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1 Introduction

Always keep in mind

• Power of control is limited.

• Control quality depends controller AND on

plant/process.

Ziegler-Nichols (1943):

‘‘In the application of automatic controllers, it is

important to realize that controller and process form

a unit; credit or discredit for results obtained are

attributable to one as much as the other. A poor

controller is often able to perform acceptably on a

process which is easily controlled. The finest

controller made, when applied to a miserably designed

process, may not deliver the desired performance.

True, on badly designed processes, advanced

controllers are able to eke out better results than

older models, but on these processes, there is a

definite end point which can be approached by

instrumentation and it falls short of perfection.’’

⇒ Much of the course will be spent on input-output

“controllability analysis” of the plant/process.
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1.1 The control problem [1.2]

y = Gu+Gdd (1.1)

y : output/controlled variable

u : input/manipulated variable

d : disturbance

r : reference/setpoint

Regulator problem : counteract d

Servo problem : let y follow r

Goal of control: make control error e = y − r

“small”.
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Major difficulties:

Model (G,Gd) inaccurate

⇒ RealPlant: Gp = G+E ;

E = “uncertainty” or “perturbation” (unknown)

• Nominal stability (NS) : system is stable with

no model uncertainty.

• Nominal Performance (NP) : system satisfies

performance specifications with no model

uncertainty.

• Robust stability (RS) : system stable for “all”

perturbed plants

• Robust performance (RP) : system satisfies

performance specifications for all perturbed

plants
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1.2 Transfer functions [1.3]

G(s) =
βnz

snz + · · · + β1s+ β0

sn + an−1sn−1 + · · · + a1s+ a0
(1.2)

For multivariable systems, G(s) is a matrix of

transfer functions.

n = order of denominator (or pole polynomial) or

order of the system

nz = order of numerator (or zero polynomial)

n− nz = pole excess or relative order.

Definition

• A system G(s) is strictly proper if G(s) → 0 as

s→ ∞.

• A system G(s) is semi-proper or bi-proper if

G(s) → D 6= 0 as s→ ∞.

• A system G(s) which is strictly proper or

semi-proper is proper.

• A system G(s) is improper if G(s) → ∞ as

s→ ∞.
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1.3 Scaling [1.4]

Proper scaling simplifies controller design and

performance analysis.

SISO :

unscaled:

ŷ = Ĝû+ Ĝdd̂; ê = ŷ − r̂ (1.3)

scaled:

d = d̂/d̂max, u = û/ûmax (1.4)

where:

• d̂max — largest expected change in disturbance

• ûmax — largest allowed input change

Scale ŷ, ê and r̂ by:

• êmax — largest allowed control error, or

• r̂max — largest expected change in reference

value

Usually:

y = ŷ/êmax, r = r̂/êmax, e = ê/êmax (1.5)
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MIMO :

d = D−1
d d̂, u = D−1

u û, y = D−1
e ŷ (1.6)

e = D−1
e ê, r = D−1

e r̂ (1.7)

where De, Du, Dd and Dr are diagonal scaling

matrices

Substituting (1.6) and (1.7) into (1.3):

Dey = ĜDuu+ ĜdDdd; Dee = Dey −Der

and introducing the scaled transfer functions

G = D−1
e ĜDu, Gd = D−1

e ĜdDd (1.8)

Model in terms of scaled variables:

y = Gu+Gdd; e = y − r (1.9)

Often also:

r̃ = r̂/r̂max = D−1
r r̂ (1.10)

so that:

r = Rr̃ where R
∆
= D−1

e Dr = r̂max/êmax (1.11)
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Figure 1: Model in terms of scaled variables

Objective:

for |d(t)| ≤ 1 and |r̃(t)| ≤ 1,

manipulate u with |u(t)| ≤ 1

such that |e(t)| = |y(t) − r(t)| ≤ 1.
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1.4 Notation [1.6]
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(c) General control configuration
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Figure 2: Control configurations
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Table 1: Nomenclature

K controller, in whatever configuration.

Sometimes broken down into parts. For

example, in Figure 2(b), K = [ Kr Ky ]

where Kr is a prefilter and Ky is the feed-

back controller.

Conventional configurations (Fig 2(a), 2(b)):

G plant model

Gd disturbance model

r reference inputs (commands, setpoints)

d disturbances (process noise)

n measurement noise

y plant outputs. ( include the variables to be

controlled (“primary” outputs with refer-

ence values r) and possibly additional “sec-

ondary” measurements to improve control)

ym measured y

u control signals (manipulated plant inputs)
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General configuration (Fig 2(c)):

P generalized plant model. Includes G and Gd

and the interconnection structure between the

plant and the controller.

May also include weighting functions.

w exogenous inputs: commands, disturbances

and noise

z exogenous outputs; “error” signals to be min-

imized, e.g. y − r

v controller inputs for the general configuration,

e.g. commands, measured plant outputs, mea-

sured disturbances, etc. For the special case

of a one degree-of-freedom controller with per-

fect measurements we have v = r − y.

u control signals
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2 Classical feedback control [2]

2.1 Feedback control [2.2]

ee

e

q- - - - ?

?

-

�
6

6

ym

r y+

+

Gd

GK
-

+

n

+

+

u

d

Figure 3: Block diagram of one degree-of-freedom

feedback control system
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y = GK(r − y − n) +Gdd

or

(I +GK)y = GKr +Gdd−GKn (2.1)

Closed-loop response:

y = (I +GK)−1GK︸ ︷︷ ︸
T

r (2.2)

+ (I +GK)−1

︸ ︷︷ ︸
S

Gdd (2.3)

− (I +GK)−1GK︸ ︷︷ ︸
T

n (2.4)

Control error:

e = y − r = −Sr + SGdd− Tn (2.5)

Plant input:

u = KSr −KSGdd−KSn (2.6)
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Note that:

L = GK (2.7)

S = (I +GK)−1 = (I + L)−1 (2.8)

T = (I +GK)−1GK = (I + L)−1L (2.9)

S + T = I (2.10)

Notation :

L = GK loop transfer function

S = (I + L)−1 sensitivity function

T = (I + L)−1L complementary sensitivity function
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2.2 Closed-loop performance [2.4]

Frequency domain performance

Gain and phase margins

⇒ See RS I

−1            0.5     1 

    

−0.5

 0.5

    

ω = +∞ Re

Im

PM

1 − 1
GM

L(jωc)

L(jω)

L(jω180)

Figure 5: Typical Nyquist plot of L(jω) for stable

plant with PM and GM indicated. Closed-loop insta-

bility occurs if L(jω) encircles the critical point −1
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Maximum peak criteria

Maximum peaks of sensitivity and complementary

sensitivity functions:

MS
△
= max

ω
|S(jω)|; MT

△
= max

ω
|T (jω)| (2.11)

Typically :

MS ≤ 2 (6dB) (2.12)

MT < 1.25 (2dB) (2.13)

Note :

GM ≥ MS

MS − 1
(2.14)

PM ≥ 2 arcsin

(
1

2MS

)
≥ 1

MS
[rad] (2.15)

For example, for MS = 2 we are guaranteed

GM ≥ 2 and PM ≥ 29.0◦.
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Bandwidth and crossover frequency

Bandwidth is defined as the frequency range [ω1, ω2]

over which control is “effective”. Usually ω1 = 0, and

then ω2 = ωB is the bandwidth.

Definition The (closed-loop) bandwidth, ωB , is the

frequency where |S(jω)| first crosses

1/
√

2 = 0.707(≈ −3 dB) from below.

The bandwidth in terms of T , ωBT , is the highest

frequency at which |T (jω)| crosses

1/
√

2 = 0.707(≈ −3 dB) from above. (Usually a poor

indicator of performance).

The gain crossover frequency, ωc, is the frequency

where |L(jωc)| first crosses 1 from above.For systems

with PM < 90◦ we have

ωB < ωc < ωBT (2.16)
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2.3 Controller design [2.5]

Three main approaches:

1. Shaping of transfer functions.

(a) Loop shaping. Classical approach in which

the magnitude of the open-loop transfer

function, L(jω), is shaped.

(b) Shaping of closed-loop transfer

functions, such as S, T and KS

⇒ H∞ optimal control

2. The signal-based approach. One considers a

particular disturbance or reference change and

tries to optimize the closed-loop response

⇒ Linear Quadratic Gaussian (LQG) control.

3. Numerical optimization. Multi-objective

optimization to optimize directly the true

objectives, such as rise times, stability margins,

etc. Computationally difficult.
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2.4 Loop shaping [2.6]

Shaping of open loop transfer function L(jω):

e = − (I + L)−1

︸ ︷︷ ︸
S

r + (I + L)−1

︸ ︷︷ ︸
S

Gdd− (I + L)−1L︸ ︷︷ ︸
T

n

(2.17)

Fundamental trade-offs:

1. Good disturbance rejection: L large.

2. Good command following: L large.

3. Mitigation of measurement noise on plant

outputs: L small.

4. Small magnitude of input signals: K small and L

small.
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Fundamentals of loop-shaping design

Specifications for desired loop transfer function:

1. Gain crossover frequency, ωc, where |L(jωc)| = 1.

2. The shape of L(jω), e.g. slope of |L(jω)| in

certain frequency ranges:

N = d ln |L|
d ln w

Typically, a slope N = −1 (−20 dB/decade)

around crossover, and a larger roll-off at higher

frequencies. The desired slope at lower

frequencies depends on the nature of the

disturbance or reference signal.

3. The system type, defined as the number of pure

integrators in L(s).

Note:

1. for offset for tracking L(s) must contain at least

one integrator for each integrator in r(s).

2. slope and phase are dependent. For example:

6 < 1
sn = −n π

2
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2.4.1 Inverse-based controller [2.6.3]

Note: L(s) must contain all RHP-zeros of G(s).

Idea for minimum phase plant:

L(s) =
ωc

s
(2.18)

K(s) =
ωc

s
G−1(s) (2.19)

i.e. controller inverts plant and adds integrator (1/s).

BUT:

this is not generally desirable, unless references and

disturbances affect the outputs as steps.
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Example: Disturbance process.

G(s) =
200

10s + 1

1

(0.05s + 1)2
, Gd(s) =

100

10s + 1

(2.20)

Objectives are:

1. Command tracking: rise time (to reach 90% of the

final value) less than 0.3 s and overshoot less than

5%.

2. Disturbance rejection: response to unit step

disturbance should stay within the range [−1, 1] at

all times, and should return to 0 as quickly as

possible (|y(t)| should at least be less than 0.1 after 3

s).

3. Input constraints: u(t) should remain within [−1, 1]

at all times.

Analysis. |Gd(jω)| remains larger than 1 up to

ωd ≈ 10 rad/s ⇒ ωc ≈ 10 rad/s.
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Inverse-based controller design.

K0(s) =
ωc

s

10s+ 1

200
(0.05s+ 1)2

≈ ωc

s

10s+ 1

200

0.1s+ 1

0.01s+ 1
,

L0(s) =
ωc

s

0.1s+ 1

(0.05s+ 1)2(0.01s+ 1)
, ωc = 10 (2.21)

0 1 2 3

0

0.5

1

1.5

y
(t

)

Time [sec]

(a) Tracking response

0 1 2 3

0

0.5

1

1.5

y
(t

)

Time [sec]

(b) Disturbance response

Figure 6: Responses with “inverse-based” controller

K0(s) for the disturbance process. Note poor distur-

bance responce
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2.4.2 Loop shaping for disturbance rejection

[2.6.4]

e = y = SGdd, (2.22)

to achieve |e(ω)| ≤ 1 for |d(ω)| = 1 (the worst-case

disturbance) we require |SGd(jω)| < 1, ∀ω, or

|1 + L| ≥ |Gd| ∀ω (2.23)

or approximately:

|L| ≥ |Gd| ∀ω (2.24)

Initial guess:

|Lmin| ≈ |Gd| (2.25)

or:

|Kmin| ≈ |G−1Gd| (2.26)

Controller contains the model of the disturbance.

To improve low-frequency performance

|K| = |s+ ωI

s
||G−1Gd| (2.27)
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Summary:

• Controller contains the dynamics (Gd) of the

disturbance and inverts the dynamics (G) of the

inputs.

• For disturbance at plant output, Gd = 1, we get

|Kmin| = |G−1|.

• For disturbances at plant input we have Gd = G

and we get |Kmin| = 1.

Loop-shape L(s) may be modified as follows:

1. Around crossover make slope N of |L| to be

about −1 for transient behaviour with

acceptable gain and phase margins.

2. Increase the loop gain at low frequencies to

improve the settling time and reduce the

steady-state offset → add an integrator

3. Let L(s) roll off faster at higher frequencies

(beyond the bandwidth) in order to reduce the

use of manipulated inputs, to make the controller

realizable and to reduce the effects of noise.
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Example: Loop-shaping design for the

disturbance process.

cc q
6

-?

?

-----
+
+ 200

10s+1
y

d

0.5

1
(0.05s+1)2

u
-

+r K(s)

Figure 7: Block diagram representation of the distur-

bance process in (2.20)
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(a) Loop gains
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(b) Disturbance responses

Figure 8: Loop shapes and disturbance responses for

controllers K1, K2 and K3 for the disturbance process
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Step 1. Initial design.

K(s) = G−1Gd = 0.5(0.05s+ 1)2.

Make proper:

K1(s) = 0.5 (2.28)

=⇒ offset!

Step 2. More gain at low frequency. To get

integral action multiply the controller by the term
s+ωI

s . For ωI = 0.2ωc the phase contribution from
s+ωI

s is arctan(1/0.2) − 90◦ = −11◦ at ωc. For

ωc ≈ 10 rad/s, select the following controller

K2(s) = 0.5
s+ 2

s
(2.29)

=⇒ response exceeds 1, oscillatory, small phase

margin

Step 3. High-frequency correction. Supplement

with “derivative action” by multiplying K2(s) by a

lead-lag term effective over one decade starting at

20 rad/s:

K3(s) = 0.5
s+ 2

s

0.05s+ 1

0.005s+ 1
(2.30)

=⇒ poor reference tracking (simulation)
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2.4.3 ∗Two degrees of freedom design [2.6.5]

In order to meet both regulator and tracking

performance use Kr (= “prefilter”):

c c

c

- - - - - ?

?

-

�
6

6
r Kr

+
-

Ky
u

G

Gd

d

y

+
+

n

ym

+

+

Figure 9: Two degrees-of-freedom controller

Idea:

• Design Ky

• T = L(I + L)−1 with L = GKy

• Desired y = Trefr

=⇒ Kr = T−1Tref (2.31)
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Remark:

Practical choice of prefilter is the lead-lag network

Kr(s) =
τleads+ 1

τlags+ 1
(2.32)

τlead > τlag to speed up the response, and τlead < τlag

to slow down the response.
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Example Two degrees-of-freedom design for

the disturbance process.

Ky = K3. Approximate response by inpection of y3:

T (s) ≈ 1.5
0.1s+1 − 0.5

0.5s+1 = (0.7s+1)
(0.1s+1)(0.5s+1)

which yields:

Kr(s) = 0.5s+1
0.7s+1 .

By closed-loop simulations:

Kr3(s) =
0.5s+ 1

0.65s+ 1
· 1

0.03s+ 1
(2.33)

where 1/(0.03s+ 1) included to avoid initial peaking

of input signal u(t) above 1.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

y3(t)

y3(t)(two degrees-of-freedom)

Time [sec]

Figure 10: Tracking responses with the one degree-

of-freedom controller (K3) and the two degrees-

of-freedom controller (K3, Kr3) for the disturbance

process
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Example: Loop shaping for a flexible

structure.

G(s) = Gd(s) =
2.5s(s2 + 1)

(s2 + 0.52)(s2 + 22)
(2.34)

|Kmin(jω)| = |G−1Gd| = 1 ⇒

K(s) = 1 (2.35)
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G = Gd

(a) Magnitude plot of |G| =

|Gd|
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−2

−1
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yCL

yOL

Time [sec]

(b) Open-loop and

closed-loop disturbance

responses with K = 1

Figure 11: Flexible structure in (2.34)
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2.5 Closed-loop shaping [2.8]

Why ?

We are interested in S and T :

|L(jω)| ≫ 1 ⇒ S ≈ L−1; T ≈ 1

|L(jω)| ≪ 1 ⇒ S ≈ 1; T ≈ L

but in the crossover region where |L(jω)| is close to

1, one cannot infer anything about S and T from

|L(jω)|.

Alternative:

Directly shape the magnitudes of closed-loop S(s)

and T (s).
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The term H∞[2.8.1]

The H∞ norm of a stable scalar transfer function

f(s) is simply the peak value of |f(jω)| as a function

of frequency, that is,

‖f(s)‖∞ ∆
= max

ω
|f(jω)| (2.36)

The symbol ∞ comes from:

max
ω

|f(jω)| = lim
p→∞

(∫ ∞

−∞
|f(jω)|pdω

)1/p

The symbol H stands for “Hardy space”, and H∞ is

the set of transfer functions with bounded ∞-norm,

which is simply the set of stable and proper transfer

functions.
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2.5.1 Weighted sensitivity [2.8.2]

Typical specifications in terms of S:

1. Minimum bandwidth frequency ω∗
B .

2. Maximum tracking error at selected frequencies.

3. System type, or alternatively the maximum

steady-state tracking error, A.

4. Shape of S over selected frequency ranges.

5. Maximum peak magnitude of S, ‖S(jω)‖∞ ≤M .

Specifications may be captured by an upper bound,

1/|wP (s)|, on ‖S‖.

2-24



10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

M
a
g
n
it
u
d
e

Frequency [rad/s]

|1/wP ||S|

(a) Sensitivity S and performance weight wP

10
−2

10
−1

10
0

10
1

0

1

2

3

M
a
g
n
it
u
d
e

Frequency [rad/s]

‖wP S‖∞
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Figure 12: Case where |S| exceeds its bound 1/|wP |,
resulting in ‖wPS‖∞ > 1
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|S(jω)| < 1/|wP (jω)|, ∀ω (2.37)

⇔ |wPS| < 1, ∀ω ⇔ ‖wPS‖∞ < 1 (2.38)

Typical performance weight:

wP (s) =
s/M + ω∗

B

s+ ω∗
BA

(2.39)
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Figure 13: Inverse of performance weight. Exact and

asymptotic plot of 1/|wP (jω)| in (2.39)
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To get a steeper slope for L (and S) below the

bandwidth:

wP (s) =
(s/M1/2 + ω∗

B)2

(s+ ω∗
BA

1/2)2
(2.40)

2.5.2 ∗ Stacked requirements: mixed

sensitivity [2.8.3]

In order to enforce specifications on other transfer

functions:

‖N‖∞ = max
ω

σ̄(N(jω)) < 1; N =



wPS

wTT

wuKS




(2.41)

N is a vector and the maximun singular value σ̄(N)

is the usual Euclidean vector norm:

σ̄(N) =
√

|wPS|2 + |wTT |2 + |wuKS|2 (2.42)

The H∞ optimal controller is obtained from

min
K

‖N(K)‖∞ (2.43)
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Example: H∞ mixed sensitivity design for the

disturbance process.

Consider the plant in (2.20), and an H∞ mixed

sensitivity S/KS design in which

N =

[
wP S

wuKS

]
(2.44)

Selected wu = 1 and

wP1(s) =
s/M + ω∗

B

s + ω∗
BA

; M = 1.5, ω∗
B = 10, A = 10−4

(2.45)

=⇒ poor disturbance response

To get higher gains at low frequencies:

wP2(s) =
(s/M1/2 + ω∗

B)2

(s + ω∗
BA1/2)2

, M = 1.5, ω∗
B = 10, A = 10−4

(2.46)
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Figure 14: Inverse of performance weight (dashed line)

and resulting sensitivity function (solid line) for two

H∞ designs (1 and 2) for the disturbance process
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Figure 15: Closed-loop step responses for two alterna-

tive H∞ designs (1 and 2) for the disturbance process
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3 PERFORMANCE

LIMITATIONS IN SISO

SYSTEMS [5]

3.1 Input-Output Controllability [5.1]

“Control” is not only controller design and stability

analysis. Three important questions:

I. How well can the plant be controlled?

II. What control structure should be used?

(What variables should we measure, which variables

should we manipulate, and how are these variables

best paired together?)

III. How might the process be changed to

improve control?
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Definition 1 (Input-output) controllability is

the ability to achieve acceptable control performance;

that is, to keep the outputs (y) within specified

bounds displacements from their references (r), in

spite of unknown but bounded variations, such as

disturbances (d) and plant changes (including

uncertainties), using available inputs (u) and

available measurements (ym or dm).

Note: controllability is independent of the

controller, and is a property of the plant (or process)

alone.

It can only be affected by:

• changing the apparatus itself, e.g. type, size, etc.

• relocating sensors and actuators

• adding new equipment to dampen disturbances

• adding extra sensors

• adding extra actuators

• changing the control objectives

• changing the configuration of the lower layers of

control already in place
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3.1.1 Scaling and performance [5.1.2]

We assume that the variables and models have been

scaled so that for acceptable performance:

• Output y(t) between r − 1 and r + 1 for any

disturbance d(t) between −1 and 1 and any

reference r(t) between −R and R, using an input

u(t) within −1 to 1.

or frequency-by-frequency.

• |e(ω)| ≤ 1, for any disturbance |d(ω)| ≤ 1 and

any reference |r(ω)| ≤ R(ω), using an input

|u(ω)| ≤ 1.

Usually for simplicity:

R(ω) = R ω ≤ ωr

R(ω) = 0 ω > ωr

(3.1)

Because:

e = y − r = Gu+Gdd−Rr̃ (3.2)

we can apply results for disturbances also to

references by replacing Gd by −R.
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3.2 Perfect control & plant inversion

[5.4]

y = Gu+Gdd (3.3)

For “perfect control”, i.e. y = r (not realizable) we

have feedforward controller:

u = G−1r −G−1Gdd (3.4)

With feedback control u = K(r − y) we have:

u = KSr −KSGdd

or since T = GKS,

u = G−1Tr −G−1TGdd (3.5)

Where feedback is effective (T ≈ I) feedback input in

(3.5) is the same as perfect control input in (3.4) =⇒
High gain feedback generates an inverse of G even

though K may be very simple.
3-4



As consequence perfect control cannot be achieved if

• G contains RHP-zeros (since then G−1 is

unstable)

• G contains time delay (since then G−1 contains a

prediction)

• G has more poles than zeros (since then G−1 is

unrealizable)

For feedforward control perfect control cannot be

achieved if

• G is uncertain (since then G−1 cannot be

obtained exactly)

Because of input constraints perfect control cannot

be achieved if

• |G−1Gd| is large

• |G−1R| is large
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3.3 Fundamental limitations on

Sensitivity [5.2]

3.3.1 S plus T is one [5.2.1]

S + T = 1 (3.6)

=⇒ at any frequency |S(jω)| ≥ 0.5 or |T (jω)| ≥ 0.5

3.3.2 The waterbed effects (sensitivity

integrals) [5.2.3]

   
10

−1

10
0

M
a
g
n
it
u
d
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ω∗
B

1/|wP |

M

Figure 16: Plot of typical sensitivity, |S|, with upper

bound 1/|wP |

Note: |S| has peak greater than 1; we will show that

this is unavoidable in practice.
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Pole excess of two: First waterbed formula

Idea:

When L(s) has a relative degree of two or more, then

for some ω the distance between L and −1 is less

than one.

−1 1 2

−2

−1

1

2

Re

Im

L(s) = 2
s(s+1)

L(jω)

Figure 17: |S| > 1 whenever the Nyquist plot of L is

inside the circle
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Theorem 1 Bode Sensitivity Integral (first

waterbed formula).

Suppose that the open-loop transfer function L(s) is

rational and has at least two more poles than zeros

(relative degree of two or more).

Suppose also that L(s) has Np RHP-poles at

locations pi.

Then for closed-loop stability the sensitivity function

must satisfy

∫ ∞

0

ln |S(jω)|dω = π ·
Np∑

i=1

Re(pi) (3.7)

where Re(pi) denotes the real part of pi.
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RHP-zeros: Second waterbed formula
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s+1
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|S(jω)| > 1

Figure 18: Additional phase lag contributed by RHP-zero

causes |S| > 1
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Theorem 2 Weighted sensitivity integral

(second waterbed formula). Suppose that L(s)

has a single real RHP-zero z and has Np RHP-poles,

pi. Then for closed-loop stability the sensitivity

function must satisfy

∫ ∞

0

ln |S(jω)| · w(z, ω)dω = π · ln
Np∏

i=1

∣∣∣∣
pi + z

pi − z

∣∣∣∣ (3.8)

where:

w(z, ω) =
2z

z2 + ω2
=

2

z

1

1 + (ω/z)2
(3.9)
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ω

(log)

(log)

|w(z, ω)|
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1
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2
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Figure 20: Plot of weight w(z, ω) for case with real

zero at s = z

Weight w(z, ω) “cuts off” contribution of ln|S| at

frequencies ω > z. Thus, for a stable plant:
∫ z

0

ln |S(jω)|dω ≈ 0 ( for |S| ≈ 1 at ω > z) (3.10)

The waterbed is finite, and a large peak for |S| is

unavoidable when we reduce |S| at low frequencies

(Figure 19).

Note also that when pi → z then pi+z
pi−z → ∞.
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3.4 Fundamental limitations: bounds

on peaks [5.3]

If p is a RHP-pole of L(s) then

T (p) = 1, S(p) = 0 (3.11)

Similarly, if z is a RHP-zero of L(s) then

T (z) = 0, S(z) = 1 (3.12)

3.4.1 Minimum peaks for S and T [5.3.1]

Maximum modulus principle. Suppose f(s) is

stable (i.e. f(s) is analytic in the complex RHP).

Then the maximum value of |f(s)| for s in the

right-half plane is attained on the region’s boundary,

i.e. somewhere along the jω-axis. Hence, we have

for a stable f(s)

‖f(jω)‖∞ = max
ω

|f(jω)| ≥ |f(s0)| ∀s0 ∈ RHP

(3.13)
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Imagine |f(s)| as 3D-plot over complex variable s

⇒ |f(s)| has “peaks” at its poles and “valleys” at its

zeros

Suppose f(s) has LHP-poles but no RHP-poles

⇒ |f(s)| slopes down from LHP to RHP

⇒ (3.13)

The results below follow from (3.13) with

f(s) = wP (s)S(s)

f(s) = wT (s)T (s)

for weighted sensitivity and weighted complementary

sensitivity.

Theorem 3 Weighted sensitivity peak

Suppose that G(s) has a RHP-zero z and let wP (s)

be any stable weight function.

Then for closed-loop stability the weighted sensitivity

function must satisfy

‖wPS‖∞ ≥ |wP (z)S(z)| = |wP (z)| (3.14)
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Theorem 4 Weighted complementary

sensitivity peak

Suppose that G(s) has a RHP-pole p and let wT (s) be

any stable weight function.

Then for closed-loop stability the weighted

complementary sensitivity function must satisfy

‖wTT‖∞ ≥ |wT (p)T (p)| = |wT (p)| (3.15)

Derivation of additional penalty if the plant has

RHP-poles:

1. Factor out the RHP-zeros of S into all-pass Sa

S = SaSm, Sa(s) =
∏

i

s− pi

s+ p̄i
(3.16)

|Sa(jω)| = 1 at all frequencies. Sm is the

“minimum-phase version” of S with all

RHP-zeros mirrored into the LHP.

2. Consider a RHP-zero located at z, for which we

get from the maximum modulus principle

max
ω

|wPS(jω)| = max
ω

|wPSm(jω)| ≥ |wP (z)Sm(z)|

where Sm(z) = S(z)Sa(z)−1 = 1 · Sa(z)−1.
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Theorem 5 Combined RHP-poles and

RHP-zeros.

Suppose that G(s) has Nz RHP-zeros zj , and Np

RHP-poles pi.

Then for closed-loop stability the weighted sensitivity

function must satisfy for each RHP-zero zj

‖wPS‖∞ ≥ c1j |wP (zj)|, c1j =

Np∏

i=1

|zj + p̄i|
|zj − pi|

≥ 1

(3.17)

and the weighted complementary sensitivity function

must satisfy for each RHP-pole pi

‖wTT‖∞ ≥ c2i|wT (pi)|, c2i =

Nz∏

j=1

|z̄j + pi|
|zj − pi|

≥ 1

(3.18)

For wP = wT = 1:

‖S‖∞ ≥ max
j
c1j , ‖T‖∞ ≥ max

i
c2i (3.19)

=⇒ Large peaks for S and T are unavoidable if a

RHP-zero and a RHP-pole are close to each other.
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3.4.2 Bandwidth limitation II [5.7.3]

Performance requirement:

|S(jω)| < 1/|wP (jω)| ∀ω ⇔ ‖wPS‖∞ < 1

(3.20)

However, from (3.14) we have that

‖wPS‖∞ ≥ |wP (z)|,
so the weight must satisfy

|wP (z)| < 1 (3.21)

For performance weight

wP (s) =
s/M + ω∗

B

s+ ω∗
BA

(3.22)

and a real zero at z we get:

ω∗
B(1 −A) < z

(
1 − 1

M

)
(3.23)

e.g. A = 0,M = 2:

ω∗
B <

z

2
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3.5 Limitations imposed by

RHP-poles [5.9]

Specification:

|T (jω)| < 1/|wT (jω)| ∀ω ⇔ ‖wTT‖∞ < 1

(3.24)

However, from (3.15) we have that:

‖wTT‖∞ ≥ |wT (p)| (3.25)

so the weight must satisfy

|wT (p)| < 1 (3.26)

For:

wT (s) =
s

ω∗
BT

+
1

MT
(3.27)

we get:

ω∗
BT > p

MT

MT − 1
(3.28)

e.g. MT = 2:

ω∗
BT > 2p
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3.6 Combined RHP-poles and

RHP-zeros

RHP-zero:

ωc < z/2

RHP-pole:

ωc > 2p

RHP-pole and RHP-zero:

z > 4p for acceptable performance and robustness.

Sensitivity peaks.

From Theorem 5 for a plant with a single real

RHP-pole p and a single real RHP-zero z, we always

have:

‖S‖∞ ≥ c, ‖T‖∞ ≥ c, c =
|z + p|
|z − p| (3.29)
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Example 1 Balancing a rod. The objective is to keep

the rod upright by movement of the cart, based on

observing the rod either at its far end (output y1) or the

cart position (output y2).
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y2

y1

force

g
m

M

l

l [m] = length of rod

m [kg] = mass of rod

M [kg] = mass of hand

g ≈ 10 m/s2 = acceleration due

to gravity.

The linearized transfer functions for the two cases are

G1(s) =
−g

s2 (Mls2 − (M + m)g)
;

G2(s) =
ls2 − g

s2 (Mls2 − (M + m)g)

Poles: p = 0, 0,±

√
(M+m)g

Ml
. For output y1(G1(s))

stabilization requires minimum bandwidth (3.28). For

output y2(G2(s)) zero at z =
√

g
l

• For light rod m << M , pole ≈ zero → “impossible”

to stabilize

• For heavy rod (m large) difficult to stabilize because

p > z

Example: m/M = 0.1 ⇒ ‖S‖∞ ≥ 42 ; ‖T‖∞ ≥ 42 ⇒

poor control
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3.7 * Ideal Integral Square Error

(ISE) optimal control [5.5]

ISE =

∫ ∞

0

|y(t) − r(t)|2dt (3.30)

the “ideal” response y = Tr when r(t) is a unit step

is:

T (s) =
∏

i

−s+ zj

s+ z̄j
e−θs (3.31)

where z̄j is the complex conjugate of zj .

Optimal ISE for three simple stable plants are:

1. with a delay θ:

ISE = θ

2. with a RHP-zero z:

ISE = 2/z

3. with complex RHP-zeros z = x± jy:

ISE = 4x/(x2 + y2)

3-20



3.7.1 * Limitations imposed by time delays

[5.6]

Ideal for plant with delay:

S = 1 − T = 1 − e−θs (3.32)
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1

M
a
g
n
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e
|S
|

Frequency × Delay

ω = 1/θ

Figure 21: “Ideal” sensitivity function (3.32) for a

plant with delay

|S(jω)| in Figure 21 crosses 1 at π
3

1
θ = 1.05/θ.

Because here |S| = 1/|L|, we have:

ωc < 1/θ (3.33)
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3.7.2 * Limitations imposed by RHP-zeros

[5.7]

RHP-zeros typically appear when we have competing

effects of slow and fast dynamics:

G(s) =
1

s+ 1
− 2

s+ 10
=

−s+ 8

(s+ 1)(s+ 10)

(a) Inverse response [5.6.1]

For a stable plant with nz RHP-zeros, it may be

proven that the output in response to a step change

in the input will cross zero (its original value) nz

times, that is, we have inverse response behaviour.
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(b) Frequency response: bandwidth limitation

[5.7.3]
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(a) Real RHP-zero
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(b) Complex pair of RHP-zeros, z = x ± jy

Figure 22: “Ideal” sensitivity functions for plants with

RHP-zeros
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For a single real RHP-zero the “ideal”, i.e. ISE

optimal, sensitivity function is

S = 1 − T =
2s

s+ z
(3.34)

From Figure 22(a):

ωB ≈ ωc <
z

2
(3.35)
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3.8 * Non-causal controllers [5.7.4]

Perfect control can be achieved for a plant with a

time delay or RHP-zero if we use a non-causal

controller, i.e. a controller which uses information

about the future. (relevant for servo problems, e.g.

in robotics and for batch processing.)

G(s) =
−s+ z

s+ z
; z > 0 (3.36)

r(t) =





0 t < 0

1 t ≥ 0

Stable non-causal controller generates the input

u(t) =





2ezt t < 0

1 t ≥ 0

(See (Figure 23))
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Figure 23: Feedforward control of plant with RHP-

zero
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3.9 Limitations imposed by input

constraints [5.11]

The input required to achieve perfect control (e = 0)

is

u = G−1r −G−1Gdd (3.37)

Disturbance rejection. r = 0, |d(ω)| = 1;

|u(ω)| < 1 implies

|G−1(jω)Gd(jω)| < 1 ∀ω (3.38)

Command tracking. d = 0, |r(ω)| = R∀ω < ωr

|u(ω)| < 1 implies:

|G−1(jω)R| < 1 ∀ω ≤ ωr (3.39)

For acceptable control (namely |e(jω)| < 1)

requirements change to:

|G| > |Gd| − 1 at frequencies where |Gd| > 1

(3.40)

|G| > |R| − 1 < 1 ∀ω ≤ ωr (3.41)
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3.10 Summary: Controllability

analysis with feedback control

[5.13]

c c q- - - - ?

?

-

�

6
r K G

Gd

Gm

d

y+
+

+
-

Figure 24: Feedback control system

y = G(s)u+Gd(s)d; ym = Gm(s)y (3.42)

Gm(0) = 1 (perfect steady-state measurement);

d, u, y and r are assumed to be scaled;

ωc = gain crossover frequency (frequency where

|L(jω)| crosses 1 from above);

ωd = frequency where |Gd(jωd)| first crosses 1 from

above.
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The following rules apply:

Rule 1. Speed of response to reject

disturbances. We require ωc > ωd. More

specifically, |S(jω)| ≤ |1/Gd(jω)| ∀ω.

Rule 2. Speed of response to track reference

changes. We require |S(jω)| ≤ 1/R up to the

frequency ωr where tracking is required.

Rule 3. Input constraints arising from

disturbances. For acceptable control (|e| < 1)

we require |G(jω)| > |Gd(jω)| − 1 at frequencies

where |Gd(jω)| > 1.

Rule 4. Input constraints arising from

setpoints. We require |G(jω)| > R− 1 up to

the frequency ωr where tracking is required. (See

(3.41)).
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Rule 5. Time delay θ in G(s)Gm(s). We

approximately require ωc < 1/θ. (See (3.33)).

Rule 6. Tight control at low frequencies with

a RHP-zero z in G(s)Gm(s). For a real

RHP-zero we require ωc < z/2. (See (3.35)).

Rule 7. Phase lag constraint. We require in

most practical cases (e.g. with PID control):

ωc < ωu. Here the ultimate frequency ωu is

where 6 GGm(jωu) = −180◦.

Rule 8. Real open-loop unstable pole in G(s)

at s = p. We need high feedback gains to

stabilize the system and require ωc > 2p.

In addition, for unstable plants we need

|G| > |Gd| up to the frequency p (which may be

larger than ωd where |Gd| = 1|). Otherwise, the

input may saturate when there are disturbances,

and the plant cannot be stabilized.
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3.11 Applications of controllability

analysis [5.15]

3.11.1 First-order delay process [5.15.1]

Problem statement.

G(s) = k
e−θs

1 + τs
; Gd(s) = kd

e−θds

1 + τds
; |kd| > 1

(3.43)

Also: measurement delays θm, θmd

Specification: |e| < 1 for |u| < 1, |d| < 1.

i) feedback control only

ii) feedforward control only

Give quantitative relationships between the

parameters which should be satisfied to achieve

controllability.

3-31



Solution. For |u| < 1 we must from Rule 3 require

|G(jω)| > |Gd(jω)| ∀ω < ωd. For both feedback and

feedforward

k > kd; k/τ > kd/τd (3.44)

(i) Feedback control. From Rule 1 for |e| < 1 with

disturbances

ωd ≈ kd/τd < ωc (3.45)

On the other hand, from Rule 5 we require for

stability and performance

ωc < 1/θtot (3.46)

where θtot = θ + θm is the total delay around the

loop. (3.45) and (3.46) yield the following

requirement for controllability

Feedback: θ + θm < τd/kd (3.47)

(ii) Feedforward control. For |e| < 1 we need

Feedforward: θ + θmd − θd < τd/kd (3.48)
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3.11.2 Application: Room heating [5.15.2]

C  [J/K]
V

W/K]α[

T  [K]o

Q[W]

T[K]

Figure 25: Room heating process

1. Physical model. Heat input Q, room

temperature T (within ±1K), outdoor

temperature To.

Energy balance:

d

dt
(CV T ) = Q+ α(To − T ) (3.49)

2. Operating point. Heat input Q∗ is 2000W ,

difference between indoor and outdoor

temperatures T ∗ − T ∗
o is 20 K. The steady-state

energy balance yields α∗ = 2000/20 = 100W/K.

We assume CV = 100kJ/K.
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3. Linear model in deviation variables.

δT (t) = T (t) − T ∗;

δQ(t) = Q(t) −Q∗;

δTo(t) = To(t) − T ∗
o

yields

CV
d

dt
δT (t) = δQ(t) + α(δTo(t) − δT (t)) (3.50)

On taking Laplace transforms in (3.50), assuming

δT (t) = 0 at t = 0 and rearranging we get

δT (s) =
1

τs+ 1

(
1

α
δQ(s) + δTo(s)

)
; τ =

CV

α
(3.51)

The time constant for this example is

τ = 100 · 103/100 = 1000s ≈ 17min
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4. Linear model in scaled variables.

Introduce the following scaled variables

y(s) =
δT (s)

δTmax
(3.52)

u(s) =
δQ(s)

δQmax
(3.53)

d(s) =
δTo(s)

δTo,max
(3.54)

Acceptable variations in room temperature T are

±1K, i.e. δTmax = δemax = 1K. The heat input can

vary between 0W and 6000W , since its nominal

value is 2000W we have δQmax = 2000W .

Expected variation in temperature are ±10K, i.e.

δTo,max = 10K.

The model becomes

G(s) =
1

τs+ 1

δQmax

δTmax

1

α
=

20

1000s+ 1
(3.55)

Gd(s) =
1

τs+ 1

δTo,max

δTmax
=

10

1000s+ 1
(3.56)

Measurement delay for temperature (y) be

θm = 100s.
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Problem statement.

1. Is the plant controllable with respect to

disturbances?

2. Is the plant controllable with respect to setpoint

changes of magnitude R = 3 (±3 K) when the

desired response time for setpoint changes is

τr = 1000 s (17 min) ?

Solution.
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Figure 26: Frequency responses for room heating ex-

ample
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1. Disturbances. From Rule 1 feedback control is

necessary up to the frequency ωd = 10/1000 = 0.01

rad/s, where |Gd| crosses 1 in magnitude (ωc > ωd).

This is exactly the same frequency as the upper

bound given by the delay, 1/θ = 0.01 rad/s

(ωc < 1/θ). Therefore the system is barely

controllable for this disturbance. From Rule 3 no

problems with input constraints since |G| > |Gd| at

all frequencies. These conclusions are supported by

the closed-loop simulation in Figure 27(a) using a

PID-controller with Kc = 0.4 (scaled variables),

τI = 200 s and τD = 60 s.

2. Setpoints. The plant is controllable with respect

to the desired setpoint changes.

1. The delay (100 s) is much smaller than the

desired response time of 1000 s

2. |G(jω)| ≥ R = 3 up to about ω1 = 0.007 [rad/s]

which is seven times higher than the required

ωr = 1/τr = 0.001 [rad/s]. This means that input

constraints pose no problem. In fact, we achieve

response times of about 1/ω1 = 150 s without

reaching the input constraints. See Figure 27(b)

for a desired setpoint change 3/(150s+ 1) using

the same PID controller as above.
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Figure 27: PID feedback control of room heating ex-

ample
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3.11.3 * Application: Neutralization process

[5.15.3]

? ?

�
�@
@

-

ACID BASE

qB
cB

qA
cA

V
q

c

Figure 28: Neutralization process with one mixing

tank

Problem statement. Consider process in

Figure 28, where a strong acid with pH= −1 is

neutralized by a strong base (pH=15) in a mixing

tank with volume V= 10m3.

Feedback control to keep the pH in the product

stream (output y) in the range 7 ± 1 (“salt water”)

by manipulating the amount of base, qB (input u) in

spite of variations in the flow of acid, qA (disturbance

d). The delay in the pH-measurement is θm = 10 s.
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1. Controlled output is the excess of acid, c [mol/l],

defined as c = cH+ − cOH− .

2. Objective is to keep |c| ≤ cmax = 10−6 mol/l,

and the plant is

d

dt
(V c) = qAcA + qBcB − qc (3.57)

q∗A = q∗B = 0.005 [ m3/s] resulting in q∗ = 0.01

[m3/s]= 10 [l/s].

3. Scaled variables:

y =
c

10−6
; u =

qB
q∗B

; d =
qA

0.5q∗A
(3.58)

4. Scaled linear model:

Gd(s) =
kd

1 + τhs
; G(s) =

−2kd

1 + τhs
; kd = 2.5·106

(3.59)

where τh = V/q = 1000 s is the residence time

for the liquid in the tank.
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Figure 29: Frequency responses for the neutralization

process with one mixing tank

Controllability analysis.

Figure 29: From Rule 2, input constraints do not

pose a problem since |G| = 2|Gd| at all frequencies.

From Rule 1 we find the frequency up to which

feedback is needed

ωd ≈ kd/τ = 2500 rad/s (3.60)

This requires a response time of 1/2500 = 0.4

milliseconds which is clearly impossible in a process

control application (also: delay of 10 s).
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Figure 30: Neutralization process with two tanks and

one controller

Design change: Multiple tanks.

To improve controllability modify the process ⇒
Perform the neutralization in several steps as

illustrated in Figure 30 for the case of two tanks.

With n equal mixing tanks in series

Gd(s) = kdhn(s); hn(s) =
1

( τh

n s+ 1)n
(3.61)

hn(s) is transfer function of the mixing tanks, and τh

is total residence time, Vtot/q.
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Figure 31: Frequency responses for n tanks in se-

ries with the same total residence time τh; hn(s) =

1/( τh

n s+ 1)n, n = 1, 2, 3, 4

From Rules 1 and 5, we must require

|Gd(jωθ)| ≤ 1 ωθ
∆
= 1/θ (3.62)

where θ is the delay in the feedback loop. Purpose of

mixing tanks hn(s) is to reduce the effect of the

disturbance by a factor kd(= 2.5 · 106) at the frequency

ωθ(= 0.1 [rad/s]), i.e. |hn(jωθ)| ≤ 1/kd. Minimum value

for the total volume for n equal tanks in series

Vtot = qθn
√

(kd)2/n − 1 (3.63)

where q = 0.01 m3/s.
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With θ = 10 s we then find that the following designs

have the same controllability

No. of Total Volume

tanks volume each tank

n Vtot [m3] [m3]

1 250000 250000

2 316 158

3 40.7 13.6

4 15.9 3.98

5 9.51 1.90

6 6.96 1.16

7 5.70 0.81

n = 1 ⇒ Supertanker.

Minimum total volume is 3.662 m3 with 18 tanks of

about 203 liters each

Practical compromise: 3 or 4 tanks.
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Control system design. We have |S| < 1/|Gd| at

the crossover frequency ωB ≈ ωc ≈ ωθ. However,

from Rule 1 we also require that |S| < 1/|Gd|, or

approximately |L| > |Gd|, at frequencies lower than

ωc, (difficult since Gd(s) = kdh(s) is of high order).

This requires |L| to drop steeply with frequency,

which results in a large negative phase for L

Thus, system in Figure 30 with a single feedback

controller will not work. ⇒ install local feedback

control system on each tank (Figure 32.).
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Figure 32: Neutralization process with two tanks and

two controllers.
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⇒plant design change

With n controllers for n tanks the overall closed-loop

response from a disturbance into the first tank to the

pH in the last tank becomes

y = Gd

n∏

i=1

(
1

1 + Li
)d ≈ Gd

L
d, L

∆
=

n∏

i=1

Li (3.64)

where Gd =
∏n

i=1Gi and Li = GiKi, and the

approximation applies at low frequencies where

feedback is effective.

Design each loop Li(s) with a slope of −1 and

bandwidth ωc ≈ ωθ, such that the overall loop

transfer function L has slope −n and achieves

|L| > |Gd| at all frequencies lower than ωd (the size of

the tanks are selected as before such that ωd ≈ ωθ).
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4 UNCERTAINTY AND

ROBUSTNESS FOR SISO

SYSTEMS [7]

4.1 Introduction to robustness [7.1]

A control system is robust if it is insensitive to

differences between the actual system and the model

of the system which was used to design the

controller. These differences are referred to as

model/plant mismatch or simply model uncertainty.
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Our approach is:

1. Determine the uncertainty set: find a

mathematical representation of the model

uncertainty (“clarify what we know about what

we don’t know”).

2. Check Robust stability (RS): determine whether

the system remains stable for all plants in the

uncertainty set.

3. Check Robust performance (RP): if RS is

satisfied, determine whether the performance

specifications are met for all plants in the

uncertainty set.

Notation:

Π – a set of possible perturbed plant models

(“uncertainty set”).

G(s) ∈ Π – nominal plant model (with no

uncertainty).

Gp(s) ∈ Π and G′(s) ∈ Π – particular perturbed

plant models.
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4.2 Classes of uncertainty [7.2]

1. Parametric uncertainty. Here the structure of

the model (including the order) is known, but

some of the parameters are uncertain.

2. Neglected and unmodelled dynamics

uncertainty. Here the model is in error because

of missing dynamics, usually at high frequencies,

either through deliberate neglect or because of a

lack of understanding of the physical process.

Any model of a real system will contain this

source of uncertainty.

3. Lumped uncertainty. Here the uncertainty

description represents one or several sources of

parametric and/or unmodelled dynamics

uncertainty combined into a single lumped

perturbation of a chosen structure.

cq

- -

? - --

wI ∆I

G

Gp

+
+

Figure 33: Plant with multiplicative uncertainty
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Multiplicative uncertainty of the form

ΠI : Gp(s) = G(s)(1 + wI(s)∆I(s));

where

|∆I(jω)| ≤ 1 ∀ω︸ ︷︷ ︸
‖∆I‖∞≤1

(4.1)

Here ∆I(s) is any stable transfer function which at

each frequency is less than or equal to one in

magnitude. Some allowable ∆I(s)’s

s− z

s+ z
,

1

τs+ 1
,

1

(5s+ 1)3
,

0.1

s2 + 0.1s+ 1

Inverse multiplicative uncertainty

ΠiI : Gp(s) = G(s)(1 + wiI(s)∆iI(s))
−1;

|∆iI(jω)| ≤ 1 ∀ω (4.2)
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4.3 Representing uncertainty in the

frequency domain [7.4]

4.3.1 Uncertainty regions [7.4.1]

Example:

Gp(s) =
k

τs+ 1
e−θs, 2 ≤ k, θ, τ ≤ 3 (4.3)

ω

ωω

ω

ω

ω

ω= 0.01

= 0.05

= 0.2

= 0.5

= 1 = 2

= 7

Im

Re

Figure 34: Uncertainty regions of the Nyquist plot at

given frequencies. Data from (4.3)
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+

−1

−2

−3
1 2

Figure 35: Disc approximation (solid line) of the origi-

nal uncertainty region (dashed line). Plot corresponds

to ω = 0.2 in Figure 34
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4.3.2 Representing uncertainty regions by

complex perturbations [7.4.2]

+

+

+

  

Im

Re

|wA(jω)|
G(jω)

�

Figure 36: Disc-shaped uncertainty regions generated

by complex additive uncertainty, Gp = G+ wA∆
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We use disc-shaped regions to represent uncertainty

regions (Figures 35 and 36) generated by

ΠA : Gp(s) = G(s)+wA(s)∆A(s); |∆A(jω)| ≤ 1 ∀ω
(4.4)

where ∆A(s) is any stable transfer function which at

each frequency is no larger than one in magnitude.

Im

Re

|wA|

G (centre)

Figure 37: The set of possible plants includes the ori-

gin at frequencies where |wA(jω)| ≥ |G(jω)|, or equiv-

alently |wI(jω)| ≥ 1

4-8



Alternative: multiplicative uncertainty description as

in (4.1),

ΠI : Gp(s) = G(s)(1+wI(s)∆I(s)); |∆I(jω)| ≤ 1, ∀ω
(4.5)

(4.4) and (4.5) are equivalent if at each frequency

|wI(jω)| = |wA(jω)|/|G(jω)| (4.6)

4.3.3 Obtaining the weight for complex

uncertainty [7.4.3]

1. Select a nominal model G(s).

2. Additive uncertainty. At each frequency find the

smallest radius lA(ω) which includes all the

possible plants Π:

|wA(jw)| ≥ lA(ω) = max
GP ∈Π

|Gp(jω) −G(jω)|
(4.7)

3. Multiplicative (relative) uncertainty. (preferred

uncertainty form)

|wI(jw)| ≥ lI(ω) = max
Gp∈Π

∣∣∣∣
Gp(jω) −G(jω)

G(jω)

∣∣∣∣
(4.8)
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Example 1 Multiplicative weight for parametric

uncertainty. Consider again the set of plants with

parametric uncertainty given in (4.3)

Π : Gp(s) =
k

τs + 1
e−θs, 2 ≤ k, θ, τ ≤ 3 (4.9)

We want to represent this set using multiplicative

uncertainty with a rational weight wI(s). We select a

delay-free nominal model

G(s) =
k̄

τ̄ s + 1
=

2.5

2.5s + 1
(4.10)

10
−2

10
−1

10
0

10
1

10
−1

10
0

M
ag

n
it

u
d
e

Frequency

Figure 38: Relative errors for 27 combinations of k, τ

and θ with delay-free nominal plant (dotted lines).

Solid line: First-order weight |wI1| in (4.11). Dashed

line: Third-order weight |wI | in (4.12)
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wI1(s) =
Ts+ 0.2

(T/2.5)s+ 1
, T = 4 (4.11)

wI(s) = ωI1(s)
s2 + 1.6s+ 1

s2 + 1.4s+ 1
(4.12)
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4.4 SISO robust stability [7.5]

4.4.1 RS with multiplicative uncertainty

c cp p- -

- -

? - -
6-

K

wI ∆I

G

Gp

+
+

Figure 39: Feedback system with multiplicative un-

certainty

Graphical derivation of RS-condition.

In Figure 40 | − 1 − L| = |1 + L| is the distance from

the point −1 to the centre of the disc representing

Lp, |wIL| is the radius of the disc. Encirclements are

avoided if none of the discs cover −1, and we get

from Figure 40

RS ⇔ |wIL| < |1 + L|, ∀ω (4.13)

⇔
∣∣∣∣
wIL

1 + L

∣∣∣∣ < 1, ∀ω ⇔ |wIT | < 1, ∀ω(4.14)

def⇔ ‖wIT‖∞ < 1 (4.15)

RS ⇔ |T | < 1/|wI |, ∀ω (4.16)
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|1 + L(jω)|

|wIL|

−1

0

L(jω)

Re

Im

Figure 40: Nyquist plot of Lp for robust stability
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Example 2 Consider the following nominal plant and

PI-controller

G(s) =
3(−2s + 1)

(5s + 1)(10s + 1)
K(s) = Kc

12.7s + 1

12.7s

Kc = Kc1 = 1.13 (Ziegler-Nichols). One “extreme”

uncertain plant is G′(s) = 4(−3s + 1)/(4s + 1)2. For this

plant the relative error |(G′ − G)/G| is 0.33 at low

frequencies; it is 1 at about 0.1 rad/s, and it is 5.25 at

high frequencies ⇒ uncertainty weight

wI(s) =
10s + 0.33

(10/5.25)s + 1

which closely matches this relative error.

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

T1 (not RS)

T2 (RS)

1/WI

Frequency

M
ag

n
it

u
d
e

Figure 41: Checking robust stability with multiplica-

tive uncertainty
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By trial and error we find that reducing the gain to

Kc2 = 0.31 just achieves RS as seen from T2 in

Fig. 41.

Remark:

The procedure is conservative. For Kc2 the system

with the “extreme” plant is not at the limit of

instability; we can increase the gain to kc2 = 0.58

before we get instability.
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�

-

∆

M

y∆u∆

Figure 42: M∆-structure

M∆-structure derivation of RS-condition. The

stability of the system in Figure 39 is equivalent to

stability of the system in Figure 42, where ∆ = ∆I

and

M = wIK(1 +GK)−1G = wIT (4.17)

The Nyquist stability condition then determines RS

if and only if the “loop transfer function” M∆ does

not encircle −1 for all ∆. Thus,

RS ⇔ |1 +M∆| > 0, ∀ω, ∀|∆| ≤ 1 (4.18)

RS ⇔ 1 − |M(jω)| > 0, ∀ω (4.19)

⇔ |M(jω)| < 1, ∀ω (4.20)
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4.4.2 RS with inverse multiplicative

uncertainty [7.5.3]

cc p p -- - ?

� �

-
6- +

+

wiI ∆iI
u∆ y∆

K G

Figure 43: Feedback system with inverse multiplica-

tive uncertainty

RS ⇔ |S| < 1/|wiI |, ∀ω (4.21)
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4.5 SISO robust performance [7.6]

4.5.1 SISO nominal performance in the

Nyquist plot [7.6.1]

NP ⇔ |wPS| < 1 ∀ω ⇔ |wP | < |1+L| ∀ω
(4.22)

See Figure:

|1 + L(jω)|

|wP (jω)|

−1

0

L(jω)

Re

Im

Figure 44: Nyquist plot illustration of nominal perfor-

mance condition |wP | < |1 + L|
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4.5.2 Robust performance [7.6.2]

b b bp p- -

- -

?- -- -?
6-

wI ∆I

G
+

+K

d

+
+

wP
ŷ

Figure 45: Diagram for robust performance with mul-

tiplicative uncertainty

For robust performance we require the performance

condition (4.22) to be satisfied for all possible plants,

that is, including the worst-case uncertainty.

RP
def⇔ |wPSp| < 1 ∀Sp, ∀ω (4.23)

⇔ |wP | < |1 + Lp| ∀Lp, ∀ω (4.24)

This corresponds to requiring |ŷ/d| < 1 ∀∆I in

Figure 45, where we consider multiplicative

uncertainty, and the set of possible loop transfer

functions is

Lp = GpK = L(1 + wI∆I) = L+ wIL∆I (4.25)
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Graphical derivation of RP-condition.

(Figure 46)

RP ⇔ |wP | + |wIL| < |1 + L|, ∀ω (4.26)

⇔ |wP (1 + L)−1| + |wIL(1 + L)−1| < 1, ∀ω(4.27)

RP ⇔ maxω (|wPS| + |wIT |) < 1 (4.28)

|1 + L(jω)|

|wP (jω)|

−1

0

L(jω)

|wIL|

Re

Im

Figure 46: Nyquist plot illustration of robust perfor-

mance condition |wP | < |1 + Lp|
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4.5.3 The relationship between NP, RS and

RP [7.6.3]

NP ⇔ |wPS| < 1, ∀ω (4.29)

RS ⇔ |wIT | < 1, ∀ω (4.30)

RP ⇔ |wPS| + |wIT | < 1, ∀ω (4.31)

• A prerequisite for RP is that we satisfy NP and

RS. This applies in general, both for SISO and

MIMO systems and for any uncertainty.

• For SISO systems, if we satisfy both RS and NP,

then we have at each frequency

|wPS| + |wIT | ≤ 2 max{|wPS|, |wIT |} < 2

(4.32)

Therefore, within a factor of at most 2, we will

automatically get RP when NP and RS are

satisfied.

•
|wPS| + |wIT | ≥ min{|wP |, |wI |} (4.33)

We cannot have both |wP | > 1 (i.e. good

performance) and |wI | > 1 (i.e. more than 100%

uncertainty) at the same frequency.
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5 ELEMENTS OF LINEAR

SYSTEM THEORY [4]

5.1 System descriptions [4.1]

5.1.1 State-space representation [4.1.1]

ẋ(t) = Ax(t) +Bu(t) (5.1)

y(t) = Cx(t) +Du(t) (5.2)

or:

[
ẋ

y

]
=

[
A B

C D

] [
x

u

]
(5.3)

or:

G
s
=


 A B

C D


 (5.4)

(5.1)–(5.3) is not a unique description of the

input-output behaviour of a linear system.

5-1



Define new states x̃ = Sx, i.e. x = S−1x̃.

Equivalent state-space realization (i.e. with same

input-output behaviour): Similarity Transformation

Ã = SAS−1, B̃ = SB, C̃ = CS−1, D̃ = D

(5.5)

Dynamical system response x(t) for t ≥ t0

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ (5.6)

For a system with disturbances d and measurement

noise n:

ẋ = Ax+Bu+Bdd (5.7)

y = Cx+Du+Ddd+ n (5.8)

Let Ã = SAS−1 = Λ = diag{λi} be diagonal then

eAt = S−1{diag(eλit)}S

where eλit is the mode associated with eigenvalue

λi(A).
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5.1.2 Impulse response [4.1.2]

The impulse response matrix is

g(t) =





0 t < 0

CeAtB +Dδ(t) t ≥ 0
(5.9)

With initial state x(0) = 0, the dynamic response to

an arbitrary input u(t) is

y(t) = g(t) ∗ u(t) =

∫ t

0

g(t− τ)u(τ)dτ (5.10)

where ∗ denotes the convolution operator.
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5.1.3 Transfer function representation –

Laplace transforms [4.1.3]

Laplace transforms of (5.1) and (5.3) become for

x(t = 0) = 0

sx(s) = Ax(s) +Bu(s) ⇒

⇒ x(s) = (sI −A)−1Bu(s) (5.11)

y(s) = Cx(s) +Du(s) ⇒

⇒ y(s) = (C(sI −A)−1B +D)︸ ︷︷ ︸
G(s)

u(s)
(5.12)

where G(s) is the transfer function matrix.

Equivalently,

G(s) =
1

det(sI −A)
[Cadj(sI −A)B +D det(sI −A)]

(5.13)

From Appendix A.2.1,

det(sI −A) =
n∏

i=1

λi(sI −A) =
n∏

i=1

(s−λi(A)) (5.14)
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5.1.4 *More on state-space realizations

[4.1.6]

Inverse system. For a square G(s) we have

G−1 s
=


 A−BD−1C BD−1

−D−1C D−1


 (5.15)

If D = 0, set D = εI. Be careful not to introduce

RHP zeros with this modification. Improper

systems cannot be represented in state space

form.

Realization of SISO transfer functions.

G(s) =
βn−1s

n−1 + · · · + β1s+ β0

sn + an−1sn−1 + · · · + a1s+ a0
(5.16)

y(s) = G(s)u(s) corresponds to

yn(t) + an−1y
n−1(t) + · · · + a1y

′(t) + a0y(t) =

βn−1u
n−1(t) + · · · + β1u

′(t) + β0u(t)

(5.17)

where yn−1(t) and un−1(t) represent (n− 1)’th order

derivatives, etc.
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Write this as

yn = (−an−1y
n−1 + βn−1u

n−1) + · · ·

· · · + (−a1y
′ + β1u

′) + (−a0y + β0u)︸ ︷︷ ︸
x′

n︸ ︷︷ ︸
x2

n−1

With the notation ẋ ≡ x′(t) = dx/dt, we get

ẋn = −a0x1 + β0u

ẋn−1 = −a1x1 + xn + β1u

...

ẋ1 = −an−1x1 + x2 + βn−1u
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corresponding to the realization (observer canonical

form)

A =




−an−1 1 0 · · · 0 0

−an−2 0 1 0 0
...

...
. . .

...

−a2 0 0 1 0

−a1 0 0 · · · 0 1

−a0 0 0 · · · 0 0




, B =




βn−1

βn−2

...

β2

β1

β0




(5.18)

C = [ 1 0 0 · · · 0 0 ]

Example: To obtain the state-space realization of

G(s) = s−a
s+a , first bring out a constant term by

division to get

G(s) =
s− a

s+ a
=

−2a

s+ a
+ 1

Thus D = 1. Then (5.18) yields A = −a,B = −2a

and C = 1.
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Example: Ideal PID-controller

K(s) = Kc(1+
1

τIs
+ τDs) = Kc

τIτDs2 + τIs + 1

τIs
(5.19)

⇒ Improper ⇒ no realization

Proper PID controller

K(s) = Kc(1 +
1

τIs
+

τDs

1 + ǫτDs
), ǫ ≤ 0.1 (5.20)

Four common realizations

D = Kc
1 + ǫ

ǫ
(5.21)

1. Diagonalized form (Jordan canonical form)

A =

[
0 0

0 − 1
ǫτD

]
, B =

[
Kc/τI

Kc/(ǫ2τD)

]
, C = [ 1 −1 ]

(5.22)

2. Observability canonical form

A =

[
0 1

0 − 1
ǫτD

]
, B =

[
γ1

γ2

]
, C = [ 1 0 ] (5.23)

where γ1 = Kc(
1

τI
−

1

ǫ2τD
), γ2 =

Kc

ǫ3τ2
D

(5.24)
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3. Controllability canonical form

A =

[
0 0

1 − 1
ǫτD

]
, B =

[
1

0

]
, C = [ γ1 γ2 ] (5.25)

4. Observer canonical form in (5.18)

A =

[
− 1

ǫτD
1

0 0

]
, B =

[
β1

β0

]
, C = [ 1 0 ] (5.26)

where β0 =
Kc

ǫτIτD
, β1 = Kc

ǫ2τD − τI

ǫ2τIτD
(5.27)

Note: Transfer function offers more immediate insight.
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5.2 State controllability and state

observability [4.2]

Definition

State controllability. The dynamical system

ẋ = Ax+Bu, or equivalently the pair (A,B), is said

to be state controllable if, for any initial state

x(0) = x0, any time t1 > 0 and any final state x1,

there exists an input u(t) such that x(t1) = x1.

Otherwise the system is said to be state

uncontrollable.

1. The pair: (A,B) is state controllable if and only

if the controllability matrix

C ∆
= [B AB A2B · · · An−1B ] (5.28)

has rank n (full row rank). Here n is the number

of states.
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2. From (5.6) one can verify that for x(t1) = x1

u(t) = −BT eAT (t1−t)Wc(t1)
−1(eAt1x0 − x1)

(5.29)

where Wc(t) is the Gramian matrix at time t,

Wc(t)
∆
=

∫ t

0

eAτBBT eAT τdτ (5.30)

Thus (A,B) is state controllable if and only if

Wc(t) has full rank (and thus is positive definite)

for any t > 0. For a stable system (A is stable)

check only P
∆
= Wc(∞),

P
∆
=

∫ ∞

0

eAτBBT eAT τdτ (5.31)

P may also be obtained as the solution to the

Lyapunov equation

AP + PAT = −BBT (5.32)

3. Let pi be the i’th eigenvalue of A and qi the

corresponding left eigenvector, qH
i A = piq

H
i .

Then the system is state controllable if and only

if qH
i B 6= 0, ∀i.
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Example:

A =
[
−2 −2

0 −4

]
, B =

[
1

1

]
, C = [ 1 0 ], D = 0

The transfer function

G(s) = C(sI −A)−1B =
1

s+ 4

has only one state.

1. The controllability matrix has two linearly

dependent rows:

C = [B AB ] =
[

1 −4

1 −4

]
.

2. The controllability Gramian is singular

P =
[

0.125 0.125

0.125 0.125

]

3. p1 = −2 and p2 = −4, q1 = [ 0.707 −0.707 ]T and

q2 = [ 0 1 ]T .

qH
1 B = 0, qH

2 B = 1

the first mode (eigenvalue) is not state

controllable.
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Controllability is a system-theoretic concept

important for computation and realizations; but no

practical insight:

1. It says nothing about how the states behave, e.g.

it does not imply that one can hold (as t→ ∞)

the states at a given value.

2. Required inputs may be very large with sudden

changes.

3. Some states may be of no practical importance.

4. Existence result which provides no “degree of

controllability”.
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Definition State observability. The dynamical

system ẋ = Ax+Bu, y = Cx+Du (or the pair

(A,C)) is said to be state observable if, for any time

t1 > 0, the initial state x(0) = x0 can be determined

from the time history of the input u(t) and the

output y(t) in the interval [0, t1]. Otherwise the

system, or (A,C), is said to be state unobservable.

1. (A,C) is state observable if and only if the

observability matrix

O ∆
=




C

CA
...

CAn−1


 (5.33)

has rank n (full column rank).

2. For a stable system the observability Gramian

Q
∆
=

∫ ∞

0

eAT τCTCeAτdτ (5.34)

must have full rank n (and thus be positive

definite). Q can also be found as the solution to

the following Lyapunov equation

ATQ+QA = −CTC (5.35)
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3. Let pi be the i’th eigenvalue of A and ti the

corresponding eigenvector, Ati = piti. Then the

system is state observable if and only if

Cti 6= 0, ∀i.

Observability is a system theoretical concept but

may not give practical insight.
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Kalman’s decomposition

By performing an appropriate coordinate

transformation, any system can be reduced to a

decomposition indicating the state that are or aren’t

controllable and/or observable.



ẋ1

ẋ2

ẋ3

ẋ4


 =




A11 A12 0 0

0 A22 0 0

A31 A32 A33 A34

0 A42 0 A44







x1

x2

x3

x4


+




B1

0

B3

0


u

y = [C1 C2 0 0 ]




x1

x2

x3

x4




s1

s3

s2

s4

x1

x3

x2

x4

u y
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5.3 Stability [4.3]

Definition

A system is (internally) stable if none of its

components contains hidden unstable modes and the

injection of bounded external signals at any place in

the system results in bounded output signals

measured anywhere in the system. “internal”, i.e. all

the states must be stable not only inputs/outputs.

Definition

State stabilizable, state detectable and hidden

unstable modes. A system is state stabilizable if

all unstable modes are state controllable. A system

is state detectable if all unstable modes are state

observable. A system with unstabilizable or

undetectable modes is said to contain hidden

unstable modes.
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5.4 Poles [4.4]

Definition

Poles. The poles pi of a system with state-space

description (5.1)–(5.2) are the eigenvalues

λi(A), i = 1, . . . , n of the matrix A. The pole or

characteristic polynomial φ(s) is defined as

φ(s)
∆
= det(sI −A) =

∏n
i=1(s− pi). Thus the poles

are the roots of the characteristic equation

φ(s)
∆
= det(sI −A) = 0 (5.36)

5.4.1 Poles and stability [4.4.1]

Theorem 6 A linear dynamic system ẋ = Ax+Bu

is stable if and only if all the poles are in the open

left-half plane (LHP), that is, Re{λi(A)} < 0, ∀i. A

matrix A with such a property is said to be “stable”

or Hurwitz.

5.4.2 Poles from transfer functions [4.4.3]

Theorem 7 MacFarlane and Karcanias The

pole polynomial φ(s) corresponding to a minimal

realization of a system with transfer function G(s), is

the least common denominator of all

non-identically-zero minors of all orders of G(s).
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Example:

G(s) =
1

1.25(s+ 1)(s+ 2)

[
s− 1 s

−6 s− 2

]
(5.37)

The minors of order 1 are the four elements all have

(s+ 1)(s+ 2) in the denominator.

Minor of order 2

detG(s) =
(s− 1)(s− 2) + 6s

1.252(s+ 1)2(s+ 2)2
=

1

1.252(s+ 1)(s+ 2)
(5.38)

Least common denominator of all the minors:

φ(s) = (s+ 1)(s+ 2) (5.39)

Minimal realization has two poles: s = −1; s = −2.

Example: Consider the 2× 3 system, with 3 inputs and

2 outputs,

G(s) =
1

(s + 1)(s + 2)(s − 1)
∗

∗

[
(s − 1)(s + 2) 0 (s − 1)2

−(s + 1)(s + 2) (s − 1)(s + 1) (s − 1)(s + 1)

]

(5.40)

Minors of order 1:

1

s + 1
,

s − 1

(s + 1)(s + 2)
,

−1

s − 1
,

1

s + 2
,

1

s + 2
(5.41)
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Minor of order 2 corresponding to the deletion of column

2:

M2 =
(s − 1)(s + 2)(s − 1)(s + 1) + (s + 1)(s + 2)(s − 1)2

((s + 1)(s + 2)(s − 1))2
=

=
2

(s + 1)(s + 2)
(5.42)

The other two minors of order two are

M1 =
−(s − 1)

(s + 1)(s + 2)2
, M3 =

1

(s + 1)(s + 2)
(5.43)

Least common denominator:

φ(s) = (s + 1)(s + 2)2(s − 1) (5.44)

The system therefore has four poles: s = −1, s = 1 and

two at s = −2.

Note MIMO-poles are essentially the poles of the

elements. A procedure is needed to determine

multiplicity.
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5.5 Zeros [4.5]

• SISO system: zeros zi are the solutions to

G(zi) = 0.

In general, zeros are values of s at which G(s) loses

rank.

Example

[
Y =

s+ 2

s2 + 7s+ 12
U

]

Compute the response when

u(t) = e−2t, y(0) = 0, ẏ(0) = −1

L{u(t)} =
1

s+ 2

s2Y − sy(0) − ẏ(0) + 7sY − 7y(0) + 12Y = 1

s2Y + 7sY + 12Y + 1 = 1

⇒ Y (s) = 0

Assumption: g(s) has a zero z, g(z) = 0.

Then for input u(t) = u0e
zt the output is y(t) ≡

0, t > 0. (with appropriate initial conditions)
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5.5.1 Zeros from state-space realizations

[4.5.1]

Setup:

u = uze
zt, x(t) = xze

zt, y(t) ≡ 0

ẋ = zeztxz = Aeztxz +Buze
zt

[
zI −A −B

]

 xz

uz


 = 0

and

y = Cx+Du

= Ceztxz +Duze
zt ≡ 0

Combined

 zI − A −B

C D




 xz

uz


 = 0

The zeros are the solutions of

det


 zI −A −B

C D


 = 0

MATLAB

zero = tzero(A,B,C,D)
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5.5.2 Zeros from transfer functions [4.5.2]

Definition Zeros. zi is a zero of G(s) if the rank

of G(zi) is less than the normal rank of G(s). The

zero polynomial is defined as z(s) =
∏nz

i=1(s− zi)

where nz is the number of finite zeros of G(s).

Theorem The zero polynomial z(s), corresponding

to a minimal realization of the system, is the greatest

common divisor of all the numerators of all order-r

minors of G(s), where r is the normal rank of G(s),

provided that these minors have been adjusted in

such a way as to have the pole polynomial φ(s) as

their denominators.

Example

G(s) =
1

s + 2

[
s − 1 4

4.5 2(s − 1)

]
(5.45)

The normal rank of G(s) is 2.

Minor of order 2: det G(s) = 2(s−1)2−18

(s+2)2
= 2 s−4

s+2
.

Pole polynomial: φ(s) = s + 2.

Zero polynomial: z(s) = s − 4.

Note Multivariable zeros have no relationship with

the zeros of the transfer function elements.
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Example

G(s) =
1

1.25(s+ 1)(s+ 2)

[
s− 1 s

−6 s− 2

]
(5.46)

Minor of order 2 is the determinant

detG(s) =
(s− 1)(s− 2) + 6s

1.252(s+ 1)2(s+ 2)2
=

1

1.252(s+ 1)(s+ 2)
(5.47)

φ(s) = 1.252(s+ 1)(s+ 2)

Zero polynomial = numerator of (5.47)

⇒ no multivariable zeros.

Example

G(s) =
[ s− 1

s+ 1

s− 2

s+ 2

]
(5.48)

• The normal rank of G(s) is 1

• no value of s for which G(s) = 0

⇒ G(s) has no zeros.
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5.6 Some important remarks on poles

and zeros [4.6]

5.6.1 *Directions of poles and zeros [4.4.4 +

4.5.3]

Let G(s) = C(sI −A)−1B +D.

Zero directions. Let G(s) have a zero at s = z.

Then G(s) loses rank at s = z, and there exist

non-zero vectors uz and yz such that

G(z)uz = 0, yH
z G(z) = 0 (5.49)

uz = input zero direction

yz = output zero direction

yz gives information about which output (or

combination of outputs) may be difficult to control.

SVD:

G(z) = UΣV H

uz = last column in V

yz = last column of U

(corresponding to the zero singular value of G(z))

Pole directions. Let G(s) have a pole at s = p.

Then G(p) is infinite, and we may write

G(p)up = ∞, yH
p G(p) = ∞ (5.50)
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up = input pole direction

yp = output pole direction.
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Example

Plant in (5.45) has a RHP-zero at z = 4 and a

LHP-pole at p = −2.

G(z) = G(4) =
1

6

[
3 4

4.5 6

]

=
1

6

[
0.55 −0.83

0.83 0.55

] [
9.01 0

0 0

] [
0.6 −0.8

0.8 0.6

]H

uz =
[
−0.80

0.60

]
yz =

[
−0.83

0.55

]
(5.51)

For pole directions consider

G(p+ ǫ) = G(−2 + ǫ) =
1

ǫ2

[−3 + ǫ 4

4.5 2(−3 + ǫ)

]

(5.52)

The SVD as ǫ→ 0 yields

G(−2+ǫ) =
1

ǫ2

[−0.55 −0.83

0.83 −0.55

] [
9.01 0

0 0

] [
0.6 −0.8

−0.8 −0.6

]H

up =
[

0.60

−0.80

]
yp =

[
−0.55

0.83

]
(5.53)

Note Locations of poles and zeros are independent

of input and output scalings, their directions are not.
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5.6.2 Remarks on poles and zeros [4.6]

1. For square systems the poles and zeros of G(s)

are “essentially” the poles and zeros of detG(s).

This fails when zero and pole in different parts of

the system cancel when forming detG(s).

G(s) =

[
(s+ 2)/(s+ 1) 0

0 (s+ 1)/(s+ 2)

]

(5.54)

detG(s) = 1, although the system obviously has

poles at −1 and −2 and (multivariable) zeros at

−1 and −2.

2. System (5.54) has poles and zeros at the same

locations (at −1 and −2). Their directions are

different. They do not cancel or otherwise

interact.

3. There are no zeros if the outputs contain direct

information about all the states; that is, if from y

we can directly obtain x (e.g. C = I and D = 0);

4. Zeros usually appear when there are fewer inputs

or outputs than states
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5. Moving poles. (a) feedback control

(G(I +KG)−1) moves the poles, (b) series

compensation (GK, feedforward control) can

cancel poles in G by placing zeros in K (but not

move them), and (c) parallel compensation

(G+K) cannot affect the poles in G.

6. Moving zeros. (a) With feedback, the zeros of

G(I +KG)−1 are the zeros of G plus the poles of

K. , i.e. the zeros are unaffected by feedback.

(b) Series compensation can counter the effect of

zeros in G by placing poles in K to cancel them,

but cancellations are not possible for RHP-zeros

due to internal stability (see Section 5.7). (c)

The only way to move zeros is by parallel

compensation, y = (G+K)u, which, if y is a

physical output, can only be accomplished by

adding an extra input (actuator).
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Example

Effect of feedback on poles and zeros.

SISO plant G(s) = z(s)/φ(s) and K(s) = k.

T (s) =
L(s)

1 + L(s)
=

kG(s)

1 + kG(s)
=

kz(s)

φ(s) + kz(s)
= k

zcl(s)

φcl(s)
(5.55)

Note the following:

1. Zero polynomial: zcl(s) = z(s)

⇒ zero locations are unchanged.

2. Pole locations are changed by feedback.

For example,

k → 0 ⇒ φcl(s) → φ(s) (5.56)

k → ∞ ⇒ φcl(s) → z(s).z̃(s) (5.57)

where roots of z̃(s) move with k to infinity (complex

pattern)

(cf. root locus)

5-30



5.7 Internal stability of feedback

systems [4.7]

Note: Checking the poles of S or T is not sufficient

to determine internal stability

Example (Figure 47). In forming L = GK we cancel

the term (s − 1) (a RHP pole-zero cancellation) to obtain

L = GK =
k

s
, and S = (I + L)−1 =

s

s + k
(5.58)

S(s) is stable, i.e. transfer function from dy to y is stable.

However, the transfer function from dy to u is unstable:

u = −K(I + GK)−1dy = −
k(s + 1)

(s − 1)(s + k)
dy (5.59)

ddd q
6

-?? ----- +

+

+

+
+

-

yu

dydu
G

s−1
s+1

k(s+1)
s(s−1)

K

r

Figure 47: Internally unstable system
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d

dq

q
6
� �

?

?--
6

+

+

+

+

y

dy u

du

G

−K

Figure 48: Block diagram used to check internal stability

of feedback system

For internal stability consider

u = (I +KG)−1du −K(I +GK)−1dy (5.60)

y = G(I +KG)−1du + (I +GK)−1dy (5.61)

Theorem 4.4 The feedback system in Figure 48 is

internally stable if and only if all four closed-loop

transfer matrices in (5.60) and (5.61) are stable.

Theorem 4.5 Assume there are no RHP pole-zero

cancellations between G(s) and K(s). Then the feedback

system in Figure 48 is internally stable if and only if one

of the four closed-loop transfer function matrices in

(5.60) and (5.61) is stable.
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Implications of the internal stability

requirement

1. If G(s) has a RHP-zero at z, then L = GK,

T = GK(I +GK)−1, SG = (I +GK)−1G,

LI = KG and TI = KG(I +KG)−1 will each

have a RHP-zero at z.

2. If G(s) has a RHP-pole at p, then L = GK and

LI = KG also have a RHP-pole at p, while

S = (I +GK)−1, KS = K(I +GK)−1 and

SI = (I +KG)−1 have a RHP-zero at p.

Exercise: Interpolation constraints. Prove for

SISO feedback systems when the plant G(s) has a

RHP-zero z or a RHP-pole p:

G(z) = 0 ⇒ L(z) = 0 ⇔ T (z) = 0, S(z) = 1

(5.62)

G−1(p) = 0 ⇒ L(p) = ∞ ⇔ T (p) = 1, S(p) = 0

(5.63)

Remark “Perfect control” implies S ≈ 0 and T ≈ 1.

RHP-zero ⇒ perfect control impossible.

RHP-pole ⇒ perfect control possible.

RHP-poles cause problems when tight (high gain)

control is not possible.
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5.8 Stabilizing controllers [4.8]

5.8.1 Stable plants [4.8.1]

Lemma For a stable plant G(s) the negative

feedback system in Figure 48 is internally stable if

and only if Q = K(I +GK)−1 is stable.

Proof: The four transfer functions in (5.60) and

(5.61) are

K(I +GK)−1 = Q (5.64)

(I +GK)−1 = I −GQ (5.65)

(I +KG)−1 = I −QG (5.66)

G(I +KG)−1 = G(I −QG) (5.67)

which are clearly all stable if and only if G and Q are

stable.
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Consequences: All stabilizing negative feedback

controllers for the stable plant G(s) are given by

K = (I −QG)−1Q = Q(I −GQ)−1 (5.68)

where the “parameter” Q is any stable transfer

function matrix. (Identical to the internal model

control (IMC) parameterization of stabilizing

controllers.)

d

d

d q q? --
6

?--

---
+

+

dy

-

+

model

G
-

+

y
plant

GQ

K

r

Figure 49: The internal model control (IMC) structure
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5.9 Stability analysis in the frequency

domain [4.9]

Generalization of Nyquist’s stability test for SISO

systems.

5.9.1 Open- and closed-loop characteristic

polynomials [4.9.1]

e q
6

--- y
L

-

+r

Figure 50: Negative feedback system

Open Loop:

L(s) = Col(sI −Aol)
−1Bol +Dol (5.69)

Poles of L(s) are the roots of the open-loop

characteristic polynomial

φol(s) = det(sI −Aol) (5.70)
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Assume no RHP pole-zero cancellations between

G(s) and K(s). Then from Theorem 4.5 internal

stability of the closed-loop system is equivalent to the

stability of S(s) = (I + L(s))−1.

The realization of S(s) can be derived as follow:

ẋ = Aolx+Bol(r − y) (5.71)

−e = r − y = r − Colx−Dol(r − y) (5.72)

or

r − y = (I +Dol)
−1(r − Colx) (5.73)

and

ẋ = (Aol −Bol(I +Dol)
−1Col)x+Bol(I +Dol)

−1r

(5.74)

Therefore the state matrix of S(s) is:

Acl = Aol −Bol(I +Dol)
−1Col (5.75)

And the closed-loop characteristic polynomial is

φcl(s)
∆
= det(sI−Acl) = det(sI−Aol+Bol(I+Dol)

−1Col)

(5.76)
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Relationship between characteristic polynomials

From (5.69) we get

det(I +L(s)) = det(I +Col(sI −Aol)
−1Bol +Dol) (5.77)

Schur’s formula yields (with

A11 = I + Dol, A12 = −Col, A22 = sI − Aol, A21 = Bol)

det(I + L(s)) =
φcl(s)

φol(s)
· c (5.78)

where c = det(I + Dol) is a constant (cf. SISO result

from RSI).

Side calculation:

det


 I +Dol −Col

Bol sI −Aol




= det [I +Dol] det
[
sI −Aol +Bol (I +Dol)

−1Col

]

= det [sI −Aol] det
[
I +Dol + Col (sI −Aol)

−1
Bol

]
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5.9.2 MIMO Nyquist stability criteria [4.9.2]

Theorem: Generalized (MIMO) Nyquist

theorem. Let Pol denote the number of open-loop

unstable poles in L(s). The closed-loop system with

loop transfer function L(s) and negative feedback is

stable if and only if the Nyquist plot of det(I + L(s))

i) makes Pol anti-clockwise encirclements of the

origin, and

ii) does not pass through the origin.

Note

By “Nyquist plot of det(I + L(s))” we mean “the

image of det(I + L(s)) as s goes clockwise around

the Nyquist D-contour”.
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5.9.4 Small gain theorem [4.9.4]

ρ(L(jω))
∆
= max

i
|λi(L(jω))| (5.79)

Theorem: Spectral radius stability condition.

Consider a system with a stable loop transfer

function L(s). Then the closed-loop system is stable

if

ρ(L(jω))
∆
= max

i
|λi(L(jω))| < 1 ∀ω (5.80)

Proof: Assume the system is unstable. Therefore

det(I + L(s)) encircles the origin, and there is an

eigenvalue, λi(L(jω)) which is larger than 1 at some

frequency. If det(I + L(s)) does encircle the origin, then

there must exists a gain ǫ ∈ (0, 1] and a frequency ω′ such

that

det(I + ǫL(jω′)) = 0 (5.81)

or
∏

i

λi(I + ǫL(jω′)) = 0 (5.82)

⇔ 1 + ǫλi(L(jω′)) = 0 for some i (5.83)

⇔ λi(L(jω′)) = −
1

ǫ
for some i (5.84)

⇒ |λi(L(jω′))| ≥ 1 for some i (5.85)

⇔ ρ(L(jω′)) ≥ 1 (5.86)
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Interpretation: If the system gain is less than 1 in

all directions (all eigenvalues) and for all frequencies

(∀ω), then all signal deviations will eventually die

out, and the system is stable.

Spectral radius theorem is conservative because

phase information is not considered.

Small Gain Theorem. Consider a system with a

stable loop transfer function L(s). Then the

closed-loop system is stable if

‖L(jω)‖ < 1 ∀ω (5.87)

where ‖L‖ denotes any matrix norm satisfying

‖AB‖ ≤ ‖A‖ · ‖B‖, for example the singular value

σ̄(L).

Note The small gain theorem is generally more

conservative than the spectral radius condition in

(5.80).
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5.10 System norms [4.10]

-- zw
G

Figure 51: System G

Figure 51: System with stable transfer function matrix

G(s) and impulse response matrix g(t).

Question: given information about the allowed input

signals w(t), how large can the outputs z(t) become?

We use the 2-norm,

‖z(t)‖2 =

√∑

i

∫ ∞

−∞
|zi(τ)|2dτ (5.88)

and consider three inputs:

1. w(t) is a series of unit impulses.

2. w(t) is any signal satisfying ‖w(t)‖2 = 1.

3. w(t) is any signal satisfying ‖w(t)‖2 = 1, but

w(t) = 0 for t ≥ 0, and we only measure z(t) for

t ≥ 0.

The relevant system norms in the three cases are the

H2, H∞, and Hankel norms, respectively.
5-42



5.10.1 H2 norm [4.10.1]

G(s) strictly proper.

For the H2 norm we use the Frobenius norm spatially

(for the matrix) and integrate over frequency, i.e.

‖G(s)‖2
∆
=

√√√√√
1

2π

∫ ∞

−∞
tr(G(jω)HG(jω))︸ ︷︷ ︸

‖G(jω)‖2
F

=
∑

ij
|Gij(jω)|2

dω

(5.89)

G(s) must be strictly proper, otherwise the H2 norm

is infinite. By Parseval’s theorem, (5.89) is equal to

the H2 norm of the impulse response

‖G(s)‖2 = ‖g(t)‖2
∆
=

√√√√√

∫ ∞

0

tr(gT (τ)g(τ))︸ ︷︷ ︸
‖g(τ)‖2

F
=
∑

ij
|gij(τ)|2

dτ

(5.90)

• Note that G(s) and g(t) are dynamic systems

while G(jω) and g(τ) are constant matrices (for

a given value of ω or τ).
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• We can change the order of integration and

summation in (5.90) to get

‖G(s)‖2 = ‖g(t)‖2 =

√√√√
∑

ij

∫ ∞

0

|gij(τ)|2dτ

(5.91)

where gij(t) is the ij’th element of the impulse

response matrix, g(t). Thus H2 norm can be

interpreted as the 2-norm output resulting from

applying unit impulses δj(t) to each input, one after

another (allowing the output to settle to zero before

applying an impulse to the next input). Thus

‖G(s)‖2 =
√∑m

i=1
‖zi(t)‖2

2 where zi(t) is the output

vector resulting from applying a unit impulse δi(t) to

the i’th input.
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Numerical computations of the H2 norm.

Consider G(s) = C(sI − A)−1B. Then

‖G(s)‖2 =
√

tr(BTQB) or ‖G(s)‖2 =
√

tr(CPCT )

(5.92)

where Q = observability Gramian

and P = controllability Gramian
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5.10.2 H∞ norm [4.10.2]

G(s) proper.

For the H∞ norm we use the singular value (induced

2-norm) spatially (for the matrix) and pick out the

peak value as a function of frequency

‖G(s)‖∞ ∆
= max

ω
σ̄(G(jω)) (5.93)

The H∞ norm is the peak of the transfer function

“magnitude”.

Time domain performance interpretations of

the H∞ norm.

• Worst-case steady-state gain for sinusoidal

inputs at any frequency.

• Induced (worst-case) 2-norm in the time domain:

‖G(s)‖∞ = max
w(t) 6=0

‖z(t)‖2

‖w(t)‖2
= max

‖w(t)‖2=1
‖z(t)‖2

(5.94)

(In essence, (5.94) arises because the worst input

signal w(t) is a sinusoid with frequency ω∗ and a

direction which gives σ(G(jω∗)) as the maximum

gain.)
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Numerical computation of the H∞ norm.

Consider

G(s) = C(sI −A)−1B +D

H∞ norm is the smallest value of γ such that the

Hamiltonian matrix H has no eigenvalues on the

imaginary axis, where

H =

[
A+BR−1DTC BR−1BT

−CT (I +DR−1DT )C −(A+BR−1DTC)T

]

(5.95)

and R = γ2I −DTD

5.10.3 Difference between the H2 and H∞
norms [4.10.3]

Frobenius norm in terms of singular values

‖G(s)‖2 =

√
1

2π

∫ ∞

−∞

∑

i

σ2
i (G(jω))dω (5.96)

Thus when optimizing performance in terms of the

different norms:

• H∞: “push down peak of largest singular value”.

• H2: “push down whole thing” (all singular

values over all frequencies).
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Example

G(s) =
1

s+ a
(5.97)

H2 norm:

‖G(s)‖2 = (
1

2π

∫ ∞

−∞
|G(jω)|2︸ ︷︷ ︸

1
ω2+a2

dω)
1
2

= (
1

2πa

[
tan−1(

ω

a
)
]∞
−∞

)
1
2 =

√
1

2a

Alternatively: Consider the impulse response

g(t) = L−1

(
1

s+ a

)
= e−at, t ≥ 0 (5.98)

to get

‖g(t)‖2 =

√∫ ∞

0

(e−at)2dt =

√
1

2a
(5.99)

as expected from Parseval’s theorem.

H∞ norm:

||G(s)||∞ = max
ω

|G(jω)| = max
ω

1

(ω2 + a2)
1
2

=
1

a

(5.100)
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Example

There is no general relationship between the H2 and

H∞ norms.

f1(s) =
1

ǫs+ 1
, f2(s) =

ǫs

s2 + ǫs+ 1
(5.101)

||f1||∞ = 1 ||f1||2 = ∞
||f2||∞ = 1 ||f2||2 = 0

(5.102)

Why is the H∞ norm so popular? In robust

control convenient for representing unstructured

model uncertainty, and because it satisfies the

multiplicative property:

‖A(s)B(s)‖∞ ≤ ‖A(s)‖∞ · ‖B(s)‖∞ (5.103)

What is wrong with the H2 norm? It is not an

induced norm and does not satisfy the multiplicative

property.
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Example

Consider again G(s) = 1/(s+ a) in (5.97), for which

‖G(s)‖2 =
√

1/2a.

‖G(s)G(s)‖2 =

√√√√√

∫ ∞

0

| L−1[(
1

s+ a
)2]

︸ ︷︷ ︸
te−at

|2

=

√
1

a

1

2a
=

√
1

a
‖G(s)‖2

2

(5.104)

for a < 1,

‖G(s)G(s)‖2 > ‖G(s)‖2 · ‖G(s)‖2 (5.105)

which does not satisfy the multiplicative property.

H∞ norm does satisfy the multiplicative property

‖G(s)G(s)‖∞ =
1

a2
= ‖G(s)‖∞ · ‖G(s)‖∞
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6 INTRODUCTION TO

MULTIVARIABLE

CONTROL [3]

6.1 Transfer functions for MIMO

systems [3.2]

- G1
- G2

-Gu z

(a) Cascade system

- b-+
+

G1
-p

�G2

6
u yv

z

(b) Positive feed-

back system

Figure 52: Block diagrams for the cascade rule and

the feedback rule

1. Cascade rule. (Figure 52(a)) G = G2G1

2. Feedback rule. (Figure 52(b) ) v = (I − L)−1u

where L = G2G1

3. Push-through rule.

G1(I −G2G1)
−1 = (I −G1G2)

−1G1
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MIMO Rule: Start from the output, move

backwards. If you exit from a feedback loop then

include a term (I − L)−1 where L is the transfer

function around that loop (evaluated against the

signal flow starting at the point of exit from the

loop).

Example

z = (P11 + P12K(I − P22K)−1P21)w (6.1)

c

c q

-?-

�

-? ---

-
+

+

+

+

z

P12

P11

P22

KP21

w

Figure 53: Block diagram corresponding to (6.1)
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Negative feedback control systems

- c -+

-
K - c+ +?- G - c+ +? -q

6
r yu

d2 d1

Figure 54: Conventional negative feedback control

system

• L is the loop transfer function when breaking the

loop at the output of the plant.

L = GK (6.2)

Accordingly

S
∆
= (I + L)−1

output sensitivity (6.3)

T
∆
= I − S = (I + L)−1L = L(I + L)−1

output complementary sensitivity(6.4)

LO ≡ L, SO ≡ S and TO ≡ T .
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• LI is the loop transfer function at the input to

the plant

LI = KG (6.5)

Input sensitivity:

SI
∆
= (I + LI)

−1

Input complementary sensitivity:

TI
∆
= I − SI = LI(I + LI)

−1

• Some relationships:

(I + L)−1 + (I + L)−1L = S + T = I (6.6)

G(I +KG)−1 = (I +GK)−1G (6.7)

GK(I+GK)−1 = G(I+KG)−1K = (I+GK)−1GK

(6.8)

T = L(I + L)−1 = (I + L−1)−1 = (I + L)−1L

(6.9)

Rule to remember: “G comes first and then G

and K alternate in sequence”.
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6.2 Multivariable frequency response

analysis [3.3]

G(s) = transfer (function) matrix

G(jω) = complex matrix representing response

to sinusoidal signal of frequency ω

-- y
G(s)

d

Figure 55: System G(s) with input d and output y

y(s) = G(s)d(s) (6.10)
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Sinusoidal input to channel j

dj(t) = dj0 sin(ωt+ αj) (6.11)

starting at t = −∞. Output in channel i is a

sinusoid with the same frequency

yi(t) = yi0 sin(ωt+ βi) (6.12)

Amplification (gain):

yio

djo
= |gij(jω)| (6.13)

Phase shift:

βi − αj = 6 gij(jω) (6.14)

gij(jω) represents the sinusoidal response from input

j to output i.
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Example 2 × 2 multivariable system, sinusoidal

signals of the same frequency ω to the two input

channels:

d(t) =

[
d1(t)

d2(t)

]
=

[
d10 sin(ωt+ α1)

d20 sin(ωt+ α2)

]
(6.15)

The output signal

y(t) =

[
y1(t)

y2(t)

]
=

[
y10 sin(ωt+ β1)

y20 sin(ωt+ β2)

]
(6.16)

can be computed by multiplying the complex matrix

G(jω) by the complex vector d(ω):

y(ω) = G(jω)d(ω)

y(ω) =

[
y10e

jβ1

y20e
jβ2

]
, d(ω) =

[
d10e

jα1

d20e
jα2

]
(6.17)
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6.2.1 Directions in multivariable systems

[3.3.2]

SISO system (y = Gd): gain

|y(ω)|
|d(ω)| =

|G(jω)d(ω)|
|d(ω)| = |G(jω)|

The gain depends on ω, but is independent of |d(ω)|.
MIMO system: input and output are vectors.

⇒ need to “sum up” magnitudes of elements in each

vector by use of some norm

‖d(ω)‖2 =

√∑

j

|dj(ω)|2 =
√
d2
10 + d2

20 + · · · (6.18)

‖y(ω)‖2 =

√∑

i

|yi(ω)|2 =
√
y2
10 + y2

20 + · · · (6.19)

The gain of the system G(s) is

‖y(ω)‖2

‖d(ω)‖2
=

‖G(jω)d(ω)‖2

‖d(ω)‖2
=

√
y2
10 + y2

20 + · · ·√
d2
10 + d2

20 + · · ·
(6.20)

The gain depends on ω, and is independent of

‖d(ω)‖2. However, for a MIMO system the gain

depends on the direction of the input d.

6-8



The maximum value of the gain in (6.20) as the

direction of the input is varied, is the maximum

singular value of G,

max
d 6=0

‖Gd‖2

‖d‖2
= max

‖d‖2=1
‖Gd‖2 = σ̄(G) (6.21)

whereas the minimum gain is the minimum singular

value of G,

min
d 6=0

‖Gd‖2

‖d‖2
= min

‖d‖2=1
‖Gd‖2 = σ(G) (6.22)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−5 0 5

−4

−3

−2

−1

0

1

2

3

4 σ̄(G)

σ(G)
v̄

v

y10

y
2
0

d10

d
2
0

Figure 56: The maximum σ̄(G) and minimum σ(G)

gains are obtained for d = (v̄) and d = (v) respec-

tively.
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Example Consider the five inputs ( all ‖d‖2 = 1)

d1 =
[

1

0

]
, d2 =

[
0

1

]
, d3 =

[
0.707

0.707

]
,

d4 =
[

0.707

−0.707

]
, d5 =

[
0.6

−0.8

]

For the 2 × 2 system

G1 =

[
5 4

3 2

]
(6.23)

The five inputs dj lead to the following output vectors

y1 =
[

5

3

]
, y2 =

[
4

2

]
, y3 =

[
6.36

3.54

]
, y4 =

[
0.707

0.707

]
, y5 =

[
−0.2

0.2

]

with the 2-norms (i.e. the gains for the five inputs)

‖y1‖2 = 5.83, ‖y2‖2 = 4.47, ‖y3‖2 = 7.30,

‖y4‖2 = 1.00, ‖y5‖2 = 0.28

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6

8

‖
y
‖
2
/
‖
d
‖
2

d20/d10

σ̄(G1) = 7.34

σ(G1) = 0.27

Figure 57: Gain ‖G1d‖2/‖d‖2 as a function of d20/d10

for G1 in (6.23)
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6.2.2 Eigenvalues are a poor measure of gain

[3.3.3]

Example

G =

[
0 100

0 0

]
; G

[
0

1

]
=

[
100

0

]
(6.24)

Both eigenvalues are equal to zero, but gain is equal

to 100.

Problem: eigenvalues measure the gain for the

special case when the inputs and the outputs are in

the same direction (in the direction of the

eigenvectors).

For generalizations of |G| when G is a matrix, we

need the concept of a matrix norm, denoted ‖G‖.
Two important properties: triangle inequality

‖G1 +G2‖ ≤ ‖G1‖ + ‖G2‖ (6.25)

and the multiplicative property

‖G1G2‖ ≤ ‖G1‖ · ‖G2‖ (6.26)

ρ(G)
∆
= |λmax(G)| (the spectral radius), does not

satisfy the properties of a matrix norm

6-11



6.2.3 Singular value decomposition [3.3.4]

Any matrix G may be decomposed into its singular

value decomposition,

G = UΣV H (6.27)

where

Σ is an l ×m matrix with k = min{l,m}
non-negative singular values, σi, arranged in

descending order along its main diagonal;

U is an l × l unitary matrix of output singular

vectors, ui,

V is an m×m unitary matrix of input singular

vectors, vi,

Example SVD of a real 2 × 2 matrix can always be

written as

G =

[
cos θ1 − sin θ1

sin θ1 cos θ1

]

︸ ︷︷ ︸
U

[
σ1 0

0 σ2

]

︸ ︷︷ ︸
Σ

[
cos θ2 ± sin θ2

− sin θ2 ± cos θ2

]T

︸ ︷︷ ︸
V T

(6.28)

U and V involve rotations and their columns are

orthonormal.
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Input and output directions.

The column vectors of U , denoted ui, represent the

output directions of the plant. They are orthogonal

and of unit length (orthonormal), that is

‖ui‖2 =
√
|ui1|2 + |ui2|2 + . . .+ |uil|2 = 1 (6.29)

uH
i ui = 1, uH

i uj = 0, i 6= j (6.30)

The column vectors of V , denoted vi, are orthogonal

and of unit length, and represent the input directions.

Gvi = σiui (6.31)

If we consider an input in the direction vi, then the

output is in the direction ui. Since ‖vi‖2 = 1 and

‖ui‖2 = 1 σi gives the gain of the matrix G in this

direction.

σi(G) = ‖Gvi‖2 =
‖Gvi‖2

‖vi‖2
(6.32)
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Maximum and minimum singular values.

The largest gain for any input direction is

σ̄(G) ≡ σ1(G) = max
d 6=0

‖Gd‖2

‖d‖2
=

‖Gv1‖2

‖v1‖2
(6.33)

The smallest gain for any input direction is

σ(G) ≡ σk(G) = min
d 6=0

‖Gd‖2

‖d‖2
=

‖Gvk‖2

‖vk‖2
(6.34)

where k = min{l,m}. For any vector d we have

σ(G) ≤ ‖Gd‖2

‖d‖2
≤ σ̄(G) (6.35)

Define u1 = ū, v1 = v̄, uk = u and vk = v. Then

Gv̄ = σ̄ū, Gv = σ u (6.36)

v̄ corresponds to the input direction with largest

amplification, and ū is the corresponding output

direction in which the inputs are most effective. The

directions involving v̄ and ū are sometimes referred

to as the “strongest”, “high-gain” or “most

important” directions.
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Example

G1 =

[
5 4

3 2

]
(6.37)

The singular value decomposition of G1 is

G1 =

[
0.872 0.490

0.490 −0.872

]

︸ ︷︷ ︸
U

[
7.343 0

0 0.272

]

︸ ︷︷ ︸
Σ

[
0.794 −0.608

0.608 0.794

]H

︸ ︷︷ ︸
V H

The largest gain of 7.343 is for an input in the direction

v̄ =
[

0.794

0.608

]
, the smallest gain of 0.272 is for an input in

the direction v =
[
−0.608

0.794

]
. Since in (6.37) both inputs

affect both outputs, we say that the system is interactive.

The system is ill-conditioned, that is, some combinations

of the inputs have a strong effect on the outputs, whereas

other combinations have a weak effect on the outputs.

Quantified by the condition number;

σ̄/σ = 7.343/0.272 = 27.0.

Example

Shopping cart. Consider a shopping cart (supermarket

trolley) with fixed wheels which we may want to move in

three directions; forwards, sideways and upwards. For the

shopping cart the gain depends strongly on the input

direction, i.e. the plant is ill-conditioned.
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Example: Distillation process.

Steady-state model of a distillation column

G =

[
87.8 −86.4

108.2 −109.6

]
(6.38)

Since the elements are much larger than 1 in magnitude

there should be no problems with input constraints.

However, the gain in the low-gain direction is only just

above 1.

G =

[
0.625 −0.781

0.781 0.625

]

︸ ︷︷ ︸
U

[
197.2 0

0 1.39

]

︸ ︷︷ ︸
Σ

[
0.707 −0.708

−0.708 −0.707

]H

︸ ︷︷ ︸
V H

(6.39)

The distillation process is ill-conditioned, and the

condition number is 197.2/1.39 = 141.7. For dynamic

systems the singular values and their associated

directions vary with frequency (Figure 58).
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Figure 58: Typical plots of singular values
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6.2.4 Singular values for performance [3.3.5]

Maximum singular value is very useful in terms of

frequency-domain performance and robustness.

Performance measure for SISO systems:

|e(ω)|/|r(ω)| = |S(jω)|

Generalization for MIMO systems ‖e(ω)‖2/‖r(ω)‖2

σ(S(jω)) ≤ ‖e(ω)‖2

‖r(ω)‖2
≤ σ̄(S(jω)) (6.40)

For performance we want the gain ‖e(ω)‖2/‖r(ω)‖2

small for any direction of r(ω)

σ̄(S(jω)) < 1/|wP (jω)|, ∀ω
⇔ σ̄(wPS) < 1, ∀ω
⇔ ‖wPS‖∞ < 1 (6.41)

where the H∞ norm is defined as the peak of the

maximum singular value of the frequency response

‖M(s)‖∞ ∆
= max

ω
σ̄(M(jω)) (6.42)
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Typical singular values of S(jω) in Figure 59.

10
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d
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Frequency [rad/s]

Design 1:
Design 2:

σ(S)

σ(S)

σ̄(S)

σ̄(S)

Figure 59: Singular values of S for a 2 × 2 plant with

RHP-zero

• Bandwidth, ωB : frequency where σ̄(S) crosses
1√
2

= 0.7 from below.

Since S = (I + L)−1, the singular values inequality

σ(A) − 1 ≤ 1
σ̄(I+A)−1 ≤ σ(A) + 1 yields

σ(L) − 1 ≤ 1

σ̄(S)
≤ σ(L) + 1 (6.43)

• low ω : σ(L) ≫ 1 ⇒ σ̄(S) ≈ 1
σ(L)

• high ω: σ̄(L) ≪ 1 ⇒ σ̄(S) ≈ 1
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6.3 Introduction to MIMO robustness

[3.7]

6.3.1 Motivating robustness example no. 1:

Spinning Satellite [3.7.1]

Angular velocity control of a satellite spinning about

one of its principal axes:

G(s) =
1

s2 + a2

[
s− a2 a(s+ 1)

−a(s+ 1) s− a2

]
; a = 10

(6.44)

A minimal, state-space realization,

G = C(sI −A)−1B +D, is


 A B

C D


 =




0 a 1 0

−a 0 0 1

1 a 0 0

−a 1 0 0




(6.45)

Poles at s = ±ja For stabilization:

K = I

T (s) = GK(I +GK)−1 =
1

s+ 1

[
1 a

−a 1

]
(6.46)
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Nominal stability (NS). Two closed loop poles at

s = −1 and

Acl = A−BKC =

[
0 a

−a 0

]
−
[

1 a

−a 1

]
=

[−1 0

0 −1

]

Nominal performance (NP). Figure 60(a)
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(6.44)

10
−4

10
−2

10
0

10
−2

10
0

10
2

M
a
g
n
it

u
d
e

Frequency [rad/s]

σ̄(G)

σ(G)

(b) Distillation process in

(6.49)

Figure 60: Typical plots of singular values

• σ(L) ≤ 1 ∀ω poor performance in low gain

direction

• g12, g21 large ⇒ strong interaction
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Robust stability (RS).

Check stability: one loop at a time.

c
c

q
q-

-

6

-

-
6

-

-

�

�

6
+

+
-

-

z1 w1

G

K

Figure 61: Checking stability margins “one-loop-at-a-

time”

z1
w1

∆
= L1(s) =

1

s
⇒ GM = ∞, PM = 90◦ (6.47)

• Good Robustness? NO

• Consider perturbation in each feedback channel

u′1 = (1 + ǫ1)u1, u′2 = (1 + ǫ2)u2 (6.48)
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B′ =

[
1 + ǫ1 0

0 1 + ǫ2

]

Closed-loop state matrix:

A′
cl = A−B′KC =

[
0 a

−a 0

]
−
[

1 + ǫ1 0

0 1 + ǫ2

] [
1 a

−a 1

]

Characteristic polynomial:

det(sI −A′
cl) = s2 + (2 + ǫ1 + ǫ2)︸ ︷︷ ︸

a1

s+

+ 1 + ǫ1 + ǫ2 + (a2 + 1)ǫ1ǫ2︸ ︷︷ ︸
a0

Stability for (−1 < ǫ1 <∞, ǫ2 = 0) and

(ǫ1 = 0,−1 < ǫ2 <∞) (GM=∞)

But only small simultaneous changes in the two

channels: for example, let ǫ1 = −ǫ2, then the system

is unstable (a0 < 0) for

|ǫ1| >
1√

a2 + 1
≈ 0.1

Summary.

Checking single-loop margins is inadequate for

MIMO problems.
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6.3.2 Motivating robustness example no. 2:

Distillation Process [3.7.2]

Idealized dynamic model of a distillation column,

G(s) =
1

75s+ 1

[
87.8 −86.4

108.2 −109.6

]
(6.49)

(time is in minutes).

0 10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

Time [min]

Nominal plant:
Perturbed plant:

y1

y2

Figure 62: Response with decoupling controller to fil-

tered reference input r1 = 1/(5s+ 1). The perturbed

plant has 20% gain uncertainty as given by (6.52).

Inverse-based controller or equivalently steady-state

decoupler with a PI controller (k1 = 0.7)

Kinv(s) =
k1

s
G−1(s) =

k1(1 + 75s)

s

[
0.3994 −0.3149

0.3943 −0.3200

]

(6.50)
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Nominal performance (NP).

GKinv = KinvG =
0.7

s
I

first order response with time constant 1.43 (Fig.

62).

Nominal performance (NP) achieved with decoupling

controller.

Robust stability (RS).

S = SI =
s

s+ 0.7
I; T = TI =

1

1.43s+ 1
I (6.51)

In each channel: GM=∞, PM=90◦.

Input gain uncertainty (6.48) with ǫ1 = 0.2 and

ǫ2 = −0.2:

u′1 = 1.2u1, u′2 = 0.8u2 (6.52)

L′
I(s) = KinvG

′ = KinvG

[
1 + ǫ1 0

0 1 + ǫ2

]
=

0.7

s

[
1 + ǫ1 0

0 1 + ǫ2

]
(6.53)

Perturbed closed-loop poles are

s1 = −0.7(1 + ǫ1), s2 = −0.7(1 + ǫ2) (6.54)
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Closed-loop stability as long as the input gains 1 + ǫ1

and 1 + ǫ2 remain positive

⇒ Robust stability (RS) achieved with respect to

input gain errors for the decoupling controller.

Robust performance (RP).

Performance with model error poor (Fig. 62)

• SISO: NP+RS ⇒ RP (within a factor of 2)

• MIMO: NP+RS 6⇒ RP

(arbitrarily large violation)

RP is not achieved by the decoupling controller.

6.3.3 Robustness conclusions [3.7.3]

Multivariable plants can display a sensitivity to

uncertainty (in this case input uncertainty) which is

fundamentally different from what is possible in

SISO systems.
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6.4 General control problem

formulation [3.8]

�

-
--

K

P

sensed outputscontrol signals

exogenous inputs
(weighted)

exogenous outputs
(weighted)

u v

zw

Figure 63: General control configuration for the case

with no model uncertainty

The overall control objective is to minimize some

norm of the transfer function from w to z, for

example, the H∞ norm. The controller design

problem is then:

Find a controller K which based on the information

in v, generates a control signal u which counteracts

the influence of w on z, thereby minimizing the

closed-loop norm from w to z.
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6.4.1 Obtaining the generalized plant P

[3.8.1]

The routines in MATLAB for synthesizing H∞ and

H2 optimal controllers assume that the problem is in

the general form of Figure 63

Example: One degree-of-freedom feedback

control configuration.

c

c c q
6

�?

-?----

ym

u

+
+

+
+

n

y

d

GK-
+r

Figure 64: One degree-of-freedom control configura-

tion
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Equivalent representation of Figure 64 where the

error signal to be minimized is z = y − r and the

input to the controller is v = r − ym

c

ccc q

q

- ? ?

--

?

6

�

---

P

u v

w

{

K

G +
+

+
+

+

+
-

-
z

n
r
d

Figure 65: General control configuration equivalent to

Figure 64
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w =



w1

w2

w3


 =



d

r

n


 ; z = e = y−r; v = r−ym = r−y−n

(6.55)

z = y − r = Gu+ d− r = Iw1 − Iw2 + 0w3 +Gu

v = r − ym = r −Gu− d− n =

= −Iw1 + Iw2 − Iw3 −Gu

and P which represents the transfer function matrix

from [w u ]T to [ z v ]T is

P =

[
I −I 0 G

−I I −I −G

]
(6.56)

Note that P does not contain the controller.

Alternatively, P can be obtained from Figure 65.
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Remark. In MATLAB we may obtain P via simulink,

or we may use the sysic program in the Robust Control

toolbox. The code in Table 2 generates the generalized

plant P in (6.56) for Figure 64.

Table 2: Matlab program to generate P
% Uses the Robust Control toolbox

systemnames = ’G’; % G is the SISO plant.

inputvar = ’[d(1);r(1);n(1);u(1)]’; % Consists of vectors w and u.

input to G = ’[u]’;

outputvar = ’[G+d-r; r-G-d-n]’; % Consists of vectors z and v.

sysoutname = ’P’;

sysic;
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6.4.2 Including weights in P [3.8.2]

To get a meaningful controller synthesis problem, for

example, in terms of the H∞ or H2 norms, we

generally have to include weights Wz and Ww in the

generalized plant P , see Figure 66.

- - --

�

-

K

P̃

w̃w
Ww Wz

z̃ z

P

Figure 66: General control configuration for the case

with no model uncertainty

That is, we consider the weighted or normalized

exogenous inputs w, and the weighted or normalized

controlled outputs z = Wz z̃. The weighting matrices

are usually frequency dependent and typically

selected such that weighted signals w and z are of

magnitude 1, that is, the norm from w to z should

be less than 1.
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Example: Stacked S/T/KS problem.

Consider an H∞ problem where we want to bound σ̄(S)

(for performance), σ̄(T ) (for robustness and to avoid

sensitivity to noise) and σ̄(KS) (to penalize large

inputs). These requirements may be combined into a

stacked H∞ problem

min
K

‖N(K)‖∞, N =




WuKS

WT T

WP S


 (6.57)

where K is a stabilizing controller. In other words, we

have z = Nw and the objective is to minimize the H∞

norm from w to z.
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Figure 67: Block diagram corresponding to general-

ized plant in (6.57)

z1 = Wuu

z2 = WTGu

z3 = WPw +WPGu

v = −w −Gu

so the generalized plant P from [w u ]
T

to [ z v ]
T

is

P =




0 WuI

0 WTG

WP I WPG

−I −G




(6.58)
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6.4.3 Partitioning the generalized plant P

[3.8.3]

We often partition P as

P =

[
P11 P12

P21 P22

]
(6.59)

so that

z = P11w + P12u (6.60)

v = P21w + P22u (6.61)

In Example “Stacked S/T/KS problem” we get

from (6.58)

P11 =

[
0

0

WP I

]
, P12 =

[
WuI

WT G

WP G

]
(6.62)

P21 = −I, P22 = −G (6.63)

Note that P22 has dimensions compatible with the

controller K in Figure 66
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6.4.4 Analysis: Closing the loop to get N

[3.8.4]

-- z
N

w

Figure 68: General block diagram for analysis with no

uncertainty

For analysis of closed-loop performance we may

absorb K into the interconnection structure and

obtain the system N as shown in Figure 68 where

z = Nw (6.64)

where N is a function of K. To find N , first partition

the generalized plant P as given in (6.59)-(6.61),

combine this with the controller equation

u = Kv (6.65)

and eliminate u and v from equations (6.60), (6.61)

and (6.65) to yield z = Nw where N is given by

N = P11 +P12K(I −P22K)−1P21
∆
= Fl(P,K) (6.66)
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Here Fl(P,K) denotes a lower linear fractional

transformation (LFT) of P with K as the parameter.

In words, N is obtained from Figure 63 by using K

to close a lower feedback loop around P . Since

positive feedback is used in the general configuration

in Figure 63 the term (I − P22K)−1 has a negative

sign.

Example: We want to derive N for the partitioned P

in (6.62) and (6.63) using the LFT-formula in (6.66). We

get

N =




0

0

WP I


+




WuI

WT G

WP G


K(I+GK)−1(−I) =



−WuKS

−WT T

WP S




where we have made use of the identities

S = (I + GK)−1, T = GKS and I − T = S.

In the MATLAB Robust Control Toolbox we can

evaluate N = Fl(P,K) using the command N=lft(P,K).
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6.4.5 Further examples [3.8.5]

Example: Consider the control system in Figure 69,

where y1 is the output we want to control, y2 is a

secondary output (extra measurement), and we also

measure the disturbance d. The control configuration

includes a two degrees-of-freedom controller, a

feedforward controller and a local feedback controller

based on the extra measurement y2.

ccc

q

q q
6

-
6

�

?

?

?------- y1y2 +
+

+

+ -
u

d

G1

K2

G2

Kd

K1Kr
+
-

r

Figure 69: System with feedforward, local feedback

and two degrees-of-freedom control

To recast this into our standard configuration of

Figure 63 we define
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w =

[
d

r

]
; z = y1 − r; v =




r

y1

y2

d


 (6.67)

K = [K1Kr −K1 −K2 Kd ] (6.68)

We get

P =




G1 −I G1G2

0 I 0

G1 0 G1G2

0 0 G2

I 0 0




(6.69)

Then partitioning P as in (6.60) and (6.61) yields

P22 = [ 0T (G1G2)
T GT

2 0T ]T .
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6.4.6 * Deriving P from N [3.8.6]

For cases where N is given and we wish to find a P

such that

N = Fl(P,K) = P11 + P12K(I − P22K)−1P21

it is usually best to work from a block diagram

representation. This was illustrated above for the

stacked N in (6.57). Alternatively, the following

procedure may be useful:

1. Set K = 0 in N to obtain P11.

2. Define Q = N − P11 and rewrite Q such that

each term has a common factor

R = K(I − P22K)−1 (this gives P22).

3. Since Q = P12RP21, we can now usually obtain

P12 and P21 by inspection.
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Example 3 Weighted sensitivity. We will use the

above procedure to derive P when

N = wP S = wP (I + GK)−1,

where wP is a scalar weight.

1. P11 = N(K = 0) = wP I.

2. Q = N − wP I = wP (S − I) = −wP T =

−wP GK(I + GK)−1, and we have

R = K(I + GK)−1 so P22 = −G.

3. Q = −wP GR so we have P12 = −wP G and P21 = I,

and we get

P =
[

wP I −wP G

I −G

]
(6.70)
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6.4.8 A general control configuration

including model uncertainty [3.8.8]

The general control configuration in Figure 63 may

be extended to include model uncertainty. Here the

matrix ∆ is a block-diagonal matrix that includes all

possible perturbations (representing uncertainty) to

the system. It is normalized such that ‖∆‖∞ ≤ 1.

-

�

- -
-

�

u v

zw

K

P

∆

u∆ y∆

Figure 70: General control configuration for the case

with model uncertainty
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u∆ y∆

zw

∆

N

Figure 71: General block diagram for analysis with

uncertainty included

∆ ∆

∆ ∆

∆
∆

∆
∆

1
2

3
4

1 2

3 4

System with
Actuators, Sensors
and Controller

Outputs
Inputs

N

>
w

z

w z

(a) (b)

Figure 72: Rearranging a system with multiple per-

turbations into the N∆-structure
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The block diagram in Figure 70 in terms of P (for

synthesis) may be transformed into the block

diagram in Figure 71 in terms of N (for analysis) by

using K to close a lower loop around P . The same

lower LFT as found in (6.66) applies, and

N = Fl(P,K) = P11 +P12K(I −P22K)−1P21 (6.71)

To evaluate the perturbed (uncertain) transfer

function from external inputs w to external outputs

z, we use ∆ to close the upper loop around N (see

Figure 71), resulting in an upper LFT:

z = Fu(N,∆)w; (6.72)

Fu(N,∆)
∆
= N22 +N21∆(I −N11∆)−1N12 (6.73)

Remark 1 Almost any control problem with uncertainty

can be represented by Figure 70. First represent each

source of uncertainty by a perturbation block, ∆i, which

is normalized such that ‖∆i‖ ≤ 1. Then “pull out” each

of these blocks from the system so that an input and an

output can be associated with each ∆i as shown in

Figure 72(a). Finally, collect these perturbation blocks

into a large block-diagonal matrix having perturbation

inputs and outputs as shown in Figure 72(b).
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7 LIMITATIONS ON

PERFORMANCE IN MIMO

SYSTEMS [6]

Differently: In a MIMO system, disturbances, the

plant, RHP-zeros, RHP-poles and delays each have

directions associated with them. A multivariable

plant may have a RHP-zero and a RHP-pole at the

same location, but their effects may not interact.

7.1 Fundamental Limits on

Sensitivity [6.2]

From the identity S + T = I we get

|1 − σ̄(S)| ≤ σ̄(T ) ≤ 1 + σ̄(S) (7.1)

|1 − σ̄(T )| ≤ σ̄(S) ≤ 1 + σ̄(T ) (7.2)

⇒ S and T cannot be small simultaneously; σ̄(S) is

small if and only if σ̄(T ) is large.
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7.2 * Minimum peaks for S and T

[6.3.1]

Theorem 8 Weighted sensitivity. Suppose the

plant G(s) has a RHP-zero at s = z. Let wP (s) be

any stable scalar weight. Then for closed-loop

stability the weighted sensitivity function must satisfy

‖wP (s)S(s)‖∞ ≥ |wP (z)| (7.3)

In MIMO systems we generally have the freedom to

move the effect of RHP zeros to different outputs by

appropriate control.

Theorem 9 Weighted complementary

sensitivity. Suppose the plant G(s) has a RHP-pole

at s = p. Let wT (s) be any stable scalar weight.

Then for closed-loop stability the weighted

complementary sensitivity function must satisfy

‖wT (s)T (s)‖∞ ≥ |wT (p)| (7.4)
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7.3 Limitations imposed by

uncertainty [6.10]

7.3.1 Input and output uncertainty [6.10.1]

In a multiplicative (relative) form, the output and

input uncertainties (as in Figure 73) are given by

Output uncertainty: G′ = (I +EO)G or

EO = (G′ −G)G−1 (7.5)

Input uncertainty: G′ = G(I +EI) or

EI = G−1(G′ −G) (7.6)

cq cq
- -

? ?- ---

EI Eo

G
+

+
+

+

Figure 73: Plant with multiplicative input and output

uncertainty
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7.3.3 Uncertainty and the benefits of

feedback [6.10.3]

Feedback control. With one degree-of-freedom

feedback control the nominal transfer function is

y = Tr where T = L(I + L)−1 is the complementary

sensitivity function. Ideally, T = I. The change in

response with model error is y′ − y = (T ′−T )r where

T ′ − T = S′EOT (7.7)

Thus, y′ − y = S′EOTr = S′EOy, and we see that

• with feedback control the effect of the

uncertainty is reduced by a factor S′ relative to

that with feedforward control.
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7.3.4 Effect of uncertainty on feedback

sensitivity peak [6.10.4]

We will derive upper bounds on σ̄(S′) which involve

the plant and controller condition numbers

γ(G) =
σ̄(G)

σ(G)
, γ(K) =

σ̄(K)

σ(K)
(7.8)

Factorizations of S′ in terms of the nominal

sensitivity S

Output uncertainty: S′ = S(I + EOT )−1 (7.9)

Input uncertainty: S′ = S(I + GEIG
−1T )−1 =

= SG(I + EITI)
−1G−1 (7.10)

S′ = (I + TK−1EIK)−1S =

= K−1(I + TIEI)
−1KS (7.11)
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We assume: G and G′ are stable; closed-loop

stability, i.e. S and S′ are stable; therefore

(I +EOT )−1 and (I +EITI)
−1 are stable; the

magnitude of the multiplicative (relative)

uncertainty at each frequency can be bounded in

terms of its singular value

σ̄(EI) ≤ |wI |, σ̄(EO) ≤ |wO| (7.12)

where wI(s) and wO(s) are scalar weights. Typically

the uncertainty bound, |wI | or |wO|, is 0.2 at low

frequencies and exceeds 1 at higher frequencies.

Upper bound on σ̄(S′) for output uncertainty

From (7.9) we derive

σ̄(S′) ≤ σ̄(S)σ̄((I +EOT )−1) ≤ σ̄(S)

1 − |wO|σ̄(T )
(7.13)
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Upper bounds on σ̄(S′) for input uncertainty

The sensitivity function can be much more sensitive

to input uncertainty than output uncertainty.

From (7.10) and (7.11) we derive:

σ̄(S′) ≤ γ(G)σ̄(S)σ̄((I +EITI)
−1) ≤

≤ γ(G)
σ̄(S)

1 − |wI |σ̄(TI)
(7.14)

σ̄(S′) ≤ γ(K)σ̄(S)σ̄((I + TIEI)
−1) ≤

≤ γ(K)
σ̄(S)

1 − |wI |σ̄(TI)
(7.15)

(7.14)⇒ If γ(G) ≈ 1 then the system is insensitive to

input uncertainties, irrespective of the controller.

(7.15)⇒ If we use a “round” controller (γ(K) ≈ 1)

then the sensitivity function is not sensitive to input

uncertainty.
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8 ROBUST STABILITY AND

PERFORMANCE

ANALYSIS [8]

8.1 General control configuration

with uncertainty [8.1]

For our robustness analysis we use a system

representation in which the uncertain perturbations

are “pulled out” into a block-diagonal matrix,

∆ = diag{∆i} =




∆1

. . .

∆i

. . .


 (8.1)

where each ∆i represents a specific source of

uncertainty.
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Figure 74: General control configuration (for con-

troller synthesis)

�

-
- -

∆

y∆u∆

N zw

Figure 75: N∆-structure for robust performance

analysis
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�

-

∆

M

y∆u∆

Figure 76: M∆-structure for robust stability analysis

If we also pull out the controller K, we get the

generalized plant P , as shown in Figure 74. For

analysis of the uncertain system, we use the

N∆-structure in Figure 75.
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(a) Original system with multiple per-

turbations

⇓
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(b) Pulling out the perturbations

Figure 77: Rearranging an uncertain system into the

N∆-structure
8-4



Consider Figure 77 where it is shown how to pull out

the perturbation blocks to form ∆ and the nominal

system N . As shown in (6.71), N is related to P and

K by a lower LFT

N = Fl(P,K)
∆
= P11 + P12K(I − P22K)−1P21 (8.2)

Similarly, the uncertain closed-loop transfer function

from w to z, z = Fw, is related to N and ∆ by an

upper LFT (see (6.72)),

F = Fu(N,∆)
∆
= N22 +N21∆(I−N11∆)−1N12 (8.3)

To analyze robust stability of F , we can then

rearrange the system into the M∆-structure of

Figure 76 where M = N11 is the transfer function

from the output to the input of the perturbations.
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8.2 Representing uncertainty [8.2]

As usual, each individual perturbation is assumed to

be stable and is normalized,

σ̄(∆i(jω)) ≤ 1 ∀ω (8.4)

For a complex scalar perturbation we have

|δi(jω)| ≤ 1, ∀ω, and for a real scalar perturbation

−1 ≤ δi ≤ 1. Since the maximum singular value of a

block diagonal matrix is equal to the largest of the

maximum singular values of the individual blocks, it

then follows for ∆ = diag{∆i} that

σ̄(∆i(jω)) ≤ 1 ∀ω, ∀i ⇔ ‖∆‖∞ ≤ 1 (8.5)

Note that ∆ has structure, and therefore in the

robustness analysis we do not want to allow all ∆

such that (8.5) is satisfied.
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8.2.1 Unstructured uncertainty [8.2.3]

We define unstructured uncertainty as the use of a

“full” complex perturbation matrix ∆, usually with

dimensions compatible with those of the plant, where

at each frequency any ∆(jω) satisfying σ̄(∆(jω)) ≤ 1

is allowed.

Six common forms of unstructured uncertainty are

shown in Figure 78. In Figure 78(a), (b) and (c) are

shown three feedforward forms; additive uncertainty,

multiplicative input uncertainty and multiplicative

output uncertainty:

ΠA : Gp = G+ EA; Ea = wA∆a (8.6)

ΠI : Gp = G(I +EI); EI = wI∆I (8.7)

ΠO : Gp = (I +EO)G; EO = wO∆O(8.8)
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In Figure 78(d), (e) and (f) are shown three feedback

or inverse forms; inverse additive uncertainty, inverse

multiplicative input uncertainty and inverse

multiplicative output uncertainty:

ΠiA : Gp = G(I −EiAG)−1; EiA = wiA∆iA

(8.9)

ΠiI : Gp = G(I −EiI)
−1; EiI = wiI∆iI

(8.10)

ΠiO : Gp = (I −EiO)−1G; EiO = wiO∆iO

(8.11)

The negative sign in front of the E’s does not really

matter here since we assume that ∆ can have any

sign. ∆ denotes the normalized perturbation and E

the “actual” perturbation. We have here used scalar

weights w, so E = w∆ = ∆w, but sometimes one

may want to use matrix weights, E = W2∆W1 where

W1 and W2 are given transfer function matrices.
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Figure 78: (a) Additive uncertainty, (b) Multiplica-

tive input uncertainty, (c) Multiplicative output un-

certainty, (d) Inverse additive uncertainty, (e) Inverse

multiplicative input uncertainty, (f) Inverse multi-

plicative output uncertainty
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8.3 Obtaining P , N and M [8.3]

ccc qq
6

? ----?

--

--
+

+

+

+
WP

z

w

G

u∆
∆I

y∆
WI

K uv

-

Figure 79: System with multiplicative input uncer-

tainty and performance measured at the output

Example 4 System with input uncertainty

(Figure 79). We want to derive the generalized plant P

in Figure 74 which has inputs [ u∆ w u ]T and outputs

[ y∆ z v ]T . By writing down the equations or simply

by inspecting Figure 79 (remember to break the loop

before and after K) we get

P =




0 0 WI

WP G WP WP G

−G −I −G


 (8.12)

Next, we want to derive the matrix N corresponding to

Figure 75. First, partition P to be compatible with K, i.e.

P11 =
[

0 0

WP G WP

]
, P12 =

[
WI

WP G

]
(8.13)
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P21 = [−G −I ], P22 = −G (8.14)

and then find N = Fl(P, K) using (8.2). We get

N =

[
−WIKG(I + KG)−1 −WIK(I + GK)−1

WP G(I + KG)−1 WP (I + GK)−1

]

(8.15)

Alternatively, we can derive N directly from Figure 79 by

evaluating the closed-loop transfer function from inputs[
u∆

w

]
to outputs

[
y∆

z

]
(without breaking the loop before

and after K). For example, to derive N12, which is the

transfer function from w to y∆, we start at the output

(y∆) and move backwards to the input (w) using the

MIMO Rule (we first meet WI , then −K and we then

exit the feedback loop and get the term (I + GK)−1).

The upper left block, N11, in (8.15) is the transfer

function from u∆ to y∆. This is the transfer function M

needed in Figure 76 for evaluating robust stability. Thus,

we have M = −WIKG(I + KG)−1 = −WITI .
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8.4 Definitions of robust stability and

robust performance [8.4]

1. Robust stability (RS) analysis: with a given

controller K we determine whether the system

remains stable for all plants in the uncertainty

set.

2. Robust performance (RP) analysis: if RS is

satisfied, we determine how “large” the transfer

function from exogenous inputs w to outputs z

may be for all plants in the uncertainty set.

In Figure 75, w represents the exogenous inputs

(normalized disturbances and references), and z the

exogenous outputs (normalized errors). We have

z = F (∆)w, where from (8.3)

F = Fu(N,∆)
∆
= N22+N21∆(I−N11∆)−1N12 (8.16)

We here use the H∞ norm to define performance and

require for RP that ‖F (∆)‖∞ ≤ 1 for all allowed

∆’s. A typical choice is F = wPSp (the weighted

sensitivity function), where wP is the performance

weight (capital P for performance) and Sp represents

the set of perturbed sensitivity functions (lower-case

p for perturbed).
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In terms of the N∆-structure in Figure 75 our

requirements for stability and performance are

NS
def⇔ N is internally stable (8.17)

NP
def⇔ ‖N22‖∞ < 1; and NS (8.18)

RS
def⇔ F = Fu(N,∆) is stable ∀∆, ‖∆‖∞ ≤ 1;

and NS (8.19)

RP
def⇔ ‖F‖∞ < 1, ∀∆, ‖∆‖∞ ≤ 1;

and NS (8.20)

Remark 1 Allowed perturbations. For simplicity

below we will use the shorthand notation

∀∆ and max
∆

(8.21)

to mean “for all ∆’s in the set of allowed perturbations”,

and “maximizing over all ∆’s in the set of allowed

perturbations”. By allowed perturbations we mean that

the H∞ norm of ∆ is less or equal to 1, ‖∆‖∞ ≤ 1, and

that ∆ has a specified block-diagonal structure.
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8.5 Robust stability of the

M∆-structure [8.5]

Consider the uncertain N∆-system in Figure 75 for

which the transfer function from w to z is, as in

(8.16), given by

Fu(N,∆) = N22 +N21∆(I −N11∆)−1N12 (8.22)

Suppose that the system is nominally stable (with

∆ = 0), that is, N is stable. We also assume that ∆

is stable. Thus, when we have nominal stability

(NS), the stability of the system in Figure 75 is

equivalent to the stability of the M∆-structure in

Figure 76 where M = N11.
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Theorem 10 Determinant stability condition

(Real or complex perturbations). Assume that

the nominal system M(s) and the perturbations ∆(s)

are stable. Consider the convex set of perturbations

∆, such that if ∆′ is an allowed perturbation then so

is c∆′ where c is any real scalar such that |c| ≤ 1.

Then the M∆-system in Figure 76 is stable for all

allowed perturbations (we have RS) if and only if

Nyquist plot of det (I −M(s)∆(s)) does not

encircle the origin, ∀∆ (8.23)

⇔ det (I −M(jω)∆(jω)) 6= 0, ∀ω, ∀∆

(8.24)

⇔ λi(M∆) 6= 1, ∀i, ∀ω, ∀∆ (8.25)
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8.6 RS for complex unstructured

uncertainty [8.6]

Theorem 11 RS for unstructured (“full”)

perturbations. Assume that the nominal system

M(s) is stable (NS) and that the perturbations ∆(s)

are stable. Then the M∆-system in Figure 76 is

stable for all perturbations ∆ satisfying ‖∆‖∞ ≤ 1

(i.e. we have RS) if and only if

σ̄(M(jω)) < 1 ∀w ⇔ ‖M‖∞ < 1 (8.26)
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8.6.1 * Application of the unstructured

RS-condition [8.6.1]

We will now present necessary and sufficient

conditions for robust stability (RS) for each of the six

single unstructured perturbations in Figure 78. with

E = W2∆W1, ‖∆‖∞ ≤ 1 (8.27)

To derive the matrix M we simply “isolate” the

perturbation, and determine the transfer function

matrix

M = W1M0W2 (8.28)

from the output to the input of the perturbation,

where M0 for each of the six cases (disregarding

some negative signs which do not affect the

subsequent robustness condition) is given by

Gp = G+EA : M0 = K(I +GK)−1 = KS

Gp = G(I +EI) : M0 = K(I +GK)−1G = TI

Gp = (I +EO)G : M0 = GK(I +GK)−1 = T

Gp = G(I −EiAG)−1 : M0 = (I +GK)−1G = SG

Gp = G(I − EiI)
−1 : M0 = (I +KG)−1 = SI

Gp = (I −EiO)−1G : M0 = (I +GK)−1 = S

(8.29)
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Theorem 11 then yields

RS ⇔ ‖W1M0W2(jω)‖∞ < 1, ∀ w (8.30)

For instance, from second equation in (8.29) and

(8.30) we get for multiplicative input uncertainty

with a scalar weight:

RS ∀Gp = G(I+wI∆I), ‖∆I‖∞ ≤ 1 ⇔ ‖wITI‖∞ < 1

(8.31)

Note that the SISO-condition (4.15) follows as a

special case of (8.31). Similarly, (4.21) follows as a

special case of the inverse multiplicative output

uncertainty in (8.29):

RS ∀Gp = (I − wiO∆iO)−1G,

‖∆iO‖∞ ≤ 1 ⇔ ‖wiOS‖∞ < 1 (8.32)

In general, the unstructured uncertainty descriptions

in terms of a single perturbation are not “tight”.
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8.7 RS with structured uncertainty:

Motivation [8.7]

- -

���

-

D D−1

DD−1 M

∆1

∆2
.
.
.

SAME UNCERTAINTY

NEW M : DMD−1

Figure 80: Use of block-diagonal scalings, ∆D = D∆

Consider now the presence of structured uncertainty,

where ∆ = diag{∆i} is block-diagonal. To test for

robust stability we rearrange the system into the

M∆-structure and we have from (8.26)

RS if σ̄(M(jω)) < 1, ∀ω (8.33)
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We have here written “if” rather than “if and only

if” since this condition is only necessary for RS when

∆ has “no structure” (full-block uncertainty). To

reduce conservatism introduce the block-diagonal

scaling matrix

D = diag{diIi} (8.34)

where di is a scalar and Ii is an identity matrix of the

same dimension as the i’th perturbation block, ∆i

(Figure 80). This clearly has no effect on stability.

RS if σ̄(DMD−1) < 1, ∀ω (8.35)

This applies for any D in (8.34), and therefore the

“most improved” (least conservative) RS-condition is

obtained by minimizing at each frequency the scaled

singular value, and we have

RS if minD(ω)∈D σ̄(D(ω)M(jω)D(ω)−1) < 1, ∀ω
(8.36)

where D is the set of block-diagonal matrices whose

structure is compatible to that of ∆, i.e, ∆D = D∆.
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8.8 The structured singular value [8.8]

The structured singular value (denoted Mu, mu, SSV

or µ) is a function which provides a generalization of

the singular value, σ̄, and the spectral radius, ρ. We

will use µ to get necessary and sufficient conditions

for robust stability and also for robust performance.

How is µ defined? A simple statement is:

Find the smallest structured ∆ (measured in terms

of σ̄(∆)) which makes det(I −M∆) = 0; then

µ(M) = 1/σ̄(∆).

Mathematically,

µ(M)−1 ∆
= min

∆
{σ̄(∆)| det(I−M∆) = 0 for structured ∆}

(8.37)

Clearly, µ(M) depends not only on M but also on

the allowed structure for ∆. This is sometimes

shown explicitly by using the notation µ∆(M).

Remark. For the case where ∆ is “unstructured” (a full

matrix), the smallest ∆ which yields singularity has

σ̄(∆) = 1/σ̄(M), and we have µ(M) = σ̄(M).
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Example 5 Full perturbation (∆ is unstructured).

Consider

M =
[

2 2

−1 −1

]
=

=
[

0.894 0.447

−0.447 0.894

][
3.162 0

0 0

][
0.707 −0.707

0.707 0.707

]H

(8.38)

The perturbation

∆ = 1
σ1

v1u
H
1 = 1

3.162

[
0.707

0.707

]
[ 0.894 −0.447 ] =

=
[

0.200 0.200

−0.100 −0.100

]
(8.39)

with σ̄(∆) = 1/σ̄(M) = 1/3.162 = 0.316 makes

det(I − M∆) = 0. Thus µ(M) = 3.162 when ∆ is a full

matrix.

Note that the perturbation ∆ in (8.39) is a full

matrix. If we restrict ∆ to be diagonal then we need

a larger perturbation to make det(I −M∆) = 0.

This is illustrated next.
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Example 5 continued. Diagonal perturbation (∆

is structured). For the matrix M in (8.38), the smallest

diagonal ∆ which makes det(I − M∆) = 0 is

∆ =
1

3

[
1 0

0 −1

]
(8.40)

with σ̄(∆) = 0.333. Thus µ(M) = 3 when ∆ is a diagonal

matrix.

Definition 2 Structured Singular Value. Let M

be a given complex matrix and let ∆ = diag{∆i}
denote a set of complex matrices with σ̄(∆) ≤ 1 and

with a given block-diagonal structure (in which some

of the blocks may be repeated and some may be

restricted to be real). The real non-negative function

µ(M), called the structured singular value, is defined

by

µ(M)
∆
=

1

min{km| det(I − kmM∆) = 0, σ̄(∆) ≤ 1}
(8.41)

If no such structured ∆ exists then µ(M) = 0.

A value of µ = 1 means that there exists a

perturbation with σ̄(∆) = 1 which is just large

enough to make I −M∆ singular. A larger value of

µ is “bad” as it means that a smaller perturbation

makes I −M∆ singular, whereas a smaller value of µ

is “good”.
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8.9 Robust stability with structured

uncertainty [8.9]

Consider stability of the M∆-structure in Figure 76

for the case where ∆ is a set of norm-bounded

block-diagonal perturbations.

Theorem 12 RS for block-diagonal

perturbations (real or complex). Assume that

the nominal system M and the perturbations ∆ are

stable. Then the M∆-system in Figure 76 is stable

for all allowed perturbations with σ̄(∆) ≤ 1, ∀ω,

if and only if

µ(M(jω)) < 1, ∀ω (8.42)

Condition (8.42) for robust stability may be

rewritten as

RS ⇔ µ(M(jω)) σ̄(∆(jω)) < 1, ∀ω (8.43)

which may be interpreted as a “generalized small

gain theorem” that also takes into account the

structure of ∆.
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Example 6 RS with diagonal input uncertainty

Consider robust stability of the feedback system in

Figure 79 for the case when the multiplicative input

uncertainty is diagonal. A nominal 2 × 2 plant and the

controller (which represents PI-control of a distillation

process using the DV-configuration) is given by

G(s) = 1
τs+1

[
−87.8 1.4

−108.2 −1.4

]
;

K(s) = 1+τs
s

[
−0.0015 0

0 −0.075

]
(8.44)

(time in minutes). The controller results in a nominally

stable system with acceptable performance. Assume there

is complex multiplicative uncertainty in each manipulated

input of magnitude

wI(s) =
s + 0.2

0.5s + 1
(8.45)

On rearranging the block diagram to match the

M∆-structure in Figure 76 we get

M = wIKG(I + KG)−1 = wITI (recall (8.15)), and the

RS-condition µ(M) < 1 in Theorem 12 yields

RS ⇔ µ∆I
(TI) <

1

|wI(jω)|
∀ω, ∆I =

[
δ1

δ2

]

(8.46)

This condition is shown graphically in Figure 81 so the
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system is robustly stable. Also in Figure 81, σ̄(TI) can be

seen to be larger than 1/|wI(jω)| over a wide frequency

range. This shows that the system would be unstable for

full-block input uncertainty (∆I full).
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a
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u
d
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Figure 81: Robust stability for diagonal input uncer-

tainty is guaranteed since µ∆I
(TI) < 1/|wI |, ∀ω. The

use of unstructured uncertainty and σ̄(TI) is conserv-

ative
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8.10 Robust performance [8.10]

With an H∞ performance objective, the

RP-condition is identical to a RS-condition with an

additional perturbation block.

In Figure 82 step B is the key step.

∆P (where capital P denotes Performance) is always

a full matrix. It is a fictitious uncertainty block

representing the H∞ performance specification.

8.10.1 Testing RP using µ [8.10.1]

Theorem 13 Robust performance. Rearrange

the uncertain system into the N∆-structure of

Figure 82. Assume nominal stability such that N is

(internally) stable. Then

RP
def⇔ ‖F‖∞ = ‖Fu(N,∆)‖∞ < 1, ∀‖∆‖∞ ≤ 1

⇔ µ
∆̂

(N(jω)) < 1, ∀w (8.47)

where µ is computed with respect to the structure

∆̂ =

[
∆ 0

0 ∆P

]
(8.48)

and ∆P is a full complex perturbation with the same

dimensions as FT .
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∆
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(RS theorem)m
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STEP D m

N

Figure 82: RP as a special case of structured RS. F =

Fu(N,∆)
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8.10.2 Summary of µ-conditions for NP, RS

and RP [8.10.2]

Rearrange the uncertain system into the N∆-

structure, where the block- diagonal perturbations

satisfy ‖∆‖∞ ≤ 1.

Introduce

F = Fu(N,∆) = N22 +N21∆(I −N11∆)−1N12

and let the performance requirement (RP) be

‖F‖∞ ≤ 1 for all allowable perturbations. Then we

have:

NS ⇔ N (internally) stable (8.49)

NP ⇔ σ̄(N22) = µ∆P
< 1, ∀ω, and NS (8.50)

RS ⇔ µ∆(N11) < 1, ∀ω, and NS (8.51)

RP ⇔ µ
∆̂

(N) < 1, ∀ω, ∆̂ =

[
∆ 0

0 ∆P

]
,

and NS (8.52)

Here ∆ is a block-diagonal matrix (its detailed

structure depends on the uncertainty we are

representing), whereas ∆P always is a full complex

matrix. Note that nominal stability (NS) must be

tested separately in all cases.
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What does µ = 1.1 for RP mean?

Our RP-requirement would be satisfied exactly if we

reduced both the performance requirement and the

uncertainty by a factor of 1.1.

To find the worst-case weighted performance for a

given uncertainty, one needs to keep the magnitude

of the perturbations fixed (σ̄(∆) ≤ 1).

To find µs numerically, we scale the performance

part of N by a factor km = 1/µs and iterate on km

until µ = 1. That is, at each frequency “skewed-µ” is

the value µs(N) which solves

µ(KmN) = 1, Km =

[
I 0

0 1/µs

]
(8.53)

Note that µ underestimates how bad or good the

actual worst-case performance is. This follows

because µs(N) is always further from 1 than µ(N).
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8.11 * Application: RP with input

uncertainty [8.11]

c c cp p-

- -

- - ---?
6

?

�

-
- -

-
+

+
+

+

WI ∆I

K G WP

w

z

⇓
∆I

zw N

Figure 83: Robust performance of system with input

uncertainty
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8.11.1 Interconnection matrix [8.11.1]

On rearranging the system into the N∆-structure, as

shown in Figure 83, we get

N =

[
wITI wIKS

wPSG wPS

]
(8.54)

where TI = KG(I +KG)−1, S = (I +GK)−1 and

for simplicity we have omitted the negative signs in

the 1,1 and 1,2 blocks of N , since µ(N) = µ(UN)

with unitary U =
[
−I 0

0 I

]
.

For a given controller K we can now test for NS, NP,

RS and RP using (8.49)-(8.52). Here ∆ = ∆I may be

a full or diagonal matrix (depending on the physical

situation).
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8.11.2 RP with input uncertainty for SISO

system [8.11.2]

For a SISO system, conditions (8.49)-(8.52) with N

as in (8.54) become

NS ⇔ S, SG, KS and TI are stable (8.55)

NP ⇔ |wPS| < 1, ∀ω (8.56)

RS ⇔ |wITI | < 1, ∀ω (8.57)

RP ⇔ |wPS| + |wITI | < 1, ∀ω (8.58)
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8.11.3 Robust performance for 2 × 2

distillation process [8.11.3]

Consider again the distillation process example from

Chapter 3 (Motivating Example No. 2) and the

corresponding inverse-based controller:

G(s) =
1

75s+ 1

[
87.8 −86.4

108.2 −109.6

]
; (8.59)

K(s) =
0.7

s
G(s)−1 (8.60)

The controller provides a nominally decoupled

system with

L = l I, S = ǫI and T = tI (8.61)

where

l =
0.7

s
, ǫ =

1

1 + l
=

s

s+ 0.7
,

t = 1 − ǫ =
0.7

s+ 0.7
=

1

1.43s+ 1

We have used ǫ for the nominal sensitivity in each

loop to distinguish it from the Laplace variable s.
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Weights for uncertainty and performance:

wI(s) =
s + 0.2

0.5s + 1
; wP (s) =

s/2 + 0.05

s
(8.62)

The weight wI(s) may approximately represent a 20%

gain error and a neglected time delay of 0.9 min. |wI(jω)|

levels off at 2 (200% uncertainty) at high frequencies.

The performance weight wP (s) specifies integral action, a

closed-loop bandwidth of about 0.05 [rad/min] (which is

relatively slow in the presence of an allowed time delay of

0.9 min) and a maximum peak for σ̄(S) of Ms = 2.
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Figure 84: µ-plots for distillation process with decou-

pling controller
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NS Yes.

NP With the decoupling controller we have

σ̄(N22) = σ̄(wPS) =

∣∣∣∣
s/2 + 0.05

s+ 0.7

∣∣∣∣

(dash-dotted line in Figure 84 ⇐ NP is OK.)

RS Since in this case wITI = wIT is a scalar times

the identity matrix, we have, independent of the

structure of ∆I , that

µ∆I
(wITI) = |wIt| =

∣∣∣∣0.2
5s+ 1

(0.5s+ 1)(1.43s+ 1)

∣∣∣∣

and we see from the dashed line in Figure 84

that RS is OK.

RP Poor.
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Table 3: Matlab program for µ-analysis
% Uses the Robust Control toolbox

G0=[87.8 -86.4; 108.2 -109.6];

G=tf([1],[75 1])*G0;

G=minreal(ss(G));

%

% Inverse-based controller

%

Kinv=0.7*tf([75 1],[1 1e-5])*inv(G0);

%

% Weights

%

Wp=0.5*tf([10 1],[10 1e-5])*eye(2);

Wi=tf([1 0.2],[0.5 1])*eye(2);

%

% Generalized plant P

%

systemnames = ’G Wp Wi’;

inputvar = ’[ydel(2); w(2) ; u(2)]’;

outputvar = ’[Wi ; Wp ; -G-w]’;

input to G = ’[u+ydel]’;

input to Wp = ’[G+w]’;

input to Wi = ’[u]’;

sysoutname = ’P’;

cleanupsysic= ’yes’; sysic;

%

N=lft(P,Kinv);

omega = logspace(-3,3,61); Nf=frd(N,omega);

%

% mu for RP

%

blk=[1 1; 1 1; 2 2];

[mubnds,muinfo]=mussv(Nf,blk,’c’);

muRP=mubnds(:,1); [muRPinf,muRPw] = norm(muRP,inf); % (ans =5.7726)

%

%

% cont. on next page
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Table 4: Matlab program for µ-analysis (cont.)
%

% Worst case weighted sensitivity

%

delta = [ultidyn(’del1’,[1 1]) 0;0 ultidyn(’del2’,[1 1])];

Np = lft(delta,N); %Perturbed model

opt = wcgopt(’ABadThreshold’,100);

Npw = wcgain(Np,opt); % (ans = 44.98 for

% delta = 1)

% mu for RS

%

Nrs=Nf(1:2,1:2); % Picking out WiTi

[mubnds,muinfo]=mussv(Nrs,[1 1; 1 1],’c’);

muRS=mubnds(:,1); [muRSinf,muRSw]=norm(muRS,inf) % (ans = 0.5242)

%

% mu for NS (=max. singular value of Nnp)

%

Nnp=Nf(3:4,3:4); % Picking out wP*Si

[mubnds,muinfo]=mussv(Nnp,[1 1;1 1],’c’);

muNS=mubnds(:,1); [muNSinf,muNSw]=norm(muNS,inf) % (ans = 0.500)

bodemag(muRP,’’,muRS,’--’,muNS,’-.’,omega)
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8.12 µ-synthesis and DK-iteration

[8.12]

The structured singular value µ is a very powerful

tool for the analysis of robust performance with a

given controller. However, one may also seek to find

the controller that minimizes a given µ-condition:

this is the µ-synthesis problem.

8.12.1 DK-iteration [8.12.1]

At present there is no direct method to synthesize a

µ-optimal controller. However, for complex

perturbations a method known as DK-iteration is

available. It combines H∞-synthesis and µ-analysis,

and often yields good results. The starting point is

the upper bound on µ in terms of the scaled singular

value

µ(N) ≤ min
D∈D

σ̄(DND−1)
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The idea is to find the controller that minimizes the

peak value over frequency of this upper bound,

namely

min
K

(min
D∈D

‖DN(K)D−1‖∞) (8.63)

by alternating between minimizing ‖DN(K)D−1‖∞
with respect to either K or D (while holding the

other fixed).

1. K-step. Synthesize an H∞ controller for the

scaled problem,

minK ‖DN(K)D−1‖∞ with fixed D(s).

2. D-step. Find D(jω) to minimize at each

frequency σ̄(DND−1(jω)) with fixed N .

3. Fit the magnitude of each element of D(jω) to a

stable and minimum phase transfer function

D(s) and go to Step 1.
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8.12.2 * Example: µ-synthesis with

DK-iteration [8.12.4]

Simplified distillation process

G(s) =
1

75s + 1

[
87.8 −86.4

108.2 −109.6

]
(8.64)

The uncertainty weight wII and performance weight wP I

are given in (8.62), and are shown graphically in

Figure 85. The objective is to minimize the peak value of

µ
∆̃

(N), where N is given in (8.54) and

∆̃ = diag{∆I , ∆P }. We will consider diagonal input

uncertainty (which is always present in any real

problem), so ∆I is a 2 × 2 diagonal matrix. ∆P is a full

2 × 2 matrix representing the performance specification.
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Figure 85: Uncertainty and performance weights. Notice that there is a

frequency range (“window”) where both weights are less than one in magni-

tude.
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Table 5: Matlab program to perform DK-iteration
% Uses the Robust Control toolbox

G0 = [87.8 -86.4; 108.2 -109.6]; % Distillation

dyn = tf(1,[75 1]); G=dyn*eye(2)*G0; % process.

%

% Weights.

%

Wp = 0.5*tf([10 1],[10 1.e-5])*eye(2); % Approximated

Wi = tf([1 0.2],[0.5 1])*eye(2); % integrator.

%

% Generalized plant P. %

systemnames = ’G Wp Wi’;

inputvar = ’[udel(2); w(2) ; u(2)]’;

outputvar = ’[Wi; Wp; -G-w]’;

input to G = ’[u+udel]’;

input to Wp = ’[G+w]’; input to Wi = ’[u]’;

sysoutname = ’P’; cleanupsysic = ’yes’;

sysic;

P = minreal(ss(P));

%

% Initialize.

%

omega = logspace(-3,3,61);

blk = [1 1; 1 1; 2 2];

nmeas = 2; nu = 2; d0 = 1;

D = append(d0,d0,tf(eye(2)),tf(eye(2))); % Initial scaling.

%

% START ITERATION.

%

% STEP 1: Find H-infinity optimal controller

% with given scalings:

%

[K,Nsc,gamma,info] = hinfsyn(D*P*inv(D),nmeas,nu,....

’method’,’lmi’,’Tolgam’,1e-3);

Nf = frd(lft(P,K),omega);

8-42



Table 6: Matlab program to perform DK-iteration

(cont.)
%

% STEP 2: Compute mu using upper bound:

%

[mubnds,Info] = mussv(Nf,blk,’c’);

bodemag(mubnds(1,1),omega);

murp = norm(mubnds(1,1),inf,1e-6);

%

% STEP 3: Fit resulting D-scales:

%

[dsysl,dsysr] = mussvunwrap(Info);

dsysl = dsysl/dsysl(3,3);

d1 = fitfrd(genphase(dsysl(1,1)),4); % Choose 4th order.

%

% GOTO STEP 1 (unless satisfied with murp).

%

% Alternatively use automatic software

%

% Delta = [ultidyn(’D 1’,[1 1]) 0;0 ultidyn(’D 2’,[1 1])]; % Diagonal uncertainty.

% Punc = lft(Delta,P);

% opt = dkitopt(’FrequencyVector’,omega);

% [K,clp,bnd,dkinfo] = dksyn(Punc,nmeas,nu,opt);
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Iteration No. 1.

Step 1: With the initial scalings, D0 = I, the H∞
software produced a 6 state controller (2 states from

the plant model and 2 from each of the weights) with

an H∞ norm of γ = 1.1798.

Step 2: The upper µ-bound gave the µ-curve shown

as curve “Iter. 1” in Figure 86, corresponding to a

peak value of µ=1.1798.

Step 3: The frequency-dependent d1(ω) and d2(ω)

from Step 2 were each fitted using a 4th order

transfer function. d1(w) and the fitted 4th-order

transfer function (dotted line) are shown in

Figure 87 and labelled “Iter. 1”.

Iteration No. 2.

Step 1: With the 8 state scaling D1(s) the H∞
software gave a 22 state controller and

‖D1N(D1)−1‖∞ = 1.0274.

Iteration No. 3.

Step 1: With the scalings D2(s) the H∞ norm was

only slightly reduced from 1.0274 to 1.0208.
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10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

....

Iter. 1

Iter. 2

Initial

Optimal

4th order fit

Frequency [rad/min]

M
a
g
n
it
u
d
e
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9 Controller Design [9]

9.1 Trade-offs in MIMO feedback

design [9.1]
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Figure 89: One degree-of-freedom feedback

y(s) = T (s)r(s) + S(s)d(s) − T (s)n(s) (9.1)

u(s) = K(s)S(s) [r(s) − n(s) − d(s)] (9.2)
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Closed-loop objectives:

1. For disturbance rejection make σ̄(S) small.

2. For noise attenuation make σ̄(T ) small.

3. For reference tracking make σ̄(T ) ≈ σ(T ) ≈ 1.

4. For input usage (control energy) reduction make

σ̄(KS) small.

5. For robust stability in the presence of an additive

perturbation make σ̄(KS) small.

6. For robust stability in the presence of a

multiplicative output perturbation make σ̄(T )

small.

The closed-loop requirements 1 to 6 cannot all be

satisfied simultaneously. Feedback design is therefore

a trade-off over frequency of conflicting objectives.
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Over specified frequency ranges, we can approximate

the closed-loop requirements by the following

open-loop objectives:

1. For disturbance rejection make σ(GK) large;

valid for frequencies at which σ(GK) ≫ 1.

2. For noise attenuation make σ̄(GK) small; valid

for frequencies at which σ̄(GK) ≪ 1.

3. For reference tracking make σ(GK) large; valid

for frequencies at which σ(GK) ≫ 1.

4. For input usage (control energy) reduction make

σ̄(K) small; valid for frequencies at which

σ̄(GK) ≪ 1.

5. For robust stability to an additive perturbation

make σ̄(K) small; valid for frequencies at which

σ̄(GK) ≪ 1.

6. For robust stability to a multiplicative output

perturbation make σ̄(GK) small; valid for

frequencies at which σ̄(GK) ≪ 1.
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9.2 General control problem

formulation [9.3.1]

- -

�

-
w z

vu

P

K

Figure 90: General control configuration


 z

v


 = P (s)


 w

u


 =


 P11(s) P12(s)

P21(s) P22(s)




 w

u




(9.3)

u = K(s)v (9.4)
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The state-space realization of the generalized plant

P is given by

P
s
=




A B1 B2

C1 D11 D12

C2 D21 D22


 (9.5)

z = Fl(P,K)w (9.6)

where

Fl(P,K) = P11 + P12K(I − P22K)−1P21 (9.7)

H2 and H∞ control involve the minimization of the

H2 and H∞ norms of Fl(P,K) respectively.
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9.3 H2 optimal control [9.3.2]

The standard H2 optimal control problem is to find

a stabilizing controller K which minimizes

‖ F (s)‖2 =

√
1

2π

∫ ∞

−∞
tr [F (jω)F (jω)H ] dω; (9.8)

F
△
= Fl(P,K) (9.9)

For a particular problem the generalized plant P will

include the plant model, the interconnection

structure, and the designer specified weighting

functions. This is illustrated for the LQG problem in

the next subsection.

Stochastic interpretation: suppose in the general

control configuration that the exogenous input w is

white noise of unit intensity. That is:

E
{
w(t)w(τ)T

}
= Iδ(t− τ) (9.10)
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The expected power in the error signal z is then

given by:

E

{
lim

T→∞

1

2T

∫ T

−T

z(t)T z(t)dt

}
(9.11)

= tr E
{
z(t)z(t)T

}

=
1

2π

∫ ∞

−∞
tr
[
F (jω)F (jω)H

]
dω

(by Parseval’s Theorem)

= ‖F‖2
2 = ‖Fl(P,K)‖2

2 (9.12)

Thus, by minimizing the H2 norm, the output (or

error) power of the generalized system, due to a unit

intensity white noise input, is minimized; we are

minimizing the root-mean-square (rms) value of z.
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9.3.1 LQG: a special H2 optimal controller

[9.3.3]

Linear-Quadratic-Gaussian Control: linear model,

quadratic cost functional, gaussian noise.

ẋ = Ax+Bu+ wd (9.13)

y = Cx+ wn (9.14)

where:

E

{[
wd(t)

wn(t)

]
[wd(τ)

T wn(τ)T ]

}
=

[
W 0

0 V

]
δ(t−τ)
(9.15)

The LQG problem is to find u = K(s)y such that

J = E

{
lim

T→∞

1

T

∫ T

0

[
xTQx+ uTRu

]
dt

}
(9.16)

is minimized with Q = QT ≥ 0 and R = RT > 0.
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Define:

z =

[
Q

1
2 0

0 R
1
2

] [
x

u

]
(9.17)

and represent the stochastic inputs wd, wn as
[
wd

wn

]
=

[
W

1
2 0

0 V
1
2

]
w (9.18)

where w is a white noise process of unit intensity.

Then the LQG cost function is

J = E

{
lim

T→∞

1

T

∫ T

0

z(t)T z(t)dt

}
= ‖Fl(P,K)‖2

2

(9.19)

where

z(s) = Fl(P,K)w(s) (9.20)

and the generalized plant P is given by

P =


 P11 P12

P21 P22


 s

=




A W
1
2 0 B

Q
1
2 0 0 0

0 0 0 R
1
2

C 0
- - - - - - - - - - - - - - - - -

V
1
2 0
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Figure 91: The LQG problem: general control config-

uration
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9.4 H∞ optimal control [9.3.4]

With reference to the general control configuration of

Figure 90, the standard H∞ optimal control problem

is to find all stabilizing controllers K which minimize

‖Fl(P,K)‖∞ = max
ω

σ̄(Fl(P,K)(jω)) (9.21)

This has a time domain interpretation as the induced

(worst-case) 2-norm. Let z = Fl(P,K)w, then

‖Fl(P,K)‖∞ = max
w(t) 6=0

‖z(t)‖2

‖w(t)‖2
(9.22)

where ‖z(t)‖2 =
√∫∞

0

∑
i |zi(t)|2dt is the 2-norm of

the vector signal.

It is often computationally (and theoretically)

simpler to design a sub-optimal one (i.e. one close to

the optimal controller in the sense of the H∞ norm).

Let γmin be the minimum value of ‖Fl(P,K)‖∞ over

all stabilizing controllers K. Then the H∞
sub-optimal control problem is: given a γ > γmin,

find all stabilizing controllers K such that

‖Fl(P,K)‖∞ < γ

9-11



9.4.1 Mixed-sensitivity H∞ control [9.3.5]

To optimize performance, minimize ‖w1S‖∞,

to minimize control inputs, minimize ‖w2KS‖∞.

Compromise: ∥∥∥∥
[
w1S

w2KS

]∥∥∥∥
∞

(9.23)

General setting: disturbance d as a single exogenous

input, error signal z =
[
zT
1 zT

2

]T
, where

z1 = W1y and z2 = −W2u, ( 92).

c cq q- -

-

-

?

-

-

6

�

-

w = d
z1

z2



 z

P

K

G

W1

−W2

y
-

+

Setpoint r = 0 vu

+

+

Figure 92: S/KS mixed-sensitivity optimization in

standard form (regulation)
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Thus z1 = W1Sw and z2 = W2KSw and:

P11 =


 W1

0


 P12 =


 W1G

−W2




P21 = −I P22 = −G
(9.24)

where the partitioning is such that




z1

z2
- - -
v


 =


 P11 P12

P21 P22




 w

u


 (9.25)

and

Fl(P,K) =


 W1S

W2KS


 (9.26)

9-13



Another useful mixed sensitivity optimization

problem, is to find a stabilizing controller which

minimizes ∥∥∥∥∥∥


 W1S

W2T



∥∥∥∥∥∥
∞

(9.27)

The S/T mixed-sensitivity minimization problem can

be put into the standard control configuration as

shown in Figure 93.

cq q-

-

-

?

-

-

�

-

w = r
z1

z2




z

P

K

G

W1

W2

vu

+
-

Figure 93: S/T mixed-sensitivity optimization in

standard form
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P11 =


 W1

0


 P12 =


 −W1G

W2G




P21 = I P22 = −G
(9.28)
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9.5 Helicopter control [13.2]

9.5.1 Problem description [13.2.1]

Objective: reduce the effects of atmospheric

turbulence on helicopters. The reduction of the

effects of gusts is very important in reducing a pilot’s

workload, and enables aggressive maneuvers to be

carried out in poor weather conditions. Also, as a

consequence of decreased buffeting, the airframe and

component lives are lengthened and passenger

comfort is increased.

9.5.2 The helicopter model [13.2.2]

The aircraft model used in our work is representative

of the Westland Lynx, a twin-engined multi-purpose

military helicopter, approximately 9000 lbs gross

weight, with a four-blade semi-rigid main rotor. The

unaugmented aircraft is unstable, and exhibits many

of the cross-couplings characteristic of a single

main-rotor helicopter.
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The equations governing the motion of the helicopter

are complex and difficult to formulate with high

levels of precision.

State Description

θ Pitch attitude

φ Roll attitude

p Roll rate (body-axis)

q Pitch rate (body-axis)

ξ Yaw rate

vx Forward velocity

vy Lateral velocity

vz Vertical velocity

Table 7: Helicopter state vector

The starting point for this study was to obtain an

eighth-order differential equation modelling the

small-perturbation rigid motion of the aircraft about

hover.

9-17



Controlled outputs:

• Heave velocity Ḣ

• Pitch attitude θ

• Roll attitude φ

• Heading rate ψ̇




y1

together with two additional (body-axis)

measurements

• Roll rate p

• Pitch rate q

}
y2

The controller (or pilot in manual control) generates

four blade angle demands which are effectively the

helicopter inputs. The blade angles are

• main rotor collective

• longitudinal cyclic

• lateral cyclic

• tail rotor collective




u

Note: dynamics unstable, non-minimum phase.
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Goal

full-authority controllers: the controller has total

control over the blade angles of the main and tail

rotors, and is interposed between the pilot and the

actuation system.

One degree-of-freedom controllers as shown in

Figure 94 are to be designed.

Notice that in the standard one degree-of-freedom

configuration the pilot reference commands r1 are

augmented by a zero vector because of the rate

feedback signals. These zeros indicate that there are

no a priori performance specifications on

y2 = [ p q ]
T
.
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Figure 94: Helicopter control structure (a) as im-

plemented, (b) in the standard one degree-of-freedom

configuration
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9.5.3 H∞ mixed-sensitivity design [13.2.3]

d q q q- - - - -

-

- -

-

6
r yK G

W2

W1

W3




z

u-

+

Figure 95: S/KS mixed-sensitivity minimization

Find a stabilizing controller K to minimize the cost

function ∥∥∥∥∥∥


 W1SW3

W2KSW3



∥∥∥∥∥∥
∞

(9.29)

(This cost was considered by Yue and Postlethwaite

(1990) in the context of helicopter control. Their

controller was successfully tested on a piloted flight

simulator at DRA Bedford)
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W1 = diag
{

0.5
s + 12

s + 0.012
, 0.89

s + 2.81

s + 0.005
,

0.89
s + 2.81

s + 0.005
, 0.5

s + 10

s + 0.01
,

2s

(s + 4)(s + 4.5)
,

2s

(s + 4)(s + 4.5)

}
(9.30)

W2 = 0.5
s + 0.0001

s + 10
I4 (9.31)

W3 = diag {1, 1, 1, 1, 0.1, 0.1} (9.32)

rad-sec10−310−210−1 100 101 102 103

101

100

10−1

10−2

10−3

(a) S

rad-s10−310−210−1 100 101 102 103

103

102

101

100

10−1

10−2

10−3

(b) KS

Figure 96: Singular values of S and KS (S/KS de-

sign)
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10 * Linear Matrix Inequalities

[12]

A real square matrix Q is defined to be positive

definite if

xTQx > 0 ∀x 6= 0 (Q > 0) (10.1)

and Q is said to be positive semi-definite if

xTQx ≥ 0 ∀x (Q ≥ 0) (10.2)

Likewise, a matrix P = −Q is said to be negative

(semi-)definite if Q is positive (semi-)definite and to

indicate negative (semi-)definiteness, we write

P < 0 (P ≤ 0).

LMIs are matrix inequalities which are linear (or

affine) in a set of matrix variables. The basic

structure of an LMI is

F (x) = F0 +
m∑

i=1

xiFi > 0 (10.3)

where x ∈ Rm is a variable and F0, Fi are given

constant symmetric real matrices.

• Efficient LMI solvers available to obtain reliable

numerical calculations.
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• Relatively straightforward to pose a variety of

problems as LMI problems.

• Often LMI methods can be applied where

conventional methods either fail or struggle to

find a solution.

10.1 Systems of LMIs [12.1.2]

In general, we are frequently faced with LMI

constraints of the form

F1(X1, . . . , Xn) > 0 (10.4)

...

Fp(X1, . . . , Xn) > 0 (10.5)

where

Fj(X1, . . . , Xn) = F0j +
n∑

i=1

GijXiHij (10.6)
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However, it is easily seen that, by defining

F̃0, G̃i, H̃i, X̃i as

F̃0 = diag(F01, . . . , F0p) (10.7)

G̃i = diag(Gi1, . . . , Gip) (10.8)

H̃i = diag(Hi1, . . . , Hip) (10.9)

X̃i = diag(Xi, . . .Xi) (10.10)

we actually have the inequality

Fbig(X1, . . . , Xn)
∆
= F̃0 +

n∑

i=1

G̃iX̃iH̃i > 0 (10.11)

That is, we can represent a (big) system of LMIs as a

single LMI. Therefore:

• we do not distinguish a single LMI from a

system of LMIs

• it is easy to combine matrix variables or to add

additional constraints (e.g. for pole placement,

combination of H2/H∞controller design, ...)
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10.2 Types of LMI problems [12.2]

10.2.1 LMI feasibility problems

These are simply problems for which we seek a

feasible solution {X1, . . . , Xn} such that

F (X1, . . . , Xn) > 0 (10.12)

We are not interested in the optimality of the

solution, only in finding a solution, which may not be

unique.

Example 7 Determining stability of a linear

system. Consider an autonomous linear system

ẋ = Ax (10.13)

then the Lyapunov LMI problem for proving stability of

this system (Re{λi(A)} < 0, ∀i) is to find a P > 0 such

that

AT P + PA < 0 (10.14)

This is an LMI feasibility problem in P > 0. Note that

the LMI (10.14) and the requirement P > 0 can be

combined into a single LMI as
[

AT P + PA 0

0 −P

]
< 0 (10.15)
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10.2.2 Linear objective minimization

problems [12.2.2]

These problems are also called eigenvalue problems.

They involve the minimization (or maximization) of

some linear/convex scalar function, α(.), of the

matrix variables, subject to LMI constraints:

minα(X1, . . . , Xn) (10.16)

s.t. F (X1, . . . , Xn) > 0 (10.17)

In this case, we are therefore trying to optimize some

quantity whilst ensuring some LMI constraints are

satisfied.

Example 8 Calculating the H∞norm of a linear

system. Consider a linear system

ẋ = Ax + Bw (10.18)

z = Cx + Dw (10.19)

then the problem of finding the H∞ norm of the transfer

function matrix Tzw from w to z is equivalent to the

following optimization problem in P > 0:

min γ (10.20)

s.t.




AT P + PA PB CT

BT P −γI DT

C D −γI


 < 0 (10.21)
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Note that although γ > 0 is unique, the uniqueness of

P > 0 is, in general, not guaranteed. The LMI problem

(10.20)–(10.21) can be easily solved using Matlab.

10.3 Tricks in LMI problems [12.3]

10.3.1 Change of variables

Many control problems can be posed as nonlinear

matrix inequalities. By defining new variables it is

sometimes possible to “linearize” the nonlinear

inequalities.

10.3.2 Congruence transformation

Often used to make a bilinear matrix inequality

linear.

For Q > 0, Q,W ∈ Rn×n and rank(W ) = n,

WQW T > 0 . (10.22)

⇒ definiteness of a matrix is invariant under pre-

and postmultiplication by a full rank real matrix.
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10.3.3 Schur complement

The main use of the Schur complement is to

transform quadratic matrix inequalities into LMIs.

Schur’s complement formula says that the following

statements are equivalent:

(i) Φ =


 Φ11 Φ12

ΦT
12 Φ22


 < 0

(ii) Φ22 < 0

Φ11 − Φ12Φ
−1
22 ΦT

12 < 0

Example 9 Making a quadratic inequality linear.

Consider the LQR-type matrix inequality (Riccati

inequality)

AT P + PA + PBR−1BT P + Q < 0 (10.23)

where P > 0 is the matrix variable and the other matrices

are constant with Q,R > 0. This inequality can be used

to minimize the cost function

J =

∫ ∞

0

(xT Qx + uT Ru)dt (10.24)
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If we now define

Φ11 := AT P + PA + Q (10.25)

Φ12 := PB (10.26)

Φ22 := −R (10.27)

and use the Schur complement identities we can

transform our Riccati inequality into
[

AT P + PA + Q PB

⋆ −R

]
< 0 (10.28)

In other words, we have transformed a quadratic matrix

inequality into an LMI.

10.3.4 The S-procedure

The S-procedure is essentially a method which

enables one to combine several quadratic inequalities

into one single inequality (generally with some

conservatism).

There are many instances in control engineering

when we would like to ensure that a single function

of x ∈ Rm is such that

F0(x) ≤ 0 whenever Fi(x) ≥ 0, i ∈ {1, ..., q}
(10.29)
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This holds if

F0(x) +

q∑

i=1

τiFi(x) ≤ 0, τi ≥ 0 (10.30)

In general the S-procedure is conservative; inequality

(10.30) implies inequality (10.29), but not vice versa.
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A MATRIX THEORY AND

NORMS

A.1 Basics

Complex Matrix A ∈ C l×m

Real Matrix A ∈ R l×m

elements aij = Re aij + j Im aij

l = number of rows

= “outputs” when viewed as an operator

m = number of columns

= “inputs” when viewed as an operator

• AT = transpose of A (with elements aji),

• Ā = conjugate of A (with elements

Re aij − j Im aij),

• AH ∆
= ĀT = conjugate transpose (or Hermitian

adjoint) (with elements Re aji − jIm aji),
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Matrix inverse:

A−1 =
adjA

detA
(A.1)

where adjA is the adjugate (or “classical adjoint”) of

A which is the transposed matrix of cofactors cij of

A,

cij = [adjA]ji
∆
= (−1)i+j detAij (A.2)

Here Aij is a submatrix formed by deleting row i and

column j of A.

Example:

A =

[
a11 a12

a21 a22

]
; detA = a11a22 − a12a21

A−1 =
1

detA

[
a22 −a12

−a21 a11

]
(A.3)

Some matrix identities:

(AB)T = BTAT , (AB)H = BHAH (A.4)

Assuming the inverses exist,

(AB)−1 = B−1A−1 (A.5)

A is symmetric if AT = A,

A is Hermitian if AH = A,

A Hermitian matrix is positive definite if xHAx > 0

for any non-zero vector x.
1-2



A.1.1 Some determinant identities

The determinant is defined as

detA =
∑n

i=1 aijcij (expansion along column j) or

detA =
∑n

j=1 aijcij (expansion along row i),

where cij is the ij’th cofactor given in (A.2).

1. Let A1 and A2 be square matrices of the same

dimension. Then

det(A1A2) = det(A2A1) = detA1 · detA2 (A.6)

2. Let c be a complex scalar and A an n× n

matrix. Then

det(cA) = cn det(A) (A.7)

3. Let A be a non-singular matrix. Then

detA−1 = 1/ detA (A.8)

4. Let A1 and A2 be matrices of compatible

dimensions such that both matrices A1A2 and

A2A1 are square (but A1 and A2 need not

themselves be square). Then

det(I +A1A2) = det(I +A2A1) (A.9)

(A.9) is useful in the field of control because it

yields det(I +GK) = det(I +KG).

1-3



5.

det

[
A11 A12

0 A22

]

= det

[
A11 0

A21 A22

]

= det(A11) · det(A22) (A.10)

6. Schur’s formula for the determinant of a

partitioned matrix:

det

[
A11 A12

A21 A22

]

= det(A11) · det(A22 −A21A
−1
11 A12)

= det(A22) · det(A11 −A12A
−1
22 A21)

(A.11)

where it is assumed that A11 and/or A22 are

non-singular.
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A.2 Eigenvalues and eigenvectors

Definition

Eigenvalues and eigenvectors. Let A be a square

n× n matrix. The eigenvalues λi, i = 1, . . . , n, are

the n solutions to the n’th order characteristic

equation

det(A− λI) = 0 (A.12)

The (right) eigenvector ti corresponding to the

eigenvalue λi is the nontrivial solution (ti 6= 0) to

(A− λiI)ti = 0 ⇔ Ati = λiti (A.13)

The corresponding left eigenvectors qi satisfy

qH
i (A− λiI) = 0 ⇔ qH

i A = λiq
H
i (A.14)

When we just say eigenvector we mean the right

eigenvector.
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Remarks

• The left eigenvectors of A are the (right)

eigenvectors of AH .

• ρ(A)
∆
= maxi |λi(A)| is the spectral radius of A.

• Eigenvectors corresponding to distinct

eigenvalues are always linearly independent.

• Define

T = {t1, t2, . . . , tn}; Λ = diag{λ1, λ2, . . . , λn}
(A.15)

where λ1, λ2, . . . , λn are distinct.

Then we may then write (A.13) in the following

form

AT = TΛ (A.16)

From (A.16) we then get that the eigenvector

matrix diagonalizes A in the following manner

Λ = T−1AT (A.17)
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A.2.1 Eigenvalue properties

1. trA =
∑

i λi where trA is the trace of A (sum of

the diagonal elements).

2. detA =
∏

i λi.

3. The eigenvalues of an upper or lower triangular

matrix are equal to the diagonal elements of the

matrix.

4. For a real matrix the eigenvalues are either real,

or occur in complex conjugate pairs.

5. A and AT have the same eigenvalues (but in

general different eigenvectors).

6. The eigenvalues of A−1 are 1/λ1, . . . , 1/λn.

7. The matrix A+ cI has eigenvalues λi + c.

8. The matrix cAk where k is an integer has

eigenvalues cλk
i .

9. Consider the l ×m matrix A and the m× l

matrix B. Then the l × l matrix AB and the

m×m matrix BA have the same non-zero

eigenvalues.
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10. Eigenvalues are invariant under similarity

transformations, that is, A and DAD−1 have the

same eigenvalues.

11. The same eigenvector matrix diagonalizes the

matrix A and the matrix (I +A)−1.

12. Gershgorin’s theorem. The eigenvalues of the

n× n matrix A lie in the union of n circles in the

complex plane, each with centre aii and radius

ri =
∑

j 6=i |aij | (sum of off-diagonal elements in

row i). They also lie in the union of n circles,

each with centre aii and radius r′i =
∑

j 6=i |aji|
(sum of off-diagonal elements in column i).

13. A symmetric matrix is positive definite if and

only if all its eigenvalues are real and positive.

From the above we have, for example, that

λi(S) = λi((I + L)−1) =
1

λi(I + L)
=

1

1 + λi(L)
(A.18)
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A.3 Singular Value Decomposition

Definition: Unitary matrix. A (complex) matrix

U is unitary if

UH = U−1 (A.19)

Note:

‖λ(U)‖ = 1 ∀i
Definition: SVD. Any complex l ×m matrix A

may be factorized into a singular value

decomposition

A = UΣV H (A.20)

where the l × l matrix U and the m × m matrix V are

unitary, and the l × m matrix Σ contains a diagonal

matrix Σ1 of real, non-negative singular values, σi,

arranged in a descending order as in

Σ =

[
Σ1

0

]
; l ≥ m (A.21)

or

Σ = [ Σ1 0 ] ; l ≤ m (A.22)

where

Σ1 = diag{σ1, σ2, . . . , σk}; k = min(l,m) (A.23)

and

σ̄
∆
= σ1 ≥ σ2 ≥ . . . ≥ σk

∆
= σ (A.24)

1-9



• The unitary matrices U and V form orthonormal

bases for the column (output) space and the row

(input) space of A. The column vectors of V ,

denoted vi, are called right or input singular

vectors and the column vectors of U , denoted ui,

are called left or output singular vectors. We

define ū ≡ u1, v̄ ≡ v1, u ≡ uk and v ≡ vk.

• SVD is not unique since A = U ′ΣV ′H , where

U ′ = US, V ′ = V S, S = diag{ejθi} and θi is any

real number, is also an SVD of A. However, the

singular values, σi, are unique.

σi(A) =
√
λi(AHA) =

√
λi(AAH) (A.25)
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The columns of U and V are unit eigenvectors of

AAH and AHA, respectively. To derive (A.25) write

AAH = (UΣV H)(UΣV H)H = (UΣV H)(V ΣHUH)

= UΣΣHUH (A.26)

or equivalently since U is unitary and satisfies

UH = U−1 we get

(AAH)U = UΣΣH (A.27)

⇒ U is the matrix of eigenvectors of AAH and {σ2
i }

are its eigenvalues. Similarly, V is the matrix of

eigenvectors of AHA.

Definition: The rank of a matrix is equal to the

number of non-zero singular values of the matrix.

Let rank(A) = r, then the matrix A is called rank

deficient if r < k = min(l,m), and we have singular

values σi = 0 for i = r + 1, . . . k. A rank deficient

square matrix is a singular matrix (non-square

matrices are always singular).
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A.3.3 SVD of a matrix inverse

Provided the m×m matrix A is non-singular

A−1 = V Σ−1UH (A.28)

Let j = m− i+ 1. Then it follows from (A.28) that

σi(A
−1) = 1/σj(A), (A.29)

ui(A
−1) = vj(A), (A.30)

vi(A
−1) = uj(A) (A.31)

and in particular

σ̄(A−1) = 1/σ(A) (A.32)
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A.3.4 Singular value inequalities

σ(A) ≤ |λi(A)| ≤ σ̄(A) (A.33)

σ̄(AH) = σ̄(A) and σ̄(AT ) = σ̄(A) (A.34)

σ̄(AB) ≤ σ̄(A)σ̄(B) (A.35)

σ(A)σ̄(B) ≤ σ̄(AB) or σ̄(A)σ(B) ≤ σ̄(AB)(A.36)

σ(A)σ(B) ≤ σ(AB) (A.37)

max{σ̄(A), σ̄(B)} ≤ σ̄

[
A

B

]
≤

√
2max{σ̄(A), σ̄(B)}

(A.38)

σ̄

[
A

B

]
≤ σ̄(A) + σ̄(B) (A.39)

σ̄

[
A 0

0 B

]
= max{σ̄(A), σ̄(B)} (A.40)

σi(A) − σ̄(B) ≤ σi(A+B) ≤ σi(A) + σ̄(B) (A.41)

Two special cases of (A.41) are:

|σ̄(A) − σ̄(B)| ≤ σ̄(A+B) ≤ σ̄(A) + σ̄(B) (A.42)

σ(A) − σ̄(B) ≤ σ(A+B) ≤ σ(A) + σ̄(B) (A.43)

(A.43) yields

σ(A) − 1 ≤ σ(I +A) ≤ σ(A) + 1 (A.44)
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On combining (A.32) and (A.44) we get

σ(A) − 1 ≤ 1

σ̄(I +A)−1
≤ σ(A) + 1 (A.45)
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A.4 Condition number

The condition number of a matrix is defined as

the ratio

γ(A) = σ1(A)/σk(A) = σ̄(A)/σ(A) (A.46)

where k = min(l,m).
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A.5 Norms

Definition

A norm of e (which may be a vector, matrix, signal

or system) is a real number, denoted ‖e‖, that

satisfies the following properties:

1. Non-negative: ‖e‖ ≥ 0.

2. Positive: ‖e‖ = 0 ⇔ e = 0 (for semi-norms we

have ‖e‖ = 0 ⇐ e = 0).

3. Homogeneous: ‖α · e‖ = |α| · ‖e‖ for all complex

scalars α.

4. Triangle inequality:

‖e1 + e2‖ ≤ ‖e1‖ + ‖e2‖ (A.47)
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We will consider the norms of four different objects

(norms on four different vector spaces):

1. e is a constant vector.

2. e is a constant matrix.

3. e is a time dependent signal, e(t), which at each

fixed t is a constant scalar or vector.

4. e is a “system”, a transfer function G(s) or

impulse response g(t), which at each fixed s or t

is a constant scalar or matrix.
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A.5.1 Vector norms

General:

‖a‖p = (
∑

i

|ai|p)1/p; p ≥ 1 (A.48)

Vector 1-norm (or sum-norm)

‖a‖1
∆
=
∑

i

|ai| (A.49)

Vector 2-norm (Euclidean norm).

‖a‖2
∆
=

√∑

i

|ai|2 (A.50)

aHa = ‖a‖2
2 (A.51)
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Vector ∞ -norm (or max norm)

‖a‖max ≡ ‖a‖∞ ∆
= max

i
|ai| (A.52)

‖a‖max ≤ ‖a‖2 ≤ √
m ‖a‖max (A.53)

‖a‖2 ≤ ‖a‖1 ≤ √
m ‖a‖2 (A.54)

p = ∞

p = 1

p = 2

−1

−1

1

1

a1

a2

Figure 97: Contours for the vector p-norm, ‖a‖p = 1

for p = 1, 2,∞

1-19



A.5.2 Matrix norms

Definition

A norm on a matrix ‖A‖ is a matrix norm if, in

addition to the four norm properties in

Definition A.5, it also satisfies the multiplicative

property (also called the consistency condition):

‖AB‖ ≤ ‖A‖ · ‖B‖ (A.55)

Sum matrix norm.

‖A‖sum =
∑

i,j

|aij | (A.56)

Frobenius matrix norm (or Euclidean norm).

‖A‖F =
√∑

i,j |aij |2 =
√

tr(AHA) (A.57)

Max element norm.

‖A‖max = max
i,j

|aij | (A.58)

Not a matrix norm as it does not satisfy (A.55).

However note that
√
lm ‖A‖max is a matrix norm.
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Induced matrix norms

- -A
w z

Figure 98: Representation of (A.59)

z = Aw (A.59)

The induced norm is defined as

‖A‖ip
∆
= max

w 6=0

‖Aw‖p

‖w‖p
(A.60)

where ‖w‖p = (
∑

i |wi|p)1/p denotes the vector

p-norm.

• We are looking for a direction of the vector w

such that the ratio ‖z‖p/‖w‖p is maximized.

• The induced norm gives the largest possible

“amplifying power” of the matrix. Equivalent

definition is:

‖A‖ip = max
‖w‖p≤1

‖Aw‖p = max
‖w‖p=1

‖Aw‖p (A.61)
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‖A‖i1 = maxj(
∑

i |aij |)
“maximum column sum”

‖A‖i∞ = maxi(
∑

j |aij |)
“maximum row sum”

‖A‖i2 = σ̄(A) =
√
ρ(AHA)

“singular value or spectral norm”

(A.62)

Theorem 14 All induced norms ‖A‖ip are matrix

norms and thus satisfy the multiplicative property

‖AB‖ip ≤ ‖A‖ip · ‖B‖ip (A.63)

- - -AB
w v z

Figure 99:
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Implications of the multiplicative property

1. Choose B to be a vector, i.e B = w.

‖Aw‖ ≤ ‖A‖ · ‖w‖ (A.64)

The “matrix norm ‖A‖ is compatible with its

corresponding vector norm ‖w‖”.

2. From (A.64)

‖A‖ ≥ max
w 6=0

‖Aw‖
‖w‖ (A.65)

For induced norms we have equality in (A.65)

‖A‖F ≥ σ̄(A) follows since ‖w‖F = ‖w‖2.

3. Choose both A = zH and B = w as vectors.

Then we derive the Cauchy-Schwarz inequality

|zHw| ≤ ‖z‖2 · ‖w‖2 (A.66)
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A.5.3 The spectral radius ρ(A)

ρ(A) = max
i

|λi(A)| (A.67)

Not a norm!

Example:

A1 =

[
1 0

10 1

]
, A2 =

[
1 10

0 1

]
(A.68)

ρ(A1) = 1, ρ(A2) = 1 (A.69)

but

ρ(A1 +A2) = 12, ρ(A1A2) = 101.99 (A.70)

Theorem 15 For any matrix norm (and in

particular for any induced norm)

ρ(A) ≤ ‖A‖ (A.71)
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A.5.4 Some matrix norm relationships

σ̄(A) ≤ ‖A‖F ≤
√

min(l,m) σ̄(A) (A.72)

‖A‖max ≤ σ̄(A) ≤
√
lm ‖A‖max (A.73)

σ̄(A) ≤
√
‖A‖i1‖A‖i∞ (A.74)

1√
m
‖A‖i∞ ≤ σ̄(A) ≤

√
l ‖A‖i∞ (A.75)

1√
l
‖A‖i1 ≤ σ̄(A) ≤ √

m ‖A‖i1 (A.76)

max{σ̄(A), ‖A‖F , ‖A‖i1, ‖A‖i∞} ≤ ‖A‖sum (A.77)

• All these norms, except ‖A‖max, are matrix

norms and satisfy (A.55).

• The inequalities are tight.

• ‖A‖max can be used as a simple estimate of σ̄(A).
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The Frobenius norm and the maximum singular

value (induced 2-norm) are invariant with respect to

unitary transformations.

‖U1AU2‖F = ‖A‖F (A.78)

σ̄(U1AU2) = σ̄(A) (A.79)

Relationship between Frobenius norm and singular

values, σi(A)

‖A‖F =

√∑

i

σ2
i (A) (A.80)

Perron-Frobenius theorem

min
D

‖DAD−1‖i1 = min
D

‖DAD−1‖i∞ = ρ(|A|)
(A.81)

where D is a diagonal “scaling” matrix.

Here:

• |A| denotes the matrix A with all its elements

replaced by their magnitudes.

• ρ(|A|) = maxi |λi(|A|)| is the Perron root

(Perron-Frobenius eigenvalue). Note:

ρ(A) ≤ ρ(|A|)
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A.5.5 Matrix and vector norms in MATLAB

σ̄(A) = ‖A‖i2 norm(A,2) or max(svd(A))

‖A‖i1 norm(A,1)

‖A‖i∞ norm(A,’inf’)

‖A‖F norm(A,’fro’)

‖A‖sum sum (sum(abs(A)))

‖A‖max max(max(abs(A)))

(which is not a matrix norm)

ρ(A) max(abs(eig(A)))

ρ(|A|) max(eig(abs(A)))

γ(A) = σ̄(A)/σ(A) cond(A)

For vectors:

‖a‖1 norm(a,1)

‖a‖2 norm(a,2)

‖a‖max norm(a,’inf’)
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A.5.6 Signal norms

Contrary to spatial norms (vector and matrix

norms), choice of temporal norm makes big

difference for signals.

Example:

e

t

e1(t)

e2(t)

1

Figure 100: Signals with entirely different 2-norms

and ∞-norms.

‖e1(t)‖∞ = 1, ‖e1(t)‖2 = ∞
‖e2(t)‖∞ = ∞, ‖e2(t)‖2 = 1

(A.82)
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Compute norm in two steps:

1. “Sum up” the channels at a given time or

frequency using a vector norm.

2. “Sum up” in time or frequency using a temporal

norm.

e

t

e(t)

Area = ‖e‖1

‖e‖∞

Figure 101: Signal 1-norm and ∞-norm.

General:

lp norm: ‖e(t)‖p =

(∫ ∞

−∞

∑

i

|ei(τ)|pdτ
)1/p

(A.83)
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1-norm in time (integral absolute error (IAE), see

Figure 101):

‖e(t)‖1 =

∫ ∞

−∞

∑

i

|ei(τ)|dτ (A.84)

2-norm in time (quadratic norm, integral square

error (ISE), “energy” of signal):

‖e(t)‖2 =

√∫ ∞

−∞

∑

i

|ei(τ)|2dτ (A.85)

∞-norm in time (peak value in time, see

Figure 101):

‖e(t)‖∞ = max
τ

(
max

i
|ei(τ)|

)
(A.86)

Power-norm or RMS-norm (semi-norm since it

does not satisfy property 2)

‖e(t)‖pow = lim
T→∞

√√√√ 1

2T

∫ T

−T

∑

i

|ei(τ)|2dτ (A.87)
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