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The starting point for this study was an incident in an industrial plant, where the
ammonia synthesis reactor became unstable with rapid temperature oscillations (limit
cycles) in the range porn about 3OO’C to 5OO’C. A simple dynamic model reproduces
this behavior. In industry a steady-state van Heerden analysis is often used to analyze
the stability, but a more care@1 analysis for this reactor system reveals that instability
occurs when there still is a positive steady-state margin, namely as a pair of complex
conjugate poles cross the imaginary axis (Hopf bifircation). This is consistent with the
observations where the instability manifests itself as oscillations rather than extinction of
the reaction. This somewhat unusual behavior can be explained by the presence of an
inverse response for the temperature response through the reactor beds combined with
the positive feedback caused by the preheater.

Introduction
The starting point of this work was an incident in an indus-

trial ammonia fixed-bed synthesis reactor in Germany in 1989.
After a sudden decrease in reactor pressure caused by a tem-
porary reduction in fresh feed to the synthesis loop, the reac-
tor-which was operated without feedback control-became
unstable, such that the recorded temperatures in the reactor
started oscillating with a period of about 6 min and a range
of about 2OO?Z (* 100°C) (Naess et al., 1992). The oscilla-
tions lasted for about 2 h, until pressure in the synthesis loop
was restored. A temperature recording from this incident is
shown in Figure 1. Such large and rapid oscillations are dam-
aging for the catalyst, and after the incident it was observed
that these kinds of oscillations tended to occur more fre-
quently and for smaller disturbances.

The purpose of this article is to provide an explanation of
this sort of reactor behavior. First, we present a mathemati-
cal model of the ammonia-synthesis reactor, describing the
conservation of mass and energy. Simulations using this model
reproduce the temperature oscillations observed in the indus-
trial plant, The main cause of the instability is the positive
feedback from the heat recycle caused by the feed-effluent
heat exchanger. We start with a simple steady-state analysis,
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similar to that of van Heerden (19531, which proves to be
inadequate. We then perform a conventional linear stability
analysis, which is found to be consistent with the nonlinear
simulations and shows that instability occurs as a pair of com-
plex eigenvalues cross into the right half-plane (RHP) (Hopf
bifurcation). We explain why the initial steady-state analysis
was inadequate in this case. Finally, we discuss the implica-
tions for operation and control of such reactors.

Although it is well known that instability of this kind may
occur in chemical reactors, to our knowledge that is the first
time it is documented on an industrial scale. The article also
demonstrates the usefulness of classic frequency-domain
analysis such as Nyquist and Bode plots, and shows in which
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Figure 1. Temperature recording from the industrial
ammonia reactor (close to the reactor outlet).
Time scale is 0 to 150 min.
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cases the steady-state analysis of van Heerden can be incor-
rect.

The rest of this introduction is devoted to a short review of
previous work. General work on reactor stability, modeling,
and control is abundant. Crider and Foss (1968) refer to Nus-
selt in 1927 and independently Schuman in 1929 as the first
to present a thermal analysis of packed beds. van Heerden
(1953) and Aris and Amundson (1958) analyzed the stability
of the steady states of autothermal reactors. Limit cycle be-
havior in autothermal reactors was presented by Reilly and
Schmitz (1966, 1967) and Pareja and Reilly (1969). Stephens
and Richards (1973) performed a steady-state and dynamic
analysis of an ammonia synthesis plant and noted that
steady-state stability criteria are not sufficient for stability.
Fixed-bed reactors are discussed extensively in the survey of
Schmitz (19751, and also in Ray (19721, Gilles (1976), Eigen-
berger (19851, and J#rgensen (1986). Silverstein and Shinnar
(1982) discuss the stability of heat-integrated fixed-bed reac-
tor. Other works on dynamics and control of fixed-bed reac-
tors include Crider and Foss (1966, 19681, Vakil et al. (19731,
Wallmann and Foss (1979, 19811, Foss et al. (1980), Gusciora
and Foss (1989), and Eigenberger and Schuler (1989).

Simple Model of the Reactor

Models for fixed beds are abundant in the literature (see,
e.g., Eigenberger, 1976). The main purpose of our model is
not to reproduce the industrial case with great numerical ac-
curacy, but rather to yield qualitative insight into the ob-
served phenomena. Our model is therefore kept simple.

Figure 2 shows the reactor system, which consists of three
beds in series with fresh feed quenching between each bed
and preheating of the feed with the effluent. A material and
energy balance yields two partial differential equations:

Figure 2. Reactor system with three beds and pre-
heater.

IV; = m&T,c)

where
1= time, s
2 = position in reactor
T= catalyst particle temperature, K
c = ammonia concentration (mass fraction), kg NH&g gas

AHrx = heat of reaction, Jbg- NH3
C ~ = heat capacity of catalyst, J/kg cat, K
C$ = heat capacity of gas, J/kg, K
VIM = catalyst mass in the bed, kg

w = gas flow through the bed, kg/s
r(T, c) = reaction rate, kg NH&g cat, s

r = dispersion coefficient, L/s
Note that gas-phase holdup has been neglected because

the gas density is low. The dispersion coefficient is a simpli-
fied way of taking into account the finite heat-transfer rate
between the gas phase and the solid catalyst.

The model may be discretized in space, and by selecting
the grid spacing AZ = ~F/u, the term involving the diffusion
drops out (effectively, the numerical “diffusion” introduced
by the discretization cancels the actual diffusion). We then
get the following discretized equations for cell number j (see
Morud (1995) for more details):

(Alternatively, this is a valid model for cases where the diffu-
sion is neglected and the number of grid points is large.)

An important parameter for the reactor is the migration
velocity for the temperature wave,

With the data used in the simulations the migration velocity
through each of the three beds is 0.0111, 0.0092, and 0.0067
(bed lengths/s), respectively. The total time for a tempera-
ture wave to move through the three beds is then approxi-
mately l/u1 + I/I.+ + l/us = 348 s.

The preheater is modeled as a standard countercurrent
heat exchanger (without dynamics for simplicity) that yields a
relationship of the form:

where Ti is the preheater outlet (reactor inlet) temperature
and TO the reactor outlet temperature (see Figure 2), and the
preheater efficiency e E [0 1] is a constant independent of
temperature.
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Figure 5, Steady-state characteristics of reactor (S-
shaped curves) and preheater (straight line).

Steady-State Analysis
Consider Figure 5, where the steady-state characteristics of

the reactor and preheater are shown. The S-shaped reactor
characteristic gives the relation between the reactor inlet
temperature q and the reactor outlet temperature To (see
Figure 2 for definitions). Similarly, the straight-line preheater
characteristic gives the relation between its “input” To and
its “output” Tj recall Eq. 6. For the reactor we show the S-
shaped curves at two pressures; at 200 bar (solid line) and at
170 bar (dashed line). It is implicitly assumed that other
quantities are held constant (flow rates, feed temperature,
etc.). The plot in Figure 5 is very similar to the classic van
Heerden plot (1953).

The possible steady-state operating points are points where
the two curves intersect. For the conditions given in Figure 5,
there are three possible steady-state solutions, and the de-
sired one, in which we operate, is the upper one with the
highest temperature and highest conversion. The tempera-
ture profile through the reactor at this desired operating point
is shown in Figure 6 for the two pressures. Note that the
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Bed [-]

Figure 6. Steady-state reactor temperature profile at the
“upper”operating point.

temperature at bed length zero is less than Ti because of the
quench; see also Figure 2.

We now consider the stability of the desired upper operat-
ing point. As noted earlier, to induce instability one can re-
duce the pressure. According to the analysis of van Heerden
(1953), which is repeated in many books (e.g., Froment and
Bischoff, 1990, p. 427), one would expect instability to occur
exactly when the two characteristics in Figure 5 touch each
other (i.e., when the middle and upper solutions coincide).
Thus, one would expect the reactor to remain stable when
the pressure is lowered from 200 bar to 170 bar and even a
bit further down. However, simulations show that instability
occurs at about 172 bar, where there still is a positive steady-
state “stability margin.“At first, this was believed to be caused
by nonlinearity or numerical errors, but a more careful analy-
sis shows that the simulations are indeed correct, and that
the upper solution may be unstable, demonstrating that a
steady-state analysis is insufficient (as pointed out already by
Aris and Amundson, 1958).

More specifically, we find by linearizing the model at the
(upper) operating point in Figure 5 that the eigenvalues A
furthest to the right (closest to instability) are

p = 200 bar: h = - 0.0017 k iO.0183 (s-r)

p = 170 bar: A= +O.O002k iO.0148 (s-l).

Thus, the upper operating point is stable at 200 bar, but.
(barely) unstable at 170 bar. We note that the instability oc-
curs as a pair of complex eigenvalues cross into the RHP
(Hopf bifurcation). The corresponding period of oscillations
is approximately 2~/0.0148 = 425 s, which agrees very well
with the observed period of oscillations of about 420 s in the
nonlinear simulations and 360 s in the plant data.

Linear Dynamic Analysis
We now use a linear analysis to study more carefully the

cause of the instability. All the results given below are for a
reactor with pressure 172 bar operating at the upper (de-
sired) operating point.

Close to an operating point, the dynamics of a system are
well described by its linearized model. The model of the re-
actor (without the preheater) was linearized numerically at
this operating point, yielding a standard linear state space
model with 30 states on the form:

G!X
-=Ax+Bu,
dt

y=m PO)

where the state vector x consists of temperatures along the
bed; the independent variable u is the inlet temperature to
the first bed, Ti (before the quench; the quench gas tempera-
ture Tf is assumed constant); and y is the outlet temperature
of the third bed, To. We then get the input-output model

AT0 = &)A&; g(s) = C(s1- A)-‘B,

where the transfer function g(s) is for the reactor without
the preheater, and the A represents deviations from the
nominal steady state. Linearization of the preheater model
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Figure 7. Reactor (g) and preheater (&I.

(Eq. 6) gives AT = eATO, where E is the heat-exchanger effi-
ciency, which nominally is E = 0.629. The reactor system in
Figure 2 may hence be represented by the block diagram with
positive feedback shown in Figure 7, where k = E is the
steady-state gain of the preheater and g(s) the transfer func-
tion of the reactor.

Below we consider first a root locus analysis to understand
what happens as we vary the feedback gain, k. The results
confirm that the operating point with p = 172 bar is at the
limit to instability. Next, we perform a frequency-domain
analysis (Nyquist and Bode plots), which is particularly re-
vealing, as it yields added insight into the physical cause of
the instability.

Root locus anulysis

The reactor with no preheater (k = 0) is stable. This can be
seen by computing the poles of g(s). Thus the instability is
caused by the preheating, and the eigenvalues of the
“closed-loop” reactor system (with preheat) are given as the
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Figure 8. Root locus plot of system.

solutions to 1 - g(s)k = 0. In a root locus analysis (see J?igure
8) we plot these eigenvalues (poles) as k increases from 0 to
infinity (strictly speaking, k cannot exceed 1, since this corre-
sponds to a preheater with infinite area, but we will let k
exceed this value for completeness). The closed-loop poles
“start” (for k = 0) at the poles of g(s). These are marked
with the symbol “ X ” on the Nyquist plot, and we see that
they lie quite evenly spaced between -0.05 and -0.1 [l/s].
As k is increased toward infinity, the poles that stay finite
approach the zeros of g(s), which are the values of s where
g(s) = 0. These are marked with the symbol “0” on the
Nyquist plot, and we see that they lie almost in a circular
arrangement around the poles. Importantly, the discretized
reactor model has five RHP zeros that will “pull” the eigen-
values toward instability as k is increased. As expected, insta-
bility occurs for k = 0.629 (its nominal value) as the pair of
complex RHP-poles closest to the real axis cross into the
RHP.

Frequency domuin analysis

The stability of the system may be analyzed using the stan-
dard Nyquist criterion: For a positive feedback system with a
stable loop transfer function, g(s)k, the system is unstable if
and only if a plot of the loop transfer function gCjm)k encir-
cles the + 1 point (not - 1 point) in the complex plane as the
frequency ti is varied from --a to +m (or, equivalently, it is
unstable if g(ju) encircles the l/k point).

Consider first the stability of the middle operating point in
Figure 5 (for which we show no Nyquist plot). Here, the
steady-state loop gain, g(O)k, the ratio between the two slopes
in Figure 5, is larger than 1. Thus, encirclement of g( ju)k of
the l-point is unavoidable, and it follows from the Nyquist
stability criterion that the system is unstable at the middle
operating point. This rigorously proves the claim by van
Heerden (1953).

Next, consider the stability of the upper (desired) operat-
ing point. Normally, one would expect this point to be stable
since:

1. The steady-state loop gain g(O)k is Zess than 1 (it is
0.218 l 0.629 = 0.137 in our case).

2. The gain lg(ju)k[ normally decreases with frequency so
that instability cannot occur at higher frequencies.

However, in our case there are RHP zeros in g(s) that
increase the loop gain and at the same time yield a negative
phase shift (see the Bode plot of g(s) in Figure 9), and as-
sumption 2 is invalid. This is also seen from the Nyquist plot
of g(jm) in Figure 10, where g( jm) is seen to cross the real
axis to the right of g(O) at some frequency m360. The Nyquist
stability condition tells that the system will be unstable if this
curve encircles the point l/k. Thus, the system is stable for
small values of k (corresponding to little heat integration),
and is unstable if k > k*, where the critical gain k* i s
l/g(jm3&. In our case, k* = l/g(jm3,& = 0.629 and the pre-
heater gain is k = E = 0.629, so as expected the system is at
its limit to instability at p = 172 bar. (For p = 170 bar we find
k* = l/g(ju3m) = 0.591 and the system is unstable.) The fact
that the instability occurs at a nonzero frequency also shows
that the onset of the instability corresponds to a Hopf bifur-
cation, which is consistent with the observed limit cycles in
the nonlinear simulations.
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Figure 9. Bode plot of reactor model g(s).

Step-response analysis

We already know that the transfer function of g(s) has tion rate in the first part of the first bed. This depletes reac-

several RHP zeros. Such RHP zeros generally correspond to tant so that the concentration of reactants drops in the last
inverse response behavior, and this is confirmed by Figure part of the reactor (this effect is fast since the component

11, which shows the outlet reactor temperature, To, in re- holdup is negligible), and this causes the reactor outlet tem-
sponse to a unit step increase in the inlet temperature, ATi = perature to start dropping. However, eventually the tempera-

1’C. The preceding response is for the linear model, and sim- ture wave moves through the reactor, and the outlet temper-
ilar responses were found for the nonlinear model. From the ature eventually increases. Such inverse response characteris-

step response we also see that the steady-state gain is about tics are well known for chemical reactors (e.g., Silverstein and
0.22, as was observed in the Nyquist plot. Shinnar, 1982).

The reason why the reactor instability manifests itself as
oscillations, and not the more common extinction of the reac-
tion, is this inverse-response behavior. A physical explanation
for this inverse response is therefore of interest.

Consider a fixed bed where an exothermic reaction is tak-
ing place, and suppose we make a sudden increase in the
inlet temperature (step change). This will affect the bed out-
let by two mechanisms: by the mitigation of the temperature
wave through the reactor, which is a slow process; and by
changes in the concentration of chemical species, which is a
fast process. The initial effect of the increase in inlet temper-
ature is an increase in the temperature, and thus of the reac-

The inverse-response behavior corresponds to a frequency
response where the gain and phase lag both increase with
frequency, and this causes the Nyquist plot to cross the real
axis further from the origin at the higher frequency where
the phase lag is 360’.

Discussion
Control of reactors with he& integration

Although there has been a lot of work on the control of
fixed-bed reactors, many reactors in the industry are left un-
controlled. When a processing unit can be operated safely
and effectively without control, this is preferred, as it is desir-
able to keep the complexity of a plant to a minimum.

Frequency (radkec)

Figure 10. Nyquist plot of reactor model g(s).

400 600
Time [set]

Figure 11. Step response of g(s).
Response in To to ATi = l°C for reactor without preheat-
ing.

Two important issues that have to be considered for the
ammonia synthesis reactor in question are extinction and
limit-cycle behavior. The limit-cycle behavior, studied in this
article, may lead to damage to the reactor as well as deterio-
ration of the catalyst. It may occur if the temperature or
pressure is lowered. A further reduction may lead to extinc-
tion of the reactor, which corresponds to operation at the
lower operating point in Figure 5, may occur if the reactor
temperature becomes sufficiently low. When this happens, the
reactor cannot resume normal operation without external ad-
dition of heat, which necessitates special startup procedures.

Even a very simple controller may stabilize the reactor sys-
tem and eliminate the possibility of extinction and limit-cycle
behavior. For example, consider using the quench valve be-
fore the first bed to control the temperature at the first-bed
inlet. This may be done using a simple PI-controller. This is a
simple mixing of streams with no inverse response, so this
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control loop may be made fast (compared to the overall reac-
tor response time of about 7 min). Thus, the feedback path
through the controller will dominate compared with the posi-
tive feedback through the preheater, and thus the reactor with
controller will behave almost as a reactor without feed-
effluent heat exchange. That is, the reactor will exhibit a
dynamic behavior similar to a reactor with an independent
preheater. To control more carefully the conditions (e.g.,
temperature) inside the reactor, one could then adjust the
setpoint for the inlet temperature in a cascaded manner.

Of course, care must be taken not to saturate the quench
valve used for control. For example, if the quench valve be-
comes fully closed, then there is no further possibility of in-
creasing the temperature, and it is likely that the reactor will
extinguish. To avoid this, one must increase the heat recovery
by reducing the other quench flows such that more of the
feed is preheated. This can only be done to a limited extent,
so one may instead need to increase the feed temperature,
Tf, or increase the reactor pressure.

One may ask whether the observed inverse response
(RHP-zeros) through the reactor will limit the performance
of the reactor. The answer is most likely “no.” The reason is
that the inverse response only poses a limitation if one wants
to control the reactor outlet temperature To (or some other
internal temperature in the reactor) using a quench further
upstream in the reactor. Most likely, it is not critical that the
outlet temperature is tightly controlled, and the RHP zeros
will not present a serious limitation. Also, as already noted,
there is no RHP zero when controlling the inlet temperature
using the inlet quench, so stabilization is not limited by RHP
zeros.

Positive feedback

In the Nyquist plot analysis given earlier, it was shown that
the reason for oscillatory instability in the ammonia synthesis
reactor could be attributed to the shape of the reactor trans-
fer function, g(j~). The plot of this transfer function crosses
the real axis at a point, g(j~&, to the right of the steady-
state point, g(O).

However, for most chemical engineering systems, there is
no such point of g(jm) crossing the real axis to the right of
g(O). In such cases, when the positive feedback gain k is in-
creased, the instability occurs as a pole moves through the
origin, at which point the presence of the integrator makes
the response become “slow” and sensitive to disturbances.
This has made many authors make statements like: “Positive
feedback in a plant makes the response of the plant slow,
and the sensitivity to slow disturbances high.” Since there are
systems where this is not the case, as demonstrated earlier,
such statements should be made with care.

Comparison with previous work

That ammonia synthesis reactors may exhibit limit-cycle
behavior has also been noted by Stephens and Richards
(1973); possibly because of an incident in an ICI plant. How-
ever, their article does not contain any dynamic analysis, and
it leaves the impression that the authors were somewhat un-
certain about the cause of the problem.

On the other hand, the general article by Silverstein and
Shinnar (1982) contains a generic analysis of reactor systems

with feed-effluent heat exchange and a combustion chamber.
In their analysis, which is based on linear systems theory, they
explain the conditions for reactor stability.

Conclusion/Summary
An industrial fixed-bed autothermal ammonia synthesis re-

actor became unstable, such that the recorded temperatures
in the reactor oscillated heavily. A nonlinear dynamic mathe-
matical model of the reactor reproduces the incident. The
oscillatory behavior (limit cycles) occurs in the simulations
when the reactor feed temperature or the operating pressure
is too low. The phenomenon may be described as a tempera-
ture wave migrating through the reactor being fed back
through the preheater.

A linear analysis, using Nyquist and Bode plots, can be used
to predict the point of instability, and shows that the phe-
nomenon occurs when a pair of complex eigenvalues cross
into the RHP. The analysis shows that the physical cause for
this somewhat unusual instability is a combination of the pos-
itive heat feedback in the preheater, combined with nonmini-
mum phase behavior (inverse response dynamics) of the reac-
tor temperature response. Thus, the system may become un-
stable even though there is a positive “stability margin” at
steady state.

The classic steady-state stability analysis of van Heerden
(1953) can be used to conclude that the intermediate steady
state is unstable, but not, as illustrated by the results in this
article, to conclude that the upper (desired) steady state is
stable. In any case, it is important to note that any of these
steady states may be stabilized with feedback control.

In the industrial plant, the information obtained from the
analysis was used to change the operating procedures to make
it less likely for instability to occur. An alternative, and most
likely better, solution would have been to implement a feed-
back control system, but the operators and plant manage-
ment prefer manual operation. The feedback system could
for example use the quench to the first bed to control the
temperature at the inlet to the first bed.

Acknowledgment
Norsk Hydro ASA provided the industrial data for the case study,

and we thank Dr. Steinar Saelid for his assistance in this respect.
Gintas Jounys replaced the original kinetic expression in Morud
(1995) by the Temkin-Pyzhev equation as part of his Diploma Thesis
work.

Literature Cited
Aris, R., and N. R. Amundson, “An Analysis of Chemical Reactor

Stability and Control,” Chem. Eng. Sci., 7, 121 (1958).
Crider, J. E., and A. S. Foss, “Computational Studies of Transients

in Packed Tubular Reactors,” AIChE J., 12, 514 (1966).
Crider, J. E., and A. S. Foss, “&I Analytic Solution for the Dynamics

of a Packed Adiabatic Chemical Reactor,” AIChE J., 14,77 (1968).
Eigenberger, G., “Dynamics and Stability of Chemical Engineering

Processes,” IIU. Chem. Eng., 25, 595 (1985).
Eigenberger, G., and H. Schuler, “Reactor Stability and Safe Reac-

tion Engineering,” Int. Chem. Eng., 29, 12 (1989).
Foss, A. S., J. M. Edmunds, and B. Kouvaritakis, “Multivariable

Control System for Two-Bed Reactors by the Characteristic Locus
Method,” Iti. Eng. Chem. Fun&m., 19, 109 (1980).

Froment, G. F., and K. B. Bischoff, Chemicd Reactor Andysis und
Design, 2nd ed., Wiley, New York (1990).

894 April 1998 Vol. 44, No. 4 AIChE Journal



Gilles, E. D., “Reactor Models,” Proc. of 4th Int. Symposium on
Chemical Reactor Engineering (ISCRE) , Heidelberg, published by
DECHEMA, Frankfurt, pp. 456-486 (1976).

Gusciora, P. H., and A. S. Foss, “Detecting and Avoiding Unstable
Operation of Autothermal Reactors,” AIChE J., 35, 881 (1989).

Jbrgensen, S. B., “Fixed Bed Reactors and Control-A Review,”
Proc. IFAC Symp. DYCORD-86, p. 11 (1986).

Morud, J., “Studies of the Dynamics and Operation of Integrated
Plants,” Dr. Ing. Thesis, Norwegian Univ. of Science and Technol-
ogy, Trondheim (1995) (available over the internet).

Naess, L., A. Mjaavatten, and J. 0. Lie, “Using Dynamic Process
Simulation from Conception to Normal Operation of Process
Plants,” Comput. Chem. Eng., 17(5/6), 585 (1992).

Pareja, G., and M. J. ReiIly, “Dynamic Effects of Recycle Elements
in Tubular Reactor Systems,” IEC Fundam.,  8, 442 (1969).

Reilly, M. J., and R. A. Schmitz, AIChE J., 12, 153 (1966).
Reilly, M. J., and R. A. Schmitz, AZChE J., 13, 519 (1967).
Ray, W. H., Proc. ISCRE Symp., Amsterdam, p. A8.1 (1972).
Schmitz, R. A., “Multiplicity, Stability and Sensitivity if States in

Chemically Reacting Systems-A Review,” Adv. Chem. Ser., 148,
156 (1975).

Silverstein, J. L., and R. Shirmar, “Effect of Design on the Stability
and Control of Fixed Bed Reactors with Heat Feedback,” Int, Eng.
Chem. Process Des. Dev., 21, 241 (1982).

Stephens, A. D., and R. J. Richards, “Steady State and Dynamic
Analysis of an Ammonia Synthesis Plant,” Automatica, 9,65 (1973).

Vakil, H. B., et al., “Fixed Bed Reactor Control with State Estima-
tion,” Ind. Eng. Chem. Fundam.,  12, 328 (1973).

van Heerden, C., “Autothermic Processes. Properties and Reactor
Design,” Ind. Eng. Chem., 45, 1242 (1953).

‘Wallmann, P. H., and A. S. Foss, “Multivariable Integral Control for
Fixed Bed Reactors,” hxf. Eng. Chem. Fundam.,  18, 392 (1979).

Wallmann, P. H., and A. S. Foss, “Experiences with Dynamic Esti-
mators for Fixed Bed Reactors,” Ind. Eng. Chem. Fundam.,  20,
234 (1981).

Appendix: Data for the Model
The reaction is Nz +3Hz + 2NH3.

Gas heat capacity, CPg 3,500 J/kg, K
Heat capacity of catalyst, CPc 1,100 J/kg, K
Heat of reaction, - AHrX 2.7~ 106 J/kg NH3

Volume, bed 1
Volume, bed 2
Volume, bed 3
Catalyst bulk density, peat
Typical gas density

6.69 m3
9.63 m3
15.2 m3
2,200 kg/m3
50 kg/m3

Dispersion coefficient, I’i
bed 1,

Dispersion coefficient, I2
b e d  2 ,

Dispersion coefficient, I3
bed 3,

Number of discretization points
in each bed

5.6 x lO-4
(bed lengths)2/s

4.6 x lO-4
(bed lengthsj2/s

3.3 x lo-4
(bed lengthsj2/s

10

Operating Conditions
Inlet flow to preheater, rvh
Quench bed 1, wQ1
Quench bed 2, wQz
Quench bed 3, wQ3

127 ton/h
58 ton/h
35 ton/h
32 ton/h

Feed mole fraction NH3 0.0417
Feed mole fraction N2 0.2396
Feed mole fraction H2 0.7187
Feed gas temperature, Tf 250°C
Typical reactor pressure 200 bar

Preheater
Heat-transfer coefficient, U 536 W/m2,  K
Heat-exchanger area, A 283 m2
Calculated number of heat-transfer 1.23

units (NTU)
Calculated heat-exchanger

efficiency, E 0.629

I_ e-NTU(l-C)

e= I_ ce-NTU(l-C) ’

where

UA
NTU=- C=

wh

whcpg ’ wh+wQl+wQ~+wQ~’

Manuscript received Aug. 29, 1997, and revision received Jan. 12, 1998.

AIChE Journal April 1998 Vol. 44, No. 4 895


