs as the primary computational tool for solving relevant

optimization problems. To fully appreciate the importance of LMIs, consider the problem

of calculatingµ̄∆(.). Due to the presence of the inverse term in (3.1), the optimization

problem is difficult to solve in its present form; however, it can be transformed into an

equivalent convex optimization problem. There existsD ∈ D such that̄µ∆(A) < γ iff

(DAD−1)∗(DAD−1) ≺ γ2I for some D ∈ D
⇔ A∗D∗DA ≺ γ2D∗D for some D ∈ D

⇔ A∗PA ≺ γ2P for some P = D∗D,P Â 0,P ∈ D (3.6)

For a givenγ, (3.6) is affine in the decision variableP. Thus the minimal value ofγ

can be found using a bisection search method andµ̄∆(A) = inf γ such that (3.6) holds.

The class of problems having a form similar to (3.6) are known as generalized eigenvalue

problems. A collection of many other control problems that can be reduced to the LMI

form is available in [10].

Naturally, not every optimization problem can be reduced to LMIs. A more general class

of matrix inequality problems is that which involves the product of two decision variables.

These inequalities are known as bilinear matrix inequalities (BMIs) and have the following

general form,

F(x,y) = F0 +
n∑

i=1

xiFi +
n∑

j=1

yjGi +
n∑

i=1

n∑
j=1

xiyjHij Â 0 (3.7)

whereFi,Gj,Hij Â 0 for all i, j andy ∈ Rn. These BMIs are much more difficult to

solve than LMIs and are known to be computationally intractable [108]. When one of the

decision variables in (3.7) is fixed, the relation becomes an LMI. Then, the BMI (3.7) can

be sub-optimally solved by iteratively by fixing one of thex andy at a time. This simplistic

often provides satisfactory solution to the BMI. A survey of other techniques for solving

BMIs can be found in [108] and its references.

3.3 µ-Interaction Measure

In this section, we briefly review the available results onµ-IM [ 49], point to its limitation

and suggest a modification to overcome the same. Throughout this chapter, we assume

that the system does not contain any decentralized fixed modes [112]. The absence of

decentralized fixed modes is both necessary and sufficient for existence of a decentralized

stabilizing controller but only necessary, when individual loops of the decentralized

controller are designed independently of each other.
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- Kbd Gbd

d

yu

G

Figure 3.1:Closed loop system

With reference to Figure3.1, let the systemG(s) be partitioned asG(s) = Gbd(s) +

GI(s) such that

• Gbd(s) contains the block-diagonal elements ofG(s) and

• Gbd(s) andG(s) have the same number of RHP poles.

Define the transfer matricesE(s) andTbd(s) as,

Tbd(s) = GbdKbd(s) (I + GbdKbd(s))
−1 (3.8)

E(s) = (G(s)−Gbd(s))G
−1
bd (s) (3.9)

where Kbd(s) is the block diagonal controller. Tbd(s) can be interpreted as the

complementary sensitivity function ifGI(s) were zero, andE(s) as the multiplicative

uncertainty inGbd(s). Let Kbd(s) be designed such thatTbd(s) is stable. The central

question remains: DoesKbd(s) also stabilizeG(s)? This issue has been addressed by

Grosdidier and Morari [49], who proposed the use ofµ-IM for this purpose.

Lemma 3.1 Assume thatG(s) andGbd(s) have same number of RHP poles andTbd(s)

is stable. ThenT(s) = GKbd(s) (I + GKbd(s))
−1 is stable iff the following conditions

hold [49]

det(I + ETbd(s)) 6= 0 (3.10)

N(0, det(I + ETbd(s))) = 0 (3.11)

whereN(α, .) denotes the winding number [110] or the number of clockwise encirclements

of the point(α, 0) by the image of NyquistD contour under (.).

Proof: The return difference transfer function forT(s) can be written as,

(I + GKbd(s)) = (I + GbdKbd(s) + GIKbd(s))

=
(
I + GIKbd(s)(I + GbdKbd(s))

−1
)
(I + GbdKbd(s))

= (I + ETbd(s)) (I + GbdKbd(s)) (3.12)
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Since for rational systemsg1(s), g2(s), N(α, g1g2(s)) = N(α, g1(s))+N(α, g2(s)) (see

e.g.[110]), using the alternate expression for the return difference transfer function (3.12),

N(0, det(I + GKbd(s))) = N (0, det(I + ETbd(s)))

+ N(0, det(I + GbdKbd(s))) (3.13)

SinceG(s) hasnp unstable poles, it follows from the multivariate Nyquist stability

criterion [102] thatT(s) is stable iff

det(I + G(s)Kbd(s)) 6= 0

N(0, det(I + G(s)Kbd(s))) = −np

Further, sinceTbd(s) is stable by assumption,

det(I + Gbd(s)Kbd(s)) 6= 0

N(0, det(I + Gbd(s)Kbd(s))) = −np

The necessity and sufficiency of (3.10)-(3.11) follows using above expressions and

(3.13).

Lemma3.1was originally proven by Grosdidier and Morari [49], except the requirement

that (3.10) must hold. This is a minor technical requirement to ensure that the image of

det(I+TbdE(s)) does not pass through the origin of the complex plane. Lemma3.1forms

the basis for a more important result, as presented next.

Theorem 3.1 Let G(s) and Gbd(s) have same number of unstable poles. IfKbd(s)

stabilizesGbd(s), thenKbd(s) also stabilizesG(s), if

σ̄ (Tbd(jω)) < µ−1
∆ (E(jω)) ∀ω ∈ R (3.14)

where∆ has the same block structure asGbd(s) andTbd(s), E(s) are defined by (3.8) and

(3.9) respectively.

Proof: The sufficiency of (3.14) for closed loop stability is proven by contradiction. Let

N(0, det(I + ETbd(s))) > 0 and let the image ofdet(I + ETbd(s)) intersect the negative

real axis of complex plane at the frequencyωo. Then there exists aβ, |β| < 1 such that

det(I + βETbd(jωo)) = 0

Similarly, let there exists a frequencyω1 such that

det(I + ETbd(jω1)) = 0
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Combining these two conditions, we notice thatT(s) is unstable iff there exists a

β, |β| ≤ 1 such thatdet(I + βETbd(jω)) = 0 for someω ∈ R. It follows from

the definition of the structured singular value that the norm of smallest perturbation that

destabilizesE(jω) is given as̄σ−1(βTbd(jω)). When (3.14) holds, aβ, |β| < 1 such that

det(I + βETbd(jω)) = 0 for someω ∈ R does not exist and the closed loop system is

stable.

Theorem3.1 was proven by Grosdider and Morari [49] under the requirement that the

unstable poles ofG(s) andGbd(s) be identical. It is clear from Lemma3.1and the proof of

Theorem3.1that the number of unstable poles ofG(s) andGbd(s) being equal suffices. In

either case, design ofKbd(s) solely based onGbd(s) is equivalent to designing individual

loops independently. The equation (3.14) is known as theµ-IM. This powerful result allows

the designer to impose restrictions on individual controllers, but still be designed solely

based onGbd(s) such that closed loop stability is ensured.

As pointed by Grosdidier and Morari [49] that in practice,G(s) andGbd(s) as defined

above have same number of RHP poles only for open loop stable systems limiting the

applicability ofµ-IM. It is noted that this limitation only arises asGbd(s) is chosen as the

block diagonal elements ofG(s) and is easily overcome by relaxing this requirement. The

decentralized controller can be designed based onGbd(s) that is different from the block

diagonal elements but has the same number of RHP poles asG(s). This point is further

illustrated using the following simple system:

G(s) =
1

(s− 1)(s− 2)

[
(s + 0.5) 0.5
(9s− 3) (s + 1)

]
(3.15)

Since all the minors of order1 have(s− 1)(s− 2) as denominator and

det(G(s)) =
(s + 0.5)(s + 1)− 0.5(9s− 3)

(s− 1)2(s− 2)2
=

s2 − 3s + 2

(s− 1)2(s− 2)2
=

1

(s− 1)(s− 2)

the system (3.15) has two unstable poles at1 and2 [81]. Let Gbd(s) be chosen as the

diagonal elements ofG(s). In this case,

det(Gbd(s)) =
(s + 0.5)(s + 1)

(s− 1)2(s− 2)2

Due to absence of pole-zero cancellation,Gbd(s) has poles at the same locations as

G(s), but repeated twice and the assumption ofµ−IM are violated. Consider thatGbd(s)

is chosen as,

Gbd(s) =

[
1

(s−α1)
f1(s) 0

0 1
(s−α2)

f2(s)

]
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whereα1, α2 > 0 andf1(s), f2(s) are arbitrary stable transfer matrices. With this choice,

the assumption thatGbd(s) andG(s) have same unstable poles is easily satisfied. Note that

for an arbitrary choice ofα1, α2 > 0, the diagonal blocks ofGI(s) are not necessarily zero.

A similar approach can be used for partitioning any arbitrary system.

Remark 3.1 The approach for choosingGbd, as illustrated above, still holds when some

of the RHP poles of the system do not appear in any of its block diagonal elements. It is

pointed out however that in this case, it may be very difficult to design a block diagonal

controllerKbd to satisfy theµ−IM condition, as the corresponding diagonal blocks will

have large element-wise uncertainties associated with them (up to100%, if the diagonal

block is0).

Though the generalization used in choosingGbd(s) extends the practical applicability of

µ−IM to unstable systems, the generalization introduces an additional degree of freedom.

Clearly, whether theµ−IM condition (3.14) is satisfied depends on the choice ofGbd(s),

which is dealt with in subsequent sections.

3.4 Alternate Representation ofµ-IM

For a givenGbd(s), a loop shaping approach can be used to findKbd(s) for closed loop

stability. In the present case,Gbd(s) can also be treated as a free parameter with the

requirement of having the same number of unstable poles asG(s).

The task of jointly finding the pair(Gbd(s),Kbd(s)) such that the closed loop system

is stable, is very difficult. We note in (3.14), both σ̄(Tbd(jω)) andµ∆(E(jω)) depend

on Gbd(jω), but E(jω) is independent of the controller. Then, a convenient (and not

optimal) approach is to findGbd(s) such thatµ∆(E(jω)) is minimized and then design

the decentralized controlled based on it to satisfy theµ-IM condition; however,E(s) in

not an affine function ofGbd(s). We next show that this difficulty can be overcome by

representingµ-IM alternately in terms of transfer matrix between the disturbances and the

inputs.

Proposition 3.1 Let G(s) be partitioned asG(s) = Gbd(s) + GI(s) such thatGbd(s) and

G(s) have the same number of RHP poles. DefineSbd(s) = (I + GbdKbd(s))
−1. Then

Kbd(s) stabilizingGbd(s) also stabilizesG(s) if

σ̄(KbdSbd(jω)) < µ−1
∆ (GI(jω)) ∀ω ∈ R (3.16)

where∆ has the same structure asGbd(s).
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Proof: Note that

det(I + ETbd(s)) = det(I + GI(s)KbdSbd(s))

Now the sufficiency of (3.16) is shown by using Lemma3.1 and following the proof of

Theorem3.1.

Since the RHS of (3.16) is affine in Gbd(s), it can be sub-optimally selected by

minimizing µ∆(GI(jω)). This approach is suboptimal as the LHS of (3.16) also depends

onGbd(s). For a particular choice ofGbd(s) that optimally minimizesµ∆(GI(jω)), there

may not exist any controller satisfying (3.16). This issue is further discussed later in this

chapter.

Remark 3.2 Since both of (3.14) and (3.16) are sufficient but not necessary conditions

for closed loop stability, some stabilizing controller may fail to satisfy (3.14) and (3.16)

simultaneously. Note thatdet(I+E(s)Tbd(s)) = det(I+E(s)W−1(s)W(s)Tbd(s)). Then,

a sufficient condition for closed loop stability is thatσ̄(WTbd(jω)) ≤ µ−1
∆ (EW−1(jω))

for all ω ∈ R [49]. From the discussion in§ 2.3, it follows that we can selectW(s)

to have the unstable poles and pole directions asGbd(s). Clearly, the allowable class of

W(s) includesGbd(s) itself. Then (3.16) can be seen as a special case of the generalized

inequality (3.14). Similarly, (3.14) can be shown to be a special case of the generalized

inequality (3.16) using similar arguments.

The modifiedµ−IM condition (3.16) is derived by treatingKbdSbd(s) as uncertainty in

GI(s). A slightly weaker version of (3.16) can be derived by instead considering the robust

stabilization ofGbd(s) and using the results of Glover [43], which are useful for analyzing

robust stability in presence of unstructured perturbations. In the present context, such an

exercise is redundant but can provide insight into the conservatism or more precisely lack

of conservatism ofµ−IM.

Since Gbd(s) and G(s) have the same RHP poles,Kbd(s) stabilizing Gbd(s) also

stabilizesG(s) if [ 43]

σ̄(KbdSbd(jω)) < σ̄−1(GI(jω)) ∀ω (3.17)

Since stability is scaling invariant, the closed loop system is stable if

σ̄(DL(ω)KbdSbd(jω)D−1
R (ω)) < σ̄(DL(ω)GI(jω)D−1

R (ω)) ∀ω (3.18)
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whereDL(ω) andDR(ω) are frequency dependent scaling matrices. LetDL(ω),DR(ω)

be restricted to the set

DL = {diag(di · Imi
), di ∈ R}

DR = {diag(dj · Imj
), dj ∈ R} (3.19)

where the dimensions of individual blocks ofGbd(s) is mi × mj. Since

DL(ω)KbdSbd(jω)D−1
R (ω) = KbdSbd(jω), the conservatism of (3.18) is reduced by

choosingDL(ω),DR(ω) to maximize the RHS of (3.18) at every frequency. Then the

sufficient condition for the stability of closed loop system is

σ̄(KbdSbd(jω)) < sup
DL(ω)∈DL
DR(ω)∈DR

σ̄(DL(ω)GI(jω)D−1
R (ω)) < µ̄−1

∆ (GI(jω)) ∀ω (3.20)

Theoretically, (3.20) is slightly more conservative than (3.16). However, from

computational point of view, they are equivalent as, in practice, only the upper and lower

bounds onµ are computable.

Figure 3.2:Physical interpretation of reducing conservatism throughµ

Remark 3.3 Most of the available interaction measures other thanµ−IM, e.g. [78, 88],

provide a condition that is equivalent to (3.17). Since σ̄(GI(jω)) ≥ µ̄∆(GI(jω)) ≥
µ∆(GI(jω)) for all ω, (3.17) is more conservative than (3.20) and (3.16). We can also

interpret this result on physical grounds as follows: An uncertainty setσ̄(GI(jω)) ≤ ε(ω)

defines an open ball in the complex plane, denoted asBε. In this case, the controller

needs to stabilize all systems that lie withinBε to guarantee thatG(s) is also stabilized.

WhenBε is optimally scaled at every frequency, the dimensions of this perturbation set

are shrunk in all directions, except the direction connecting the nominal modelGbd(jω)
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andG(jω). The optimal scaling reduces the number of additional systems that need to be

stabilized to guarantee thatG(s) is also stabilized and hence the reduction in conservatism

(see Figure3.2).

Remark 3.4 Compared to the necessary and sufficient conditions provided by Lemma3.1,

the conditions provided by Theorem3.1and Proposition3.1are sufficient only. To illustrate

this point, consider a controllerKbd(s) that violates (3.14) or (3.16), but the closed loop

system is stable. Then, there exists some other controllerK̄bd(s) such that̄σ(K̄bd(jω)(I +

GbdK̄bd(jω))−1) = σ̄(KbdSbd(jω)) for someω ∈ R and K̄bd(s)(I + GbdK̄bd(s))
−1 is

unstable. We can also interpret (3.16) as a sufficient condition for robust stabilization of

Gbd(s). Similar as before, consider that a controller violates (3.16), but the closed loop

system is stable. Then, there existsḠI(s) such that̄µ∆(ḠI(jω)) = µ̄∆(GI(jω)) for some

ω ∈ R and the closed loop system is unstable whenGI(s) is replaced byḠI(s). Thus,

the conservativeness ofµ-IM arises as the apparent uncertainty set is much larger than the

true uncertainty set, which consists of a single element,i.e. GI(s). The strength ofµ-IM

is that when (3.14) or (3.16) hold, any decentralized controller that stabilizesGbd(s) also

stabilizesG(s).

Proposition3.1 provides a sufficient condition to assess whetherKbd designed for

Gbd, can stabilize the closed loop system; however, it provides no information regarding

the closed loop performance. Grosdidier and Morari [49] pointed out, satisfyingµ-IM

condition guarantees closed loop stability, but the performance can be arbitrarily poor. In

the next proposition, we show that when theµ-IM condition (3.16) is satisfied, an upper

bound on closed loop input performance is always minimized.

Proposition 3.2 Assume thatG(s) andGbd(s) have the same number of RHP poles and

(3.20) holds. Then,

µ∆(KbdS(jω)) ≤ 1

σ̄−1 (KbdSbd(jω))− µ̄∆(GI(jω))
∀ω (3.21)

where∆ has the same structure asGbd.

Proof: UsingG(s) = Gbd(s) + GI(s),

(I + GKbd(s))K
−1
bd (s) = K−1

bd (s) + Gbd(s) + GI(s)

= (I + GbdKbd(s))K
−1
bd (s) + GI(s) (3.22)
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Let DL(ω) ∈ DL andDR(ω) ∈ DR, whereDL andDR are defined by (3.19). Then,

using (3.22) and singular value inequalities [63, 102],

σ
(
DL(ω)S−1K−1

bd (jω)D−1
R (ω)

) ≥ σ
(
DL(ω)S−1

bd K−1
bd (jω)D−1

R (ω)
)

− σ̄
(
DL(ω)GI(jω)D−1

R (ω)
)

Consider thatDL(ω),DR(ω) are chosen to maximizēσ
(
DL(ω)GI(jω)D−1

R (ω)
)
. Since

DL(ω)S−1
bd K−1

bd (jω)D−1
R (ω) = S−1

bd K−1
bd (jω),

σ
(
DL(ω)S−1K−1

bd (jω)D−1
R (ω)

) ≥ σ
(
S−1

bd K−1
bd (jω)

)− µ̄∆(GI(jω)) (3.23)

With this choice,µ−1
∆ (KbdS(jω)) ≥ σ

(
DL(ω)S−1K−1

bd (jω)D−1
R (ω)

)
and

µ−1
∆ (KbdS(jω)) ≥ σ

(
S−1

bd K−1
bd (jω)

)− µ̄∆(GI(jω))

µ∆(KbdS(jω)) ≤ 1

σ̄−1 (KbdSbd(jω))− µ̄∆(GI(jω))

Generally, the nominal performance of the closed loop system is measured in terms of

σ̄(KbdS(jω)) instead ofµ∆(KbdS(jω)). The corollary below shows that the information

regardinḡσ(KbdS(jω)) can be readily extracted from (3.21).

Corollary 3.1 Let all the conditions of Proposition3.2 hold andDL(ω) ∈ DL, DR(ω) ∈
DR be chosen to maximizēσ

(
DL(ω)GI(jω)D−1

R (ω)
)

Then

σ̄(KbdS(jω)) ≤ κ(DL(ω))

σ̄−1 (KbdSbd(jω))− µ̄∆(GI(jω))
∀ω ∈ R (3.24)

where∆ has same structure asGbd andκ denotes the Euclidean condition number.

Proof: Using (3.23),

σ̄(DL(ω))σ̄(D−1
R (ω))σ

(
S−1K−1

bd (jω)
) ≥ σ

(
S−1

bd K−1
bd (jω)

)− µ̄∆(GI(jω)) ∀ω (3.25)

Sinceσ̄(D−1
R (ω)) = σ̄(D−1

L (ω)) by construction,̄σ(DL(ω))σ̄(D−1
R (ω)) = κ(DL(ω)).

With this observation, (3.24) can be obtained by rearranging (3.25) as the proof of

Proposition3.2.

Comparing (3.25) with (3.20), we notice that when the decentralized controller stabilizes

the closed loop system, an upper bound on the closed loop input performance is always

minimized. The bound on the closed loop performance (3.25) is very loose in general.

When the performance requirements are specified in terms of a frequency dependent

weight, it can be very difficult to satisfy these requirements by minimizing the upper bound.

Nevertheless, maximization ofσ̄−1 (KbdSbd(jω))− µ̄∆(GI(jω)) is beneficial to maximize

the robustness of the closed loop system for unmodelled dynamics that can be represented

as an additive uncertainty [43].
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3.5 Block Diagonal Approximation

In this section, we consider the problem of finding an optimal block diagonal approximation

Gbd(s) for the given systemG(s) such thatµ∆(G(jω) − Gbd(jω)) is minimized. Since

only µ̄∆(.) is computable in practice, the block diagonalGbd(s) can be chosen by solving,

min
Gbd(jω)

σ̄
(
DL(ω)

(
G(jω)−Gbd(jω)

)
D−1

R (ω)
)

(3.26)

s.t. DL(ω) ∈ DL,DR(ω) ∈ DR

whereDL andDR are given by (3.19) and the number of unstable poles ofGbd(s) andG(s)

is same.

Intuitively, a suboptimal solution to the optimization problem (3.26) can be obtained

by simply reducing the order of the block diagonal elements ofG(s). In fact, for

systems decomposed into2 blocks, the solution obtained by order reduction of the diagonal

elements is optimal. This result is proven next by showing that the diagonal blocks

optimally approximate a complex matrix partitioned into2 blocks, which may also be of

independent interest.

Proposition 3.3 Consider a complex matrixA ∈ Cp×q be partitioned as,

A =

[
A11 A12

A21 A22

]

Then,Abd = diag(A11,A22) minimizesµ∆(A−Abd), whereAbd and∆ have the same

structure asdiag(A11,A22) and

min
Abd

µ∆(A−Abd) =
√

σ̄(A12)σ̄(A21) (3.27)

Proof: Using the identity for structured singular value (3.2), it follows that µ∆(A −
diag(A11,A22)) =

√
σ̄(A12)σ̄(A21). Then, it suffices to show that for allAbd, the

minimum achievable value ofµ∆(A−Abd) is given by (3.27).

Let Abd = diag(A11 + B1,A22 + B2). Since∆ has two complex blocks,

µ∆(A−Abd) = inf
DL∈DL,DR∈DR

σ̄(DL(A−Abd)D
−1
R )

= inf
d1,d2∈R

σ̄

([
B1

d1

d2
A12

d2

d1
A21 B2

])

Let U be a unitary matrix that permutes the off-diagonal blocks ofDL(A − Abd)D
−1
R to

diagonal blocks andvice versa. Without loss of generality, we can choosed1 = 1 [117].
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Since the largest singular value of a matrix is larger than or equal to largest singular value

of the sub-matrices of the matrix [63],

σ̄(DL(A−Abd)D
−1
R ) = σ̄(DL(A−Abd)D

−1
R U)

≥ max(σ̄(d−1
2 A12), σ̄(d2A21)) ∀d2 ∈ R

≥ max
(∣∣d−1

2

∣∣ σ̄(A12), |d2| σ̄(A21)
) ∀d1, d2 ∈ R

≥
√

σ̄(A12)σ̄(A21)

The result follows by noting that the RHS of the above expression is independent of the

scaling matrices.

Note that Proposition3.3says nothing about the uniqueness of the optimal solution. For

(A−Abd) partitioned and permuted as done in the proof of Proposition3.3[117, p. 218],

µ∆(A−Abd) ≤ max(σ̄(A12), σ̄(A21)) +
√

σ̄(B1)σ̄(B2)

If B1 = 0 andσ̄(A12) = σ̄(A21), the upper bound onµ∆(A −Abd) is the same as the

lower bound. This shows that there exists an infinite number ofB2 and thus block diagonal

matrices which achieve the lower bound.
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(a) Unrestricted case
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(b) Diagonally dominant matrices

Figure 3.3: Relative difference between approximation errors using diagonal elements
(γdiag) and locally optimal solution (γsub) for 3× 3 complex matrices

Unfortunately, Proposition3.3 does not hold for matrices partitioned into more than2

blocks. For such cases, we may still hope that the diagonal blocks will be nearly optimal

for the approximation problem. To verify the extent of sub-optimality of using diagonal

blocks as a nearly optimal solution for the approximation problem,1000 3 × 3 complex

matrices are generated randomly. The real and imaginary parts of the individual elements
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of the matrices lie between±100. For comparison purposes, the locally optimal solution

is calculated using the method discussed in the next subsection. Figure3.3(a)shows that

the relative difference between the approximation errors using diagonal elements and the

(locally) optimal solution can be as high as0.25. When the class of random matrices is

limited to the diagonally dominant matrices, surprisingly the same upper bound still holds

(see Figure3.3(b)). Thus, we conclude that the solution obtained by simply reducing the

order of the diagonal blocks is restrictive and present an algorithm that provides a locally

optimal solution for the optimization problem (3.26).

Algorithm 3.1 For a given systemG(s) with np unstable poles, a locally optimal solution

to the block diagonal approximation problem is obtained by the following steps:

1. Solve the optimization problem (3.26) at a set of chosen frequencies to yieldGbd,jω.

2. Solve a parametric optimization problem to findG̃bd(s) that has at leastnp unstable

poles and minimizes the worst case error betweenG̃bd(jω) andGbd,jω.

3. If G̃bd(s) has more thannp unstable poles, the order of̃Gbd(s) is reduced tonp

through optimal Hankel norm approximation to getGbd(s).

The role of these steps becomes clear by noting,

µ∆(G(jω)−Gbd(jω)) ≤ µ∆(G(jω)−Gbd,jω)

+ σ̄(Gbd,jω − G̃bd(jω)) + σ̄(G̃bd(jω)−Gbd(jω)) (3.28)

It follows from (3.28) that every step in the proposed method minimizes the contribution

of one of terms on RHS of (3.28) to the total approximation error. The order reduction

through Hankel norm approximation was discussed in§ 3.2.2 and is not repeated. The

other steps of the proposed method are discussed next.

3.5.1 Frequency Wise Approximation

The first step of the proposed method for finding the optimal block diagonal approximation

consists of minimizing (3.26) at a set of chosen frequencies. The (possibly non-uniformly

spaced) set of frequencies can be selected based onσ̄(G(jω)), i.e., a larger number of

frequencies can be chosen around the peaks ofσ̄(G(jω)). In the remaining discussion, the

frequency argument of the scaling matrices is dropped for notational convenience. Using
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similar arguments as used in calculatingµ̄(.) (3.6),

σ̄(DL(G(jω)−Gbd,jω)D−1
R ) ≤ γ (3.29)

⇔ D−∗
R (G(jω)−Gbd,jω)∗D∗

LDL(G(jω)−Gbd,jω)D−1
R ¹ γ2I (3.30)

⇔ (G(jω)−Gbd,jω)∗PL(G(jω)−Gbd,jω) ¹ γ2PR (3.31)

wherePL = D∗
LDL ∈ DL, PR = D∗

RDR ∈ DR andPL,PR Â 0. Note that unlike (3.6),

(3.31) is not affine in the decision variables; however, a locally optimal solution can be

found using an iterative approach. Using the Schur complement lemma [10], (3.30) can be

equivalently expressed as,

[ −γI D−∗
R (G(jω)−Gbd,jω)∗D∗

L

DL(G(jω)−Gbd,jω)D−1
R −γI

]
¹ 0 (3.32)

Note that for fixedDL,DR, (3.32) is an LMI in Gbd,jω. Now, a locally optimal solution

for the frequency wise approximation problem can be found by using the following iterative

algorithm for the set of chosen frequencies:

Algorithm 3.2 Select a set of frequencies{ωi}, i = 1 · · ·nω and evaluateG(jωi). Choose

convergence toleranceε and initial D0
L ∈ DL, D0

R ∈ DR (e.g. D0
L = D0

R = I), where

DL,DR are given by (3.19). Seti = 1.

1. Solve the convex optimization problem (3.32) for Gi
bd,jω by settingDL = Di−1

L and

DR = Di−1
R . Let the locally optimal approximation error beγi

1.

2. Solve (3.31) for Pi
L,Pi

R using a bisection search method by fixingGbd,jω asGi
bd,jω.

Let the locally optimal approximation error beγi
2. SetDi

L = (Pi
L)0.5, Di

R = (Pi
R)0.5

andi = i + 1.

3. Repeat steps1 and2 until |γi−1
1 − γi−1

2 | < ε.

Unlike a general BMI problem, the sequence of solutions obtained using Algorithm3.2

is guaranteed to converge. Letγi
1, γ

i
2, γ

i+1
1 be a sequence of the approximation errors. For

convergence, we only need to show thatγi
1 ≥ γi

2 ≥ γi+1
1 . Since the individual optimization

problems to be solved in steps1 and2 of Algorithm 3.2are convex, these steps are jointly

convex if there always existsPi
L,Pi

R such thatγi
1 = γi

2 andGi+1
bd,jω such thatγi

2 = γi+1
1 .

Since (3.29) ⇔ (3.32),

γi
1 = σ̄(Di−1

L (G(jω)−Gi
bd,jω)(Di−1

R )−1)
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With Gbd,jω = Gi
bd,jω, Pi

L = Pi
R = I is a feasible solution for (3.31). As (3.31) is

convex, the solutionPi
L = Pi

R = I can be seen as the worst case solution, which achieves

γi
2 = γi

1. Now, note that

(Di
L(G(jω)−Gi+1

bd,jω)(Di
R)−1) = Di

LG(jω)(Di
R)−1 −Gi+1

bd,jω.

As Gi
bd,jω is a feasible solution for (3.32), which achievesγi+1

1 = γi
2, the convergence to

local optima is proven.

An equally important issue is that of quality of the solution obtained using Algorithm3.2.

Since the approximation problem has multiple local minima and the converged solution

depends on the initial value, Algorithm3.2 can converge to a minima that is worse

than using the diagonal blocks. This difficulty is overcome by replacingG(jω) by

G(jω)− diag(Gii(jω)) in Algorithm 3.2and usingGsub
bd,jω + diag(Gii(jω)) as the locally

optimal solution, whereGsub
bd,jω is the solution obtained using the modified algorithm.

Using the same arguments as used for convergence of the sequence of solutions obtained

using Algorithm3.2, it follows that the modified algorithm always obtains a solution that is

at least as good as using the diagonal blocks. Note that replacingG(jω)− diag(Gii(jω))

can bias the algorithm to converge to a local minima close to diagonal blocks. We

use a simple approach, where the problem is solved twice usingG(jω) and (G(jω) −
diag(Gii(jω))) and select the better solution. It is possible to obtain an improved solution

using the available branch and bound methods [108], but this approach is not pursued here

with the view of keeping computational requirement low and is a potential area for future

research.

3.5.2 ParametricL∞ Optimal Identification

In this section, we discuss finding a rational transfer function that explains the frequency

response data obtained using Algorithm3.2. The objective is to find the rational transfer

matrix G̃bd(s) that best approximates the irrational function and has at least as many

unstable poles asG(s). It would be ideal to directly findGbd(s) that has the same number

of unstable poles asG(s), but the optimization problem becomes very involved when the

number of unstable poles is fixed. In any case,Gbd(s) can be obtained as the optimal

Hankel norm approximation of̃Gbd(s) as discussed in§ 3.2.2.

Traditionally, the model identification problem consists of minimizing the least square

error or theH2 norm of Gbd,jωi
− G̃bd(jωi). In the present case, however, it is more

appropriate to instead minimize the worst case error or theL∞ norm ofGbd,jωi
− G̃bd(jωi)

(cf. (3.28)). In a related context, Helmickiet al. [60] formulated the problem of identifying
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H∞ optimal model from frequency response data for discrete time systems. The same

authors have extended their approach to continuous time systems in [61] through a bilinear

transformation. The two-step approach of Helmickiet al. [60] consists of fitting the

frequency response data with finite impulse response (FIR) models followed by Hankel

norm approximation, which is similar to the last two steps of the method proposed here.

Over the past few years, a number of different approaches have appeared in the literature

and the current state of the art ofH∞ optimal identification can be found in [24].

In this chapter, we parameterize the class of models using transfer functions as compared

to the FIR models used by Helmickiet al.[61]. An advantage of using the transfer function

parametrization is that low order models can be identified directly in the continuous

time domain, the disadvantage being that unlike the FIR parametrization, no worst case

error bounds are available. Nevertheless, practical experience (particularly inH2 norm

minimization case) suggests that transfer function parametrization works very well. For

simplicity, G̃bd(s) is identified element by element, where[G̃bd(s)]ij is parameterized as:

[G̃bd(s)]ij =
a(s)

b(s)
=

amsm + am−1s
m−1 + · · · a1s + a0

bnsn + bn−1sn−1 + · · · b1s + b0

; m ≤ n

In the remaining discussion, we drop the requirement thatG̃bd(s) has at least as

many poles asGbd(s), as it is easily satisfied by choosing the order of the denominator

polynomials sufficiently large. Then, the parametersa0 · · · am, b0 · · · bn, are obtained by

solving,

min
a0···am,b0···bn

∣∣∣∣
a(jωk)

b(jωk)
− [Gbd,jωk

]ij

∣∣∣∣ k = 1 · · ·nω (3.33)

Note that the objective function in (3.33) is nonlinear, but can be equivalently represented

as|b(jωk)|−1|a(jωk)− b(jωk)[Gbd,jωk
]ij|. Now, we can instead minimize

|a(jωk)− b(jωk)[Gbd,jωk
]ij| =√

Re(a(jωk)− b(jωk)[Gbd,jωk
]ij)2 + Im(a(jωk)− b(jωk)[Gbd,jωk

]ij)2

which is easily represented as an LMI problem as follows:

min
a0···am,b0···bn∈R

γ2
1 + γ2

2

subject to −γ2
1 ≤ Re (a(jωk)− b(jωk)[Gbd,jωk

]ij) ≤ γ2
1

−γ2
2 ≤ Im (a(jωk)− b(jωk)[Gbd,jωk

]ij) ≤ γ2
2 k = 1 · · ·nω (3.34)

As ωk → ∞, the magnitude of the polynomialsa(jωk), b(jωk) becomes unbounded.

Thus, the formulation (3.34) inherently emphasizes minimization ofγ1, γ2 at high
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frequencies. The following iterative approach can be used, which does not suffers from

this limitation:

min
a
(i)
0 ···a(i)

m ,b
(i)
0 ···b(i)n ∈R

γ2
1 + γ2

2

subject to −γ2
1 |b(i−1)(jωk)| ≤ Re

(
a(i)(jωk)− b(i)(jωk)[Gbd,jωk

]ij
) ≤ γ2

1 |b(i−1)(jωk)|
−γ2

1 |b(i−1)(jωk)| ≤ Im
(
a(i)(jωk)− b(i)(jωk)[Gbd,jωk

]ij
) ≤ γ2

2 |b(i−1)(jωk)|
bn = 1 (3.35)

whereb(i−1)(jωk) denotes the identifiedb polynomial from the previous iteration. In (3.35),

the additional constraintbn = 1 is imposed for numerical stability and in general, fixing

any one of the unknown parameters suffices. In theH2 optimal identification literature,

methods similar to (3.34) and (3.35) are known as Levi’s and Sanathanan and Koerner’s

method respectively [90]. The sequence of solutions obtained by solving optimization

problem (3.35) is not guaranteed to converge, but reasonable solution can be obtained using

a few iterations.

3.6 Controller Design

With the availability ofGbd(s) using Algorithm3.1, the controller design for the modified

µ-IM is similar to the conventionalµ-IM method. A loop shaping approach can be

used to find the stabilizing decentralized controller; however, finding a controller using

this method to satisfy (3.16) can be difficult. In this section, we show that with the

alternate representation of theµ-IM conditions in terms ofKbdSbd(s), finding Kbd(s) to

satisfy (3.16) reduces to solving a weightedH∞ controller design problem forGbd(s).

Proposition 3.4 Consider thatG(s) andGbd(s) havenp unstable poles. Let the minimum

phase and stable transfer matrixw(s) be chosen such that|w(jω)| = µ−1
∆ (GI(jω))

for all ω. There exists a block diagonal controllerKbd(s) such thatσ̄(KbdSbd(jω)) <

µ−1
∆ (GI(jω)) for all ω ∈ R iff

σ−1
H (U(w−1Gbd(s))

∗) < 1 (3.36)

whereU(.) denotes the unstable part.

Proof: (Sufficiency) Let us define,̃Kbd(s) = w(s)Kbd(s) andG̃bd(s) = w−1(s)Kbd(s).

Then, using Proposition2.3, there exists aKbd(s) such that,

inf
Kbd(s)

‖wKbdSbd(s)‖∞ = inf
K̃bd(s)

‖K̃bd(s)(I + G̃bdK̃bd(s))
−1‖∞

= σ−1
H (U(w−1Gbd(s))

∗)
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If (3.36) holds, there exists aKbd(s) such that

‖wKbdSbd(s)‖∞ < 1 (3.37)

⇔ σ̄(wKbdSbd(jω)) < 1 ∀ω
⇔ σ̄(KbdSbd(jω)) < |w(jω)|−1 ∀ω
⇔ σ̄(KbdSbd(jω)) < µ−1

∆ (GI(jω)) ∀ω

where the last inequality holds as|w(jω)| = µ∆(GI(jω)) for all ω.

(Necessity) We show the necessity of (3.36) by contradiction. Consider that (3.36) does

not hold, but there exists aKbd(s) such thatσ̄(KbdSbd(jω)) < µ−1
∆ (GI(jω)) ∀ω. By

reversing the series of inequalities used for sufficiency,Kbd(s) must satisfy (3.37). The

σ−1
H (U(w−1Gbd(s))

∗) denotes the least achievable value for‖w(s)KbdSbd(s)‖∞ for all LTI

controllers. Then,‖wKbdSbd(s)‖∞ being less than1, despiteσ−1
H (U(w−1Gbd(s))

∗) being

equal to or greater than1 is a contradiction and the necessity of (3.36) follows.

In Proposition3.4, we assumed thatw(s) is stable and minimum phase. In general,w(s)

can have RHP zeros and RHP poles at same the location asGbd(s). Allowing w(s) to

be unstable or non-minimum phase provides no advantage, as following the discussion in

§ 2.3, we can simply replacew(s) by its minimum and stable part in (3.36). On relaxing this

assumption, however,w(s) that achieves|w(jω)| = µ−1
∆ (GI(jω)) becomes non-unique,

where the different instances ofw(s) are related by a unitary transformation.

Proposition3.4 effectively reduces the task of finding a block decentralized controller

to satisfy µ-IM condition (3.16) to finding the minimum phase and stablew(s) such

that |w(jω)| = µ−1
∆ (GI(jω)) and (3.36) holds. When (3.36) is satisfied, the standard

H∞ optimal control design techniques can be used to find the stabilizing decentralized

controller.

Remark 3.5 In practice, it can be difficult to findw(s) that satisfies|w(jω)| =

µ−1
∆ (GI(jω)) for all ω ∈ R. This difficulty can be overcome by recognizing that any

w(s) that lower boundsµ∆(GI(jω)) at all frequencies, if (3.36) holds,

σ̄(KbdSbd(jω)) < |w(jω)|−1 ⇒ σ̄(KbdSbd(jω)) < µ−1
∆ (GI(jω))

Thus, for a givenGbd(s) the existence of a decentralized stabilized controller can be

established by verifying (3.36) with w(s) that lower boundsµ∆(GI(jω)).
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Figure 3.4:Efficiency of proposed method for optimal block diagonal approximation

3.7 Numerical Example

In this section, we demonstrate the efficiency of Algorithm3.1for obtaining optimal block

diagonal approximation and the controller design method discussed in the previous sections

using a simple example.

Consider the following system:

G(s) =




1 0 0 0 1 β1 β1

0 2 0 0 β1 1 β1

0 0 3 0 β1 β1 1
0 0 0 −4 1 0.4 0.4
1 β2 β2 1 0 0 0
β2 1 β2 0.6 0 0 0
β2 β2 1 0.6 0 0 0




; β1 = 0.5, β2 = 0.1

A set of equally spaced frequencies in the range0− 10 is chosen and the locally optimal

diagonal approximation is obtained using the following steps:

• Algorithm 3.2 is used for frequency-wise minimization. The algorithm achieves3

decimal digits of accuracy as compared to the locally optimal solution in2 iterations.

• We fit 4th or lower order models for the frequency data using the formulation (3.35)

with 2 iterations.

• The identified model has5 unstable poles, which is reduced to a model with3

unstable poles using the Hankel norm approximation method discussed in§ 3.2.2.
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Figure 3.5:Validation of modifiedµ-IM for stabilizing decentralized controller designed
using independent designs

TheGsub
bd (s), as obtained following these steps, is given as:

diag
(
−0.002s2+2.22s+3.421

s2+2.92s−3.96 , −0.01045s2+2.04s+5.98
s2+2.53s−9.69 , −0.01575s2+1.842s+4.98

s2+1.77s−8.99

)

For comparison purposes, we also calculate the sub-optimal solutionGdiag
bd (s) by

reducing the order of diagonal elements ofG. In this case,5 Hankel singular values of

the stable part ofGdiag
bd (s) are negligible, which are removed to get a reduced order model

given as:

diag
(

2.075s+3.272
s2+2.96s−4.16 ,

1.33s+3.896
s2+2.06s−7.762 ,

−0.006s2+1.255s+3.533
s2+1.422s−10.31

)

To show the advantage of Algorithm3.1 over using diagonal elements,γsub =

µ∆(G(jω)−Gsub
bd (jω)) andγdiag = µ∆(G(jω)−Gdiag

bd (jω)) are compared in Figure3.4.

The relative difference betweenγdiag and γsub is 0.23 at the zero frequency, which

monotonically reduces to0.13 for ω = 10. This significant reduction in the approximation

error is useful for finding the stabilizing controller easily. Figure3.4 also shows that the

γsub closely matches the approximation error obtained using frequency wise minimization.

Thus, (at least for this example), the conservativeness in using the two-step approach for

identifying a model, with same number of unstable poles as the system, is minimal.

Next, we consider the controller design part. For the locally optimal diagonal

approximation, the following weight approximatesµ∆(GI(jω)) closely,

w(s) =
0.107s2 + 2.12s + 10.54

s2 + 2.06s + 7.762
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Using this w(s), σH(U(w−1Gsub
bd (s))∗) = 1.06 > 1 and standardH∞ optimal

controller design technique is used to find a decentralized stabilizing controller. The

plots of µ−1
∆ (GI(jω)) and σ̄([Gbd(jω)]ii), i = 1, 2, 3 are shown in Figure3.5, where

µ−1
∆ (GI(jω)) > σ̄([Gbd(jω)]ii), as expected. On the other hand, for the suboptimal

solution obtained using the diagonal elements,σH(U(w−1(s)Gdiag
bd (s))∗) = 0.524 < 1.

Then, the conservativeness of using the diagonal elements to find a suboptimal solution is

emphasized.

3.8 Chapter Summary

In this chapter, we extended the practical applicability ofµ-IM to unstable systems.

The decentralized controller is designed based on a block diagonal approximation that is

different from the block diagonal elements, but has same number of unstable poles as the

system. By expressing theµ-IM in terms of transfer matrix from disturbances to inputs, it

is shown that:

• The block diagonal approximation can be (sub-optimally) chosen by minimizing the

scaledL∞ distance between the system and the approximation.

• The task of designing the controller based on the block diagonal approximation can

be reduced to solving a weightedH∞ optimal controller design problem.

• The decentralized stabilizing controller inherently minimizes an upper bound on the

input requirement for stabilization, but the bound is very loose.

We have shown that when the system is partitioned into2 blocks, the optimal block

diagonal approximation can be obtained by order reduction of diagonal blocks. For

the general case, a step-wise numerical approach is presented for finding the locally

optimal solution to the block diagonal approximation problem. The proposed approach

involves solving the approximation problem at a set of frequencies followed byL∞ optimal

identification.

One promising approach for identifying low order continuous models from frequency

response data is to use the Nevanlinna-Pick interpolation theory [6]. The interpolation

theory parameterizes all rational stable functions that can pass through the given set of

(adjusted) complex valued data. This method has been used by Chenet al. [25] for H∞
optimal identification and can easily be extended to theL∞ case. The present difficulties

in using this approach are (i) the order of the model is the same as the number of data
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points; and more importantly, (ii) due to an over-emphasis on the given set of frequencies,

the interpolating function shows inter-sample oscillations.

The primary limitation of choosing the block diagonal approximation by minimizing the

scaledL∞ distance is that the properties of the approximant are not taken into account. As

shown in this chapter, whether the stabilizing controller can be easily found depends on

the minimum Hankel singular value of the approximation. A better approach is to use a

multi-objective optimization framework, where theL∞ distance between the system and

the approximation is minimized and simultaneously the minimum Hankel singular of the

approximation is maximized. This non-trivial problem is a topic for future work.





Chapter 4

Block Relative Gain: Properties and
Pairing Rules

Block relative gain (BRG) is a useful method for finding suitable pairings for block decen-

tralized control. In this chapter, we present some new algebraic properties of BRG and

establish its relation with closed loop stability, controllability, block diagonal dominance

and interactions. We show that the common conjecture that a system is weakly interacting,

if BRG is close to the Identity matrix, is not true. Based on these insights, simple rules for

pairing of variables are proposed. We also extend the known method for calculating RGA

for interacting systems to BRG.1

4.1 Introduction

Decentralized controllers are widely used in the process industries due to their simplicity.

The performance of a fully decentralized controller can be poor in presence of severe

process interactions. In such situations, the use of full multivariable controller is an

attractive alternative. On the other hand, decentralized controllers are easier to design,

tune and can be made fault-tolerant more easily as compared to full multivariable

controllers [18]. An alternative to either fully decentralized or a full multivariable controller

is the use of block decentralized controller, which has a structure in between the two

extremes. Block decentralized controllers balance the high performance given by full

multivariable controllers and the easier implementation and maintenance associated with

1This work has been published in Industrial Engineering & Chemistry Research [72] and a shorter version
in the proceedings of ADCHEM 2003, Hong Kong, P.R. China [73].

75
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fully decentralized controllers. The use of block decentralized controllers can be further

justified by the fact that in most industrial processes, the interactions are limited in scope

and do not include the full scope of the plant. Thus, these processes are most suitably

controlled in ablock-wisefashion. Since the number of such blocks and block decentralized

alternatives increases rapidly with system size, controller design for every alternative is

impractical at design stage. Thus, effective tools are required to get an estimate of closed

loop properties without designing the actual controller. In this chapter, we present results

concerning such a tool,i.e., Block relative gain (BRG) [83].

The BRG generalizes the concept of the relative gain array (RGA) [17] to block pairings.

It is a powerful technique for input-output controllability analysis and screening alternatives

quickly for block decentralized control at the design stage. The development of the BRG is

based on the assumption of perfect control2. Arkun [3] has argued that rigorous closed loop

stability and performance analysis is not possible under this assumption and has suggested

the use of the dynamic block relative gain. The BRG has also been extended to handle

non-square [93] and non-linear [82] cases. However, the applicability of these extensions

of the BRG is limited due to their dependence upon controller tuning and their extensive

computational requirements. These approaches are not considered here and the discussion

is limited to square, linear time invariant (LTI) and stable systems, unless otherwise stated.

During the past few decades, the RGA has been studied extensively [51, 65, 71, 113]

and its properties are well understood, but the BRG has largely been overlooked. Some

researchers [20, 85] have found relations between the BRG and Euclidian condition

number. It is shown that generally, a system is difficult to control, if the maximum

singular value of BRG is large. Chenet al. [23] have further considered the role of

the BRG in robustness analysis. Despite these studies, contrary to the RGA, BRG has

not gained widespread popularity and block pairings are selected primarily based on

heuristics [19, 29]. The use of heuristics can be attributed to lack of a study showing that

similar to the RGA, information regarding closed loop properties can be obtained using

BRG. This motivates the present work.

In this chapter, we present some novel algebraic properties of BRG. We establish the

connection between BRG and closed loop properties like stability, controllability, block

diagonal dominance and interactions. Manousiouthakiset al. [83] have claimed that a

system isweakly interacting, if BRG is close to the Identity matrix and have proposed

a pairing algorithm based on this statement. We show that this claim is incorrect. Further, a

system can have large interactions despite BRG being exactly the Identity matrix. It should

2Perfect control is achieved, when the output,y(t) is equal to the reference,r(t) ∀t > 0 [102].
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be emphasized, however, that if the singular values of BRG are very different from unity,

the closed loop system has large interactions. Based on these insights, simple rules for

variable pairing are proposed. Simultaneously, we present a note on calculation of BRG,

when the system contains integrating elements.

Grosdidieret al. [51] pointed out that modelling uncertainties and changing operating

conditions make it very difficult to develop reliable dynamic models for chemical processes

and often, only steady state gain information is available. With this motivation, we focus

on extracting useful feedback properties from gain information, though most of the results

presented are directly generalizable to higher frequencies.

The organization of this chapter is as follows. In§4.2, we revisit the development of

BRG and cite the limitations of existing pairing rules; in§4.3, we present some algebraic

properties of BRG; the main results of this chapter are contained in§4.4, where it is shown

that BRG can be used to assess some desired closed loop properties; in§4.5, alternate

pairing rules are proposed and illustrative examples are presented; in§4.6, we consider the

case, when the system matrix contains integrating elements and§4.7concludes this chapter.

4.2 Preliminaries

In this section, we introduce the concepts of relative gain and BRG. We present the BRG

based pairing rules due to Manousiouthakis [83] and point to their limitations.

As before, the transfer function matrix relating outputs and inputs of the system is

represented asG(s) in this chapter. The steady state gain matrix is represented asG(0)

or simplyG ∈ Rn×n. The objective is to decompose the original system into a set ofM

non-overlapping square subsystems such that,Gii ∈ Rmi×mi; i = 1, 2 · · ·M ,
∑

i mi = n.

Gij ∈ Rmi×mj represents theijth block of G or the block gain betweenyi anduj. The

pair (yi,uj) denotes the variables related byGij(s).

Definition 4.1 Relative gain[17] for variable pairing (yi,uj) is defined as the ratio of two

gains representing first the process gain in an isolated loop and second, the apparent process

gain in the same loop when all other control loops are closed,

λij = gij

[
G(0)−1

]
ji

Λ(G) = [λij] = G(0) ◦G(0)−T

where◦ is the Hadamard product andG(0)−T is transpose of the inverse ofG(0). Λ(G)

is called RGA. Manousiouthakiset al. [83] extended the concept of the RGA to BRG for

synthesizing block decentralized controllers.
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Definition 4.2 Block relative gain[83] for variable pairing (y1,u1) is defined as the ratio

of the open loop block gain and apparent block gain in the same loop when all other control

loops are closed,

[ΛB(s)]11 = G11(s)[G
−1(s)]11 (4.1)

whereG11(s) is them1×m1 transfer function matrix,m1 ≤ n, relating the firstm1 inputs

and outputs ofG and[G−1(s)]11 is the corresponding block ofG−1(s).

Precisely, (4.1) represents the expression for left-BRG. Similarly, right-BRG can be

calculated as[G−1(s)]11G11(s). Since the left and right-BRG share common properties,

consideration of right-BRG is omitted from this discussion.

4.2.1 BRG Revisited

Let the LTI system,y(s) = G(s)u(s) + d(s) be conformably partitioned such thatG11(s)

is anm1 ×m1 transfer function matrix,

y1(s) = G11(s)u1(s) + G12(s)u2(s) + d(s)

y2(s) = G21(s)u1(s) + G22(s)u2(s) + d(s) (4.2)

When (y2,u2) is perfectly controlled andd(s) ≈ 0, at steady state, (y1,u1) are related

through the Schur complement ofG22 in G [102],

y1 = Ḡ11u1; Ḡ11 = G11 −G12G
−1
22 G21 (4.3)

In (4.3), it is assumed that the subsystemG22 is nonsingular, though it is not necessary

for existence of the BRG, as is shown later. For partitioned matrices [62], [G−1]11 = Ḡ−1
11 .

Now, the steady state block relative gain between (y1,u1) can be defined as,

[ΛB]11 = G11[G
−1]11 (4.4)

Similarly,G can also be partitioned intoM diagonal and conformal off-diagonal blocks,

such thatGii ∈ Rmi×mi; i = 1, 2 · · ·M . Then,

[ΛB]ii = Gii[G
−1]ii (4.5)

Manousiouthakiset al. [83] have suggested choosing the pairings such that the

eigenvalues of all the corresponding BRGs are close to 1. This pairing rule is based on the

conjecture that a system isweaklyinteracting, if the BRG is close to the Identity matrix, and

is similar to the pairing rules for RGA prevalent then. Now, it is well known that pairing on

RGA elements close to 1 can lead to pairings with significant interactions. Since relative

gains are a special case of BRG, the utility of this rule is also limited for choosing block

pairings.
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4.3 Algebraic Properties

In this section, we present some new properties of the BRG and alternative proof of

a previously known property. Some of the properties are used to establish some more

important properties of BRG in later sections, while others are of purely algebraic interest.

Property 4.1 The individual elements of[ΛB]11 ∈ Rm1×m1, βij can be alternatively

computed as the weighted sum of RGA elements as,

βij =

m1∑

k=1

gik

gjk

λjk (4.6)

Proof: From (4.4),

βij =

∑m1

k=1(−1)j+kgikdet(Gjk)

det(G)
(4.7)

whereGjk is systemG with jth row andkth column deleted. Yu and Luyben [113] have

shown that,
(−1)j+kdet(Gjk)

det(G)
=

λjk

gjk

(4.8)

Now, (4.6) can be obtained by substituting (4.8) into (4.7).

A special case of (4.6) is seen for diagonal elements of[ΛB]11, (i = j), [83]

βii =

m1∑

k=1

λik

This property can be helpful in reducing computational load, when the BRG is to be

calculated for different decompositions of large systems.

It is known that the row and column sum of the RGA is equal to 1 [17]. In order to

extend this property to BRG, we defineI as the ensemble of them1-dimensional ordered

index sets chosen from the firstn natural numbers. For example, forn = 3 andm1 = 2,

I has the following elements:(1, 2), (1, 3) and(2, 3). Given a matrixA, everyp, q ∈ I,

define a submatrix, denoted asApq, made up of rows and columns ofA indexed byp and

q respectively.

Property 4.2 Let p, q ⊂ I. Thenyp ⊂ y, uq ⊂ u and[ΛB(Gpq)]11 is the BRG between

yp anduq. Then,

∑
q⊂I

[ΛB(Gpq)]11 =
m1

n

n!

m1!(n−m1)!
· Im1 ∀p ⊂ I
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Proof: Since[ΛB(Gpq)]11 = Gpq[G
−1]qp, for anyp, q ⊂ I, summation over allq ⊂ I

yields
∑
q⊂I

[ΛB(Gpq)]11 =
∑
q⊂I

Gpq[G
−1]qp =

S
q∑

k=1

Gpk[G
−1]kp

By construction, the cardinality of the set
⋃

q for all q ∈ I is (m1 ·n!)/(m1! ·(n−m1)!),

where the set
⋃

q contains the firstn natural numbers repeated(m1 ·n!)/(n·m1!·(n−m1)!)

times. Now the result follows by noting that,
S

q∑

k=1

Gpk[G
−1]kp =

m1

n

n!

m1!(n−m1)!
· Im1

A similar result can be obtained by summing right-BRG over allp ⊂ I and for any

q ⊂ I. An interesting property of BRG is seen for the case whenm1 = m2 = · · ·mM = m.

Thenm is an exact divisor ofn. Let qi be defined as

qi = {qi ⊂ I | qi

⋂
qj = ∅,

⋃
i

qj = {1, 2 · · ·n}} ∀i, j = 1 · · ·M, i 6= j

Then the following relation holds,
∑
qi⊂I

[ΛB(Gpqi
)] = Im ∀p ⊂ I

Essentiallyqi’s partition the input set into smaller sets of equal dimension. Form = 1,

this result reduces to the known result for RGA.

Property 4.3 Let the gain matrix,G be scaled asGs = S1GS2. S1 = diag(s1i) and

S2 = diag(s2i), i = 1 · · ·n, are output and input scaling matrices respectively and are

real. If S1 andS2 are partitioned such thatS1 = diag(S11,S12), S2 = diag(S21,S22) and

S11,S21 ∈ Rm1×m1, then [83],

[Λs
B]11 = S11 [ΛB]11 S−1

11 (4.9)

Proof: Using (4.6) and noting thatλij is independent of scaling [17],

βs
ij =

m1∑

k=1

(s1igiks2k)

(s1jgjks2k)
λjk =

m1∑

k=1

(s1igik)

(s1jgjk)
λjk = s1iβij

1

s1j

(4.10)

Recognizing thatS−1
11 = diag{1/s11, 1/s12 · · · 1/s1m}, the equivalence of (4.9) and (4.10)

can be shown.

Based on (4.9) and (4.10), the following observations are made:
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(i) βs
ij is independent of input scaling, but dependent on output scaling.

(ii) [ΛB]ii is independent of scaling of[ΛB]jj, for all i, j = 1, 2 · · ·M , j 6= i.

(iii) If all outputs are scaled by the same scalar, thenβs
ij = βij. This can be shown by

settings11 = s12 = · · · = s1m in (4.10).

(iv) The diagonal elements of BRG,βij, (i = j), are independent of scaling.

In the development of the BRG, it was assumed thatGii is non-singular. The next

property shows that the existence of[ΛB]ii does not depend on the fulfillment of this

assumption.

Property 4.4 If G is non-singular andGii is singular, then[ΛB]ii exists and is singular.

Proof: SinceG is non-singular by assumption,G−1 and thus[G−1]ii exists. Thus,[ΛB]ii

exists, but is rank deficient due to rank deficiency ofGii (cf. (4.5)).

Example 4.1 Consider the gain matrixG decomposed into2× 2 and1× 1 blocks,

G =




1 2 1.5
1 2 4
3 1 5


 ; [ΛB]11 =

(
1.6 −0.6
1.6 −0.6

)
; [ΛB]22 = 0

Clearly, the first2× 2 block ofG is singular. For((y1-y2,u1-u2), (y3,u3)) pairings,[ΛB]11

exists, but is singular.

Property 4.5 For some specified partitioning of the system,

(i) G being block triangular implies that the corresponding[ΛB]ii = Imi
for all i =

1 · · ·M .

(ii) [ΛB]ii = Imi
for all i = 1 · · ·M does not imply thatG is block triangular.

Proof: (i) For block triangular matrices,[G−1]ii = [Gii]
−1. Then, using (4.5), [ΛB]ii =

Gii[Gii]
−1 = Imi

.

(ii) When only SISO pairings are used, the BRGs are the same as the diagonal elements

of RGA and the converse is proved trivially. To show that it is true for any arbitrary

partitioning, it would suffice to construct an example showing that[ΛB]ii can be the Identity

matrix for all i even whenG is not block triangular. Let the system be partitioned in

accordance to (4.2). Using (4.3) and (4.4),

[ΛB]11 = [I−G12G
−1
22 G21G

−1
11 ]−1
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If one of the pairs,{G12,G
−1
22 G21G

−1
11 } and{G12G

−1
22 ,G21G

−1
11 } lie in null space of each

other, [ΛB]11 is the Identity matrix. In either case,G12 is singular. Similarly, if one of

the pairs,{G21 , G−1
11 G12G

−1
22 } and{G21G

−1
11 , G12G

−1
22 } lie in null space of each other,

[ΛB]22 is the Identity matrix. Then,G21 is singular. Clearly, it is not required that one

or both ofG12 andG21 be zero matrices orG be block triangular for[ΛB]11 = Im1 and

[ΛB]22 = Im2. Similar arguments can be used to reach this conclusion, when the system is

to be partitioned into any arbitrary number of blocks.

Example 4.2 Consider the system

G =




0.2 2 2.5 1.1
1.5 0.4 2.5 1.1
1.3 −1.6 0.5 1
−1.3 1.6 2 0.1




For a2 × 2 and2 × 2 decomposition ofG, [ΛB]11 and [ΛB]22 are equal to the Identity

matrix, despite the system not being block triangular. Note that in this example, both the

off-diagonal blocks are singular.

If G is block triangular, then the system is one-way interacting. In this case, the

stability of the individual loops implies the stability of the overall system. Property4.5

shows that this cannot be inferred directly from BRG. In the context of SISO pairings,

this property relates to the diagonal elements of RGA only. Some researchers,e.g. Hovd

and Skogestad [65] (also see [102, Theorem 10.3]), have claimed that RGA being the

Identity matrix implies that the system is triangular or can be permuted to the triangular

form. By means of a counterexample, Johnson and Shapiro [71] have shown that for

G ∈ Rn×n, n ≥ 4, this is not true. Whereas the example in [71] is purely mathematical,

Braatzet al. [12] found that the RGA can be arbitrary close to the Identity matrix for real

industrial processes, which are neither triangular or can be permuted to the triangular form.

Property 4.6 If the rows and columns of the gain matrix,G are permuted such that,Gp

= P1GP2, whereP1 andP2 are permutation matrices, and further, ifP1 andP2 can be

partitioned as,

P1 =

[
P11 0
0 P22

]
P2 =

[
P21 0
0 P22

]

then BRG for the permuted system is,

[Λp
B]11 = P11 [ΛB]11 P−1

11 (4.11)
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Proof: See [83].

It should be noted that[Λp
B]11 and [ΛB]11 are equivalent from a variable pairing point

of view, as either of these represent the block gain between the same set of inputs and

outputs. Then, we may naturally seek the the total number ofdistinctblock decentralized

alternatives for a given system. This issue is addressed next by using the concept of

partition functions, but before that a formal definition of partition function is necessary.

Definition 4.3 A partition of a positive integern is a finite non-increasing sequence of

positive integersq1, q2, · · · qr, such that
∑r

i=1qi = n. The partition functionp(n) is the

number of possible partitions ofn [2].

Essentially,p(n) represents the number of ways of writingn as sum of smaller integers,

where the order of the addends is not considered significant. In the present context,p(n)

represents the number of ways of block partitioning the given system.

Property 4.7 The number of distinct block decentralized alternatives,N(n) for a square

system is given by,

N(n) =

p(n)∑
i=1

(n!)2

∏M
j=1(mj,i!)2aj,i!

;
M∑

k=1

mk,i = n (4.12)

whereaj is the number of occurrences ofj in the sequence{m1,m2 · · ·mM}.

Proof: For any given decomposition, the total number of ways, in whichn outputs andn

inputs can be permuted isn! × n! = (n!)2. Considering that permutation within a block

gives rise to equivalent BRGs, the total number of distinct permutations decreases to,
(

n!

m1!m2! · · ·mM !

)2

;
M∑

k=1

mk = n

Let there existi, j such thatmi = mj, i, j ≤ M . Then, the cases where the same set

of outputs and inputs are assigned toith or jth block are the same. Let,aj represent the

number of occurrences ofj in the sequence{m1,m2 · · ·mM}. Thus, the total number of

distinct alternatives is given as,

(n!)2

∏M
j=1(mj!)2aj!

;
M∑

k=1

mk = n (4.13)

Now, p(n) represents the total number of such possible decompositions (including the

fully centralized case). Thus, an expression forN(n) is realized by summing (4.13) over

p(n).
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Figure 4.1:Closed loop system with integral action controller

Note that the above expression forN(n) also includes thefully centralizedcase. For the

fully decentralizedcase,mj = 1 for all j, a1 = n andaj = 0 for all j > 1. Therefore the

number of alternatives is simplyn! (cf. (4.13)). Development of an analytical expression

for N(n) explicitly in terms ofn is beyond the scope of this thesis.N(n) for some typical

values ofn is presented in Table4.1. By evaluatingN(n) for different values ofn, n ≤ 40,

the following empirical relation can be obtained,

N(n) ≈ n!1.52 (4.14)

n P (n) n! N(n)
3 3 6 16
4 5 24 131
5 7 120 1496
6 11 720 22482
8 22 40320 9934563

10 42 3628800 9.0852×109

15 176 1.3077×1012 2.5273×1018

Table 4.1:N(n) for some typical values ofn

In many practical situations, the maximum number of blocks or the maximum dimension

of individual blocks is constrained. Such cases can be handled using the concept of

restricted partitions. Andrews [2] provides a detailed discussion of partition theory.

4.4 Closed Loop Properties

Throughout this section, we assume that the controller has integral action to give

asymptotically zero tracking error. Then, the controllerKii(s), can be expressed as
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(ki · Imi
/s)Cii(s), ki > 0 (see Figure4.1). It is further assumed thatH(s) = G(s)C(s)

is stable and proper. The primary objective is to relate BRG with some desired closed loop

properties including the following,

Definition 4.4 The systemG(s) is called to possessintegrity [18, 30], if there exists a

controllerK(s) with integral action such that̂K(s) stabilizesG(s) for all K̂(s) ∈ KI(s),

where

KI(s) = {K̂(s) = εK | ε ∈ {0, 1}}

Definition 4.5 The systemG(s) is calledblock decentralized integral controllable(block-

DIC), if there exists a controllerK(s) with integral action such that̂K(s) stabilizesG(s)

for all K̂(s) ∈ KD(s), where

KD(s) = {K̂ = diag(εiImi
)K | εi ∈ [0, 1] , i = 1, 2, · · · ,M}

A system that possess integrity remains stable with integral action in every output

channel, when any combination of loops is taken out of service. It is assumed that a

controller that fails is immediately taken out of service,i.e. the corresponding entries in the

block diagonal controller matrix are replaced by zero. The gain of the individual loops of

a block-DIC system can be reduced independently of each other (or taken out of service)

without introducing instability in the system. Note that Block-DIC is the block version of

decentralized integral controllability (DIC) [18], known for fully decentralized controllers.

4.4.1 Stability

In this section, we consider the stability of the closed loop system operating under nominal

conditions, with one or more loops open and in the presence of actuator failure. For fully

decentralized control, it is well known that a system does not possess integrity, if one or

more associated relative gains are negative. Grosdidier and Morari [50] have extended this

result to block pairings.

Lemma 4.1 Let H(s) = GC(s) be a rational proper system. With reference to Figure4.1,

assume thatk1 = k2 · · · = kM = k. Then, H(s) is closed loop stable only if

det(H(0)) > 0 [51].

Theorem 4.1 Let H(s)GC(s) be a proper system. Ifdet([ΛB(0)]ii) < 0, for somei,

i = 1, 2 · · ·M , then at least one of the following is true [50],

1. The closed loop system is unstable.
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2. The closed loop system is unstable asith loop is removed.

3. Theith loop considered in isolation with other loops is unstable.

Proof: Using (4.5) and Schur complement lemma,det([ΛB(0)]ii) can be expanded as,

det([ΛB(0)]ii) =
det(Gii(0))det(Gii(0))

det(G(0))
=

det(Gii(0)Cii(0))det(Gii(0)Cii(0))

det(G(0)C(0))
(4.15)

whereGii(0) is the systemG(0) with all the rows and columns corresponding to theith

loop deleted. The second equality follows sincedet(C(0)) = det(Cii(0))det(Cii(0)).

det([ΛB(0)]ii) < 0 implies that at least one of the terms in (4.15) is negative. Then, the

conclusions can be drawn using Lemma4.1.

If the individual loops are stable, then the stability of the closed loop system and the

reduced system with one of theM loops removed is assessed using Theorem4.1. It is

generalized to the case when any combination of loops are open by the following corollary.

Corollary 4.1 Let p be a subset of integers chosen from the firstM integers. Then,Gpp(0)

is a submatrix consisting of blocks ofG(0) indexed byp andyp ∈ y. For a rational proper

systemH(s), if det([ΛB(Gpp(0))]11) < 0, then at least one of the following is unstable:

1. the closed loop system or

2. the reduced system with the loops indexed byp removed (yp left uncontrolled) or

3. the reduced system with only the loops indexed byp closed (onlyyp controlled).

Though useful, when used alone, Theorem4.1 can be inadequate in some cases.

Consider the individual loops to be stable, but the closed loop system and the reduced

system withith loop removed to be unstable. In this case,det([ΛB(0)]ii) > 0 despite

the system not having integrity. This difficulty can be overcome by using Theorem4.1 in

conjunction with generalized Niederlinski index (NI).

Theorem 4.2 Let H(s)GC(s) be rational and proper. Assume that the individual loops

are stable and have vanishing tracking error. Then the closed loop system is stable only

if, [ 49]

NI =
det(G(0))∏M

i=1 det(Gii(0))
> 0; det(Gii(0)) 6= 0 ∀i = 1, 2 · · ·M (4.16)
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It follows from earlier discussion that a system has integrity only ifdet([ΛB(0)]ii) > 0

for all i = 1, 2 · · ·M andNI > 0. Similar to loop failure sensitivity, an equally important

issue is that of actuator failure sensitivity. A system is calledjth actuator failure sensitive

(j-AFS), if the nominal system is stable but becomes unstable if thejth actuator andjth

sensor are removed [51]. Then using Lemma4.1, a system isj−AFS if det(GjjCjj) < 0.

Note that for SISO pairings, actuator failure sensitivity and loop failure sensitivity are

equivalent. For block pairings, BRG can be used to assess the actuator failure sensitivity of

the system. We assume that the variables of the system are reordered such that1 ≤ j ≤ m1

or thejth actuator lies in the first block of the partitioned system. Then,[G11(0)]jj is the

loop gain withjth sensor andjth actuator removed.

Corollary 4.2 Let the rational proper systemH(s) and its individual loops be nominally

stable. Assume thatdet([ΛB(G(0))]11) > 0. Then, if det([ΛB(Gjj(0))]11) < 0 or

NI(Gjj(0)) < 0, at least one of the following isj−AFS: (i) the closed loop system or

(ii) the loop itself.

Proof: Similar to (4.15), det([ΛB(Gjj(0))]11) can be expanded as,

det([ΛB(Gjj(0))]11) =
det([G11(0)]jj[C11(0)]jj)det(G

′
11(0)C

′
11(0))

det(Gjj(0)Cjj(0))

Since the nominal system and its individual loops are stable anddet([ΛB(G(0))]11) > 0,

the reduced system with first loop removed is stable,i.e. det(G
′
11(0)C

′
11(0)) > 0.

Similarly,

NI(Gjj(0)) =
det(Gjj(0))Cjj(0))

det([G11(0)]jj[C11(0)]jj)
∏M

i=2 det(Gii(0))Cii(0))

Since the individual loops are stable,
∏M

i=2 det(Gii(0))Cii(0)) > 0. Now, the conclusions

can be drawn using Lemma4.1.

Remark 4.1 Chiu and Arkun [30] have shown that the system has integrity only if both

BRG and NI, calculated for every possible combination of loops, are positive. For the

same purposes, Ḧaggblom [59] has also discussed a method based on the concept of Partial

Relative Gains. Since the possible number of combinations of loops increases rapidly with

system size, use of these methods (and Corollary4.1) can be computationally expensive for

systems beyond moderate dimensions. This issue is further discussed in the next chapter.
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Remark 4.2 The similarity between Theorem4.1 and IMC-filter stability criteria is

noteworthy. Garcia and Morari [40] have shown that a sufficient condition for stability

of a model inverse-based controller with a diagonal first order exponential filter is given by,

Re{λj(G(0)G̃(0)−1)} > 0; j = 1, 2 · · ·n (4.17)

whereG̃(s) is the nominal model of the systemG. Since,Ḡii(0) = [ΛB(0)]−1
ii Gii(0),

[ΛB(0)]−1
ii can be seen as multiplicative uncertainty in theith loop arising due to

closure of all other loops. Based on (4.17), the ith loop can be stabilized if

Re{λj(Gii(0)Ḡii(0)−1)} = Re{λj([ΛB(0)]ii)} > 0. Thus, a necessary (but not

sufficient) condition for individual loop stability isdet([ΛB(0)]ii) > 0, which is similar

to Theorem4.1. However, interpretation of BRG as multiplicative uncertainty is justified

only if the effect of hidden feedback loops is small, which is not generally true.

4.4.2 Input Output Controllability

It is well known that right half plane (RHP) zeros close to the origin pose a limitation on

the achievable output performance of the closed loop system. It is also possible thatGii(s),

considered in isolation, contains RHP zeros. The zeros ofGii(s) can limit the achievable

output performance, when the individual loops are designed independently. Skogestad

and Hovd [65] have shown that the frequency dependent RGA can be used to detect the

presence of RHP zeros (Theorem 1 in their paper). The applicability of their result is

limited to the individual elements and(n− 1)× (n− 1) dimensional subsystems ofG(s).

The next proposition complements their result for subsystems having different dimensions.

Proposition 4.1 Consider a stable transfer function matrixG(s) and its partition in

accordance to (4.2). Then [ΛB(s)]11 would be anm1 × m1 transfer function matrix. If

there existsm1, 2 ≤ m1 ≤ n − 2, such thatdet([ΛB(j∞)]11) is nonzero, finite and has a

different sign fromdet([ΛB(0)]11) , then at least one of the following is true,

(a) The subsystemG11 has a RHP zero.

(b) The subsystemG22 has a RHP zero.

Proof: For a given partitioning of the system,2 ≤ m1 ≤ n − 2, consider that

lims→j∞ det([ΛB(s)]11) is nonzero and finite. If the signs ofdet([ΛB(0)]11) andlims→j∞
det([ΛB(s)]11) are different, then there exists a frequencyωo, ωo > 0, such that

det([ΛB(jωo)]11) = 0.
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The equality,det([ΛB(s)]11) = 0, is satisfied, iff one or both ofdet(G11(jωo)) and

det(Ḡ−1
11 (jωo)) are zero. Now,det(G11(jωo)) being zero implies the presence of a RHP

zero inG11(s) at that frequency.

If det(Ḡ−1
11 (jωo)) = 0, thenḠ−1

11 (s) contains an RHP zero and̄G11(s) contains an RHP

pole at that frequency. Due to stability assumptions, an RHP pole inḠ11(s) ats = jωo can

arise only due to an RHP zero inG22(s) ats = jωo.

This result is equally valid, ifm1 = 1 or n − 1. Then,G11(s) or G22(s) are single

elements ofG(s). In this case, if the condition imposed by Proposition4.1is satisfied, one

or both ofG11(s) andG22(s) will contain RHP zero. The BRG is input scaling independent

(see Property4.3). Thus, if an input channel ofG(s) contains an RHP zero, the signs

of det([ΛB(j∞)]11) anddet([ΛB(0)]11) will remain unchanged. The change of sign of

det([ΛB(s)]11) is only a sufficient, but not a necessary condition for the presence of RHP

zeros in the subsystems ofG(s).

Corollary 4.3 Consider thatG22(s) contains a RHP zero. If all loops but(y1(s),u1(s))

are closed, then the open loop subsystem(y1(s),u1(s)) or Ḡ11(s) contains a RHP pole.

If a RHP pole appears in the (y1(s),u1(s)) loop due to closure of all other loops, any small

disturbance in that open loop can destabilize the system. In practice, however, the gain of

the loop would remain finite due to presence of physical constraints.

Proposition4.1excludes the case in which any of the subsystems contain a zero at origin,

(s = 0). Should a subsystem contain a zero at the origin, it would be extremely difficult

to control the system. The relation between zeros at origin and the steady state BRG is

established in the next corollary.

Corollary 4.4 If there existsm1, {m1 = 1, · · · , n−1}, such thatdet([ΛB(0)]11) = 0, then

one or both of the subsystems,G11(s) andG22(s) contain a zero or a zero at the origin.

Either of these conditions is highly undesirable because it makes the system

uncontrollable. The system may also contain zeros close to the origin in the open LHP.

The presence of such poorly damped zeros also affect the system’s controllability. In such

cases, the gain of the individual loops increases considerably with closure of all other loops.

The gain of a multivariate system depends on the input direction. Let the gain of

(y1(s),u1(s)) be ‖G11(0)v‖2, ‖v‖2 = 1. Similarly, let the apparent gain of this loop,

when all other loops are closed be‖Ḡ11(0)w‖2, ‖w‖2 = 1.
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Proposition 4.2 The worst case gain mismatch betweenG11(0) andḠ11(0) is bounded as

follows,

σ̄([ΛB(0)]11) ≤ max
‖v‖2=1
‖w‖2=1

‖G11(0)v‖2

‖Ḡ11(0)w‖2

(4.18)

1

σ([ΛB(0)]11)
≤ max

‖v‖2=1
‖w‖2=1

‖Ḡ11(0)w‖2

‖G11(0)v‖2

(4.19)

Proof: For (4.18),

max
‖v‖2=1
‖w‖2=1

‖G11(0)v‖2

‖Ḡ11(0)w‖2

=
σ̄(G11(0))

σ(Ḡ11(0))
= σ̄(G11(0))σ̄(Ḡ−1

11 (0))

≥ σ̄([ΛB(0)]11)

For (4.19),

max
‖v‖2=1
‖w‖2=1

‖Ḡ11(0)w‖2

‖G11(0)v‖2

=
σ̄(Ḡ11(0))

σ(G11(0))
= σ̄(Ḡ11(0))σ̄(G−1

11 (0)) ≥ σ̄([ΛB(0)]−1
11 )

≥ 1

σ([ΛB(0)]11)

Proposition4.2suggests that if at least one of the following conditions,σ̄([ΛB(0)]11) À 1

andσ([ΛB(0)]11)¿ 1, is satisfied, then the gain ofy1(s)−u1(s) loop changes considerably

due to closure of all other loops. If̄σ([ΛB(0)]11) ≈ 1 andσ([ΛB(0)]11) ≈ 1, the change

in gain may still be large, as (4.18) and (4.19) are lower bounds on the worst case gain

mismatch with one of the loops open. This affirms our earlier assertion that if the BRG is

far from the Identity matrix, the system has large interactions, but the converse is not true.

This is further discussed in§4.4.4.

4.4.3 Block Diagonal Dominance

When the system is block diagonal or triangular, the individual controllers can be tuned

independently of each other (Property4.5); however, most real systems do not lie in this

class. Independent tuning of individual controllers to give stable closed loop response is

still possible, if the effect ofui on yi is large compared to the effect ofuj, (i 6= j). The

concept of block diagonal dominance can be used to assess this property of the partitioned

system.
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Definition 4.6 A matrix Z is generalized row block diagonal dominantfor a given

partitioning if there existsx ∈ RM , x > 0 such that [78],

‖ Z−1
ii ‖−1 xi >

M∑

j=1,j 6=i

‖ Zij ‖ xj; i = 1, 2, · · · , M

Generalized column block dominance is defined similarly. Ifx can be chosen as1T
n , then

Z is called row (column) block dominant. IfZ is generalized block diagonal dominant

(GBDD), there exists a scaling matrix of the formX = diag(xiImi
), i = 1, 2 · · ·M such

thatXZX−1 is block diagonal dominant [78].

Limbeer [78] has shown that if(In + GK(s)) is GBDD for all s, then the stability

of individual loops implies the stability of the closed loop system. When the controller

contains integral action,In + (1/s)H(s) ≈ (1/s)H(s) at low frequencies [65]. At these

frequencies, the diagonal dominance of(In + (1/s)H(s)) can be assessed from diagonal

dominance ofH(s). In addition, if a system is GBDD at steady state, it is also block-DIC,

as shown next. Here,p is an ordered subset of integers chosen within the set{1, 2, · · ·M}
andĨ is the ensemble of all possiblep’s. Then,Gpp(0) is a submatrix consisting of blocks

of G(0) indexed byp.

Lemma 4.2 Let H(s) be a proper system and the matrixD ∈ Rn×n be defined as

D = diag(diImi
), di > 0. Then,G(s) is block-DIC, iff there exists a block diagonal

matrixC(0) such that

Re{λj([DH(0)]pp)} > 0 ∀j, ∀p ∈ Ĩ

Proof: Campo and Morari [18] have shown that a similar condition is necessary and

sufficient for a system to be DIC. This lemma can be shown to be true following their

proof.

Proposition 4.3 LetH(s) be a proper stable system. IfH(0) is block diagonally dominant,

thenG(s) is block-DIC.

Proof: With reference to Figure4.1, let Gii(s)Kii(s) = (ki/s · Imi
)Hii(s). The ith loop

will be stable iff any of the characteristic loci of(ki/s)Hii(s) does not encircle the point

(−1/ki, 0), ass traverses the Nyquist D-contour. SinceHii(s) is stable by assumption,

such an encirclement can occur only due to the pole at the origin. Grosdidieret al. [51]

have shown that aski → 0, thejth characteristic loci does not cross the negative real axis

if Re{λj(Hii(0))} > 0; j = 1, 2 · · ·mi.
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For a block diagonal dominant system, the total number of encirclements are same as the

sum of encirclements by individual loops [78]. Then ,Re{λj(H(0))} > 0; j = 1, 2 · · ·n,

if

Re{λj(Hii(0)} > 0; ∀j = 1, 2 · · ·mi, ∀i = 1, 2 · · ·M (4.20)

Note thatHpp(0) is block diagonal dominant due to block diagonal dominance ofH(0)

for all p ∈ Ĩ. ThenRe{λj([DH(0)]pp)} > 0 for all p ∈ Ĩ and the system is block-DIC,

if (4.20) is satisfied. For a block diagonal dominant system, (4.20) can always be satisfied

by choosingCii(0) = G−1
ii (0), where the invertibility ofG−1

ii (0) is guaranteed by block

diagonal dominance.

In order to verify the generalized block diagonal dominance ofHii(0), knowledge of the

compensator matrixCii(0) is required, which can be limiting for practical purposes. We

show that whetherHii(0) is GBDD, can be assessed using BRG, which is independent of

the compensator matrix. Though the following results are valid for any matrix norms, we

use the induced2-norm due to their frequent use in the process control literature.

Lemma 4.3 Let Z be GBDD. Then [78],

σ̄(
[
Z−1

]
ii
) ≥ σ̄(

[
Z−1

]
ji
) ∀i 6= j

Proposition 4.4 The systemH(s) is GBDD only if

σ̄([ΛB(0)]ii) > 0.5 ∀i = 1, 2 · · ·M (4.21)

Proof: This proposition is proved using the following logical identity: IfA ⇒ B, then not

B ⇒ notA. If H(0) is a block diagonal dominant matrix

σ(Hii(0)) >
M∑

j=1,j 6=i

σ̄(Hij(0))

Then, using Lemma4.3,

σ(Hii(0))σ̄(
[
H−1(0)

]
ii
) >

M∑

j=1,j 6=i

σ̄(Hij(0))σ̄(
[
H−1(0)

]
ji
)

σ̄(Hii(0)
[
H−1(0)

]
ii
) >

M∑

j=1,j 6=i

σ̄(Hij(0)
[
H−1(0)

]
ji
)

σ̄(Gii(0)
[
G−1(0)

]
ii
) >

M∑

j=1,j 6=i

σ̄(Gij(0)
[
G−1(0)

]
ji
) (4.22)
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Consider that multiplication ofG(0) with G−1(0),

M∑
j=1

Gij(0)
[
G−1(0)

]
ji

= Imi

σ̄(Gii(0)
[
G−1(0)

]
ii
) +

M∑

j=1,j 6=i

σ̄(Gij(0)
[
G−1(0)

]
ji
) ≥ 1

Then, using the definition of BRG (4.5) and (4.22), H(0) is block diagonal dominant

only if σ̄([ΛB(0)]ii) > 0.5 ∀i = 1, 2 · · ·M . Since BRG is independent of scaling of the

form X = diag(xiImi
) (see property4.3), (4.22) is necessary for the system to be GBDD.

Ohtaet al. [88] have pointed out that in many cases, GBDD can be a very conservative

test for block diagonal dominance and have instead suggested the use of quasi-block

diagonal dominance (QBDD). They have shown that if(In + GK(s)) is QBDD for all

s, then the stability of individual loops implies the stability of the closed loop system. In

the following discussion, QBDD is defined formally and it is shown that the condition

σ̄([ΛB(0)]ii) > 0.5 for all i = 1, 2 · · ·M is necessary for a system to be QBDD.

Definition 4.7 A matrix Z is quasi-block diagonal dominantfor a given partitioning if

there existsx ∈ RM such that,

xi >

M∑

j=1,j 6=i

‖ ZijZ
−1
ii ‖ xj; i = 1, 2, · · · ,M ; Zii 6= 0

Corollary 4.5 The systemH(s) is QBDD only if σ̄([ΛB(0)]ii) > 0.5 for all i = 1, 2 · · ·M .

Proof: At low frequencies,(In + (1/s)H(s)) ≈ (1/s)H(s). Then,Hij(0)H−1
ii (0) =

Gij(0)G−1
ii (0). When the compensator matrix is chosen asCii = G−1

ii (0), i = 1, 2 · · ·M ,

GBDD and QBDD are equivalent (by definition). Then, using Proposition4.4, H(0) is

QBDD only if σ̄([ΛB(0)]ii) > 0.5, for all i = 1, 2 · · ·M .

Let E(s) = (H(s)Hbd(s)
−1 − In) = (G(s)Gbd(s)

−1 − In), whereHbd(s) andGbd(s)

are matrices containing the block diagonal elements ofH(s) andG(s) respectively (see

Figure4.2). Ohtaet al. [88] have shown that if theH(s) is QBDD, there exists a norm

such that‖ XE(s)X−1 ‖< 1, whereX is the scaling matrix, defined as before. LetX be

the set defined as

X = {X ∈ Rn×n | Xii = diag(xi · Imi
)} i = 1, 2 · · ·M
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Then, with the choice of induced2−norm, the following relation holds,

µ∆(E(s)) ≤ inf
X∈X

σ̄(XE(s)X−1) σ̄(∆) ≤ 1

whereµ∆(.) is the structured singular value. The structure of∆ can be chosen to be

the same as that ofGbd(s), since everyX ∈ X commutes with∆, i.e. X∆ = ∆X.

Then (with the choice of induced2−norm), the systemH(s) is QBDD or GBDD only if

µ∆(E(0)) < 1. Note that this condition is also sufficient for block diagonal dominance of

the system at steady state.

In a related context, Grosdidier and Morari [49] definedµ∆(E(s)) as theµ-IM to assess

the closenessof G(s) and Gbd(s). They have shown that ifµ∆(E(0)) > 1, a block

diagonal controller with integral action cannot be designed for the given system. For fully

decentralized control, Braatz [11] has shown that a system is DIC, ifµ∆(E(0)) < 1. This

result can be easily extended to the block decentralized controllers. Whereas a pairing

alternative that satisfies theµ interaction condition is guaranteed to have some attractive

properties, the computational load for the calculation ofµ is large [15, 39]. Noting that for

all X ∈ X , Xii[ΛB(0)]iiX
−1
ii = [ΛB(0)]ii (see Property4.3), the following useful result is

obtained:

Corollary 4.6 For a proper systemG(s), µ∆(E(s)) < 1 only if σ̄([ΛB(0)]ii) > 0.5 for all

i = 1, 2 · · ·M .

For fully decentralized control, the necessary conditionσ̄([ΛB(0)]ii) > 0.5 reduces to

λii > 0.5 for all i = 1, 2 · · ·M . Grosdidier and Morari [49] have shown this result to be true

for 2 × 2 systems and Corollary4.6can be seen as generalization of this result to systems

with higher dimensions and block decentralized controllers. Corollary4.6can be used for

pre-screening the alternatives for pairings, reducing the computational load significantly.

4.4.4 Closed Loop Interactions

In Figure4.2, if G(s) = Gbd(s), the system is triviallynon-interacting. In this section, such

a system is referred to as anideal system. When the controller contains integral action, at

low frequencies, the sensitivity functions of the actual and the ideal systems are related

as [102],

S(s) ≈ Sbd(s)Γ(s)

S(s) = (In + G(s)K(s))−1

Sbd(s) = (In + Gbd(s)K(s))−1
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Figure 4.2:Decomposition of system into block diagonal and off-block diagonal elements

whereΓ(s) = Gbd(s)G
−1(s) is the Performance Relative Gain Array (PRGA) [65]. Γ(s)

can be interpreted as a filter that amplifies and rotates the exogenous signals. This action

prevents the actual system from behaving as the ideal system. LetΓ(s) be expressed

through its singular value decomposition as,Γ(s) = U(s)Σ(s)VT (s). Then,

Γ(s)vi(s) = σi(s)ui(s), ∀i = 1, 2 · · ·n

whereσi(s) is the ith singular value andui(s) andvi(s) are the corresponding left and

right singular vectors, calculated at a particular frequency. Grosdidier [48] has argued that

the exogenous signals oriented in the direction of singular vectors associated withσ̄(Γ(s))

most adversely affect the closed loop performance. Then, for minimization of worst case

performance loss, we may require thatσ̄(Γ(s)) be minimum in the desired frequency range.

Similarly, a necessary condition for interactions to be minimum is thatσi(Γ(s)) ≈ 1, for

all i = 1, 2, · · ·n in the desired frequency range. If this happens, then at every frequency,

Γ(s) is close to a unitary matrix; however,

max
i
{σ̄([ΛB(s)]ii)} ≤ σ̄(Γ(s)) i = 1, 2, · · ·M (4.23)

Therefore, ifσ̄([ΛB(0)]ii)À 1, for all i = 1, 2, · · ·M , thenσ̄(Γ(0))À 1. When[ΛB(0)]ii

= I, then σj([ΛB(0)]ii) = 1, for all i = 1, 2, · · ·M ,j = 1, 2, · · ·mi. Then, (4.23)

suggests that̄σ(Γ(0)) can still be large, despite the BRG being precisely the Identity matrix.

Based on these observations and Proposition4.2, we conclude that the system has large

interactions, ifσ̄([ΛB(0)]ii) À 1 andσ([ΛB(0)]ii) ¿ 1 or in other words,BRG is very

different from Identity, but the converse is not true. Thus, use of the PRGA is necessary for
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drawing any conclusions regarding closed loop interactions. In some cases, this measure

can be conservative, as it does not take the directional information ofSbd into account.

Remark 4.3 The requirement thatσi(Γ(s)) ≈ 1 for low interactions is equivalent to

minimization of
∑

i |σi(Γ(s))− 1|. In most of cases, it is seen that
∑

i |σi(Γ(s))− 1| ≈
σ̄(Γ(s)). Let the norm of exogenous signals be bounded from above by 1. Then for the

feedback to be effective, we require thatσ̄(S(s)) < 1 in the desired frequency range,

which is lower bounded byσ(Sbd(s))σ̄(Γ(s)) at low frequencies. Then,̄σ(S(s)) < 1 only

if σ(Sbd(s))σ̄(Γ(s)) < 1 or σ̄(I + Gbd(s)K(s)) > σ̄(Γ(s)). This inequality can be easily

satisfied by choosing a controller with low gain ifσ̄(Γ(s)) is small. Large controller gains

may present operational difficulties in presence of input constraints.

4.5 Alternate Pairing Rules

In earlier sections, it was shown that useful information regarding many closed loop

properties can be extracted using the BRG. In this section, we summarize those results

in the form of pairing rules.

Pairing Rule 1 Avoid pairing on variables, withdet([ΛB(0)]ii) ≤ 0 for somei or NI < 0,

otherwise the system does not have integrity (See Theorems4.1,4.2and Corollary4.4).

Pairing Rule 2 Prefer pairing on variables for whichµ∆(E(0)) < 1. Alternatives

satisfying this condition are decoupled at low frequencies and a block decentralized

controller with integral action can be designed easily (See§4.4.3). The associated

computational load can be reduced by pre-screening alternatives such thatσ̄([ΛB(0))]ii

> 0.5 for all i (See Proposition4.4and Corollary4.6).

Pairing Rule 3 Prefer pairing on variables for whichJ(0) =
∑

i |σi(Γ(0))− 1| is small.

If J(0) is small, then the system isweaklyinteracting and vice versa, at least at steady state

(See§4.4.4).

These rules are based on gain information only and may suggest inferior pairings

for systems containing large time delays. In such cases, if a reliable dynamic model

is available, then ensuring thatJ(s) =
∑

i |σi(Γ(s))− 1| is small up to the crossover

frequency is helpful. In addition,

Pairing Rule 4 Avoid pairing on variables with different signs ofdet([ΛB(0)]ii) and

det([ΛB(j∞)]ii). If the signs are different, then theith loop or the remaining subsystem

contains an RHP zero (See Proposition4.1).
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Remark 4.4 Since BRG and PRGA are output scaling dependent, so are their singular

values. Therefore, prior to pairing selection, specification of a suitable scaling of the system

matrix is necessary to avoid ambiguity. Some possible approaches are to normalize the

system matrix such that‖yi‖2 ≤ 1 or |yi| ≤ 1.

Remark 4.5 These pairing rules equally hold for fully decentralized control structures.

For many problems,
∑

i |σi(Γ(0))− 1| is small, if the diagonal elements of RGA elements

are close to 1. Thus, Bristol’s rule of pairing on RGA elements close to 1 is implicit here,

but, in general, it is neither necessary nor sufficient for the system to be weakly interacting.

Remark 4.6 Often,
∑

i |σi(Γ(0))− 1| approaches zero monotonically as the controller

structure approaches thefully centralizedcase. In such cases, a balance should be made

between the closed loop performance and the controller complexity. If a more complex

controller structure shows no significant performance improvement, then the simpler

structure (closer to thefully decentralizedcase) should be preferred.

4.5.1 Numerical Examples

Example 4.3 Consider the4× 4 ALSTOM gasifier system [32]. The gasifier is described

by three linearized state space models of25th order at100%, 50% and0% load conditions.

Prior to pairing selection, the system is scaled. The scaling procedure and the scaled gain

matrices are given in the Appendix4.A.

Various alternatives are screened at different load conditions. The analysis suggests that

((1− 2− 4, 1− 3− 4), (3− 2))3 is the only alternative, which satisfies Rules1 and2 at all

load conditions. Sinceµ∆(E(0)) < 1 for this alternative, the blocks are decoupled at low

frequencies and a controller with integral action can be designed easily.

This system has also been analyzed by Chin and Munro [29] at 100% load conditions,

where they have suggested the use of((1−3−4, 2−3−4), (2−1)). This alternative satisfies

Rules1 and2 at100% load conditions, but the relative gain of the pairing(2−1) is negative

at 0% load conditions. This shows that this alternative will lose integrity under varying

operating conditions. Though Chin and Munro [29] have scaled the system differently, it

has no effect on the conclusions, sincedet([ΛB]ii) is independent of scaling.

Example 4.4 In most of the case studies, we have found steady state analysis to be

sufficient, but in some cases it may suggest inferior pairings, as shown here. Alatiqi and

3((1− 2− 4, 1− 3− 4), (3− 2)) represents((y1 − y2 − y4, u1 − u3 − u4), (y3, u2)) variable pairing.
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Figure 4.3:
∑

i |σi(Γ(jω))− 1| for Column/Stripper Distillation system

Luyben [1] considered the following column/stripper distillation system,

G(s) =




4.09e−1.3s

(33s+1)(8.3s+1)
−6.36e−1.2s

(31.6s+1)(20s+1)
−0.25e−1.4s

(21s+1)
−0.49e−6s

(22s+1)2

−4.17e−5s

(45s+1)
6.93e−1.02s

(44.6s+1)
−0.05e−6s

(34.5s+1)2
1.53e−3.8s

(48s+1)

1.73e−18s

(13s+1)2
5.11e−12s

(13.3s+1)2
4.61e−1.01s

(18.5s+1)
−5.49e−1.5s

(15s+1)

−11.2e−2.6s

(43s+1)(6.5s+1)
14(10s+1)e−0.02s

(45s+1)(17.4s2+3s+1)
0.1e−0.05s

(31.6s+1)(5s+1)
4.49e−0.6s

(48s+1)(6.3s+1)




The alternatives are screened using the suggested pairing rules and all the alternatives

satisfying Rules1 and2 are summarized in Table4.2. Based on steady state analysis, it

might seem that((1− 2− 4, 1− 2− 4), (3− 3)) is the best structure, but its performance

deteriorates considerably at higher frequencies. Figure4.3 shows
∑

i |σi(Γ(s))− 1| as

a function of frequency for different structures. At moderate frequencies,((1 − 3 −
4, 1 − 3 − 4), (2 − 2)) gives improved performance as compared to other alternatives

and thus its use is recommended. It should be noted that no viable alternative exists for

2× 2/2× 2 decomposition of the system. Block decentralized structures close to the fully

centralized case need not always be better than simpler structures as previously pointed out

by Manousiouthakiset al. [83].

4.6 Note on Integrating Systems

The RGA, as originally defined by Bristol [17], is applicable to only open loop stable

processes. Arkun and Downs [4] have shown that it is still possible to use the RGA, when
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Pairing min
i
(σ̄([ΛB(0)]ii)) µ∆(E(0))

∑
i |σi(Γ(0))− 1|

(1-4,1-4),(2,2),(3,3) 1.19 0.96 16.59
(1-2-4,1-2-4),(3-3) 1.19 0.53 5.65
(1-3-4,1-3-4),(2-2) 0.92 0.94 11.52

Table 4.2:Alternatives for decentralized control of Column/Stripper Distillation system

the system contains integrating elements in one or more input or output channels. In such

cases, the RGA is calculated by replacing the elements containing the integrators by their

derivatives. Here, we investigate the applicability of this approach for the BRG.

Case I:Consider the case, when one or more input channels (columns ofG(s)) contain

integrator. Then, the system matrix can be partitioned into non-integrating (GNI(s)) and

integrating (GI(s)) blocks as,

G(s) =
[

GNI(s)
1
s
GI(s)

]
=

[
GNI(s) GI(s)

] [
I 0
0 1

s
I

]
(4.24)

If the second block in (4.24) is treated as a scaling matrix, then[Λs
B(0)]ii = [ΛB(0)]ii

(Property4.3(i)). In this case, it would be possible to select block pairings such that the

individual blocks contain both integrating and non-integrating elements.

Case II: Now, consider the case, when one or more output channels (rows ofG(s))

contain integrators. Partitioning the system matrix as before,

G(s) =

[
GNI(s)
1
s
GI(s)

]
=

[
I 0
0 1

s
I

] [
GNI(s)
GI(s)

]
(4.25)

Here, any meaningful results can be obtained only if all the outputs containing

integrators are paired together (Property4.3(iii)) or if paired separately, only SISO pairing

is used for them (Property4.3(ii)). No block pairing should contain both non-integrating

and integrating elements.

4.7 Chapter Summary

In this chapter, we revisited the established concept of block relative gain (BRG). The main

contributions of this chapter include

(i) Extension of algebraic properties known for RGA to BRG.

(ii) Connection between the BRG and measures of block diagonal dominance, in

particular Grosdidier’sµ interaction measure [49] (see§4.4.3).
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(iii) Correction and restatement of the common conjecture that a system isweakly

interacting, if BRG is close to Identity (see§4.4.4).

Most of the results presented are based on steady state gain information only and are

useful for controllability analysis and pairing selection. It is also shown that in some cases,

steady state analysis may suggest inferior pairings. However, practical considerations

justify its use, as in many cases, the only reliable information available at design stage

is the steady state gain. Block decentralized controllers allow the designer to exploit a

broader class of control structures that are not restricted to the two extremes of complete

decentralization and complete centralization [83]. The pairing rules proposed in this paper

will be helpful in bridging the gap between theory and practice of selection of block

pairings.

4.A Scaled Gain Matrices for ALSTOM Gasifier System

The system is scaled such that‖yi‖ ≤ 1 at all load conditions. The scaling matrix

X is chosen such thatXii = max{‖[G100%(0)]i‖2, ‖[G50%(0)]i‖2, ‖[G0%(0)]i‖2}, where

[G100%(0)]i is the ith row of the gain matrix at100% load conditions. Then,X =

diag(8.58× 105, 5.21× 104, 1.55× 104, 164.64) and the scaled gain matrices are obtained

asGs(0) = X−1G(0).

Gs
100%(0) =




0.0385 −0.0427 0.0444 −0.0474
−0.1115 −0.0297 0.0770 −0.0142
0.0327 0.8630 0.0477 0.5019
0.0088 0.1284 −0.1101 −0.2834




Gs
50%(0) =




0.0975 −0.0381 0.0269 −0.1130
−0.2096 −0.0500 0.1563 −0.0211
0.0506 0.6923 0.0295 0.4200
0.0359 0.1804 −0.1641 −0.3967




Gs
0%(0) =




0.7938 0.1451 −0.4361 −0.3983
−0.7641 −0.1810 0.6161 −0.0606
0.0958 0.3855 −0.0301 0.2536
0.3119 0.3666 −0.4841 −0.7307






Chapter 5

Integrity of Systems under
Decentralized Integral Control

A multivariate system has integrity if the block decentralized controller with integral action

maintains closed loop stability in presence of possible controller failures. In this chapter,

we show that the recently proposed necessary and sufficient conditions [52] for the system

to possess integrity can be equivalently expressed in terms of well-known notions of block

relative gain (BRG) [83] and Niederlinski index (NI) [87]. These results imply that the con-

ditions based on BRG and NI, traditionally believed to be only necessary, are actually both

necessary and sufficient. It is also shown that in general, establishing the existence of a fully

decentralized controller with integral action such that the system has integrity is NP-hard.

5.1 Introduction

This chapter deals with reliable stabilization of stable linear systems using a decentralized

controller with integral action in every channel. A system is said to possess integrity, if

the closed loop stability is maintained with integral action in every output channel, when

any combination of the individual controllers fails (see Definition4.4). It is assumed that

a controller that fails is immediately taken out of service,i.e. the corresponding entries

in the block diagonal controller matrix are replaced by zero. Some researchers have

considered the problem of checking whether the closed loop system is reliably stable for a

given controller (see [13] for a review). The focus of this work is on deriving controller-

independent conditions which can establish the existence or non-existence of a controller

such that the system possess integrity.

101
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With its practical implications, the problem of integrity against possible controller

failures has been studied widely by researchers, particularly in the area of process control.

For fully decentralized control, a well-known result that relates reliable stability with

relative gain array (RGA) [17] is provided by Grosdidieret. al. [51]. It is shown that a

system has integrity only if all the corresponding relative gains of the steady state gain

matrix are positive. Similar to fully decentralized control, a system with specified block

pairings has integrity only if the determinant of all the corresponding block relative gains

(BRG) [83] of the steady state gain matrix are positive [50]. Grosdidier and Morari [49]

generalized the concept of Niedrelinski index (NI) to block pairings to derive similar

necessary conditions. Chiu and Arkun [30] have further suggested that the necessary

conditions based on BRG and NI be evaluated for all principal block sub-matrices of

the system. These necessary conditions based on BRG and NI are useful for eliminating

alternatives for input-output pairings, as discussed in the previous chapter. It is not apparent

whether the system with the pairings chosen based on these necessary conditions, will have

integrity.

Recently, G̈undes and Kabuli [52] presented necessary and sufficient conditions for

assessing integrity of the system partitioned into4 or less blocks. In this chapter, we

show when the individual blocks are square, these conditions can be alternatively expressed

in terms of BRG and NI. In general, these conditions do not guarantee that the block

decentralized controller will have no unstable poles other than the origin, as is assumed

in the derivation of necessary conditions based on NI and BRG. When the controllers are

allowed to have any number of unstable poles, the alternative representation implies that the

conditions based on BRG and NI, traditionally believed to be only necessary, are actually

both necessary and sufficient. Since the expressions presented by Gündes and Kabuli [52]

become increasingly complex with the number of blocks, an additional advantage of the

alternative representation is that the extension to the general case, where the system is

partitioned into any number of blocks, is relatively simple.

For fully decentralized control, we also show that the necessary and sufficient conditions

due to G̈undes and Kabuli [52] are satisfied iff a matrix, which depends on the system’s

steady state gain, is aP-matrix. This observation suggests that establishing the existence

of a fully decentralized controller with integral action such that the system has integrity is

NP-hard unless P = NP [41].
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5.2 Necessary and Sufficient Conditions

In this section, we present the necessary and sufficient conditions due to Gündes and

Kabuli [52] such that theG(s) possess integrity. The discussion is limited to the case,

whereG(s) is partitioned intoM non-overlapping square subsystems such thatGii(0) ∈
Rmi×mi; i = 1, 2, · · · ,M ,

∑
i mi = n. The block diagonal controller with integral

action K(s) is expressed as(1/s)C(s), whereC(s) = diag(Cii(s)) and Cii(s) has

same dimensions asGii(s) (see Figure4.1). For notational convenience,G(0) is simply

represented asG.

To present the necessary and sufficient conditions for integrity ofG(s), we need the

following additional notation. Forj = 2, · · · ,M, i = 1, · · · , j − 1, define

Xij = Gjj −GjiG
−1
ii Gij (5.1)

WhenM ≥ 3, for k = 1, · · · ,M − 2, `,m = k + 1, · · · ,M , ` 6= m,

Yk
`m = G`m −G`mG−1

kk Gkm (5.2)

and forv = 3 · · ·M, q = 1, · · · , v − 2, r = q + 1, · · · , v − 1,

Zv
rq = Xqv −Yq

vrX
−1
qr Yq

rv (5.3)

WhenM = 4, define

W = Z1
24 − (Y1

43 −Y1
42X

−1
12 Y1

23)(Z
1
23)

−1(Y1
34 −Y1

32X
−1
12 Y1

24) (5.4)

Theorem 5.1 Let Gii be nonsingular for alli = 1, · · · ,M . There exists a block diagonal

controller with integral action such thatG(s) has integrity, if [52]

det(XijG
−1
jj ) > 0 (5.5)

for all j = 2, · · · ,M, i = 1, · · · , j − 1 and whenM ≥ 3

det(Zv
rqG

−1
vv ) > 0 (5.6)

for all v = 3, · · · ,M, q = 1, · · · , v − 2, r = q + 1, · · · , v − 1 and whenM = 4

det(WG−1
44 ) > 0 (5.7)

Further, if anyM−1 controllers are strictly proper, or whenGij orGji, j = 2, · · · ,M, i =

1, · · · , j − 1 are strictly proper or when any of these transfer matrices have real blocking

zeros [109], (5.5)-(5.7) are also necessary.
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The proof of Theorem5.1 is quite long and requires elements from the coprime

factorization theory [109]. As the proof provides no additional insight, the interested reader

is referred to [52] for the proof of Theorem5.1. Some remarks that are relevant to the the

scope of this thesis are in order.

• The requirement thatGii be nonsingular for alli = 1, · · · ,M is necessary for

existence of a controller with integral action such that the individual loops are stable.

Consider thatGii be singular for somei = 1, · · · ,M . Then, the loop transfer

function GiiKi = (1/s)GiiCi contains a hidden mode. Thus, the stabilization of

theith loop is not possible andG(s) does not have integrity.

• Whereas the off-diagonal blocks ofG(s) are not strictly proper or have real blocking

zeros in general, the controllers can always be designed to be strictly proper. When

all controllers are strictly proper, (5.5)-(5.7) are both necessary and sufficient for

existence of a block diagonal controller with integral action such thatG(s) has

integrity. We recall that a similar assumption is made during the derivation the

necessary conditions based on BRG and NI (see Theorems4.1- 4.2).

• When the sufficient conditions (5.5)-(5.7) are satisfied, existence of a controller with

integral action is guaranteed such the system has integrity. This controller, however,

may have additional unstable poles other than at the origin of the complex plane. The

existence of pure integral action controllers is guaranteed, when the more restrictive

conditions:XijG
−1
jj Â 0, Zv

rqG
−1
vv Â 0 andWG−1

44 Â 0, hold for all indices defined

earlier.

• For fully decentralized control,XijG
−1
jj Â 0, Zv

rqG
−1
vv Â 0 and WG−1

44 Â 0 is

equivalent to (5.5)-(5.7). In this case, when (5.5)-(5.7) hold, existence of a pure

integral action controller is guaranteed such thatG(s) has integrity.

Gündes and Kabuli [52] have also presented a controller design method such thatG(s)

has integrity, when the sufficient conditionsXijG
−1
jj Â 0, Zv

rqG
−1
vv Â 0 andWG−1

44 Â 0

hold for all indices defined earlier. Generally, the positive-definiteness is defined only for

symmetric matrices. ByXijG
−1
jj Â 0, we imply that the symmetric part ofXijG

−1
jj , i.e.

XijG
−1
jj + (XijG

−1
jj )∗ is positive-definite.
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5.3 Simplified Representation

In this section, we show that the conditions in Theorem5.1can be equivalently represented

in terms of BRG and NI. For this purpose, we require evaluation of BRG and NI on the

principal block sub-matrices ofG. We defineψ as the ordered subset of firstM integers

consisting of at least2 elements andΨ as the ensemble of all suchψ. For example, when

M = 2, Ψ = {(1, 2)} andM = 3, Ψ = {(1, 2), (1, 3), (2, 3), (1, 2, 3)}.
Lemma 5.1 Let Gii be nonsingular for alli = 1, · · · ,M . Then,

det(XijG
−1
jj ) =

det(G{i,j},{i,j})
det(Gii)det(Gjj)

(5.8)

det(Zv
rqG

−1
vv ) · det(XqrG

−1
rr ) =

det(G{q,r,v},{q,r,v})
det(Gqq)det(Grr)det(Gvv)

(5.9)

det(WG−1
44 ) · det(Z1

23G
−1
33 ) · det(X12G

−1
22 ) =

det(G)∏4
i=1 det(Gii)

(5.10)

where j = 2, · · · ,M, i = 1, · · · , j − 1 and v = 3, · · · ,M, q = 1, · · · , v − 2, r =

q + 1, · · · , v − 1.

Proof: SinceGii is nonsingular for alli = 1, · · · ,M , using (5.1),

det(XijG
−1
jj ) = det(I−GjiG

−1
ii GijG

−1
jj )

= det

(
I GjiG

−1
ii

GijG
−1
jj I

)

= det

(
Gjj Gji

Gij Gii

)
det

(
G−1

jj 0
0 G−1

ii

)

=
det(G{i,j},{i,j})

det(Gii)det(Gjj)

where the second equality follows using Schur complement Lemma. The proofs of (5.9)-

(5.10) require repeated use of Schur complement Lemma and are omitted for the sake of

brevity.

Proposition 5.1 Let Gii be nonsingular for alli = 1, · · · ,M . Then, the following are

equivalent:

(1) det(XijG
−1
jj ) > 0 ∀j = 2, · · · ,M, i = 1, · · · , j − 1

det(Zv
rqG

−1
vv ) > 0 ∀v = 3, · · · ,M, q = 1, · · · , v − 2, r = q + 1, · · · , v − 1

det(WG−1
44 ) > 0

(2) NI(Gψψ) > 0 ∀ψ ∈ Ψ (5.11)

(3) det([ΛB(Gψψ)]kk) > 0 ∀ψ ∈ Ψ, k = 1, · · · , |ψ| (5.12)



106 Chap. 5 Integrity of Systems under Decentralized Integral Control

where| · | denotes the cardinality of the setψ.

Proof: We show that(1) ⇔ (2) and(2) ⇔ (3), which implies(1) ⇔ (2) ⇔ (3).

((1) ⇔ (2)) Using (5.8), det(XijG
−1
jj ) > 0 iff

det(G{i,j},{i,j})
(det(Gii)det(Gjj))

> 0

for all j = 2, · · · ,M, i = 1, · · · , j − 1. When M ≥ 3, the ordered set{r, q} is a

subset of{i, j}. Then,det(XqrG
−1
rr ) > 0 for all v = 3, · · · ,M, q = 1, · · · , v − 2, r =

q + 1, · · · , v − 1. Using (5.9), det(Zv
rqG

−1
vv ) > 0, iff

det(G{q,r,v},{q,r,v})
(det(Gqq)det(Grr)det(Gvv))

> 0

for all v = 3, · · · ,M, q = 1, · · · , v − 2, r = q + 1, · · · , v − 1. Similarly, whenM = 4,

det(WG−1
44 ) > 0, iff

det(G)

(
∏4

i=1 det(Gii))

The necessity and sufficiency of (5.11) follows by combining all these arguments and

noting thatΨ = {i, j}⋃{q, r, v}.
((2) ⇔ (3)), Using (5.8),

NI(G{i,j},{i,j}) =
det(G{i,j},{i,j})

det(Gii)det(Gjj)
= det([ΛB(G{i,j},{i,j})]ii) ∀i, j ≤ M, i 6= j

Then,NI(G{i,j},{i,j}) > 0, iff det([ΛB(G{i,j},{i,j})]ii) > 0 for all i, j ≤ M, i 6= j. When,

M ≥ 3, using (5.9),

NI(G{i,j,k},{i,j,k}) =
det(G{i,j,k},{i,j,k})

det(Gii)det(Gjj)det(Gkk)

=
det(G{i,j,k},{i,j,k})

det(Gkk)det(G{i,j},{i,j})
det(G{i,j},{i,j})

det(Gii)det(Gjj)

=
NI(G{i,j},{i,j})

det([ΛB(G{i,j,k},{i,j,k})]kk)
∀i, j, k ≤ M, i 6= j 6= k

Since NI(G{i,j},{i,j}) > 0 for all i, j ≤ M, i 6= j, NI(G{i,j,k},{i,j,k}) > 0, iff

det([ΛB(G{i,j,k},{i,j,k})]ii) > 0 for all i, j, k ≤ M, i 6= j 6= k. When,M = 4, using (5.10)

and similar arguments as above,

NI(G) =
NI(G{i,j,k},{i,j,k})
det([ΛB(G)]``)

∀i, j, k ≤ M, i 6= j 6= k, ` = {1, · · · ,M}/{i, j, k}
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SinceNI(G{i,j,k},{i,j,k}) > 0, NI(G) > 0 iff det([ΛB(G)]``) > 0 for all i, j, k ≤ M, i 6=
j 6= k, ` = {1, · · · ,M}/{i, j, k}. Now, the necessity and sufficiency of (5.12) follows by

combining all these arguments.

To check whether (5.11) or (5.12) hold, one needs to calculate NI or BRG for all principal

sub-matrices ofG that can be formed by combining elements of the diagonal blocks and the

corresponding off-diagonal blocks. A similar method was earlier considered by Chiu and

Arkun [30], where (5.11) and (5.12) were shown to be necessary under the assumptions

thatG(s)C(s) is strictly proper andC(s) is stable.

Proposition5.1 implies that (5.5)-(5.7) are satisfied iff (5.11) or (5.12) hold. Then,

similar to Theorem5.1, (5.11) and (5.12) are both necessary and sufficient, whenC(s)

is restricted to be strictly proper. As pointed out earlier, satisfying (5.5)-(5.7) is equivalent

to satisfyingXijG
−1
jj Â 0, Zv

rqG
−1
vv Â 0 andWG−1

44 Â 0 for fully decentralized control.

Thus, the existence of a stableC(s) is guaranteed such thatG(s) has integrity for fully

decentralized control, but in general, there may not exist a stableC(s) such thatG(s)

has integrity, even when (5.11) or (5.12) hold. It is worth pointing out the requirement

that C(s) be stable is restrictive, as noted by Campo and Morari [18], but is practically

relevant. Derivation of necessary and sufficient conditions forG(s) to possess integrity

such that thatC(s) is stable remains an issue for future work.

As M increases, the expressions presented by Gündes and Kabuli [52] become

increasingly complex (cf. (5.5)-(5.7)). On the other hand, the extension to the general case

is simple (by induction), when the conditions are expressed in terms of BRG or NI. In this

chapter, we have only dealt with the case, whereGii are square. The results of Gündes and

Kabuli [52] also hold when the individual blocks are possibly non-square with every loop

having more inputs than outputs for integral action. In this case, the conditions remain the

same, except (5.1)-(5.4) need to be modified to accommodate the right inverses of different

non-square sub-matrices ofG. Similar to the proofs of Lemma5.1and Proposition5.1, it

can be shown that (5.5)-(5.7) holds for non-square blocks, iff

det([GG†
bd]ψψ) > 0 ∀ψ ∈ Ψ (5.13)

whereGbd = diag(Gii) and† denotes some right inverse. Note thatGG†
bd can be treated

as the generalized Neidrilinski index, where the individual blocks are non-square [49].

To verify whether (5.11) holds, NI needs to be evaluated exactly2M − (M + 1) times,

whereas verification of (5.12) requires that BRG be evaluated many more times. This

ambiguity is explained by noting that evaluation of BRG for all principal block sub-
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matrices ofG is not necessary. For example, whenM = 3,

det([ΛB(G)]jj)det([ΛB(G{i,k},{i,k})]ii)
det([ΛB(G)]kk)

= det([ΛB(G{i,j},{i,j})]ii)

Thus, if all the terms on the LHS of the above expression are positive,

det([ΛB(G{i,j},{i,j})]ii) is always positive. The task of finding the set of2M − (M + 1)

non-redundant BRGs requires some book-keeping. In this sense, the use of (5.11) is

advantageous over the use of (5.12).

5.4 Computational Complexity

In this section, we present some results on computational complexity for establishing the

existence of a block diagonal controller such thatG(s) has integrity. It is shown that this

problem is NP-hard, unless P = NP [41]. We introduce the useful notion ofP-matrices,

which form the basis of the proof for NP-hardness.

Definition 5.1 A matrix A ∈ Rn×n is called aP-matrix, if all the principal minors ofA

are positive [63].

Lemma 5.2 Let Gbd be a non-singular matrix consisting of the diagonal elements ofG.

Then, (5.5)-(5.7) are satisfied for all the indices defined in Theorem5.1, iff GG−1
bd is a

P-matrix.

Proof: It follows from Proposition5.1that (5.5)-(5.7) are satisfied for all the indices defined

in Theorem5.1 iff ( 5.11) holds. Note thatNI(Gψψ) = det([GG−1
bd ]ψψ) for all ψ ∈ Ψ and

[GG−1
bd ]ii = 1 for all i = 1, · · · ,M . Then,NI(Gψψ) > 0 for all ψ ∈ Ψ, iff GG−1

bd is

P-matrix.

Proposition 5.2 Let Gbd be a non-singular matrix consisting of the diagonal elements of

G. If the controllerK(s) is restricted to be strictly proper, the problem of establishing the

existence of a diagonal controller such thatG(s) has integrity is NP-hard, unless P = NP.

Proof: When the controllerK(s) is restricted to be strictly proper andM ≤ 4, satisfying

(5.5)-(5.7) for all the indices defined in Theorem5.1 is necessary and sufficient for the

problem of establishing the existence of a diagonal controller such thatG(s) has integrity.

Similar conditions can be derived using Proposition5.1and induction, whenM is arbitrary.

Lemma5.2 shows that these conditions hold iffGG−1
bd is P-matrix or det([GG−1

bd ]ψψ)
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for all ψ ∈ Ψ. Note that the transformation of (5.5)-(5.7) to det([GG−1
bd ]ψψ) for all

ψ ∈ Ψ requires only elementary operations and can be completed in polynomial time.

The result follows by noting that verifying whether a given matrix isP-matrix is co-NP-

complete [31].

As pointed out earlier, for fully decentralized control, satisfying (5.5)-(5.7) guarantees

the existence of a pure integral action controller such thatG(s) has integrity. In this

case, the problem of establishing the existence of a diagonal controller such thatG(s)

has integrity remains NP-hard, when the controllers are further restricted to have poles at

origin only. Similar conclusions can also be drawn using (5.13) for the case, when the

individual blocks ofG are non-square, but have a single output only.

The NP-hardness of the integrity problem suggests that asM increases, there exists

systems, whose integrity cannot be verified in polynomial time. For particular instances of

the problem, it may still be possible to establish the existence of the diagonal controller such

thatG(s) has integrity in polynomial time. The time complexity of an algorithm evaluating

all the principal minors of the given real matrix is approximatelyO(n32n). Tsatsomeros

and Li [105] have presented a recursive algorithm that reduces the time complexity to

O(2n). Recently, Rump [95] has proposed an algorithm, whose time complexity is not

necessarily exponential, but can be exponential in the worst case. Rump [95] has applied

this algorithm to a test set of parameterized matrices, whose membership in the class of

P-matrices is known beforehand for the given value of the parameter. It is shown that the

algorithm can successfully verify whether these matrices having dimensions up to100×100

areP-matrices in polynomial time.

When the controller is block decentralized, one only needs to check the positiveness

of minors of the sub-matrices ofGG−1
bd that can be formed by combining elements

of different blocks and the corresponding off-block diagonal elements. In this case, if

det([GG−1
bd ]ψψ) > 0 for all ψ ∈ Ψ, we callGG−1

bd a blockP-matrix in the spirit ofP-

matrices. It is conjectured that under the same conditions as Proposition5.2, establishing

the existence of the block diagonal controller such thatG(s) has integrity is also NP-hard.

The algorithm of Tsatsomeros and Li [105] is based on Schur complement lemma and is

easily extended for verifying blockP-matrices. It is not clear at present, if it is possible to

use the algorithm of Rump [95] for block matrices. We next present a sufficient condition

for verifying whetherGG−1
bd is aP- or blockP-matrix.

Proposition 5.3 Let Gbd = diag(Gii), whereGii ∈ Rmi×mi, i = 1, · · · ,M andGbd is

non-singular. DefineE = (G−Gbd)G
−1
bd . Then,GG−1

bd is blockP-matrix wrt the structure
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of Gbd, if det(I + 0.5E) 6= 0 and

µ∆((I + 0.5E)−1E) < 2 (5.14)

where∆ = {diag(δi · Imi
), δi ∈ C, |δi| ≤ 1, i = 1, · · · ,M}.

Proof: Note thatGG−1
bd = I+E. Define,∆1 = {diag(εi·Imi

), εi = {0, 1}, i = 1, · · · ,M}.
Then,GG−1

bd is a blockP-matrix iff,

det(I + E∆̃1) > 0 ∀∆̃1 ∈ ∆1 (5.15)

Further, defining∆2 = {diag(εi · Imi
), εi ∈ C, |εi| ≤ 1, i = 1, · · · ,M} and noting that

∆1 ⊂ ∆2, (5.15) holds if,

det(I + E∆̃2) > 0 ∀∆̃2 ∈ ∆2

The determinant is a continuous function over convex sets. Thus, ifdet(I + E∆̃2)

changes sign over the set∆2, there exists somẽ∆2 ∈ ∆2 such thatdet(I + E∆̃2) = 0.

Since,∆1 ⊂ ∆2, (5.15) holds if,

det(I + E∆̃2) 6= 0 ∀∆̃2 ∈ ∆2

⇔ µ∆2(E) < 1 (5.16)

The inequality (5.16) is conservative asI,−I ∈ ∆2. To reduce conservativeness [11,

13], for every∆̃ ∈ ∆, ∆̃2 ∈ ∆2 , define∆̃2 = 0.5(I + ∆̃). Then,

det(I + E∆̃2) = det(I + 0.5E + 0.5E∆̃)

= det(I + 0.5E)det(I + 0.5(I + 0.5E)−1E∆̃)

When (5.14) holds,det(I + 0.5(I + 0.5E)−1E∆̃) does not change sign over the set∆ and

GG−1
bd is blockP-matrix wrt the structure ofGbd.

The sub-matrices of positive-definite are also positive-definite [62]. Thus, when

GG−1
bd Â 0, GG−1

bd isP and thus blockP-matrix. Proposition5.3is less conservative than

this sufficient condition, as the controller structure is taken into account. Proposition5.3 is

still conservative, as̃∆1 is a strict subset of̃∆. A practical approach is to check if (5.14)

holds and if not, use the algorithm of Tsatsomeros and Li [105] for block decentralized

control or Rump [95] for fully decentralized control.
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5.5 Chapter Summary

In this chapter, we presented the necessary and sufficient conditions due to Gündes and

Kabuli [52] for establishing the existence of a decentralized controller such that the system

partitioned into4 or less blocks has integrity. It is shown that these conditions can be

alternately represented in terms of block relative gain (BRG) and Niedrilinski index (NI).

The following results are shown using the alternate representation:

• The conditions due to G̈undes and Kabuli [52] can be easily generalized to the case,

when the system is partitioned into arbitrary number of blocks.

• When the controller is allowed to have unstable poles other than at the origin, the

conditions based on BRG and NI, traditionally believed to be only necessary, are

in fact both necessary and sufficient. For fully decentralized control, the additional

assumption of the controller having unstable poles other than at origin is not required.

• The problem of establishing the existence of the diagonal controller such that the

system has integrity is equivalent to verifying whether a given real matrix is aP-

matrix, which is co-NP-complete.

Though the integrity problem for fully decentralized control is shown to be NP-hard,

it may be possible to solve particular instances of this problem using the algorithm of

Rump [95]. It is conjectured that the integrity problem for block decentralized control

is also NP-hard. A (conservative) sufficient condition is proposed for establishing the

existence of the block diagonal controller such that the system has integrity. Future work

will focus on extending the algorithm of Rump [95] to the blockP-matrix case and

determination of necessary and sufficient conditions for integrity, when the controller is

restricted to have poles only at the origin.





Chapter 6

Decentralized Minimum Variance
Benchmark

This chapter deals with performance assessment of decentralized controllers using

the minimum variance (MV) benchmark. The available MV benchmarks do not take

the structure of the controller into account and can give overly optimistic estimates of

achievable performance, when applied to systems under decentralized control. We propose

an approximate solution to this problem obtained by explicitly solving simple linear matrix

equations. As a special case of this general result, we also present an upper bound on the

achievable performance for systems under multi-loop PID control. These results are useful

for assessing the feasibility of significant performance improvement by re-tuning of the

decentralized controller and input-output pairing selection1.

6.1 Introduction

In the control literature, it is common to represent a non-linear, time-varying process by a

LTI model and design a controller based on this. In the presence of changing operating

conditions and disturbance dynamics, the closed loop performance of the controller

designed based on this approximation may deteriorate over time. Sustained benefits can

be reaped by monitoring the performance and taking appropriate corrective actions, in the

case of large deviations from the designed performance.

Poor controller tuning is one of the primary reasons for performance deterioration of

1A preliminary version of this chapter was presented at 53rd conference of Canadian Society of Chemical
Engineers, Hamilton, ON, 2003
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industrial controllers. It is important to assess the feasibility of significant performance

improvement, before the task of controller tuning is undertaken. This purpose is well served

by the minimum variance (MV) benchmark, where the controller objective is defined in

terms of output variance. The MV benchmark represents the theoretical lower bound on

the achievable output variance. The output variance can be reduced by controller tuning,

when the actual variance differs significantly from the MV benchmark; otherwise, different

approaches should be considerede.g. the use of feedforward controller or additional

manipulated variables.

The idea of MV control was introduced bẙAström [5]. It was shown that the time series

representation of the closed loop expression from the disturbances to the outputs can be

partitioned into controller invariant and controller dependent parts. The MV control law is

found by setting the controller dependent part to zero and the variance contribution of the

controller invariant part represents the lower bound on the achievable performance (defined

in terms of variability of outputs).

Harris [53] showed that witha priori knowledge of time delay, MV benchmark can

be estimated using routine closed loop operating data and established it as a tool for

performance monitoring of SISO systems. This approach is further extended to MIMO

systems by Harriset al. [54] and Huanget al. [70]. Qin [91] and Harriset al. [55] provide

comprehensive reviews of MV based and other performance assessment tools.

Though useful, the available MV benchmark shows limitations, when applied to systems

using (block) decentralized or multi-loop control. The conventional approaches towards

performance assessment of such controllers include:

• Loop by loop analysis

• Use of the MV benchmark for full multivariate controllers

The MV benchmark fails to take the process interactions into account, when applied

in a loop-wise fashion; whereas, the full multivariable benchmark assumes more degrees

of freedom for performance improvement than are available in the actual controller. In

either case, the bound on the achievable output variance is loose and can be overly

optimistic. In many cases, it may lead the practicing engineer to search for the non-existent

decentralized controller to match the performance of the MV benchmark. The gap between

the benchmark and achievable performance further increases when the decentralized

controller is restricted to be of reduced complexity,e.g. proportional integral derivative

(PID) controller [75]. Thus, a decentralized MV benchmark is required, which takes

the controller structure into account. These arguments are further illustrated using the
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following example adapted from Huang and Shah [69]:

Example 6.1 Considery(t) = G(q−1)u(t) + Gw(q−1)a(t), whereq−1 is the backshift

operator,a(t) is Gaussian noise with unit variance and

G =




q−2

1−0.4q−1
2q−2

1−0.5q−1

q−2

1−0.1q−1
q−2

1−0.2q−1


 Gw =




2
1−0.9q−1

1
1−0.3q−1

1
1−0.4q−1

2
1−0.5q−1




The objective is to assess the performance of a multi-loop controller of the formkI,

k = 0.17. Under closed loop control,E[tr(y(t)y(t)T ] = 23.65, whereE[.] is the

expectation operator. The MV benchmark for full multivariate controller is14.5, but no

k or a dynamic compensator could be found that matches this benchmark closely. As

shown later, the given controller structure inherently limits the achievable performance and

the controller0.17I is nearly optimal for the given controller structure.

An explicit solution to the decentralized MV control problem has great theoretical

and practical value, but is equally difficult to realize. The primary difficulty lies

in enforcing the decentralized structure on the controller, as this yields a non-convex

optimization problem [103]. Yuz and Goodwin [114] have suggested a two-step approach

for determining an upper bound on the achievable output variance using a decentralized

controller:

• A decentralized controller is designed based on only the diagonal elements of the

system.

• The controller is redesigned to compensate for the ignored off-diagonal elements

using an approximation of the sensitivity function.

Though the initial design based on the diagonal elements accommodates the controller

structure, the controller redesign step requires some care and numerical search. Further,

the utility of the method in its present form is limited to step disturbances only.

In this paper, we take a fundamentally different approach to derive an approximate

solution for the decentralized MV control problem. The controller structure is posed as a

constraint on the optimization problem and a suboptimal solution is obtained by explicitly

solving the linear matrix equations defining the stationary point. As a special case, we

present an upper bound on the achievable output variance for systems under multi-loop PID

control. The results presented here do not require controller redesign [114] or numerical

search [75]; however the simplicity of the result comes at the cost of sub-optimality. These

results are useful for various purposes:
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1. Performance assessment of existing decentralized or multi-loop controllers.

2. Selection of input-output pairings based on achievable decentralized performance.

3. Providing a good initial guess for non-convex parameter search methods.

6.2 Interactor Matrices

Before proceeding with the main development, we present the useful concept of interactor

matrices introduced in [69].

Definition 6.1 For everyn1 × n2 proper, rational polynomial transfer matrixG(q−1),

there is a unique, non-singular,n1×n1 lower triangular polynomial matrixD(q), such that

|D(q)| = qr and [45]

lim
q−1→0

D(q)G(q−1) = lim
q−1→0

G̃(q−1) = G̃(0) (6.1)

whereG̃(0) is a full rank constant matrix [69]. The matrixD(q) is called theinteractor

matrix.

For univariate systems, the MV benchmark primarily depends on the time delay

associated withG(q−1) [5]. This time delay can also be interpreted as the non-invertible

part of the transfer matrix, as its inverse is non-causal. Similarly, the multivariate system

G(q−1) can be factored asG(q−1) = D−1(q−1)G̃(q−1) such thatG̃(q−1) andD−1(q−1)

contain the invertible and non-invertible parts ofG(q−1) respectively. The interactor matrix

generalizes the time delay for univariate systems to the multivariate case [69] and can be

written as,

D(q) = D0(q)q
d + D1(q)q

d−1 + · · ·Dd−1(q)q

whered denotes the order of the interactor matrix.

WhenD(q) assumes the formD(q) = qdI, D(q) is called a simple interactor matrix.

Similarly, an interactor matrix with the formD(q) = diag(qd1 , · · · , qdn) is called a

diagonal interactor matrix.D(q) with no special structure is called a general interactor

matrix.

The lower triangular form is only one of the possible realizations of the interactor

matrices. In general, the interactor matrix can also be upper triangular or a full matrix.

One realization of the interactor matrix that is of immediate interest to us, is whenD(q) is

unitary.
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Definition 6.2 For a rational proper, transfer matrixG(q−1) having full rank, let theD(q)

satisfying (6.1) also satisfiesDT (q−1)D(q) = I. Then,D(q) is called aunitary interactor

matrix [89].

The unitary interactor matrix is non-unique, but two unitary interactor matrices are

related by transformation through a unitary matrix [69]. The unitary interactor matrix is

useful for deriving the MV control law, when every output are given equal importance.

Huang and Shah [68] have introduced the concept of weighted unitary matrices to handle

the cases, where individual outputs have different importance in the control objective.

6.3 Problem Formulation

     (q-1)
y(t)u(t)

a(t)

K(q -1)

-
D-1(q -1)

Gw(q-1)

K11(q
-1)

KMM(q-1)

K22(q
-1)
…

.

G(q-1)

Figure 6.1:Separation of interactor matrix

Consider the system shown in Figure6.1, where K(q−1) = diag(Kii(q
−1)), i =

1, · · · ,M . The objective is to find a controller such that the variance ofy(t) or

E[tr(y(t)y(t)T ] is minimized. We make the following simplifying assumptions:

1. G(q−1) andGw(q−1) are stable, causal transfer matrices, contain no zeros outside

the unit circle and are square having dimensionsn× n.

2. a(t) is a random noise sequence with unit variance andy(t) is stationary up to its

second moment.

The assumption thatG(q−1) andGw(q−1) are square is made for notational simplicity

and can easily be relaxed for generalization purposes. WhenGw contains zeros outside
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the unit circle, these zeros can be factored through an all pass factor factorization without

affecting the noise spectrum [69]. Further, there is no loss of generality in assuming that

the system is affected by noise having unit variance. WhenE[a(t)aT (t)] 6= I, the noise

model can always be scaled to satisfy this assumption.

Next, we formulate the optimization problem that can be solved to obtain the solution to

the decentralized MV control problem. In the remaining discussion, the argumentsq−1 and

t are dropped for ease of representation. Let the system shown in Figure6.1be expressed

as

y = D−1G̃u + Gwa

or D1y = q−dG̃u + Ḡda (6.2)

whereD1 = q−dD, Ḡd = D1Gw and d is the order or number of non-zero impulse

response matrices ofD. Using Diophantine’s identity,̄Gd = F̄ + q−dR̄ andu = −Ky for

regulatory control,

D1y = −q−dG̃Ky + (F̄ + q−dR̄)a (6.3)

Using (6.2), a = Ḡ−1
d (D1y − q−dG̃u). With simple algebraic manipulations, (6.3) can

be simplified as,

D1y = F̄a + q−d(R̄G−1
w − F̄Ḡ−1

w G̃K)y (6.4)

SinceE[tr(y(t)y(t)T )] = E[tr(D1y(t)y(t)TDT
1 )] [69, Lemma 4.3.1] and̄F is controller

invariant, the second term in (6.4) can be set to zero to obtain the full multivariable MV

control law. When the controller has structural constraints, this may not be possible since

K has fewer degrees of freedom than the full multivariable controller.

Let A = R̄G−1
w , B = F̄Ḡ−1

d G̃ andL = A−BK. Then using (6.4),

y = (D1 − q−dL)−1F̄a

= (I− q−dDT
1 L)−1DT

1 F̄a

When the spectral radius ofDT
1 L(ejω) is less than1 for all ω = [0 , 2π] or the closed

loop system is stable, the series expansion of(I− q−dDT
1 L)−1 is convergent. Thus,

y =

( ∞∑
i=0

(q−dDT
1 L)i

)
DT

1 F̄a (6.5)

SinceE[a(t)aT (t + τ)] = 0 for all τ 6= 0 andD1 is a unitary transfer matrix,

E[tr(yyT )] = ‖DT
1 F̄‖2

2 + ‖DT
1 LDT

1 F̄‖2
2 + · · ·

= ‖F̄‖2
2 + ‖LDT

1 F̄‖2
2 + · · · (6.6)
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The higher order terms on the RHS of (6.6) are non-linear inK. An approximate solution

to the decentralized MV control problem is obtained by ignoring these terms and finding

the stationary point of‖LDT
1 F̄‖2

2 wrt block diagonalK. The resulting equations using this

approach require an iterative procedure to be solved and in order to avoid this difficulty, we

use the following result:

Lemma 6.1 Let X,Y be stable transfer matrices. Then,

‖XY‖2
2 ≤ ‖X‖2

2‖Y‖2
∞

Proof:

‖XY‖2
2 =

1

2π

∫ 2π

0

tr(XY(e−jω)Y∗X∗(ejω)dω

=
1

2π

∫ 2π

0

n∑
i=0

σ2
i (XY(e−jω))dω

≤ 1

2π

∫ 2π

0

σ̄2(Y(e−jω))
n∑

i=0

σ2
i (X(e−jω))dω

≤ sup
ω∈[0 2π]

σ̄2(Y(e−jω))
1

2π

∫ 2π

0

n∑
i=0

σ2
i (X(e−jω))dω

≤ ‖X‖2
2‖Y‖2

∞

Using (6.6) and Lemma6.1,

E[tr(yyT )] ≤ ‖F‖2
2 + ‖L‖2

2‖F̄‖2
∞ + · · · (6.7)

With this simplification, the decentralized controller that provides an overestimate of the

achievable output variance is obtained by solving the following optimization problem

min
K
‖L‖2

2

s.t. (1nn − J) ◦K = 0 (6.8)

where1nn is a matrix of ones and◦ is the Hadamard product.J is a matrix representing

the controller structure and is defined as

Jij =

{
1 if Kij 6= 0

0 if Kij = 0
(6.9)
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6.4 Decentralized MV Benchmark

In this section, an explicit solution to the optimization problem (6.8) is provided. For these

purposes, we present the following result, which involves finding the stationary point of a

scalar wrt a structured matrix. This result can also be of independent interest.

Lemma 6.2 Let Y = XTMX−NTX. Then,

∂[tr(Y)]

∂X
=

(
M + MT

)
X−N (6.10)

Proof: Let zj be thejth column of the Identity matrix. Using the chain rule

∂[tr(Y)]

∂xij

= tr

(
∂XT

∂xij

MX + (XTM−NT )
∂X

∂xij

)

= tr
(
zjz

T
i MX

)
+ tr

(
(XTM−NT )ziz

T
j

)

= tr
(
zT

i MXzj

)
+ tr

(
zT

j (XTM−NT )zi

)

= (MX)ij +
(
XTM−NT

)
ji

= (MX)ij +
(
MTX

)
ij
−Nij

Note that (6.10) is a compact representation of the last expression.

Proposition 6.1 Let Y = XTMX−NTX, whereX is a block diagonal matrix. Then, the

stationary point oftr(Y) wrt X is found by solving

J ◦ [
(M + MT )

]
X = J ◦N (6.11)

whereJ is defined similar to (6.9).

Proof: Let X = diag(X11, · · · ,XMM). Then,

tr(Y) =
M∑
i=1

tr(XT
iiMiiXii)− tr(Nii)

Using lemma6.2, the stationary point oftr(Y) wrt Xii is found by solving

∂[tr(Y)]

∂Xii

=
(
Mii + MT

ii

)
Xii −Nii = 0

The result follows by considering the last expression for alli together.
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6.4.1 Simple Interactor Matrix

If the system has a simple interactor matrix,i.e. D = q−d · I, then A = RG−1
w ,

B = FG−1
w G̃, whereGw = F + q−dR. Using Parseval’s equality,

‖L‖2
2 =

∞∑
i=0

tr(LT
i Li) (6.12)

whereL = A−BK as before andLi is theith impulse response matrix ofL defined as

Li = Ai −
i∑

j=0

i−j∑

k=0

BjKk (6.13)

Then, the decentralized MV control law is obtained by finding the stationary point of

‖L‖2
2 wrt Kk, k = 1, 2 . . .∞ subject to the structural constraint on the controller. For

numerical reasons, however, it is necessary to approximateA,B andK by finite impulse

response models having orderN . Using Lemma6.1, the stationary point is found by

solving,

∂‖L‖2
2

∂Kk

= J ◦
[

N−k∑
i=0

BT
i Li+k

]
= 0 (6.14)

To simplify notation in the further treatment, we define the following linear operator,

Definition 6.3 Let X,Y be defined such thatdim(X) = dim(Yij) for all i, j. Then, the

block-wise Kronecker-Hadamard productis defined as,

X®Y =




X ◦Y11 X ◦Y12 · · ·
X ◦Y21 X ◦Y22 · · ·

...
...

...




A rearrangement of (6.14) gives,

[
J® (

BT
HBH

)]
KC = J® (

BT
HAC

)
(6.15)

whereAC andKC contain the impulse response matrices ofA andK respectively, and

BH is a lower block triangular Hankel matrix. TheAC , KC andBH are defined as

KC =
[

KT
0 KT

1 KT
2 · · ·KT

N

]T

AC =
[

AT
0 AT

1 AT
2 · · ·KT

N

]T

BH =




B0 0 0 · · · 0
B1 B0 0 · · · 0
...

...
. .. . . .

...
BN BN−1 · · · · · · B0


 (6.16)
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When
[
J® (

BT
HBH

)]
is invertible, the suboptimal decentralized MV controller is given

as,

KC =
[
J® (

BT
HBH

)]−1 [
J® (

BT
HAC

)]
(6.17)

Remark 6.1 Since J always has full rank, rank deficiency ofBT
HBH makes[

J® (
BT

HBH

)]
singular. This happens when some ofBi’s are singular. For a system with

simple interactor matrix,B = FG−1
w G̃ has no infinite zeros and thusBi is nonsingular for

all i.

The earlier developments in this section are summarized by the following result:

Proposition 6.2 Consider the system (6.2) with a simple interactor matrix. DefineA =

RG−1
w , B = FG−1

w G̃. Then, a suboptimal solution to finding a decentralized controller

that minimizesE[tr(yyT )] is given by (6.17).

Let ymvd be the output of the closed loop system under the optimal decentralized MV

control law. Then, a decentralized performance index is defined as

ηmvd =
E[tr(ymvdy

T
mvd)]

E[tr(yyT )]
(6.18)

The full multivariable performance indexηmv is defined similarly, whereηmv ≤ ηmvd.

Ideally,0 ≤ ηmvd ≤ 1, but when evaluated based on the suboptimal decentralized controller

given by (6.17), ηmvd may exceed1. In any case, a value ofηmvd close to zero always

indicates poor performance.

In certain special cases, the decentralized controller given by (6.17) is optimal. For

example, whenJ = 1nn, (6.17) reduces to the optimal full multivariable MV control law.

Similarly, whenN = I or the system is affected by white noise,KC = 0, which is optimal.

Remark 6.2 WhenF commutes withK, use of Lemma6.1to simplify (6.6) to (6.7) is not

required. In this case, better estimates ofηmvd are obtained by redefiningA = RG−1
w F,

B = FG−1
w G̃F and using Proposition6.2as before.

Example 6.2 We revisit example6.1. The variation ofηmv andηmvd with k is shown in

Figure6.2. For k = 0.17, ηmvd ≈ 0.82, which is large compared toηmv ≈ 0.6. This

justifies our earlier remark that the decentralized structure puts an inherent limitation on

the achievable performance for this system and no significant performance improvement is

possible by controller re-tuning.



Sec. 6.4 Decentralized MV Benchmark 123

−0.2 −0.1 0   0.1 0.2 0.3 0.4 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

k

η m
v, η

m
vd

Figure 6.2:Comparison ofηmv (o) andηmvd (+) for Example6.2. The controller structure
limits the achievable output performance.

Proposition6.2can also be used for input-output pairing selection. For this system, the

upper bound on achievable output performance for pairing on the diagonal and off-diagonal

elements is18.99 and16.02 respectively. Based on this criterion, the latter alternative may

be preferred.

6.4.2 General Interactor Matrix

When the system has a general interactor matrix,B is non-invertible due to presence of

infinite zeros (see Remark6.1) and some modifications are required. LetDB be the unitary

interaction matrix ofB andB̃ = DBB. Then

‖L‖2
2 = ‖A−D−1

B B̃K‖2
2

= ‖DBA− B̃K‖2
2 = ‖Ã− B̃K‖2

2

The suboptimal decentralized controller is obtained by following the same steps as

before:

KC =
[
J®

(
B̃T

HB̃H

)]−1 [
J®

(
B̃T

HÃC

)]
(6.19)

whereÃC , B̃H are defined similar to (6.16).

Proposition 6.3 Consider the system (6.2) with a general interactor matrix. DefinẽA =

DBR̄G−1
w , B̃ = DBF̄Ḡ−1

d G̃, whereDB is the unitary interactor matrix of̄FḠ−1
d G̃. Then,

a suboptimal solution to finding a decentralized controller that minimizesE[tr(yyT )] is

given by (6.19).
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Figure 6.3:Comparison ofηmv (o) andηmvd (+) for Example6.3. The controller structure
poses no serious limitations.

In the previous example, controller structure posed significant limitations on the

achievable performance. This is not always the case, as shown below:

Example 6.3 Consider the following system adapted from Huang and Shah [69],

G =




q−1

1−0.4q−1
K12q

−2

1−0.1q−1

0.3q−1

1−0.1q−1
q−2

1−0.8q−1


 Gw =




1
1−0.5q−1

−0.6
1−0.5q−1

0.5
1−0.5q−1

1
1−0.5q−1




where the variableK12 controls the extent of interaction among the variables. The objective

is to compare the performance of the following controller for different values ofK12.

K =

[
0.5−0.2q−1

1−0.5q−1 0

0 0.25−0.2q−1

(1−0.5q−1)(1+0.5q−1)

]

The ηmvd, ηmv for variousK12 are shown in Figure6.3. For each value ofK12, there

exists a decentralized controller that closely matches the performance of the optimal full

multivariable controller. Hence, the controller structure poses no serious limitation on

the achievable performance for this system. This further illustrates that large interactions

do not necessarily limit the performance of decentralized controllers compared to the full

multivariable controllers.

6.5 Achievable PID Performance

The suboptimal decentralized controller is expressed in terms of its impulse response

matrices. By restricting the order of the controller or settingKk = 0 for all k > p,
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controllers with reduced complexity can be obtained. In this section, this approach is used

to find an overestimate on achievable output variance using multi-loop PID controllers,

which are expressed as,

KPID =
1

∆

2∑
i=0

Ciq
−i =

1

∆
C

where∆ = 1 − q−1. By considering1/∆ as a part ofG̃ and minimizing‖L‖2
2 wrt C,

an overestimate of the achievable PID performance can be derived. Then Propositions6.2

and6.3 can be used by limiting the column dimensions ofAC,BH to 3n. To ensure that

the assumption of stability ofG is satisfied, the integrator can be moved just inside the

unit circle without affecting the result significantly. In general, controllers with reduced

complexity having orderp can be obtained by limiting the column dimensions ofAC,BH

to pn.

Example 6.4 Consider the following system taken from Ko and Edgar [75],

y =
q−6

1− 0.8q−1
u +

1− 0.2q−1

(1− 0.3q−1)(1 + 0.4q−1)(1− 0.5q−1)
a

Clearly the results presented earlier also hold for SISO systems. Based on these results,

the achievable output variances under MV and PI control are1.11 showing that the control

structure poses no limitations. However, when the disturbance model contains an additional

integrator, the achievable output variances under MV and PI control are11.95 and17.86

respectively. The achievable performances differ by more than50% revealing the effect

of controller structure on achievable performance. Note that for both these cases, the

achievable PI performance is close to the results obtained by Ko and Edgar [75], who

used numerical search.

6.6 Limitations

The results presented in this paper require that the system’s model be fully known. This can

be very demanding for online performance monitoring of industrial systems, especially in

presence of changing operating conditions. The requirement of knowledge of the system’s

model can be partially relaxed by estimatingGw using regular operating data, as suggested

by Ko and Edgar [75]. Example6.3 shows that the controller structure does not always

limit the achievable performance. The identification ofG should only be undertaken if

large differences are seen between the actual output variance and MV benchmark for full

multivariable controllers.
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The suboptimal controller is expressed in terms of its impulse response matrices, whose

determination is computationally inexpensive. Starting from a low value, the controller

order can be gradually increased until convergence, but convergence can be extremely

slow in some cases. This difficulty is overcome by recognizing that
[
J® (

BT
HBH

)]
is

a sparse Toeplitz matrix and using available computationally efficient methods (e.g., Brent

et al. [16]) for its inversion.

The decentralized MV control law is based on an approximation of the closed loop

expression and thus stability is not guaranteed. A possible approach to overcome this

limitation is to reduce the gain of the decentralized controller until stability is achieved,

however, such an approach increases the sub-optimality of the results.

6.7 Chapter Summary

For performance assessment purposes, ignoring the controller structure can lead to

incorrect conclusions regarding significant performance improvement through controller

tuning. In this chapter, we presented an approximate solution to the decentralized minimum

variance control problem, which provides an overestimate of the achievable output variance

without numerical search. The proposed method can easily handle the case of multi-loop

PID controllers. The primary limitation of the proposed method is that complete knowledge

of the system’s model is required and some recommendations are provided to partially

overcome this limitation.



Chapter 7

Conclusions and Future Work

7.1 Thesis Conclusions

In this thesis, we developed tools for handling different aspects of the control configuration

design (CCD) problem. The major contributions are listed below:

• The achievable input performance is characterized for FDLTI systems possibly

having time delay in theH2 andH∞ optimal control frameworks.

• A method for finding a stabilizing decentralized controller through independent

designs is presented. This method extends the practical applicability of theµ-

interaction measure to unstable systems.

• The problem of finding an optimal block diagonal approximation of a multivariate

system is introduced and a numerical solution is proposed.

• Many new algebraic properties of block relative gain (BRG) are developed. The

connection between BRG and important closed loop properties is explored and some

common conjectures are corrected.

• The problem of establishing existence of diagonal controller such that the system has

integrity against controller failure is shown to be NP-hard.

• A suboptimal, yet explicit solution to the decentralized minimum variance

benchmark problem is proposed.

In many cases, the CCD problem can be reasonably solved using the tools presented

in this thesis alone or with possible minor extensions. For example, reliable decentralized

controller can be designed for open loop stable systems using the results of Chapters4- 5.
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In the context of the CCD problem, the results on Decentralized MV benchmark are useful

for screening of pairing alternatives with achievable output performance as a criterion.

We have not handled the important issue of model uncertainty explicitly. Note that

minimization of input energy required for stabilization provides the maximally robust

controller for norm bounded additive uncertainty [43]. The results of Chapter3 can also

be easily extended for handling robust stability and performance issues using the approach

available in [101]. It must be acknowledged; however, that solving the CCD or control

structure design problem for general time-varying non-linear systems remains an open

challenge and this thesis can be seen as a positive step in that direction.

7.2 Directions for Future Work

We pointed out some potential directions for generalizing and improving upon the results

presented in this thesis in the summaries of the individual chapters. Some other relevant

issues are discussed below with the hope that solving these problems will move us closer

towards finding a general solution for the CSD problem.

• The characterization of achievable performance has received increasing interest from

researchers, but the effect of controller structure on the achievable performance

remains unclear. The results of Zames and Bensoussan [116] can be seen as a good

starting point in this direction.

• It is likely that the optimal solution to the block diagonal approximation problem is

not unique. An analytical solution is necessary to characterize all possible solutions.

To this end, it is useful to approach theH∞ optimal block diagonal approximation

problem for stable systems using the results of Gloveret al. [44].

• In some cases, it may not be possible to find a stabilizing decentralized controller

through independent designs. This difficulty can be partially overcome by extending

the ideas presented in Chapter3 for sequential design of decentralized controller for

unstable systems.

• The requirement that a model be available hinders the online implementation of the

decentralized minimum variance benchmark. It would be extremely useful, if exact

or approximate methods can be derived, where this stringent requirement can be

relaxed.
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• There are no practical tools available (other than numerical simulation) for directly

handling the non-linear behavior of the process systems. An indirect approach

is to approximate the system as a nominal model with an associated uncertainty

description [11], but the involved computational complexity is limiting.
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1990.

[7] J. Bao, J. F. Forbes, and P. J. McLellan. Robust multiloop PID controller design:

A successive semidefinite programming approach.Ind. Eng. Chem. Res., 38:3407–

3419, 1999.

[8] H. W. Bode. Network Analysis and Feedback Amplifier Design. Van Nostrand,

Princeton, NJ, 1945.

[9] S. Boyd and C. Barratt.Linear Controller Design - Limits of Performance. Prentice

Hall, 1991. Available athttp://www.stanford.edu/ ∼boyd/lcdbook/

lcdbook.html .

131

http://www.stanford.edu/~boyd/lcdbook/lcdbook.html
http://www.stanford.edu/~boyd/lcdbook/lcdbook.html


132 Bibliography

[10] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan.Linear Matrix Inequalities in

System and Control Theory. SIAM, Philadelphia, 1994.

[11] R. D. Braatz. Robust loopshaping for Process Control. Ph.d., California School

of Technology, Pasadena, CA, May 1993. Available athttp://www.cds.

caltech.edu/reports/index.cgi?year=1993 .

[12] R. D. Braatz, J. H. Lee, and M. Morari. Screening plant designs and control

structures for uncertain systems.Computers Chem. Engg., 20:463–468, 1996.

[13] R. D. Braatz, M. Morari, and S. Skogestad. Robust reliable decentralized control.

In American Control Conference, volume 3, pages 3384–3388, Baltimore, MD, July

1994.

[14] R. D. Braatz and E. L. Russell. Robustness margin computation for large scale

systems.Computers Chem. Engg., 23:1021–1030, 1999.

[15] R. D. Braatz, P. M. Young, J. C. Doyle, and M. Morari. Computational complexity

of µ calculation.IEEE Trans. Automat. Contr., 39(5):1000–1002, 1994.

[16] R. P. Brent, F. G. Gustavson, and D. Y. Yun. Fast solution of Toeplitz systems
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